
gafro: Geometric Algebra for Robotics
Tobias Löw∗†, Philip Abbet∗ and Sylvain Calinon∗†

∗Idiap Research Institute, Martigny, Switzerland
†EPFL, Lausanne, Switzerland

Abstract—Geometry is a fundamental part of robotics and
there have been various frameworks of representation over the
years. Recently, geometric algebra has gained attention for its
property of unifying many of those previous ideas into one
algebra. While there are already efficient open-source implemen-
tations of geometric algebra available, none of them is targeted at
robotics applications. We want to address this shortcoming with
our library gafro. This article presents an overview of the imple-
mentation details as well as a tutorial of gafro, an efficient C++
library targeting robotics applications using geometric algebra.
The library focuses on using conformal geometric algebra. Hence,
various geometric primitives are available for computation as well
as rigid body transformations. The modeling of robotic systems
is also an important aspect of the library. It implements various
algorithms for calculating the kinematics and dynamics of such
systems as well as objectives for optimization problems. The
software stack is completed by Python bindings in pygafro and
a ROS interface in gafro_ros.

I. INTRODUCTION

Robotics contains very complex problems due to the large
variety of different platforms, environments, tasks and inter-
actions. Traditionally, to tackle these complexities in a formal
manner, research in robotics introduces different abstraction
layers that aim to enable precise reasoning on a semantic level.
Different mathematical representations of these abstractions
may lead to expensive conversions or even to violations of
assumptions in the form of singularities or discontinuities. In
robotics, often the problems are fundamentally problems of
geometry, hence it is very beneficial to choose representations
that intuitively allow to incorporate the geometry of the
problem, since the problem and its geometric structure are
deeply interconnected.

Geometric algebra (GA) can be considered a high-level
mathematical language for geometric reasoning. As such it is
very well suited for general problems in robotics. GA unifies
the geometric understanding of screw theory, the thoroughness
of Lie Algebra and the simplicity of spatial algebra. The repre-
sentational advantage of geometric algebra is that its elements
directly represent geometric objects that can be manipulated
by algebraic operations. Complex relations and algorithms can
be formulated in a simplified and coordinate-independent way.
Furthermore, the existence of different geometric primitives in

This work was supported by the State Secretariat for Education,
Research and Innovation in Switzerland for participation in the European
Commission’s Horizon Europe Program through the INTELLIMAN
project (https://intelliman-project.eu/, HORIZON-CL4-Digital-Emerging
Grant 101070136) and the SESTOSENSO project (http://sestosenso.eu/,
HORIZON-CL4-Digital-Emerging Grant 101070310).

Point
tracking

Plane
tracking

Option
Point 1

Pointing

Line
tracking

Circle
tracking

Option
Point 2

Constraints

Fig. 1: RViz visualizations of the Franka Emika robot reach-
ing various geometric primitives. These visualizations were
created using the tools from gafro_ros.

the same algebra allows for the uniform definition of distance
functions, which we will later show in the examples for
solving inverse kinematics problems. Dual quaternion algebra
is closely related to GA due to their common roots in Clifford
algebra. GA is, however, more general and can be defined over
any dimension.

The story of geometric algebra in engineering is the story
of an algebraic framework that greatly simplifies well-known
equations, the most popular example being the Maxwell
equations, which reduce to a single equation in geometric
algebra. In [1] a survey is presented detailing this story of the
development of GA in engineering applications and how it is a
powerful geometric language that connects and unifies many
mathematical concepts. Another recent survey showing how
the applications of GA include physics, electrical engineering,
computer graphics to quantum computing, neural networks,
signal processing and robotics can be found [2].

Although geometric algebra has great potential for model-
ing, learning and control in robotics, it has not been widely
adopted in robotics research. One reason for this is the lack
of easy-to-use libraries for robotics applications, while at the
same time tools based on matrix algebra are very mature
and readily available. We aim to change that by providing a
ready-to-use geometric algebra library for robotics that can
be used with the most popular programming frameworks,
namely C++, Python and ROS. In our gafro library we
provide an implementation of the GA variant of algorithms
to compute the kinematics and dynamics of robots. These
algorithms are well studied and have been implemented in



various software frameworks. It is important to point out that
geometric algebra can be used to compute these important
quantities that are classically computed using matrix algebra,
while also offering a richer toolset, i.e. it also includes tools for
geometric reasoning that matrix algebra does not have. These
tools include the construction of geometric primitives that are
covariant under motion. The primitives can directly be used for
projections, reflections and intersections. All operations do not
depend on the choice of an origin, i.e. they are coordinate-free
definitions. We demonstrate in this article how these geometric
primitives can be used in robotics to facilitate and unify the
formulation of control laws and optimization problems.

In this article we want to explain the implementation details
of our geometric algebra library gafro and show how to use it
for common robotics problems such as inverse kinematics and
optimal control. We compare gafro with existing libraries for
geometric algebra and robot modeling. These libraries can be
seen in Table I. Our aim is to make geometric algebra more
accessible for robotics research by providing this ready-to-use
library. This should result in a wider adoption and facilitate
research on using this powerful framework for robotics.

This article is organized as follows: in Section II we
give a brief introduction to geometric algebra, in Section
III we explain the implementation details of the algebra, in
Section IV we compare gafro to other GA and robot modeling
libraries and finally in Section V we demonstrate various
applications and give a tutorial on how to use the library.
The documentation and the links to all repositories can be
found on our website https://geometric-algebra.
tobiloew.ch/gafro.

II. GEOMETRIC ALGEBRA

In this section we give a brief introduction to the mathemat-
ical background of geometric algebra. A more comprehensive
introduction can be found in [17] including applications in
engineering and [18] presents applications in robotics. We also
recommend the website https://bivector.net, which
contains many useful introductory videos.

Formally, geometric algebra Gp,q,r is defined as an associa-
tive algebra over the quadratic space Rp,q,r, where p, q, and
r are the number of basis vectors that square to 1, -1, and 0,
respectively and therefore the dimension is n = p+ q+ r. Its
algebraic product is called the geometric product

ab = a · b+ a ∧ b (1)

and is the combination of an · inner and an ∧ outer product.
The inner product is related to the metric of algebra, whereas
the outer product spans vectors to k-vectors, where k refers
to the number of linearly independent basis vectors. These
elements form the algebraic basis of a geometric algebra and
are called basis blades. There are 2n = 2p+q+r basis blades
for a given geometric algebra Gp,q,r. A general element in
GA is called a multivector and is the linear combination of
basis blades. The specific variant that we are using is called
conformal geometric algebra (CGA) and is denoted as G4,1.
For the introduction of the conformal model in the algebra,

TABLE I: Comparison of different libraries.

(a) Overview of other geometric algebra libraries.

Garamon [3] a generator of C++ libraries dedicated to geometric
algebra

GATL [4] C++ library for Euclidean, homogeneous/projective,
Minkowski/spacetime, conformal, and arbitrary geo-
metric algebras using template meta-programming

Versor [5] (fast) generic C++ library for geometric algebras

GAL [6] C++17 expression compiler and engine for comput-
ing with geometric algebra

Gaigen [7] code generator for geometric algebra

Gaalet [8] C++ library for evaluation of geometric algebra ex-
pressions offering comfortable implementation and
reasonable speed by using expression templates and
meta-programming techniques

Gaalop [9] software to optimize geometric algebra files

TbGAL [10] C++/Python library for Euclidean, homogeneous/pro-
jective, Minkowski/spacetime, conformal, and arbi-
trary geometric algebras representing blades (and
versors) in their decomposed state to scale to scale
high dimensions

(b) Overview of other libraries for robot modeling.

DQ Robotics [11] library for robot modeling and control based on
dual quaternion algebra

Pinocchio [12] state-of-the-art rigid body algorithms for poly-
articulated systems

Raisim [13] multi-body physics engine for robotics and AI

KDL [14] application independent framework for modeling
and computation of kinematic chains

Mujoco [15] physics engine for model-based optimization

RBDL [16] highly efficient code for both forward and inverse
dynamics for kinematic chains and branched
models

CGA uses a change of basis which introduces the two null
vectors e0 and e∞, which can be understood as a point at
the origin and one at infinity, respectively. In total there are
32 basis blades of grades 0 to 5 in CGA with the structure
that can be seen in Figure 2. This high dimension appears to
lead to an increased complexity, in practice; however, these
multivectors usually are very sparse, a fact that we exploit in
our implementation.

The blades of geometric algebra effectively lead to com-
putations with subspaces of the underlying vector space that
can be used to represent geometric primitives directly within
the algebra. These primitives in CGA include points, lines,
planes, circles and spheres. Their construction utilizes the
outer product of points

X = P1 ∧ . . . ∧ Pn, (2)

where two points and the point at infinity form a line, three
points a circle and four points a sphere. This outer product
construction leads to a nullspace representation, i.e. the set
of all points that results in zero under the outer product.

https://geometric-algebra.tobiloew.ch/gafro
https://geometric-algebra.tobiloew.ch/gafro
https://bivector.net


grade 0 1

grade 1 e1 e2 e3 e∞ e0

grade 2 e23 e13 e12 e1∞ e2∞ e3∞ e01 e02 e03 e0∞

grade 3 e123 e12∞ e13∞ e23∞ e012 e013 e023 e01∞ e02∞ e03∞

grade 4 e123∞ e0123 e012∞ e023∞ e013∞

grade 5 e0123∞

Fig. 2: Structure of conformal geometric algebra with the 32
basis blades, divided into the different grades. Grade 0 and 5
are the scalar and pseudo-scalar, respectively. Grades 1 to 4
are called bi-, tri- and quadvectors.

It is therefore called the outer product nullspace and is
defined as the primal representation of the primitives. The dual
representation, i.e. the inner product nullspace, can be found
via the duality operation, which corresponds to a product
with the pseudo-scalar, i.e. the highest grade element of the
algebra e0123∞. This construction can expanded to form more
complex geometric primitives such as ellipsoids, hyperboloids
or general quadric surfaces. We show the specific subspaces
that certain primitives of CGA occupy in Figure 3. They can
be used for incidence computations, e.g. we can find their
intersections by applying product operations, that are known
as the meet operator ∨

Y = X1 ∨X2 = (X∗
1 ∧X∗

2 )
∗, (3)

where ∗ denotes the dual operation. This meet operator is
singularity-free and geometrically consistent, e.g. the meet of
two spheres will result in a circle if the spheres intersect, a
point if they only touch each other, or an imaginary circle with
a radius related to the distance between the spheres if they are
far from each other.

Motor
Twist
Point
Line

Circle
Plane

Fig. 3: Non-zero elements of various geometric primitives in
their primal representations in conformal geometric algebra.
Boxes represent basis blades and colored boxes represent the
non-zero blades of the geometric primitive with the matching
color. It can be seen that of the 32 basis blades composing
multivectors only a sparse number is used for the representa-
tions. Note that geometric primitives are single-grade objects,
while transformations are mixed-grade.

The geometric primitives can also directly be used for
geometric operations such as reflections and projections, which
result in rigid body motions. Here, two consecutive reflections

on intersecting planes result in a rotation and on parallel planes
in a translation. More generally these rigid body transforma-
tion are called motors M in geometric algebra. They form
a Lie group as the exponential mapping of bivectors, which
is the corresponding Lie algebra. In the case of CGA this
Lie group corresponds to the conformal group, i.e. the group
of angle-preserving transformations, which includes the rigid
Euclidean transformations of SE(3) that are most-commonly
used in robotics, i.e. rotations and translations. Motors can
be applied to any geometric primitive in the algebra via the
sandwiching product

Y = MXM̃, (4)

where M̃ denotes the reverse of a multivector, which can be
thought of as being similar to a conjugation of quaternion. The
sandwiching product is a structure-preserving product, i.e. the
resulting geometric primitive Y will be of the same type as
X . This is a property that linear algebra generally does not
have automatically and it would need to be explicitly designed
and enforced. Furthermore, motors represent a very general
concept of rigid body transformations, i.e. as reflections in
hyper-planes, which is valid in any dimension.

III. IMPLEMENTATION OF CONFORMAL
GEOMETRIC ALGEBRA

In this section we will explain in detail our implementation
of Conformal Geometric Algebra (CGA). The aspects that are
highlighted are the implementation of a general multivector
and the expressions that are acting on it. In this section we
explain the programming interfaces that gafro offers. The main
library is written in C++ for which we provide Python bindings
called pygafro as well as the ROS package gafro_ros. All
mentioned repositories can be found at https://gitlab.
com/gafro. An overview of the software stack can be found
in Table II.

TABLE II: Overview of the gafro software stack.

gafro core C++20 library

pygafro Python bindings

gafro_ros interface to ROS and URDF

gafro_benchmarks robot kinematics/dynamics benchmarks

gafro_examples various code examples

gafro_robot_descriptions classes defining different robot models

A. Design Goals and Implementation Details

We had several design goals in mind when designing the
library and additionally wanted to cover several points that
were proposed in [19] as a wishlist for geometric algebra
implementations. Since it is targeted at robotics applications
including robot learning, control and optimization, we wanted
to ensure fast and efficient computation. To this end, the core
implementation of gafro is done in C++20 and relies heavily
on templates, which also serve the additional purpose of
alleviating the effect of numerical imprecision that is known to

https://gitlab.com/gafro
https://gitlab.com/gafro


occur in geometric algebra implementations by only evaluating
elements of the resulting multivectors of expressions that are
known to be non-zero. We have designed the library in an
object-oriented way, so the classes also reflect the mathemati-
cal inheritance relationships. Furthermore all classes, i.e. all
specialized multivectors, are instantiated as different types,
which allows them to be distinguished at compile time for
type-safety and to have persistent storage. These specialized
classes also enable the computation with partial multivectors,
i.e. the library exploits the fact that the most commonly-
used multivectors are sparse and only use certain subspaces
of the algebra. Mathematical operations are implemented as
expression templates, which lets us determine the type of
resulting multivectors at compile time. The implementation
via expression templates allows the allocation of memory
only if the expression is evaluated and also enables partial
evaluations. We handle the type explosion of binary operators
by automatically evaluating partial expressions when the full
expressions get too complex.

In terms of using the library, we wanted to provide an acces-
sible interface and ensure seamless integration with existing
software. Geometric algebra is currently not well known in
robotics, hence it can be daunting having to simultaneously
learn about the algebra and the software implementation.
Therefore, gafro provides the computation of the most im-
portant quantities for robot kinematics and dynamics with an
interface that is close to similar robotics libraries. By basing
our implementation on the Eigen1 library, these quantities can
be returned in the familiar vector/matrix format. This essen-
tially makes gafro a drop-in replacement for other kinematics
and dynamics libraries, without the need to know about all
the details of geometric algebra at first. Afterwards, however,
the geometric modeling of primitives, the singularity-free
incidence computations, the uniform distance computation, the
connections to differential geometry and the conformal group
as well as the general structure of the algebra offer distinct
advantages compared to other libraries.

B. General Multivector

The core element of computation in geometric algebra is
the multivector. Hence, it is very important to think about the
design choices when implementing its structure, as this will
determine the memory usage and computational performance.
The general structure of a multivector in CGA can be seen in
Figure 2. It is composed of 32 basis blades, divided into grades
zero to five. A general multivector would therefore be quite
heavy in terms of memory and computation. The important
structural aspect of CGA that facilitates the design process
here is the sparsity of its representations and the fact that the
structure of multivector expressions is known at compile time.
Both of these properties mean that we can implement the data
vector of a multivector by only storing its known non-zero
elements. This is achieved by using a template that takes list
of blade indices as input:

1https://eigen.tuxfamily.org

template <class T, int... blades>
class Multivector
{

public:
constexpr static int size = sizeof...(blades);
{...}

private:
Eigen::Matrix<T, size, 1> data_;

};

The list of indices is then stored internally as a bitset that
facilitates the comparison of the subspaces of two multivectors.
A bitset is simply a list of 32 bits that are either 0 or 1,
depending on whether the corresponding blade is present in the
multivector or not. The memory that is allocated corresponds
to the number of blade indices that is given to the template.
It uses an Eigen::Matrix to store the data, which is
exposed via an accessor function called vector(). This
makes it possible to directly use the parameter vector of any
multivector, which is useful for e.g. optimization solvers. The
Multivector class and all its derived classes (including the
expressions) have a method called get that is templated on the
blade index. This method is fundamental to the design of the
library, since all expressions use it for evaluation. Therefore,
we add a template constraint using the requires keyword
of C++20 to ensure that multivector expressions only compile
if they contain the requested blade index.

The underlying data type T is a template argument, which
makes it possible to either use e.g. float or double,
depending on the system architecture. Furthermore, it al-
lows the usage of general purpose automatic differentiation
libraries such as autodiff 2. This helps when formulating op-
timization problems in geometric algebra using gafro since
it facilitates the coding of complex objective functions and
thus accelerates prototyping. Another relevant data type is
the torch::Tensor class of the libtorch library3, i.e. the
C++ distribution of PyTorch. This effectively allows parallel
computations with geometric algebra, which is important for
various methods related to robot learning. While this combina-
tion can already be used, we are currently developing a library
gafro_torch that facilitates the usage.

C. Algebraic Computations using Expression Templates

In order to do algebraic computations, there are several
required operations on multivectors, which are implemented
as expression templates. There are two types of expressions,
unary and binary expressions, which are listed in Tables III and
IV, respectively. We explained their mathematical meaning in
Section II and thus focus here on their implementations.

TABLE III: Unary expressions that are implemented as mem-
ber functions of the Multivector class.

member function mathematical symbol

reverse X̃
inverse X−1

dual X∗

2https://autodiff.github.io/
3https://pytorch.org/cppdocs/

https://eigen.tuxfamily.org
https://autodiff.github.io/
https://pytorch.org/cppdocs/


TABLE IV: Binary expressions. The term operator here refers
to the programming operators that are implemented for mul-
tivectors and symbol means the mathematical symbol that is
used in the equations. Note that usually the geometric product
is written in equations without a symbol, e.g. AB.

operator symbol
addition + +
subtraction - −
outer product ˆ ∧
inner product | ·
geometric product ∗

The challenge in the implementation is the fact that the
resulting multivectors only rarely have the same blades as the
input operands. Given the structure of the algebra, however,
the expression templates can determine the result type of the
expression at compile time. Note that the expressions are
evaluated in a lazy fashion, which means that the blades are
evaluated on demand. This makes it possible to for example
only evaluate a single blade of the resulting multivector.
template <class Derived, class Result>
class Expression
{

public:
template <int blade>
requires(Result::has(blade))
typename Result::Vtype get() const
{

return static_cast<const Derived &>(*this).
template get<blade>();

}
};

A first example of this can be seen in the Sum expression in
Figure 4. The corresponding type evaluation class constructs
the type of the resulting multivector at compile time. In the
case of addition this amounts to a simple bitwise OR operation
comparing the bitsets of the input multivectors.

P1 + P2 = P3

+ =

(a) The addition of two multivectors with the same blades results in
another multivector with the same blades.

P1 + P2 = P3

+ =

(b) The addition of two multivectors with the different blades results
in a multivector with the blades of both input multivectors.

Fig. 4: Addition operation.

The inner and outer products work essentially in the
same way and thus the corresponding expression both in-

herit from a base Product class, i.e. InnerProduct and
OuterProduct. The Product class takes a class structure
implementing the corresponding Cayley table as template
argument. This Cayley table defines the resulting blades of
a blade by blade product under the inner and outer product,
respectively. Thus, in the case of CGA, it defines 1024
operations. In order to determine the type of the resulting
multivector, we employ fold expressions that allow us to iterate
over the blades of both input multivectors at compile time. In
this loop, we obtain the resulting blade per pair of blades
using the respective Cayley table and then assemble them into
the resulting multivector again using OR operations. Figure 5
shows an example for each the inner and the outer product.

C · S = X

· =

(a) The inner product is a grade-lowering operation, i.e. the resulting
multivector will be of lower grade than the inputs. The example shows
that the inner product of a circle C with a sphere S results in a point
P .

PP ∧ e∞ = L

∧ =

(b) The outer product is a grade-raising operation, i.e. the resulting
multivector will be of higher grade than the inputs. The example
shows that the outer product of a point pair PP and e∞ results in a
line L

Fig. 5: The resulting multivector of the inner and outer product
operations has a different grade than the inputs.

The geometric product class GeometricProduct also
inherits from the base Product class and comes with its
own Cayley table. So implementation-wise it is the same as
the inner and outer products. The main difference is that two
blades can result from a blade product, which causes the
resulting multivector to potentially have both a lower and a
higher grade than the inputs, as can be seen in Figure 6a.
Furthermore, we have products that are based on the geometric
product such as the sandwich product, which is also treated
as a binary expression and shown in Figure 6b.

D. Geometric Primitives

Since we know the subspaces of all the geometric primi-
tives, we chose to implement them in an object-oriented way
by inheriting from the base Multivector class. Hence,
the available classes are Vector, DirectionVector,
TangentVector, Point, PointPair, Line, Circle,
Plane and Sphere. Their corresponding subspaces within
the geometric algebra can be seen in Figure 3. Having the



M P = X

=

(a) Using the geometric product results in both blades of lower and
higher grade.

M C M̃ = C ′

=

(b) The sandwich product is a grade-preserving operation. Numerical
issues might lead to residuals in other blades, which we avoid by
simply not evaluating them in the expressions. This is a schematic
representation of Equation (4), where a motor transforms a circle.

Fig. 6: The geometric product is a combination of the inner
and outer product.

geometric primitives as explicit classes allows the implemen-
tation of commonly-used equations as members functions,
which facilitates the usage. For example the constructors of the
geometric primitive classes implement the various ways they
can be defined. The explicit classes are meant to facilitate the
use and construction, but of course, using computation with
base multivectors is also possible. This preserves the property
of covariant computation within the algebra.

E. Rigid Body Transformations

The rigid body transformations that are currently avail-
able are implemented in the classes Rotor, Translator,
Motor and Dilator. They all inherit from the base
class Versor. Since all three classes are exponential map-
pings of bivectors they are accompanied by the expressions
Logarithm and Exponential, respectively. The main
method of the rigid body transformations is apply, which
implements the sandwich product X ′ = MXM̃ and ensures
type safety. While X can technically be any multivector, the
intended usage is with the geometric primitives that were
presented in Section III-D. Hence, in this context, type safety
means that X ′ stays the same geometric primitive as X , e.g. a
Point stays a Point. This ensures that the expression only
evaluates blades that are part of the geometric primitive, which
not only reduces the number of floating-point operations, but
also deals with numerical imprecision in the computation that
is known to occur in geometric algebra implementations.

F. Robot Modeling

The previous sections introduced the features related to
the underlying geometric algebra implementation of gafro.
This section will now introduce the higher level features of
the library related to robot modeling, which distinguish it
from other geometric algebra libraries. The main aspects of
robot modeling are the computation of the kinematics and
dynamics of robotic systems, which is implemented in the
base class called System. It contains member functions that

compute the forward kinematics and forward/inverse dynamics
using recursive algorithms. We also provide classes to model
optimization problems for robotic systems, such as inverse
kinematics. We will present more on this in Section V with
concrete examples.

IV. COMPARISON TO OTHER LIBRARIES

In this section, we compare gafro to other geometric algebra
and robot kinematics/dynamics libraries. We first provide
quantitative benchmark results and then give qualitative com-
parisons of what we believe to be advantages of gafro over
other libraries.

A. Algebraic Operations Benchmarks

In order to compare the performance of our gafro li-
brary to other geometric algebra libraries we forked the
ga_benchmark4 repository in order to integrate gafro. Our
fork can be found at https://github.com/loewt/
ga-benchmark.

Dualization

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10

Grade

Ti
m

e 
[n

s]

gafro
GATL
Gaalet
Versor

Reversion

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8
9

10

Grade

Inversion

0 1 2 3 4 5
0
2
4
6
8

10
12
14
16
18
20

Grade

(a) Benchmarks of unary algebraic operations.
Addition

0 6 12 18 24 30 36
0
2
4
6
8

10
12
14
16
18
20

Ti
m

e 
[n

s]

gafro
GATL
Gaalet
Versor

Inner Product

0 6 12 18 24 30 36
0
2
4
6
8

10
12
14
16
18
20

Outer Product

0 6 12 18 24 30 36
0
2
4
6
8

10
12
14
16
18
20

Geometric Product

0 6 12 18 24 30 36
0

11
22
33
44
55
66
77
88
99

110

(b) Benchmarks of binary algebraic operations.

Fig. 7: Benchmarks of different geometric algebra libraries. All
operations are computed using conformal geometric algebra.
Some entries for Gaalet are missing due to segmentation faults
during the execution.

We omitted TbGAL and Garamon from the plots of the
benchmark results, since they are by far the slowest libraries.
The benchmarks show that gafro can compete in terms of
performance with GATL and Versor, which were previously
reported to be the fastest GA libraries.

B. Robotics Algorithms Benchmarks

Since this library implements robot kinematics and dynam-
ics algorithms, we are comparing and benchmarking gafro
against several libraries that are commonly used in robotics
applications. The current benchmarking results on our system
can be found in Figure 8. As can be seen, gafro is very
competitive when it comes to the computation of the kine-
matics of a robotic system. These advantages come from the
fact that motors in geometric algebra are a more compact

4https://github.com/ga-developers/ga-benchmark

https://github.com/loewt/ga-benchmark
https://github.com/loewt/ga-benchmark
https://github.com/ga-developers/ga-benchmark


representation and require fewer arithmetic operations than
transformation matrices. The computation of the dynamics,
however, especially the forward dynamics, is still slower at
this point. This is because at this stage we were prioritizing the
research aspect of the algorithms, since they needed to first be
derived in CGA. This means that the forward dynamics present
a novelty not only in the implementation, but also in the
mathematical derivation. This lead to a naive implementation,
which includes unnecessary copy operations that affect the
performance negatively. The issue will be addressed and
fixed in a future release of gafro, which should make the
computation of the dynamics also competitive compared to
the established libraries.

0

0.5

1

1.5

2

2.5

tim
e 

[m
s]

gafro
Raisim
pinocchio
KDL
MuJoCo
RBDL
DQ Robotics

(a) Forward Kinematics.
0

0.8

1.6

2.4

3.2

4

tim
e 

[m
s]

gafro
Raisim
pinocchio
KDL
MuJoCo
RBDL
DQ Robotics

(b) Jacobian.

0

5

10

15

20

25

tim
e 

[m
s]

gafro
Raisim
pinocchio
KDL
MuJoCo
RBDL

(c) Inverse Dynamics.
0
8

16
24
32
40
48
56
64
72
80

tim
e 

[m
s]

gafro
Raisim
pinocchio
KDL
MuJoCo
RBDL

(d) Forward Dynamics.

Fig. 8: Benchmarks of robotics algorithms. The benchmark
was run on an AMD Ryzen 7 4800U CPU. All libraries
were compiled using gcc 13.1.1 with the compiler flags -O3
-march=native. The reference system is the Franka Emika
Robot.

C. Advantages of gafro

There have been various works that published implementa-
tions of geometric algebra. These libraries all have in common
that they are meant to be generic geometric algebra imple-
mentations focusing on the computational and mathematical
aspects of the algebra itself. In contrast to that, our implemen-
tation is targeted specifically at robotics applications and thus
not only implements the low-level algebraic computations but
also features the computation of the kinematics and dynamics
of serial manipulators as well as generic cost functions for
modeling optimization problems. We will explain these cost
functions in detail in Section V-C. Here, we want to point out
that these cost functions simultaneously present an advantage
over other geometric algebra libraries and over other robot
modeling libraries, since neither of them target the geometric
modeling robotics problems. gafro can therefore be seen as
bridging the gap between these libraries.

We further believe that the programming interface of gafro
is a lot more approachable and easy to use than other geometric
algebra libraries. One reason for this is that we provide
explicit classes for the geometric primitives and by making
use of the C++ constructors, they can be created and used
without having to explicitly use the algebraic operations. These
classes also allow us to implement commonly used operations

of multivectors directly as member functions, such as the
sandwich product of motors to transform geometric primitives.

V. APPLICATIONS AND TUTORIAL

In this section we provide some example applications of
how the library can be used. For that purpose, we provide an
accompanying repository gafro_examples that contains coding
examples. Note that in the text we are always referencing
the C++ files, but the same examples can also be found in
Python in the corresponding folder. These examples use the
same naming scheme.

A. Geometric Algebra

Since many potential users of gafro are likely to be unfa-
miliar with the concept of geometric algebra we are providing
some examples on how to do computations using this algebra.
In a first example we are showing how to create different gen-
eral multivectors and use them for algebraic computations. For
this purpose we demonstrate how to compute the intersection
of a sphere S and a plane E, which in this case results in
a circle C. The construction of a plane requires three points
and the one at infinity e∞ and the construction of a sphere
requires four points. Hence, we first define seven Pi using
their Euclidean coordinates.
gafro::Point<double> p1(x, y, z);

From these points we the calculate the plane and the sphere,
where Ei corresponds to e∞.
gafro::Plane<double> plane = p1 ^ p2 ^ p3 ^ gafro::Ei<

double>(1.0);
gafro::Sphere<double> sphere = p4 ^ p5 ^ p6 ^ p7;

Note that here we choose to construct the plane and the
sphere by the outer product of points, according to their
mathematical definition, which derives from Equation (2).
They could, however, be equivalently created by passing the
same points to the respective constructors, which we show in
the coding examples in the online repository.

The circle primitive that is found from the intersection of a
plane and a sphere, which is expressed mathematically as the
meet operator in Equation (3). This Equation can directly be
translated to code to find the circle.
gafro::Circle<double> circle = (plane.dual() ^ sphere.dual

()).dual();

Note that this code will compile and can be executed suc-
cessfully without runtime errors whether the plane and the
sphere intersect or not. This geometric relationship can be
determined from the resulting circle by inspecting the squared
norm, which will be positive or negative, depending on the
incidence relationship.

B. Robot Differential Kinematics

One of the targeted use cases of the gafro library is the
modeling of robotic systems. In this section, we will show
how to do that in practice by explaining the example of a
differential kinematics controller that tracks line in task space
using an arbitrary reference line at the robot end-effector.



We use in this example the class FrankaEmikaRobot and
assume we have instantiated it as panda.

First, the forward kinematics, i.e. the pose of the end-
effector of a kinematic chain given a certain joint configura-
tion, are represented by the motors in geometric algebra. For
a given joint configuration q the end-effector motor is found
gafro::Motor<double> ee_motor = panda.getEEMotor(q);

We implement the differential kinematics controller w.r.t to
the robot end-effector frame. Hence we use the end-effector
motor for transforming an object of type gafro::Line
called target_line to this frame. We skip the creation of
this line here, but note that it is similar to the creation of ge-
ometric primitives in the previous section. The transformation
of the line using ee_motor is implemented as follows.
gafro::Line<double> transformed_line = ee_motor.reverse() *

target_line * ee_motor;

This effectively corresponds to the equation L′ = M̃LM ,
as opposed to L′ = MLM̃ , which was shown previously in
Equation (4). The difference is that here we use the inverse
transform from the base frame to the end-effector frame.

Next, we find the twist, which moves the reference line
to the transformed target line. This twist is found as the
logarithmic mapping of the motor that transforms one line
to the other. Mathematically this can be expressed as

V = log

(
1

c
(1 + LrLt)

)
, (5)

where V is the resulting twist and c is a normalization constant.
Lr and Lt are the reference and target line, respectively. We
have implemented this as member function of the Line class,
such that it can be called directly as
gafro::Twist<double> twist = transformed_line.getMotor(

reference_line).log();

The last step is the computation of the joint velocities q̇
from the twist V . This is achieved using the inverse of the
end-effector frame Jacobian, which can be obtained by the
member function getEEFrameJacobian of the panda
robot. This function returns a gafro specific object, which
can be transformed to an Eigen::Matrix using the embed
method. The control law according to the equation q̇ = J−1V
can therefore be implemented as
Eigen::Vector<double,7> qdot = inverse(panda.

getEEFrameJacobian(q).embed()) * twist.vector();

Here we use the inverse function as shorthand for the
pseudo-inverse of a 6× 7 matrix.

The lines in this example can be chosen arbitrarily, which
is a very appealing property, since it has two important conse-
quences. First, the reference line at the end-effector constrains
two axes of rotation, while allowing a rotation around the line.
This line does not need to coincide with the axes of the end-
effector frame. The axes are not even required to be known
explicitly, the line is sufficient. This essentially avoids having
to deal with coordinate frames when encoding the target.
And second, the two lines are invariant under translations

along them, i.e. moving a line in the direction its pointing
does not change the line. In practice, this effectively means
that the control law is completely compliant to disturbances
along the superposed lines. These two properties are very
hard to achieve using classical methods and require many
coordinate frame changes and non-trivial precision matrices.
This example shows that the definition of a control law
using geometric primitives can be done entirely geometrically
and resulting equations are very simple since they are also
algebraic objects.

C. Optimization Problems with Geometric Primitives

Many problems in important domains of robotics, such as
learning and control, can be cast as optimization problems.
Hence, in this section we are providing an example on how
gafro can be used for the uniform modeling of optimization
problems using geometric algebra. Here, we cast the optimiza-
tion problem as an inverse kinematics problem for simplicity,
so we are optimizing for the joint angle configuration in which
the end-effector reaches a certain geometric primitive and
we show how GA extends the cost function to be uniformly
applicable across the different geometric primitives. The opti-
mization problem can be formulated as follows

q∗ = min
q

1

2

∥∥E(q)
∥∥2, (6)

where q is the joint angle configuration and E(q)
is a multivector-valued residual. In gafro this formu-
lation is implemented in the generic template class
SingleManipulatorTarget and Equation (6) can be
evaluated using the method getValue. The below code
snippet of this shows that it has the template arguments Tool
and Target, which are meant to be different geometric
primitives.
template <class T, int dof, template <class Type> class

Tool, template <class Type> class Target>
class SingleManipulatorTarget{...};

Tool is a geometric primitive at the end-effector of the
robot arm, e.g. a point, and Target is a desired geometric
primitive that should be reached by the end-effector, e.g. a
line or a circle. The problem of reaching can be expressed
as minimizing a distance measure between the two primitives.
Mathematically, this distance measure can be expressed as a
residual multivector stemming from the outer product, i.e.

E(q) = Xd ∧M(q)XM̃(q), (7)

where X corresponds to the Tool and Xd to the Target,
the motor M(q) is the end-effector motor at the current joint
configuration q, which transforms any geometric primitive to
the end-effector, expressed w.r.t. the base frame. By definition,
this outer product results in zero, if Tool has reached the
Target. Its norm therefore corresponds to a distance measure
that we want to minimize here. In the implementation this
residual multivector from Equation (7) is obtained by calling
the function getResidual, which can be seen in the code
snippet below.



Eigen::Matrix<T, Result::size, 1> getResidual(const VectorX
&q) const

{
return Result(target_ ^ arm_.getEEMotor(q).apply(tool_)

).vector();
}

The Jacobian of Equation (7) w.r.t. the joint configuration
vector q is found by applying the chain rule to the geometric
product of the motor M(q), i.e.

J E(q) = Xd ∧
(
J A(q)XM̃(q) +M(q)XJ̃ A(q)

)
, (8)

where J A(q) is the analytic Jacobian of the kinematic. The
following code snippet shows the implementation of Equation
(8). Both implementations closely follow the mathematical
formulation.
Eigen::Matrix<T, Result::size, dof> getJacobian(const

VectorX &x) const
{

Motor<T> motor = arm_.getEEMotor(x);
MultivectorMatrix<Motor<T>, 1, dof> jacobian_ee = arm_.

getEEAnalyticJacobian(x);

Eigen::Matrix<T, Result::size, dof> jacobian;

for (unsigned i = 0; i < dof; ++i)
{

jacobian.col(i) = Result(target_ ^ (jacobian_ee[i]

* tool_ * motor.reverse() + motor * tool_ *
jacobian_ee[i].reverse())).vector();

}

return jacobian;
}

Note that both getResidual and getJacboian return a
matrix of the Eigen library where the size is determined based
on the combination of geometric primitives. More specifically
the size can vary depending on the primitives, but due to
the structure of the algebra and its implementation using
expression templates, the size is determined at compile time.
In practice, the actual sizes of the residual and Jacobian can
be neglected, since for solving an optimization problem, we
are actually interested in the gradient vector g ∈ RN×1 and
Hessian matrix H ∈ RN×N of Equation (6) and their size is
only determined by the number of degrees of freedom N of
the robot and is therefore agnostic to the choice of geometric
primitives.

Given the residual and the Jacobian, the optimization prob-
lem can easily be solved using for example a Gauss-Newton
type algorithm. Both of these quantities can be accessed
from the class via the method getGradientAndHessian
which returns them in the form of matrices from the Eigen
library. This choice fulfills one of the design goals of the
library, i.e. the seamless integration with existing optimiza-
tion solvers. Hence, it is possible to use these geometric
algebra computations in existing pipelines, without having to
fundamentally rewrite existing software to accommodate the
geometric algebra, which keeps the integration effort low. This
example is also applicable across a wider range of applications,
in previous work, we have shown the application of CGA to
modeling manipulation tasks in an optimal control framework
for model predictive control [20], which can of course be
achieved using the same cost function.

We give several examples of this inverse kinematics problem
in gafro_examples. The files are following the naming scheme
inverse_kinematics_PRIMITIVE1_PRIMITIVE2.cpp. We visu-
alize the results of optimization problems using various
geometric primitives in Figure 1. We want to point out,
that the implementations only differ in the instantiation of
the SingleManipulatorTarget template class, which
shows the ability of geometric algebra to unify formulations
and simplify their implementations.

VI. CONCLUSION

In this article we presented the implementation details as
well as some examples for our software stack around gafro,
which is a C++ library that implements conformal geomet-
ric algebra for robotics. The software stack also includes
Python bindings in pygafro as well as a ROS package in
gafro_ros. Tutorial material and toy examples can be found
in gafro_examples.

While showing comparable performance for the robot mod-
eling, geometric algebra also offers an easy and intuitive
way to model various geometric relationships as shown by
examples of intersecting geometric primitives, differential
kinematics using line objects and optimization based inverse
kinematics with different geometric primitives. The motors
are a more general concept of transformations that can be
directly applied to all geometric primitives within the algebra,
alleviating the the need to compute special adjoint operations.
Combined with the fact that motors are a more compact
representation of rigid body transformations that requires less
operations, geometric algebra offers a very rich and appealing
mathematical framework for robotics, without losing any of
the existing tools that are offered by standard matrix algebra.

Our library gafro provides the standard algorithms for robot
modeling and the computation of the kinematics and dynamics.
It then augments them with concepts that are exclusive to
geometric algebra, such as direct representations of geometric
primitives and operations on them which are then used for
the implementation of general optimization problems. In fact,
by the design of the library, which exposes the parameter
vectors using Eigen, these standard libraries could directly
be replaced by gafro without having to use geometric algebra
directly. Providing this library that makes geometric algebra
easily accessible for robotics research should allow for a
wider adoption and facilitate research on using this powerful
framework for robotics.

REFERENCES

[1] E. Bayro-Corrochano, “A Survey on Quaternion Algebra and Geo-
metric Algebra Applications in Engineering and Computer Science
1995–2020,” IEEE Access, vol. 9, pp. 104 326–104 355, 2021. DOI:
10.1109/ACCESS.2021.3097756.

[2] E. Hitzer, M. Kamarianakis, G. Papagiannakis, and P. Vašík, “Survey
of new applications of geometric algebra,” Mathematical Methods in
the Applied Sciences, vol. n/a, no. n/a, DOI: 10.1002/mma.9575.

[3] S. Breuils, V. Nozick, and L. Fuchs, “Garamon: A Geometric Algebra
Library Generator,” Adv. Appl. Clifford Algebras, vol. 29, no. 4, p. 69,
Jul. 22, 2019. DOI: 10.1007/s00006-019-0987-7.

https://doi.org/10.1109/ACCESS.2021.3097756
https://doi.org/10.1002/mma.9575
https://doi.org/10.1007/s00006-019-0987-7


[4] L. A. F. Fernandes, “Exploring Lazy Evaluation and Compile-Time
Simplifications for Efficient Geometric Algebra Computations,” in
Systems, Patterns and Data Engineering with Geometric Calculi,
S. Xambó-Descamps, Ed., vol. 13, Cham: Springer International
Publishing, 2021, pp. 111–131. DOI: 10.1007/978-3-030-74486-1_6.

[5] P. Colapinto, “Versor: Spatial computing with conformal geometric
algebra,” University of California at Santa Barbara, 2011.

[6] J. Ong, GAL, https://github.com/jeremyong/gal: GitHub, 2019.
[7] D. Fontijne, “Gaigen 2: A geometric algebra implementation genera-

tor,” in Proceedings of the 5th International Conference on Generative
Programming and Component Engineering - GPCE ’06, Portland,
Oregon, USA: ACM Press, 2006, p. 141. DOI: 10 .1145 /1173706 .
1173728.

[8] F. Seybold and U. Wössner, Gaalet - a C++ expression template
library for implementing geometric algebra, 2010.

[9] D. Hildenbrand, J. Pitt, and A. Koch, “Gaalop—High performance
parallel computing based on conformal geometric algebra,” in Geo-
metric Algebra Computing: In Engineering and Computer Science,
E. Bayro-Corrochano and G. Scheuermann, Eds., London: Springer
London, 2010, pp. 477–494. DOI: 10.1007/978-1-84996-108-0_22.

[10] E. V. Sousa and L. A. F. Fernandes, “TbGAL: A Tensor-Based Library
for Geometric Algebra,” Adv. Appl. Clifford Algebras, vol. 30, no. 2,
p. 27, Apr. 2020. DOI: 10.1007/s00006-020-1053-1.

[11] B. V. Adorno and M. Marques Marinho, “DQ Robotics: A Library for
Robot Modeling and Control,” IEEE Robotics Automation Magazine,
vol. 28, no. 3, pp. 102–116, Sep. 2021. DOI: 10.1109/MRA.2020.
2997920.

[12] J. Carpentier, G. Saurel, G. Buondonno, et al., “The Pinocchio C++
library : A fast and flexible implementation of rigid body dynamics
algorithms and their analytical derivatives,” in 2019 IEEE/SICE
International Symposium on System Integration (SII), Paris, France:
IEEE, Jan. 2019, pp. 614–619. DOI: 10.1109/SII.2019.8700380.

[13] J. Hwangbo, J. Lee, and M. Hutter, “Per-Contact Iteration Method for
Solving Contact Dynamics,” IEEE Robot. Autom. Lett., vol. 3, no. 2,
pp. 895–902, Apr. 2018. DOI: 10.1109/LRA.2018.2792536.

[14] R. Smits, KDL: Kinematics and Dynamics Library,
http://www.orocos.org/kdl.

[15] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Oct. 2012, pp. 5026–5033. DOI:
10.1109/IROS.2012.6386109.

[16] M. L. Felis, “RBDL: An efficient rigid-body dynamics library using
recursive algorithms,” Auton Robot, vol. 41, no. 2, pp. 495–511,
Feb. 1, 2017. DOI: 10.1007/s10514-016-9574-0.

[17] C. Perwass, Geometric Algebra with Applications in Engineering
(Geometry and Computing 4). Berlin: Springer, 2009, 385 pp.

[18] E. Bayro-Corrochano, Geometric Algebra Applications Vol. II: Robot
Modelling and Control. Cham: Springer International Publishing,
2020. DOI: 10.1007/978-3-030-34978-3.

[19] W. Benger and W. Dobler, “Massive Geometric Algebra: Visions for
C++ Implementations of Geometric Algebra to Scale into the Big Data
Era,” Adv. Appl. Clifford Algebras, vol. 27, no. 3, pp. 2153–2174, Sep.
2017. DOI: 10.1007/s00006-017-0780-4.

[20] T. Löw and S. Calinon, “Geometric Algebra for Optimal Control With
Applications in Manipulation Tasks,” IEEE Transactions on Robotics,
pp. 1–15, 2023. DOI: 10.1109/TRO.2023.3277282.

https://doi.org/10.1007/978-3-030-74486-1_6
https://doi.org/10.1145/1173706.1173728
https://doi.org/10.1145/1173706.1173728
https://doi.org/10.1007/978-1-84996-108-0_22
https://doi.org/10.1007/s00006-020-1053-1
https://doi.org/10.1109/MRA.2020.2997920
https://doi.org/10.1109/MRA.2020.2997920
https://doi.org/10.1109/SII.2019.8700380
https://doi.org/10.1109/LRA.2018.2792536
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1007/s10514-016-9574-0
https://doi.org/10.1007/978-3-030-34978-3
https://doi.org/10.1007/s00006-017-0780-4
https://doi.org/10.1109/TRO.2023.3277282

	INTRODUCTION
	GEOMETRIC ALGEBRA
	IMPLEMENTATION OF CONFORMAL GEOMETRIC ALGEBRA
	Design Goals and Implementation Details
	General Multivector
	Algebraic Computations using Expression Templates
	Geometric Primitives
	Rigid Body Transformations
	Robot Modeling

	COMPARISON TO OTHER LIBRARIES
	Algebraic Operations Benchmarks
	Robotics Algorithms Benchmarks
	Advantages of gafro

	APPLICATIONS AND TUTORIAL
	Geometric Algebra
	Robot Differential Kinematics
	Optimization Problems with Geometric Primitives

	CONCLUSION

