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Abstract

Fair biometric algorithms have similar verification
performance across different demographic groups given
a single decision threshold. Unfortunately, for state-
of-the-art face recognition networks, score distributions
differ between demographics. Contrary to work that
tries to align those distributions by extra training or
fine-tuning, we solely focus on score post-processing
methods. As proved, well-known sample-centered score
normalization techniques, Z-norm and T-norm, do
not improve fairness for high-security operating points.
Thus, we extend the standard Z/T-norm to integrate
demographic information in normalization. Addition-
ally, we investigate several possibilities to incorporate
cohort similarities for both genuine and impostor pairs
per demographic to improve fairness across different
operating points. We run experiments on two datasets
with different demographics (gender and ethnicity) and
show that our techniques generally improve the overall
fairness of five state-of-the-art pre-trained face recog-
nition networks, without downgrading verification per-
formance. We also indicate that an equal contribution
of False Match Rate (FMR) and False Non-Match Rate
(FNMR) in fairness evaluation is required for the high-
est gains. Code and protocols are available.‡‡

1. Introduction
The automatic identification and verification of fa-

cial images gained large attention in the last decades.
With the advent of deep learning, many new meth-
ods [34, 58, 11, 38, 28] and facial image datasets
[66, 6, 37, 61, 67] have been developed to train and
evaluate deep learning methods. These methods have
matured into being usable in security-relevant applica-
tions like automatic border control using e-gates [10].

‡‡https://github.com/AIML-IfI/score-norm-fairness
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Figure 1. Improved Fairness Through Score Normal-
ization. The original scores on the left have different False
Match Rates (FMR, red area) and False Non-Match Rates
(FNMR, green area) for different demographics under the
same score threshold. Through modeling of score distri-
butions from a cohort, we normalize scores such that they
provide more similar FMR and FNMR across demograph-
ics, thereby improving demographic fairness. Normaliza-
tion techniques in red text use cohort impostor scores only,
blue ones also incorporate cohort genuine scores.

The applicability of these algorithms highly depends
on the characteristics of the demographic groups in
which they are employed. It was observed that The
Other Race Effect, which is well-known in humans [35],
can also be observed in Face Recognition (FR) algo-
rithms. Since most large-scale datasets include mainly
images from white people [61], and dataset biases are
learned by deep learning algorithms [51, 1, 3], research
has shown that algorithms perform very well on white
male populations, but decrease performance on females
and/or people of color [2, 32]. Consequently, most news
media coverage that reports the wrong behavior of au-
tomatic FR algorithms finds the higher false negative
rate in the latter demographics [50, 23]. Therefore, the
Face Recognition Vendor Test (FRVT) has a special re-

https://github.com/AIML-IfI/score-norm-fairness


port addressing demographic effects in FR [19], mostly
observing the effect of ethnicity and gender on more
than 100 Commercial-Off-The-Shelf (COTS) systems.

In face verification, a similarity value is computed
between a previously enrolled gallery template (such as
the face image stored in a passport) and a probe image,
e.g. taken in an e-gate. A threshold is applied to this
similarity value to decide whether the gallery template
and the probe image come from the same identity. One
major problem with fairness in biometrics is that the
distributions of similarity scores differ between demo-
graphics, for example, the mated comparison of African
people usually results in lower similarity scores than
White [56]. Hence, a single threshold can have differ-
ential performance across demographics [25, 9].

Our proposed approaches to overcome this issue in-
clude score normalization techniques that have been
successfully applied in FR [57, 36]. As shown in Fig. 1,
the advantage of these techniques is that they can be
applied to any existing FR system to improve fair-
ness across different people and do not require any fur-
ther network training. In one of these techniques, Z-
norm [48], the score is normalized by a gallery-sample-
specific distribution of similarities to cohort samples of
different subjects. This method has been tested in [31].
In this paper, we modify these techniques to perform
score normalization for a certain demographic group –
instead of per sample – and show that the impostor
score distribution can be normalized with this tech-
nique, but the genuine score distributions will be more
disparate. Therefore, we test methods that normalize
both genuine and impostor score distributions at the
same time. We investigate Platt scaling [42] and pro-
pose a new method. We show that most score normal-
ization techniques can improve demographic fairness
by a good margin, by experimenting on two different
datasets with a total of six evaluation protocols and
five different pre-trained deep networks.

As our contributions in this paper, we:
• propose score normalization methods at post-

processing stage for bias mitigation without down-
grading verification performance;

• extend Z/T-norm to integrate demographics and
propose three cohort-based methods, with one fit-
ting the distribution for impostor scores and the
other two also considering genuine scores;

• develop a new protocol for the RFW dataset with
impostor scores selected randomly and define co-
horts for the original and our new protocol;

• examine all methods on gender and ethnicity with
feature extractors that perform differently;

• and analyze the relative contribution of FNMR
and FMR in fairness evaluation.

2. Background and Related Work
In recent years, deep learning has dominated and

revolutionized the field of FR. Two main research di-
rections exist in the biometrics community: develop-
ing better network topologies and implementing better-
suited loss functions. Wang et al. [60] provide a survey
of algorithms, datasets, and evaluations before 2018,
and more approaches have been developed since. Most
modern network architectures [26] include variations
and improvements [14] of residual network architec-
tures [22]. The latest developed loss functions, i.e. Arc-
Face [11], MagFace [38], and Adaface [28], improve the
discriminability of deep features in angular space.

Also, aspects of fairness have been discussed and
evaluated [19, 61]. Cavazos et al. [7] describe underly-
ing factors that bias COTS FR systems with respect
to ethnicity. It was observed that biases are more fre-
quently observed in low-quality samples [19, 7]. Van-
gara et al. [56] show consistently higher False Match
Rates (FMR) in African Americans compared to Cau-
casians using several COTS systems.

In most cases, face verification performance is eval-
uated via two error measures [41]. For a given score
threshold, the FMR computes the number of impos-
tor comparisons (gallery template and probe sample
are from different identities) with a similarity above
the threshold. Similarly, the False Non-Match Rate
(FNMR) calculates the number of genuine pairs (two
samples of the same identity) with a similarity be-
low the threshold. Oftentimes, these rates are com-
puted and averaged across demographics. Since most
datasets have mainly Caucasian people [61], errors
made on non-Caucasians do not influence results much.

Calculating True Match Rates (TMR) for each de-
mographic label individually is widely used to evaluate
the fairness differences across demographics [27, 29, 46,
59, 61, 62]. Though one can find differences in the per-
formances of different algorithms [32], it is common
to set a single threshold and analyze differences across
demographic groups since independent thresholds are
rarely applied in production. Some works in the bio-
metrics literature advocate that the threshold should
be demographic-specific [8, 44]. On the other hand,
Fairness Discrepancy Rate [9], Inequality Rate [17] and
Gini Aggregation Rate for Biometric Equitability [24]
integrate within-demographic FMR(τ) and FNMR(τ)
differences to measure the bias. Other methods con-
sider the FNMR differences [52] and score distribution
differences [30] across demographics. Here we use the
metric suggested by the National Institute for Stan-
dards and Technology (NIST) [18] which compares the
Worst-case Error Rate to the geometric mean of FMR
and FNMR.



Table 1. Score Normalization. This table lists the score
normalization techniques utilized in our experiments, in-
cluding the data pairs used to compute the statistics.

Method Description Data for Statistics

M1 Z-norm subject-based
Gallery × CohortM1.1 Z-norm subject-demo-based

M1.2 Z-norm demo-based
M2 T-norm subject-based

Probe × CohortM2.1 T-norm subject-demo-based
M2.2 T-norm demo-based

M3 Impostor Norm
Cohort × CohortM4 Platt Scaling

M5 Bimodal CDF

There also exist methods to mitigate the bias in FR
systems by improving features extracted from the net-
works [15, 33, 40, 16, 27, 46, 53, 63, 65, 13, 64], partially
solving ethical problems by generating synthetic im-
ages for different demographics [4, 47]. With features
extracted via existing FR systems, Terhorst et al. [55]
train a classifier to replace the regular cosine similar-
ity function which pushes score distributions of differ-
ent groups to be similar. A fair score normalization
(FSN) method proposed by Terhorst et al. [54] uses
KMeans to cluster features and combine the cluster-
specific thresholds and global thresholds to normalize
scores. Kotwal et al. [31] propose a score calibration
method to align the score distribution by fine-tuning
a pre-trained network with additional intra- and inter-
demographic loss terms. In contrast, we solely focus on
boosting fairness of existing FR systems without any
network training process and no need to access fea-
tures. While somewhat related to our work (Kotwal et
al. [31] investigate similar methods as ourselves, such
as M1 and M2, see below), they made use of a network
pre-trained on MS1MV3 [21], which overlaps identities
with the RFW test set [61].

3. Approach
To apply a single score threshold τ that is suited

for different demographics, it is required that each de-
mographic follows a similar score distribution. We
investigate several techniques that provide this ca-
pability, a list of these techniques is provided in
Tab. 1. Most techniques collect score distributions
D = {sim(g1, p1), sim(g2, p2), . . .} which are computed
by choosing various gallery g and probe samples p.
These distributions are modeled to follow a normal dis-
tribution Nµ,σ with mean µ and standard deviation σ:

µ = E
(
D

)
σ =

√
E

(
(D − µ)2

) (1)

Finally, standardization is performed for a given sim-
ilarity score s between gallery g and probe sample p

from the test set:

s′ = Sµ,σ(s) = s − µ

σ
with s = sim(g, p) (2)

Methods using only impostor scores to model Nµ,σ are
introduced in Sec. 3.1, 3.2, and 3.3, and methods in-
cluding genuine scores in Sec. 3.4.

3.1. Identity-based Score Normalization

Well-known techniques such as Z-norm [48] and T-
norm [5] fight differences in score distributions of single
individuals that were first observed by Doddington et
al. [12]. The identity-based impostor score distribu-
tions are computed by comparing the test gallery g or
probe sample p to samples from different identities se-
lected from a cohort dataset. When the test gallery g is
compared to the cohort, this technique is called Z-norm
[48], which we refer to as M1. T-norm [5], i.e. when
the test probe sample p is compared to the cohort, is
called M2 in our evaluation.

3.2. Demographics-based Score Normalization

While these identity-based approaches can make dis-
tributions more similar across demographics, no such
guarantee is given and there is no restriction on the
demographics of the cohort samples. In fact, the distri-
bution contains cross-demographic comparisons, which
might not reflect realistic impostor attacks. Hence, an
easy extension of the Z-norm and T-norm would be to
restrict the samples in the cohort to the same demo-
graphic as gallery/probe sample, respectively. We term
these methods M1.1 for Z-norm and M2.1 for T-norm.

When further splitting up the cohort into demo-
graphics as done above, the number of scores for dis-
tribution estimation is reduced, especially at the tails
of very low FMRs, the estimation might not be rele-
vant any longer and downgrade the verification perfor-
mance. To increase number of scores to model normal
distributions (1), we can exploit all in-demographics
gallery-cohort comparisons for all enrolled gallery sam-
ples, to arrive at M1.2. Similarly, we can utilize all in-
demographics probe-cohort comparisons for all probe
samples, to arrive at M2.2. While combining compar-
isons over all gallery or probe samples can be achieved
when working on specific datasets, in typical verifica-
tion applications there exists no large gallery, and we
have access to a single probe only. Therefore, methods
M1.2 and M2.2 are more of a theoretical nature.

3.3. Pure Cohort-based Score Normalization

For a more fair and realistic evaluation, we propose
to move away from subject-based normalization such
as T-norm and Z-norm. Instead, we solely rely on in-
cohort in-demographics comparisons to estimate the



score distributions. Particularly, we select impostor
pairs of cohort samples from the same demographics
(ethnicity or gender), but from different subjects, and
provide mean µi and standard deviation σi for each
demographic di via (1). We term this method M3.

This way of selecting distributions has two main ad-
vantages. First, these statistics can be pre-computed
and do not require additional gallery-cohort or probe-
cohort comparisons during enrollment or probing. Sec-
ond, the number of scores that can be used is much
larger since all different-identity same-demographics
pairs are utilized. The only disadvantage is that we
need to know di of the comparison to select correct
model Sµi,σi

for (2). Here, we assumed di can be gath-
ered during enrollment, and there is no need to know
the demographic information for probe sample.

3.4. Genuine and Impostor Cohorts

Any of the above approaches have the issue that dis-
tributions are only modeled from one type of score, i.e.,
the impostor scores. While such methods will likely be
able to improve the alignment of the impostor score
distributions across demographics, it is unlikely that
they also normalize across genuine score distributions.
Thus, they are unlikely to improve algorithmic fairness
across all different operating points.

To make use of genuine score distributions, we need
to compute similarities for in-cohort pairs with match-
ing identities, which we split into different demograph-
ics. For demographic di, we mark the genuine score
distributions D⊕

i , while impostor score distributions
(which are the same as used in M3) are marked as
D⊖

i . These two score distributions can now be used to
provide a single monotonically increasing function to
transform the raw scores into normalized scores.

There exist several techniques to incorporate the set
of two distributions D⊕

i and D⊖
i for a given demo-

graphic di into one final normalization [43, 45]. Our
selected representative M4 of these techniques is Platt
scaling [42, 36], where logistic regression is performed
to distinguish low impostor scores from large genuine
scores by maximizing the weighted binary cross en-
tropy using weights w⊕ and w⊖ for normalizing differ-
ent counts of genuine and impostor scores. The final
logistic function σ can be used to normalize the original
test score s for a given demographic di:

s′ = σ(s) = 1
1 + e−αs−β

with (3)

α, β = arg max
α,β

w⊕
∑

s∈D⊕
i

log σ(s) − w⊖
∑

s∈D⊖
i

log σ(s)


Finally, we propose M5 which is related to M3 but

incorporates both genuine and impostor score nor-
malization. This method is inspired by the Bayesian
Intrapersonal/Extrapersonal Classifier [39, 20]. We
try to estimate a score that combines the probability
of being a genuine and not being an impostor score:
P(s) = P⊕(s) − P⊖(s). The former can be estimated
by the Cumulative Distribution Function (CDF) of the
genuine score distribution: P⊕(s) = CDF

(
N ⊕)

(s).
The latter is computed by inverting the CDF of the im-
postor score distribution: P⊖(s) = 1 − CDF

(
N ⊖)

(s).
By combining and applying them to a specific demo-
graphic di, we arrive at:

s′ = P(s) = CDF
(
N ⊕

i

)
(s) − 1 + CDF

(
N ⊖

i

)
(s) (4)

4. Evaluation
For fairness evaluation, we rely on Worst-case Error

Rate to geometric mean of FMR and FNMR (WERM):

WERMτ =

 maxdi
FMRdi

(τ)(∏
di

FMRdi + ϵ
)1/n


α

×

 maxdi FNMRdi(τ)(∏
di

FNMRdi
+ ϵ

)1/n


(1−α) (5)

Here we use ϵ = 10−5. WERM [18] ranges in (0, ∞)
where lower values are better. Often, the contribution
of FMR and FNMR are expected to be balanced, but
other weights are also possible and should be consid-
ered depending on the application needs [9, 24]. We ap-
ply equal weights: α = 1

2 . Since the report on WERM
is threshold-specific, we only focus on FMR threshold
τ = 10−3 here, and other thresholds can be consid-
ered for different application purposes. Additionally,
TMR(τ) is used to measure verification performance.

4.1. New Protocols for VGGFace2

By containing over 3.31 million images of 9131 sub-
jects, the VGGFace2 [6] dataset is one of the larger
FR datasets. The training set contains 8631 identi-
ties, while the test set contains 500 identities. We uti-
lize the given gender labels (Male, Female), and pub-
licly available ethnicity labels (Asian, Black, Indian,
White).∗ Less than 30 people are removed due to dif-
ficulties in determining ethnicities. Instead of using
all samples for the FR experiment, we create a sub-
sampled protocol. For each subject, we randomly pick
five samples to compose a probe set and one sample to

∗https://gitlab.idiap.ch/bob/bob.bio.face/- /blob/
master/src/bob/bio/face/database/vgg2.py

https://gitlab.idiap.ch/bob/bob.bio.face/-/blob/master/src/bob/bio/face/database/vgg2.py
https://gitlab.idiap.ch/bob/bob.bio.face/-/blob/master/src/bob/bio/face/database/vgg2.py
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Figure 2. RFW Protocol Comparison. This figure dis-
plays distributions of baseline genuine and impostor scores
of the four ethnicities on original and our random RFW
protocol computed with the E2 network (cf. Tab. 2).

be registered in the gallery. We use a sample-to-sample
demographic-specific all-vs-all comparison to compute
baseline scores s. Since we make use of a cohort to ap-
ply the score normalization techniques described above,
the same procedure is applied to obtain a cohort from
the training set of VGGFace2.

VGGFace2 has a bias in White and Male, which
is also reflected in the number of comparisons in the
scores. Since τ is picked based on impostor score dis-
tribution, balancing for demographic groups alters τ .
We want to examine the system fairness variation in
the above two situations. To create balanced numbers
of comparisons, for each network, we sub-sample 5,200
impostor pairs per ethnicity, and 180,000 impostor
pairs per gender, such that they follow the original dis-
tributions of all scores. As a result, VGGFace2 forms
four subsets: VGG2 gender, VGG2 gender-balanced,
VGG2 ethnicity, and VGG2 ethnicity-balanced. The
interaction of gender and ethnicity labels is not tested
in our experiments, since balancing both at the same
time provides splits with very few samples.

4.2. New Protocols for RFW

To overcome the issue of unbalanced evaluations
with respect to ethnicity, Wang et al. [61] introduced
the Racial Faces in the Wild (RFW) dataset. This
dataset is a subset of the MS-Celeb-1M (MS1M) [21]
whose identities are organized into four different eth-
nicities (African, Asian, Caucasian, Indian) with
about 3000 individuals per ethnicity. The original
verification protocol [61] defines around 6000 image
pairs (half genuine and half impostor) per ethnicity,
utilizing the most similar impostor pairs determined
by a deep learning-based FR algorithm, which usually
share the same gender and ethnicity. Thus, the dis-
tribution of impostor scores shown in Fig. 2 does not
follow the general trend of gathering around 0. Any
technique trying to learn this score distribution from

Table 2. Pre-Trained Networks. This table lists the
networks utilized in our experiments, including data and
loss function used for training. The networks are sorted in
ascending order of overall recognition performance.

Model Network Training Data Loss Function

E1 ResNet34 CASIA-WebFace ArcFace
E2 ResNet50 MS1M-w/o-RFW ArcFace
E3 IResNet100 Webface12M AdaFace
E4 IResNet100 MS1M MagFace
E5 IResNet100 Webface12M DALIFace

cohort data is doomed to fail. Therefore, we generated
a new random protocol for the RFW dataset to make
this more comparable with other datasets’ results and
avoids a possible selection bias in the default protocol.
It is composed of random image pairs (impostor and
genuine) of same ethnicity and gender. The number of
pairs is almost identical to protocol original.

To evaluate the difficulty, two protocols are passed
into the FR experiment with network E2 (cf. Sec. 5).
At τ = 10−3,∗ we reach TMR = 0.630 for original
and 0.897 for random. We can also observe the dis-
tribution change of impostor scores from Fig. 2, and
random pushes impostor distributions of all ethnicities
closer to 0 without changing the bias on Caucasian.
We suppose that impostor scores are not centered at
0 because of the performance limit of the network and
the bias can be minimized if a good network is applied.

Cohort samples for RFW are taken from the BUPT-
Balancedface [59] dataset, which has the same four eth-
nicities with 70000 subjects per ethnicity, but its image
quality for Asian and Indian are not as good and sta-
ble as African and Caucasian, which have comparable
quality to RFW images. We cleaned the cohort dataset
by removing possible overlaps with RFW and subjects
that have different labels for duplicate images. Since it
is not precisely known how the impostor pairs of the de-
fault RFW protocol were selected, we rely on an IRes-
Net100 network, which is trained on MS1M by ArcFace
loss and knows RFW well,† to get 5000 most similar
impostor pairs plus 5000 genuine pairs per ethnicity
as the cohort for original. The cohort for random is
selected following the same idea as the test set.

5. Experiments
In total, we evaluate five different pre-trained and

publicly available FR networks, as summarized in
Tab. 2. Since RFW is a subset of MS1M, any net-
work that is trained on MS1M cannot be evaluated on
RFW. Therefore, we select two Arcface networks pro-

∗For brevity, we write τ = 10−3 to refer to the threshold τ
that achieves an FMR of 10−3 on the combined test set.

†https://github.com/deepinsight/insightface

https://github.com/deepinsight/insightface
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Figure 3. Impostor vs ALL. This figure compares
the VGGFace2 ethnicity score distributions of baseline,
impostor-based method M1.1, and impostor-genuine-based
methods M4 and M5. Features are extracted by E3.

vided∗ by the RFW authors [61], i.e., a ResNet34 (E1)
trained on CASIA-Webfaces, and a ResNet-50 architec-
ture (E2) trained on MS1M excluding RFW identities.
Since other evaluated datasets do not have this issue,
we also include a more powerful IResNet-100 topology
trained on MS1M using MagFace loss (E4).† Finally,
we employ two IResNet-100 architectures trained on
the WebFaces12M dataset using AdaFace loss (E3)‡

and DALIFace loss [49] (E5). For comparison, we also
evaluate FSN [54] on our protocols and networks.

5.1. VGGFace2

We run tests on the VGGFace2 dataset with all fea-
ture extractors. All proposed methods are applied, in-
dependently with two different types of demographic
labels, gender and ethnicity. In Fig. 3, a quantile plot,
the impostor distribution for baseline of VGGFace2
ethnicity is centered around 0, but a discrepancy ap-
pears in the genuine distribution. Here the overlap of
impostor and genuine scores are treated as outliers and
discarded, while the overlap still exists. The impostor-
based method M1.1, which is supposed to only work on
one side of the scores, results in some subtle moves on
the impostor side, while genuine scores are stretched
to more varied distributions. FMR gaps between de-
mographics are diminished, while FNMR gaps expand.
Theoretically, a small threshold should lead to a large
FNMR, but WERM drops in Tab. 4 since the change
in FMR dominates. M4 and M5 attempt to harmo-
nize the spread on both distributions simultaneously,
and they perform differently on the task. M4 provides
nicely separated score distributions, but the alignment
across demographics can be worse. M5 models both
distributions and achieves good alignment, but pushes
the overlap of extreme values from both sides.

∗http://www.whdeng.cn/RFW/model.html
†https://github.com/IrvingMeng/MagFace
‡https://github.com/mk-minchul/AdaFace

Table 3. Z-Norm-based Methods. This table displays
WERM and TMR (%) of three Z-norm methods (M1, M1.1,
M1.2) for VGGFace2 ethnicity w.r.t. feature extractors E1
- E5. The best values per column are colored in blue/red.

Network E1 E2 E3 E4 E5
Metrics TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓

Baseline 93.76 3.8094 95.65 4.0101 96.80 1.9320 96.92 1.8356 96.96 2.3542
M1 94.50 1.6103 95.81 3.7954 96.76 1.9046 96.92 1.8154 96.88 3.1285
M1.1 92.85 1.5870 95.73 1.3594 96.76 1.6203 96.84 2.1640 96.88 1.6728
M1.2 92.98 1.5237 95.56 2.5367 96.80 1.7845 96.88 1.9265 96.80 2.6092

Tab. 4 is a compact result table. Each subtable dis-
plays TMR and WERM at τ = 10−3 for scores post-
processed by five demographic-based methods with fea-
ture extracted by E1 - E5. An analysis for two fac-
tors of WERM is on our GitHub page.‡‡ WERM for
scores before normalization (baseline) are displayed in
the first row of each table. Almost all methods lead
to a less biased output when normalized with respect
to gender. In most cases, verification performance is
not affected or even has improvements, while the drop
exists with a small magnitude. The difficulty of align-
ment grows as the number of demographics rises to four
ethnicities, especially M5 does not work well when fac-
ing three well-performing networks. M1.1, M2.1, and
M4 are quite stable and outperform FSN. Comparison
between pure identity- (M1) and demographic-based
(M1.1/1.2) methods can be found in Tab. 3. M1 does
not exhibit a notable advantage over M1.1/1.2, which
proves that demographic information is more influen-
tial in mitigating bias compared to identity-only data.
M1.1 and M1.2 have comparable performance, which is
guaranteed when cohort size for M1.1 is large enough
(Central Limit Theorem) for good estimation.

We observe that balancing ethnicity through sub-
sampling worsens fairness compared to baselines, with
a similar, albeit smaller, trend for gender balancing.
The unexpected rise after balancing can be attributed
to the limited number of samples in the minority group.
Sub-sampling occurs in the majority groups and nearly
all samples in the minority groups are preserved. Thus,
the distribution issue in the minority groups remains,
the impact of the majority groups diminishes, and ul-
timately, the bias is amplified. For the same reason,
we observe a drop in TMR after balancing. Similar
behavior on both ethnicity and gender exhibits that
balancing the impostor pairs per demographic via sub-
sampling and then deciding thresholds does not lead
to a less biased result. Regardless of τ determination,
our normalization techniques improve system fairness,
though WERM magnitudes remain baseline-consistent.
We prove that determining thresholds with balanced
scores is unnecessary and may introduce extra bias.

5.2. RFW

All nine normalization techniques are applied to
each protocol-network pair. Although random is pro-

http://www.whdeng.cn/RFW/model.html
https://github.com/IrvingMeng/MagFace
https://github.com/mk-minchul/AdaFace


Table 4. WERM10−3 & TMR10−3 . Six tables below present results for six evaluation protocols. For each protocol, all five
networks, E1 - E5 as provided in Tab. 2, are used to extract features. Five proposed score normalization methods M1 –
M5, cf. Tab. 1, and FSN [54], are applied to those features and TMR (%) and WERM values at threshold τ = 10−3 are
computed. best and runner-up TMR and best and second WERM value are highlighted. The first row shows the baseline.

(a) VGGFace2 Gender

Network E1 E2 E3 E4 E5
Metrics TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓
Baseline 93.55 1.6477 95.48 1.4042 96.71 1.2908 96.88 1.1996 96.76 1.3892
FSN 92.32 1.7575 95.36 1.3947 96.76 1.3059 96.71 1.1674 96.84 1.4596
M1.1 93.43 1.1649 95.65 1.0977 96.67 1.0997 96.88 1.0986 96.92 1.0831
M2.1 93.63 1.2033 95.77 1.0932 96.63 1.1092 96.92 1.0349 96.84 1.0926
M3 92.98 1.1779 95.32 1.1346 96.67 1.0445 96.84 1.0366 96.80 1.0476
M4 93.35 1.3064 95.36 1.1233 96.71 1.1540 96.88 1.1420 96.88 1.1289
M5 93.55 1.3906 95.44 1.1811 96.67 1.0505 96.88 1.0474 96.88 1.1871

(b) VGGFace2 Gender Balanced

Network E1 E2 E3 E4 E5
Metrics TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓
Baseline 93.02 1.7456 95.40 1.4696 96.63 1.2624 96.80 1.2490 96.71 1.3916
FSN 91.46 1.7486 95.11 1.4429 96.67 1.2761 96.71 1.1664 96.59 1.4267
M1.1 93.35 1.1637 95.65 1.1080 96.67 1.0525 96.76 1.0811 96.92 1.1017
M2.1 93.55 1.2197 95.77 1.1014 96.63 1.0686 96.92 1.0425 96.84 1.1097
M3 92.98 1.1723 95.32 1.1426 96.67 1.0408 96.84 1.0455 96.80 1.0688
M4 93.14 1.3243 95.32 1.1330 96.63 1.1258 96.88 1.1642 96.80 1.1633
M5 93.06 1.4569 95.28 1.2022 96.67 1.0408 96.88 1.0483 96.88 1.2092

(c) VGGFace2 Ethnicity

Network E1 E2 E3 E4 E5
Metrics TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓
Baseline 93.76 3.8094 95.65 4.0101 96.80 1.9320 96.92 1.8356 96.96 2.3542
FSN 92.69 3.3962 95.65 4.0190 96.63 1.9067 96.92 1.7605 96.84 4.9612
M1.1 92.85 1.5870 95.73 1.3594 96.76 1.6203 96.84 2.1640 96.88 1.6728
M2.1 92.28 2.1288 95.69 1.4253 96.71 1.3468 96.96 2.9963 96.80 2.0942
M3 92.98 2.5158 95.52 2.6485 96.80 1.6644 96.88 1.8598 96.80 2.4600
M4 94.00 2.6577 95.69 3.7550 96.84 1.7912 96.92 1.6990 96.96 1.9823
M5 93.92 3.4323 95.65 3.6006 96.80 1.9328 96.88 1.9968 96.92 3.9164

(d) VGGFace2 Ethnicity Balanced

Network E1 E2 E3 E4 E5
Metrics TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓
Baseline 88.62 6.4436 94.25 6.0192 96.51 2.9195 96.47 2.7463 96.39 3.2102
FSN 86.57 11.1599 94.05 5.2970 96.35 3.8272 96.38 2.0060 96.35 3.9992
M1.1 93.26 2.0316 95.85 2.0109 96.71 1.9065 96.88 2.5114 96.88 1.9237
M2.1 93.18 2.5456 95.85 1.8519 96.76 1.7582 96.96 2.5224 96.88 2.4882
M3 93.43 3.3406 95.69 2.6263 96.76 2.3642 96.76 2.9416 96.80 2.5019
M4 92.65 3.6487 95.03 2.8245 96.51 1.9404 96.59 1.6599 96.67 3.0813
M5 88.91 6.1117 93.72 6.0567 96.22 3.6257 95.81 3.3750 95.73 5.6425

(e) RFW Original

Network E1 E2 E3 E4 E5
Metrics TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓
Baseline 24.22 2.5246 63.05 2.5402 89.14 3.4611 — — 89.03 2.7167
FSN 2.19 6.8737 55.81 3.0454 88.60 4.5858 — — 87.85 3.6184
M1.1 33.11 1.6128 67.13 2.0791 89.20 2.7097 — — 88.59 2.4684
M2.1 33.38 1.4072 65.35 2.0301 90.41 7.0568 — — 89.54 2.2140
M3 27.99 1.7419 62.17 2.2668 88.92 3.8758 — — 89.56 2.1883
M4 26.29 2.0549 62.25 2.7727 89.60 3.5602 — — 89.91 1.8976
M5 25.63 2.2587 62.54 2.5204 90.05 3.1712 — — 89.50 1.6877

(f) RFW Random

Network E1 E2 E3 E4 E5
Metrics TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓ TMR ↑ WERM ↓
Baseline 60.25 2.0418 89.66 2.7152 98.08 2.3202 — — 98.04 4.3784
FSN 56.15 3.4326 87.89 3.2014 98.10 3.0989 — — 98.17 7.6021
M1.1 68.35 1.9580 90.55 1.7059 98.37 1.5468 — — 98.66 3.2601
M2.1 63.53 1.4274 90.31 1.9231 97.97 1.7707 — — 98.59 3.1609
M3 64.25 1.7578 89.30 2.2723 98.09 1.6354 — — 98.42 2.0688
M4 64.11 1.7085 90.84 2.6720 98.06 2.5022 — — 98.31 4.8942
M5 60.57 2.5452 86.83 3.4545 97.46 6.7419 — — 97.20 5.0545



posed to mitigate the selection bias in original, in
Tab. 4(e) and 4(f), it is not the case by checking the
WERM values for the baseline scores. The bias seems
not only brought by impostor score distribution and
cannot be eliminated by the proposed new protocol.
To ensure the results for protocol random are not oc-
casionally created, we perform a simplified statistical
analysis by generating four more random splits and im-
plement all proposed methods on them, and compute
TMR and WERM values for all five splits. For each
network and method, we compute standard deviation
(STD) across the five splits and compute the average
across methods. STD ranges from 0.04 to 2.748 for
TMR and from 0.022 to 0.16 for WERM, which im-
plies that no large variation for any method, so the
results discussed below are reliable and reproducible.
The detailed table is available on the GitHub page.‡‡

Across five methods, TMR undergoes changes rang-
ing from −0.8% to 9.2%, while FSN lowers TMR in
most cases. Interestingly, normalization techniques ex-
hibit distinct bias mitigation impacts on the two pro-
tocols. E1, E2, and E5 yield decreasing WERM across
all impostor-based methods (M1.1-M3), while M5 is
preferable for original. M4 only works well on fea-
tures extracted by E1. De-biasing effects brought by
M1.1 are permanent for this dataset, with the enhanced
TMR performance in most cases. Consequently, the
impostor-based methods, M1.1, M2.1, and M3 have
steady achievement in de-biasing for both gender and
ethnicity, regardless of datasets. M4 is desired only for
the VGGFace2 dataset, while M5 behaves positively
for gender and the hardest RFW protocol.

6. Discussion
In WERM (5), α = 1

2 is set to balance the contribu-
tion of FNMR and FMR, but balancing is not guaran-
teed by α alone. We compute the relative contribution
of FMR and FNMR (RFMR, RFNMR, respectively) in
(5) by dividing scaled worst-case FMR and FNMR by
WERM, take δ = RFMR − RFNMR, and then analyze
the distribution of δ with respect to each method. A
higher δ implies a lower RFNMR. Our hypothesis is con-
firmed by the distribution plot in Fig. 4, where genuine-
impostor-based methods (M4, M5) and identity-based
methods (M1, M2) more frequently result in a large δ
than the other methods. Most methods have δ centered
lower than baselines. Protocols like VGGFace2 gender-
balanced with all decreases on WERM locates mostly
at the lower tail, and method like M5 has a large por-
tion of δ clustered above 0.5 which is consistent with
Tab. 4. Impostor-based methods (M1-M3), which fo-
cus on aligning impostor scores, lead to a smaller FMR
and higher FNMR differences so that δ decreases. How-

Baseline M1 M2 M1.1 M2.1 M1.2 M2.2 M3 M4 M5
Method

0.0

0.2

0.4

0.6

E1 E2 E3 E4 E5

RFW original
RFW random

VGG2 ethnicity
VGG2 ethnicity-balanced

VGG2 gender
VGG2 gender-balanced

RFW original
RFW random

VGG2 ethnicity
VGG2 ethnicity-balanced

VGG2 gender
VGG2 gender-balanced

Figure 4. Distribution of δ. This figure exhibits the
distribution of FMR and FNMR contribution difference δ
with respect to the baseline and each method.

ever, for genuine-impostor-based methods, taking care
of both sides simultaneously does not ensure the change
in two error rates will be the same. Some unpredictable
effects occur depending on the dominant side. For ex-
ample, better alignment in the genuine side results in
higher FMR and smaller FNMR differences, leading to
a larger δ, or vice versa. In general, impostor-based
methods are more stable in de-biasing at scoring time.

7. Conclusion
We propose nine score normalization techniques,

two are well-known identity-based methods (M1, M2),
each followed by two extensions that integrate de-
mographic information (M1.1, M1.2, M2.1, M2.2),
and three pure cohort-based methods (M3, M4, M5).
All techniques improve demographic fairness for high-
security applications, i.e., at low FMR, by working
solely on scores without requiring network or fea-
ture adaptation. Importantly, in opposition to many
feature-based fairness improvement techniques, none
of our methods decreases verification performance,
even small improvements can be observed. Exper-
iments on six protocols from two datasets and five
pre-trained feature extractors demonstrate the consis-
tency of impostor-based methods (M1.1, M1.2, M3)
with different verification performances. Analysis of
the WERM value reveals the unequal contribution
of FNMR and FMR in fairness evaluation, which is
planned to be improved next. Also, other distributions
than Normal will be explored to capture tail behavior.

Acknowledgement
The authors thank the Hasler foundation for their

support through the SAFER project.



References
[1] V. Albiero and K. W. Bowyer. Is face recognition sex-

ist? no, gendered hairstyles and biology are. In British
Machine Vision Virtual Conference BMVC. BMVA
Press, 2020.

[2] V. Albiero, K. KS, K. Vangara, K. Zhang, M. C. King,
and K. W. Bowyer. Analysis of gender inequality in
face recognition accuracy. In Winter Conference on
Applications of Computer Vision (WACV) Workshops,
pages 81–89. IEEE/CVF, 2020.

[3] V. Albiero, K. Zhang, and K. W. Bowyer. How does
gender balance in training data affect face recognition
accuracy? In International Joint Conference on Bio-
metrics (IJCB), 2020.

[4] A. Atzori, G. Fenu, and M. Marras. Demographic
bias in low-resolution deep face recognition in the wild.
IEEE Journal of Selected Topics in Signal Processing,
2023.

[5] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas.
Score normalization for text-independent speaker ver-
ification systems. Digital Signal Processing, 10(1),
2000.

[6] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zis-
serman. VGGFace2: A dataset for recognising faces
across pose and age. In Automatic Face & Gesture
Recognition (FG). IEEE, 2018.

[7] J. G. Cavazos, P. J. Phillips, C. D. Castillo, and A. J.
O’Toole. Accuracy comparison across face recognition
algorithms: Where are we on measuring race bias?
Transactions on Biometrics, Behavior, and Identity
Science (TBIOM), 3(1):101–111, 2020.

[8] C. M. Cook, J. J. Howard, Y. B. Sirotin, J. L. Tip-
ton, and A. R. Vemury. Demographic effects in facial
recognition and their dependence on image acquisition:
An evaluation of eleven commercial systems. Transac-
tions on Biometrics, Behavior, and Identity Science
(TBIOM), 1(1):32–41, 2019.

[9] T. de Freitas Pereira and S. Marcel. Fairness in biomet-
rics: A figure of merit to assess biometric verification
systems. Transactions on Biometrics, Behavior, and
Identity Science (TBIOM), 4(1):19–29, 2021.

[10] J. S. del Rio, D. Moctezuma, C. Conde, I. M. de Diego,
and E. Cabello. Automated border control e-gates and
facial recognition systems. Computers & Security, 62,
2016.

[11] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface:
Additive angular margin loss for deep face recognition.
In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019.

[12] G. R. Doddington, W. Liggett, A. F. Martin, M. A.
Przybocki, and D. A. Reynolds. SHEEP, GOATS,
LAMBS and WOLVES: A statistical analysis of
speaker performance in the NIST 1998 speaker recogni-
tion evaluation. In International Conference on Spoken
Language Processing (ICSPL), 1998.

[13] S. Dooley, R. S. Sukthanker, J. P. Dickerson, C. White,
F. Hutter, and M. Goldblum. On the importance of

architectures and hyperparameters for fairness in face
recognition. In Workshop on Trustworthy and Socially
Responsible Machine Learning, NeurIPS 2022, 2022.

[14] I. C. Duta, L. Liu, F. Zhu, and L. Shao. Improved
residual networks for image and video recognition.
In International Conference on Pattern Recognition
(ICPR), pages 9415–9422. IEEE, 2021.

[15] S. Gong, X. Liu, and A. K. Jain. Jointly de-biasing face
recognition and demographic attribute estimation. In
European Conference on Computer Vision (ECCV).
Springer, 2020.

[16] S. Gong, X. Liu, and A. K. Jain. Mitigating face
recognition bias via group adaptive classifier. In Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[17] P. Grother. Demographic differentials in face recogni-
tion algorithms. Virtual Events Series–Demo-Graphic
Fairness in Biometric Systems, 2021.

[18] P. Grother. Face recognition vendor test (FRVT) part
8: Summarizing demographic differentials. Technical
report, National Institute of Standards and Technol-
ogy (NIST), 2022.

[19] P. Grother, M. Ngan, and K. Hanaoka. Face recogni-
tion vendor test (FRVT) part 3: Demographic effects.
Technical report, National Institute of Standards and
Technology (NIST), 2018.

[20] M. Günther and R. P. Würtz. Face detection
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