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ABSTRACT

OptoMechanical Modulation Tomography (OMMT) is a compressed
sensing optical microscopy method where measurements are ob-
tained by scanning a light sheet through a sample while modulating
its intensity over the course of the camera integration time. Because
mechanical scanning is not instantaneous, this method was so far
considered unsuitable for imaging dynamic samples. Yet living
samples would particularly benefit from the method’s reduced light
exposure. In this paper we extend OMMT to allow imaging of
objects that have a periodic motion, such as the heart in transparent
larvae. We derived a method in which measurements are obtained
by integrating the space-phase domain along patterned paths. We
implemented the reconstruction with an iterative solver, and demon-
strated the feasibility of the method based on simulated data of a
beating heart. We observed that compression factors up to 8 lead
to reliable reconstruction, and that the method is robust to uncertain
acquisition start phases. Our results confirm that OMMT can be
extended to imaging dynamic samples opening up the possibility to
apply this method in experimental settings where low light exposure
is desirable.

Index Terms— Computational imaging, fluorescence mi-
croscopy, inverse problems, heart

1. INTRODUCTION

OMMT enables 3D compressive light sheet microscopy by acquiring
scanned projections with modulated illumination [1, 2]. By reducing
the number of images needed to reconstruct a volume, it decreases
light exposure, which may reduce photo-damage. However, because
scanning is slow, only static objects have been imaged so far with
this technique, and it was deemed unsuitable for imaging dynamic
objects. More generally, the slowness of depth-scanning is a fre-
quent hurdle to image dynamic samples such as the beating heart, as
motion artefacts appear in the measurements.

For periodically moving objects, imaging methods based on
scans or projections can nevertheless be employed by use of gated
acquisition and fast sampling to reconstruct dynamic volumes. In-
deed, when taking images at a single phase with a projection or scan-
ning speed much faster than the dynamics of the sample, the problem
becomes similar to reconstructing a still volume. For example, ECG
gating is applied in cardiac micro-computed tomography [3], for 4D
blood flow Magnetic Resonance Imaging (MRI) [4], and for Optical
Coherence Tomography (OCT) with heart pacing [5]. Exploiting
space-time sparsity in the data allowed implementing compressed
sensing MRI, reducing the amount of ECG-gated acquisitions [6].

Gated imaging requires a complex pipeline to trigger synchro-
nized acquisitions [7], which is not available on all devices. Ungated
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Fig. 1. Overview of OMMT imaging. (a) Optomechanical modu-
lation consists in simultaneously scanning the focus plane in depth
and modulating the light intensity. (b) This results in illumination
patterns along the depth axis.

methods trade this complex pipeline for retrospective phase estima-
tion algorithms in order to reconstruct 4D data without motion arte-
facts, with applications in colour Doppler OCT [8] and 4D confocal
microscopy [9]. However, these methods require imaging the whole
volume and are not suitable for compressed sensing. Moreover, they
also assume that the acquisition of a single measurement is much
faster than the motion of the sample. This is not achievable with
OMMT, as the acquisition speed of the projections is limited by the
scanning time of a mechanical stage.

Here, we investigate an ungated method that leverages space-
time sparsity to perform compressed 4D sensing based on modu-
lated scanned projections. It expands upon our static version of
OMMT [2], introducing an imaging model that includes temporal
periodicity to reconstruct dynamic samples such as a beating heart.
We characterize its compression abilities on synthetic data, and eval-
uate its robustness to errors in the retrospective phase estimation.

2. METHOD

We briefly recall the principles of OMMT, which relies on the ac-
quisition of modulated pseudo-projections that combine temporal il-
lumination modulation with depth scanning on a light sheet micro-
scope [10]. During a full camera exposure time ∆E , the mechanized
focus stage moves at a constant speed v in depth while the intensity
of the illumination varies following a chosen temporal modulation
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function. This simultaneous optomechanical modulation generates
a patterned illumination along depth, as shown in Fig. 1. The cam-
era performs an optical integration during the exposure time, which
yields the modulated pseudo-projection. This process can be re-
peated any number of times with different illumination modulations,
generating a set of measurements from which it is possible to recon-
struct the original three-dimensional (3D) object, which has so far
been assumed to be static.

2.1. Forward model with time periodicity

In this paper we consider a periodically moving dynamic 3D object,
f(x, y, z, θ), with x, y, z the horizontal, vertical, and focus axes re-
spectively. The sample shape varies over time according to its phase
θ, repeating with period 2π:

f(x, y, z, θ) = f(x, y, z, θ + k 2π), ∀k ∈ Z. (1)

This phase evolves linearly with time, θ(t) = ωt, with ω the angular
frequency. In our proposed dynamic OMMT method, we acquire
N pseudo-projections pn(x, y) (n = 1, . . . , N ) using illumination
modulation functions in(t), according to:

pn(x, y) =

∫ ∆E

0

[f ∗ h] (x, y, vt, ω(t+ ti,n)) in(t) dt, (2)

where h(x, y, z) is the Point Spread Function (PSF) of the micro-
scope, and ti,n is the arbitrary initial time at which the acquisition
of projection n starts. We use ∗ to denote a 3D spatial convolution
operator, applied on the x, y, z dimensions.

As the set of modulation functions, we use a subset of a
Hadamard basis, which we chose for the simplicity of implemen-
tation and successful use in multiple compressed imaging applica-
tions [11]. Starting from a Hadamard matrix HM of order M in
which we set all -1 values to 0 (resulting in a matrix whose values
are either 0 or 1) the illumination functions are obtained through
random row selection:

in(t) = HM [m(n), j] s.t. j − 1 ≤ Mt

∆E
< j, (3)

where m : {1, . . . , N} → {1, . . . ,M} is a mapping that selects a
row of HM with uniform probability.

We have shown previously that Eq. (2) can be simplified by us-
ing a 1D PSF model h′(z) = h(0, 0, z), which still accurately rep-
resents the system [2]. Using this approximation, the forward model
becomes a 1D expression at any location (x, y). For the rest of this
paper, we will focus on what happens at an arbitrarily chosen posi-
tion (x′, y′) in space. Indeed, solving this simpler 2D (depth + time)
problem allows reconstructing the whole 4D sample (3D + time)
simply by combining the results at any desired coordinate (x′, y′) as
depicted in Fig. 2(a). Eq. (2) then becomes:

p′n =

∫ ∆E

0

[
f ′ ⊛ h′] (vt, ω(t+ ti,n)) in(t) dt, (4)

where f ′(z, θ) = f(x′, y′, z, θ) represents the values of the object
along the selected (x′, y′) pillar, and p′n = pn(x

′, y′) is the pro-
jection at that same coordinate. We use ⊛ to describe a 1D spatial
convolution operator applied on the z dimension.

We reformulate the line integral in Eq. (4) by capturing its linear
path with a delta ridge distribution in depth-phase space:∫

ϕ(vt, ωt) dt =

∫∫
ϕ(z, θ) δ

(
z

v
− θ

ω

)
dzdθ (5)

a) Selected (x′, y′) pillar through time

b) Corresponding kymograph and sampling
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Fig. 2. Representation and sampling of the data. (a) We study a
single pillar through time, located at coordinates (x′, y′). (b) We
plot the values on this pillar using a space-time kymograph (left), or
the equivalent space-phase kymograph with phase wrapping (right).
The sampling function consists in applying the light pattern along
the integration line.

(with ϕ an arbitrary function) and further simplify Eq. (4) by ex-
panding the convolution and reordering the integrals:

p′n =

∫ L

0

∫ ω∆E+θi,n

θi,n

∫ ∞

−∞
f ′(u, θ) h′(u− z) du

δ

(
z

v
− θ − θi,n

ω

)
in

(
θ − θi,n

ω

)
dθdz

(6)

=

∫
θ

∫
u

∫
z

h′(u− z) δ

(
z

v
− θ − θi,n

ω

)
dz

f ′(u, θ) in

(
θ − θi,n

ω

)
dudθ

(7)

=

∫
θ

∫
u

h′(u− v

ω
(θ − θi,n))

f ′(u, θ) in

(
θ − θi,n

ω

)
dudθ,

(8)

in which θi,n = ωti,n is the initial phase corresponding to the start of
the acquisition. Finally, we define g′n(z, θ) as the sampling function
by shifting the PSF along the integration line and multiplying it with
the light modulation:

g′n(z, θ) = h′
(
z − v

ω
(θ − θi,n)

)
in

(
θ − θi,n

ω

)
, (9)

such that Eq. (8) becomes:

p′n =

∫ ω∆E+θi,n

θi,n

∫ L

0

f ′(u, θ) g′n(u, θ) dudθ. (10)

In Fig. 2(b), we visualize the function f ′(z, θ) as a kymograph and
the integration path that results from the trajectory of the focus stage
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Fig. 3. Examples of sampling matrices and their associated light
modulation patterns. Each of these matrices G′

n corresponds to the
acquisition of pseudo-projection p′n. Flattened and stacked, they
constitute the imaging operator G′.

through space and heart beat phase as a line, over which we apply
the patterned illumination yielding sampling function g′n. Due to the
periodicity of the system, it is equivalent to represent the values in a
space-phase kymograph, wrapping the phases between 0 and 2π.

When discretized for all n, Eq. (10) becomes a linear model:

p⃗ = G′f⃗ ′ + ϵ⃗, (11)

where f⃗ ′ ∈ RDT is the vector containing the sampled values of f ′,
with D sampling steps in depth and T steps in time, G′ ∈ RN×DT

is the matrix operator corresponding to the multiplication with all
the g′n and the integration. p⃗ ∈ RN is the vector containing the
projections, and ϵ⃗ ∈ RN is the measurement noise. To perform
compressed sensing, we acquire a number of projections lower than
the number of unknowns, N ≤ DT , and denote by C the compres-
sion factor, C = DT/N ≥ 1. Each row in G′ is a flattened matrix
G′

n resulting from the discretization of the corresponding sampling
function g′n, illustrated in Fig. 3.

Building the G′
n matrices requires knowing the arbitrary acqui-

sition phases θi,n and the angular frequency ω of the signal. Com-
puting these phases could be done in post-processing by using, e.g.
the Paired Alternating AcQuisitions (PAAQ) imaging technique [2].
Note that there is no constraint on the values of θi,n, thus this method
does not require any gating to the heart beat during acquisition.

2.2. Inverse problem

To reconstruct f⃗ ′ from the measurements, we must solve the lin-
ear inverse problem corresponding to Eq. (11). Since the number of
measurements is lower than the reconstruction unknowns, this prob-
lem is ill-posed and requires the use of regularization to obtain a
satisfactory solution. For compressed sensing, this inverse problem
is commonly expressed as an energy minimization task [11]:

f⃗∗ = argmin
f⃗∗∈RDT

C
(
p⃗,G′f⃗

)
+ λz Rz

(
f⃗
)
+ λθ Rθ

(
f⃗
)
, (12)

where C is a squared ℓ2 data consistency loss, and Rz and Rθ are
Total Variation (TV) regularization terms along the depth and phase
axes respectively, with λz and λθ being hyperparameters that tune
the regularization strengths.

TV is a common regularization that aims at reconstructing
smooth images while preserving sharp edges, and is based on the

Table 1. Quantitative characterization on synthetic data.

C 1 2 4 8 16 32

PSNR (dB) 21.9 21.9 21.4 20.3 18.0 13.1

assumption that the spatial gradient of the object is sparse [12]. We
penalize it separately for the depth and phase axes as they represent
different domains. To match the periodicity of the problem, we use
periodic boundary conditions for Rθ .

We solve Eq. (12) using the alternating direction method of mul-
tipliers (ADMM [13]), which iteratively alternates between mini-
mizing C and the regularization terms. We used the scientific imag-
ing library SCICO [14] implementation, which is efficient and di-
rectly applicable to Eq. (12).

In order to reliably select good values for the hyperparameters
λz and λθ , we use a criterion based on the data consistency cost, as
introduced in our previous works [2]. It consists in applying C to the
solution of the ADMM optimization, truncated to contain only pos-
itive values (since light intensity must always be positive). We find
the hyperparameters yielding the minimal truncated cost through a
loose grid search.

3. EXPERIMENTS

We used our model developed for cardiac imaging simulation [15] to
generate a synthetic sample consisting of a hollow ellipsis traversed
by a contraction wave. We emulated acquisition with an OpenSPIM
device [16] via a dedicated simulation framework [17] and using
a Gaussian beam model for the PSF [18]. We corrupted the data
with shot noise modelled by sampling a Poisson distribution after
rescaling the measurements to a maximum photon count of 104, and
quantized the result to 12 bits to emulate a digital camera.

For the sampling operator, we used a uniform distribution to se-
lect the initial phases θi,n between 0 and 2π. We set 2πv

Lω
= 0.4,

meaning that the stage covers 40% of the scanning length over one
full period of the signal. This corresponds to acquiring scans over
an exposure time ∆E = 1 s, with a cardiac frequency set to 2.5Hz.
We chose these parameters to match that of the zebrafish heart at the
larval stage which lies between 2Hz to 3Hz [19].

We set the reconstruction resolution as D = 64 and T = 50,
and used M = 32 to generate the Hadamard modulation. We used
the Peak Signal-to-Noise Ratio (PSNR) to quantify the accuracy of
the reconstructed images, and repeated each experiment 5 times with
different random seeds to obtain averaged results and derive confi-
dence intervals.

We first characterized the performance of our method against
the compression factor used for acquisition, using an uncompressed
acquisition (C = 1) as the reference. Table 1 shows that there is little
accuracy drop (less than 1 dB) for low compression factors C ≤ 4.
The performance degrades for higher compressions, with a drop of
over 4 dB for C ≥ 16 (corresponding reconstructions in Fig. 4). At
C = 32, the object is still visible, but is strongly distorted.

Since the phase estimates used to build G′ may not be accurate
in practice, we investigated what effect this may have on the recon-
struction performance. Prior to reconstruction, we added Gaussian
noise to the phases as if they had been obtained through inaccurate
estimates. Table 2 shows the accuracy of our method for increasing
levels of noise in the phases, measured for C = 4. With less than
1% phase error—a level of phase estimation accuracy achievable us-



Reference C = 2

0 2π

80
µ

m
0

C = 8 C = 32

0

1

Fig. 4. Obtained reconstructions for different compression factors.
The results for C = 32 contain strong aberrations, corresponding to
the 8 dB PSNR drop.

Table 2. Robustness to errors in the sampling phase estimates.

Phase error (% of period) 0 0.5 1 2 4

PSNR (dB) 21.4 21.1 19.9 18.5 16.2

ing a sorting-based phase estimation method [15]—the reconstruc-
tions are still reliable with a performance drop lower than 1 dB.

4. CONCLUSIONS

We have introduced an ungated OMMT compressive imaging
method for studying periodically moving objects. We have de-
rived a forward model that factors in the temporal periodicity of
the problem, and used it to implement an ADMM algorithm for the
reconstruction of the 4D data split into many 2D problems. Using
simulated samples, we characterized the performance of our method
with respect to the compression factor, and showed that it gives reli-
able results for compressions as high as 8. We tested the robustness
of our method to errors in the ungated phase estimates, showing
that the accuracy drop is minimal at the typical precision offered
by retrospective phase estimation. We provide code for reproducing
our results at https://github.com/idiap/cbi toolbox.
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