
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024 1

Online Learning of Continuous Signed Distance
Fields Using Piecewise Polynomials

Ante Marić, Yiming Li, and Sylvain Calinon

Abstract—Reasoning about distance is indispensable for estab-
lishing or avoiding contact in manipulation tasks. To this end, we
present an online approach for learning implicit representations
of signed distance using piecewise polynomial basis functions.
Starting from an arbitrary prior shape, our method incrementally
constructs a continuous and smooth distance representation
from incoming surface points, with analytical access to gradient
information. The underlying model does not store training data
for prediction, and its performance can be balanced through
interpretable hyperparameters such as polynomial degree and
number of segments. We assess the accuracy of the incrementally
learned model on a set of household objects and compare
it to neural network and Gaussian process counterparts. The
utility of intermediate results and analytical gradients is further
demonstrated in a physical experiment. For code and video, see
https://sites.google.com/view/pp-sdf/.

Index Terms—Signed Distance Fields; Incremental Learning;
Representation Learning; Machine Learning for Robot Control

I. INTRODUCTION

SCENE representation is a naturally emerging topic in
robotics as a basis for physical interaction. In recent

years, implicit modeling methods have been used as compact
representations of environment properties such as distance,
occupancy, and color. Signed distance functions (SDFs) model
distances to closest occupied points by assigning zero values
to surfaces, negative values to surface interiors, and positive
values elsewhere. Previously used in environment mapping and
collision avoidance settings [1], they have recently seen use
in robotic manipulation as the field moves towards exploring
contact-rich behaviors [2]. In such scenarios, distance repre-
sentations can be exploited to quickly and robustly retrieve
gradients for a variety of tasks. Furthermore, modeling the full
range of distances, as opposed to only the zero level set, can
be beneficial for reasoning about making or breaking contact,
deformation, or penetration, with extensions to active agents
such as users or robots. Commonly used implicit SDF models
in robotics rely on neural architectures or Gaussian process

Manuscript received: December 21, 2023; Revised: March 17, 2024;
Accepted: April 15, 2024.

This paper was recommended for publication by Editor Jens Kober upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by the State Secretariat for Education, Research and Innovation
in Switzerland and the European Commission’s Horizon Europe Program
through the INTELLIMAN project (https://intelliman-project.eu/, HORIZON-
CL4-Digital-Emerging Grant 101070136) and the SESTOSENSO project
(http://sestosenso.eu/, HORIZON-CL4-Digital-Emerging Grant 101070310).

The authors are with the Idiap Research Institute, CH-1920 Martigny,
Switzerland and also with the EPFL, 1015 Lausanne, Switzerland.
ante.maric@idiap.ch; yiming.li@idiap.ch;
sylvain.calinon@idiap.ch

Digital Object Identifier (DOI): see top of this page.

Fig. 1: Mesh and distance level sets of the Stanford Bunny
reconstructed from piecewise polynomial basis functions. The
model is learned incrementally from 1283 randomly sampled
surface points and corresponding normal vectors.

models, while alternative formulations remain less explored.
Earlier computer graphics work encodes SDFs using basis
functions, with recent extensions showing promising results
using piecewise polynomial representations [3]. In robotics,
basis functions have been used to encode movements as su-
perpositions of primitives [4]. Basis function representations of
distance can consequently be seen as a step toward combining
movement with shape primitives of robot environments.

When operating in previously unseen environments, in-
crementally building a distance model from incoming data
enables the integration of feedback for more robust and
adaptive behavior. We formulate an online method for learning
signed distance fields represented as piecewise polynomial
basis functions. Our method uses a simple incremental least
squares approach and regularization scheme to approximate
distance fields from incoming surface points. The resulting
representation is C1 continuous, with analytical access to
gradients for downstream use. To achieve fast update time on
modest hardware, performance of the piecewise polynomial
representation can be balanced through interpretable hyperpa-
rameters such as polynomial degree and number of segments.
It is also easy to incorporate priors through basis function
superposition weights. We evaluate the accuracy of our method
on a set of diversely shaped household objects, showing
comparable results to Gaussian process and neural network
baselines, while relying on a lower number of parameters,
and without the need to store training data for prediction.
The usability of intermediate results and analytical gradients
is further demonstrated in a physical experiment where we
use an evolving representation learned from noisy and partial
point cloud data to survey and grasp an object of interest.

https://sites.google.com/view/pp-sdf/


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

II. IMPLICIT ENVIRONMENT REPRESENTATIONS

In robotics, widely adopted scene representations use map-
ping approaches that rely on discretized occupancy grids and
account for uncertainty [5]. Subsequent methods explicitly
store distance information for real-time usage in dynamic
settings by introducing distance fields [1], [6]. Following
advancements in computer vision, recent work has been
exploring implicit representations as scalable and compact
alternatives for describing scenes without storing data in dense
grids. Implicit representations of distance, volume, and color
information have found application in robotics, with initial
uses in navigation [7] and mapping [8]. Recent work uses
implicit representations as visual encodings for grasping [9],
whole-body manipulation [2], human-robot interaction [10],
planning [11], and control [12].

A. Implicit signed distance functions

Implicit signed distance functions model geometry through
continuous functions, thus decoupling memory from spatial
resolution. Seminal work utilizes neural networks for shape
representation, showing higher performance than point cloud,
mesh, or grid-based counterparts [13]. Additional efforts have
been put into investigating regularization and modeling meth-
ods that allow learning such representations in online scenar-
ios using raw point cloud data [14], [15]. Recent methods
introduce neural architectures that jointly represent SDF and
color to track and reconstruct unknown objects [16]. Similarly,
Neural radiance fields (NeRFs) [17] jointly encode volume
density and color. They have garnered much attention as
environment representations, with recent extensions targeting
real-time rendering [18] and dynamic scenes [19]. However,
NeRFs do not offer direct access to distance or derivative
information, which can be beneficial for interpreting task
execution. Furthermore, neural representations often require
large amounts of data and do not translate readily to lower
data regimes found in modalities such as tactile or proximity
sensing.

B. Gaussian process implicit surfaces

Probabilistic models like Gaussian process implicit surfaces
(GPIS) have been used to represent distances with account
for uncertainty [20]. To extend the approach for mapping
purposes, scaling issues of the Gaussian process have been
addressed through the use of clustering and hierarchical mod-
els [21]. Subsequent combinations with implicit regularization
methods enable accurate modeling of unsigned distance [22].
These methods were later combined to give a unified mapping,
odometry, and planning framework [23].

C. Basis function representations

Basis functions can describe complex representations as
weighted superpositions of simple signals. In robotics, they are
well-known as the underlying representation used to encode
movement primitives [24], [25]. A detailed review can be
found in [4]. Their role in computer graphics extends to higher-
dimensional input space to represent shapes using SDFs [26].

Learning such representations from point clouds and normals
can be achieved simply by solving a linear system of equations
using a least squares approach or iterative optimization proce-
dures [27]. A recent example utilizes piecewise polynomials to
approximate high-fidelity SDFs using an adaptive grid [3]. The
resulting SDF models offer analytical access to distance and
gradients, and a desired order of continuity can be ensured by
constraining the superposition weights. The following section
describes an online formulation of piecewise polynomial SDF
based on incremental learning, with the aim of adaptively
guiding movement in manipulation tasks.

III. PIECEWISE POLYNOMIAL SDF

A. Bernstein polynomial basis functions

The value of a univariate function f(x) at input x can be
represented as a weighted sum of K basis functions with

f(x) =

K∑
k=0

ϕk(x) wk = ϕ(x) w, (1)

where ϕ can come from any family of basis functions. For our
SDF representation, we use Bernstein polynomial bases, which
give smooth function approximations on bounded intervals.
For degree K, they can be computed as

ϕk(x) =
K!

k!(K − k)!
(1− x)

K−k
xk, (2)

∀k ∈ {0, . . . ,K}. Instead of considering a global encoding
which might require the use of high-order polynomials, we
split the problem into a set of local fitting problems that can
consider lower-order polynomials. We retain C1 continuity by
introducing constraints of the form

wa
K = wb

0 (3)

wb
1 = −wa

K−1 + 2wb
0, (4)

where a and b are concatenated polynomials of degree K,
and wa

k is used to denote the k-th weight of polynomial a.
Polynomial bases and their derivatives can then be expressed
in matrix form as

ϕ(x) = T (x)BC, (5)
∂ϕ(x)

∂x
=

∂T (x)

∂x
BC, (6)

with T (x) =
[
1 x x2 · · · xK

]
being a polynomial feature

map of input x, B the corresponding Bernstein coefficient
matrix, and C a constraint matrix of the form

C =



1 0 · · · 0 0 · · ·
0 1 · · · 0 0 · · ·
...

...
. . .

...
...

. . .
0 0 · · · 1 0 · · ·
0 0 · · · 0 1 · · ·
0 0 · · · 0 1 · · ·
0 0 · · · −1 2 · · ·
...

...
. . .

...
...

. . .


, (7)

enforcing (3) and (4).



MARIĆ et al.: ONLINE PIECEWISE POLYNOMIAL SDF 3

Fig. 2: Incremental model updates used to model a 2D shape on a 4 × 4 grid, starting from a circular prior. Sampled points
and normals are shown in dark blue, and the reconstructed zero-level contour in black. The reconstructed SDF is visualized
as a color map. The normal ray and regularization points of a single sample are displayed in the second image.

Successive Kronecker products can be used to extend the
described representation to any number of input and output
dimensions. For clarity and visualization purposes, we will
continue the method description for a two-dimensional case.
Namely, an extension to two-dimensional input space (Carte-
sian coordinates) and one-dimensional output (signed distance)
can be calculated as

Ψ(x, y) = ϕ(x) ⊗ ϕ(y), (8)

with partial derivatives and gradient computed analytically as

∂Ψ(x, y)

∂x
=

∂ϕ(x)

∂x
⊗ ϕ(y), (9)

∂Ψ(x, y)

∂y
= ϕ(x) ⊗ ∂ϕ(y)

∂y
, (10)

∇Ψ(x, y) =
∂Ψ(x, y)

∂x
⊗ ∂Ψ(x, y)

∂y
, (11)

This can then be used to compute the distance and gradient
values of the SDF at coordinate (x, y) with

f(x, y) = Ψ(x, y)w, (12)
∇f(x, y) = ∇Ψ(x, y)w. (13)

The same procedure can be applied to calculate higher-order
derivatives for regularization purposes

∂∇f(x, y)

∂x
=

∂∇Ψ(x, y)

∂x
w. (14)

The above representation extends analogously to accommodate
three-dimensional Cartesian coordinates as input by applying
an additional Kronecker product in (8).

B. Computation of weights

To approximate the SDF using polynomial basis functions,
any method capable of solving a system of linear equations
of the form Aw = s can be employed. The simplest case can
utilize a batch least squares estimate of the form

w = (A⊤A)−1A⊤s, (15)

or ridge regression as the regularized variant [28].

We use quadratic error terms in order to evaluate the fitting
of distance and normal data for N incoming samples

cd(xn) =
(
Ψ(xn)w

)2

, (16)

cg(xn) = ||∇Ψ(xn)w − gn||2 , (17)

with xn = (xn, yn) denoting the n-th input sample, and gn
the corresponding sampled normal. An additional tension term
is used to constrain the curvature of the resulting distance field
by minimizing the sum of second-order partial derivatives on
R control points

ct(xr) = ||Hf (xr)||F
2
, (18)

∀r ∈ {1, . . . , R}, where ct(xr) represents the squared Frobe-
nius norm of the corresponding Hessian matrix

Hf (x, y) =

[
∂∇f(x, y)

∂x

∂∇f(x, y)

∂y

]
. (19)

The model weights can then be learned by minimizing a
combined cost

c = λ2
d

N∑
n=1

cd(xn) + λ2
g

N∑
n=1

cg(xn) + λ2
t

R∑
r=1

ct(xr), (20)

with cost tuning coefficients λd, λg , and λt. We construct our
input vectors as concatenations of flattened distance, gradient,
and tension features, denoted in italics

Ψ∗ = [Ψ(x1 ) · · ·Ψ(xN )]
⊤
, (21)

∇Ψ∗ = [∇Ψ(x1 ) · · · ∇Ψ(xN )]
⊤
, (22)

H∗
Ψ = [HΨ (x1 ) · · ·HΨ (xR)]

⊤
. (23)

Finally, we can minimize (20) by calculating (15) using

A =

 λdΨ
∗

λg∇Ψ∗

λtH
∗
Ψ

 , s =

0Ψ

λgg
0H

 , (24)

where g is a vector of sampled normal components, and 0Ψ

and 0H are zero vectors with lengths compatible with Ψ∗ and
H∗

Ψ, respectively.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3: Mesh (gray) and level set (red) reconstruction results for objects from the YCB [29] test set: (a) 003_cracker_box,
(b) 006_mustard_bottle, (c) 011_banana, (d) 016_pear, (e) 019_pitcher_base, (f) 021_bleach_cleanser,
(g) 048_hammer, (h) 035_power_drill, (i) 063-a_marbles, (j) 053_mini_soccer_ball. Models were learned
from 800 non-uniformly sampled points and normals using 6 segments per input dimension.

C. Incremental formulation

Based on similar approaches used in the context of control
[30], we update concatenated local models with an incremental
variant of the least squares algorithm. Namely, we exploit
the Sherman-Morrison-Woodbury relations [31] which connect
subsequent inverses of a matrix after small-rank perturbations.
This allows us to gradually refine an initial estimate by
providing samples one by one or in batches.

After initializing the weight precision matrix P =
cov(w)−1 to P0, it can be incrementally updated as

Pnew = P − PA⊤
n

(
σ2I +AnPA⊤

n

)−1︸ ︷︷ ︸
K

AnP , (25)

where σ2 is the measurement noise variance, An the input
matrix, and I an identity matrix of compatible dimensions.
Starting from prior weights w = w0, updates can then be
calculated by using the Kalman gain K

wnew = w +K
(
sn −Anw

)
. (26)

The above iterative computation has no requirement of storing
the training points and enables us to impose priors on our
model through P0 and w0. We impose a spherical prior on the
weights and initialize the precision matrix as a scaled identity
matrix for recursive ridge regression.

In order for our model to accurately approximate a distance
function, the tension term needs to be enforced throughout the
input space. We achieve this in an online setting by uniformly
sampling a number of control points on the normal rays of
incoming surface samples, as displayed in Figure 2. The full
computation steps are summarized in Algorithm 1. We apply
the same approach for three-dimensional inputs, with example
reconstructions shown in Figures 1 and 3.

Algorithm 1 Incremental computation of weights.
P = P0 // Initialize precision matrix

w = w0 // Initialize weights

for n← 1 to N do
An = A(xn) // Construct input matrix

K = PA⊤
n

(
σ2I +AnPA⊤

n

)−1
// Compute gain

P ← P −KAnP // Update precision matrix

w ← w +K
(
sn −Anw

)
// Update weights

end

IV. EVALUATION

A. Reconstruction accuracy

We first evaluate the reconstruction accuracy of our ap-
proach by comparing it to two baseline methods used in online
settings:

1) A neural network model based on iSDF [15], using
4 hidden layers of 256 neurons, with corresponding
positional embeddings and regularized loss.

2) A GP model based on LogGPIS [22] using the Matérn
3/2 kernel.

Our comparison model utilizes cubic Bernstein polynomials
with 6 segments per input dimension. All models are imple-
mented in PyTorch and run on an NVIDIA GeForce MX550
GPU.

Accuracy evaluations are done on varying volumes of real
point cloud data from the YCB dataset [29]. The utilized
test set consists of 10 household objects of diverse shapes,
depicted in Figure 3. All three methods are trained on the
same depth-only point cloud and normal data, with ground
truth SDFs reconstructed from high-definition meshes with
512k polygons. Note that LogGPIS models unsigned Euclidean
distance fields, and is therefore evaluated against absolute
values of the ground truth.



MARIĆ et al.: ONLINE PIECEWISE POLYNOMIAL SDF 5

To evaluate the reconstruction accuracy of our method we
use error metrics similar to [15]. Reconstructed distances are
evaluated using the mean absolute error (MAE)

MAE(x) =
∣∣ŝ(x)− s(x)

∣∣, (27)

with ŝ(x) denoting the estimated signed distance at point x,
and s(x) the ground truth value. Figure 4 shows the resulting
MAE comparisons. Qualitative reconstruction results of our
method for all objects in the test set are shown in Figure 3.

Fig. 4: Distance reconstruction accuracy compared on varying
amounts of training data.

Additional comparisons are made with respect to recon-
structed distance gradients by calculating the gradient cosine
distance (GCD)

GCD(x) = 1− ∇xŝ(x)∇xs(x)

∥∇xŝ(x)∥∥∇xs(x)∥
, (28)

with ∇xŝ(x) denoting the estimated distance gradient, and
∇xs(x) the corresponding ground truth. Figure 5 displays the
GCD comparisons.

Fig. 5: Accuracy of reconstructed gradient fields with varying
amounts of training data.

Many manipulation tasks inherently involve contact, thus
requiring higher fidelity distance approximations closer to
object surfaces. On the other hand, intermediary tasks such as
reaching or collision avoidance often involve larger distances.
Table I displays reconstruction accuracy near and far from
object surfaces for different amounts of training samples.

|s| < 0.05
Samples Ours GP NN

3000 0.0329± 0.0201 0.0620± 0.0409 0.0326± 0.0152
1500 0.0332± 0.0202 0.0549± 0.0405 0.0326± 0.0162
800 0.0338± 0.0208 0.0501± 0.0369 0.0330± 0.0194

|s| > 0.05
Samples Ours GP NN

3000 0.1481± 0.0337 0.0916± 0.0392 0.1174± 0.0561
1500 0.1261± 0.0551 0.1044± 0.0325 0.0818± 0.0339
800 0.1079± 0.0522 0.1252± 0.0461 0.0798± 0.0299

TABLE I: Comparison of the mean absolute error (MAE) near
and far from object surfaces for varying amounts of training
samples.

B. Computational requirements

Our representation relies on a sparse number of basis
function weights as parameters, and does not store training
data for prediction. The total number of parameters is further
reduced by imposing constraints through concatenation, as
described in Section III. For three-dimensional input and
S concatenated cubic polynomials, the number of utilized
parameters corresponds to Nw(S) = 8(S + 1)3. The models
utilized in our experiments therefore store and update only
Nw(6) = 2744 parameters. Comparatively, the NNSDF base-
line has 200193 learnable parameters, and LogGPIS requires
storing the training samples to inform mean and covariance
predictions.

The computation time of updates to our model increases
quadratically based on the number of weights. For a set input
dimension and cubic polynomials, the time complexity of a
single incremental update is O(B3 + Nw

2B + NwB
2), with

B denoting the sample batch size. Figure 6 shows mean
update times for different numbers of segments and varying
batch sizes. Total training times of the evaluated models are
compared in Table II.

Fig. 6: Update time for cubic polynomials with varying
numbers of segments and different batch sizes. The desired
real-time cutoff of 30 ms is denoted by a horizontal line.

Training time [s]
Samples LogGPIS NNSDF Ours (S=6) Ours (S=4)

3000 28.58 8.722 32.36 3.725
1500 6.886 7.002 15.97 1.835
800 1.657 4.720 8.535 0.9919

TABLE II: Total training time comparisons for varying num-
bers of training samples.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2024

Fig. 7: A visualization of our physical experiment and results, showing the evolution of a piecewise polynomial SDF model
starting from a spherical prior. As n samples are collected, the updated model is queried online to control the manipulator by
following a trajectory tangential to the SDF level sets while keeping normal orientation. The reconstructed distance field is
then used to generate and execute a collision-free grasp.

For queries and reconstruction of distance and gradient
fields, our method scales linearly with the number of weights,
as we calculate only a weighted sum of basis functions. The
time complexity of querying our model for a batch of B points
is O(NwB), with mean time of 0.134 ms for a single query
of distance and gradient. Table III shows the mean time of full
SDF reconstructions on a dense 1283 grid.

SDF reconstruction time [s]
Samples LogGPIS NNSDF Ours (S=6) Ours (S=4)

3000 47.03 0.9828 5.7436 5.4086
1500 19.06 0.9865 5.9605 5.5912
800 7.636 0.9842 5.8488 5.3287

TABLE III: SDF reconstruction time with respect to varying
numbers of training samples.

C. Physical experiment

To test the viability of our method in a real-world setting, we
perform a physical experiment in an online learning scenario
using a Franka Emika 7-DoF manipulator. Starting from a
spherical prior, we leverage the continuity and smoothness of
our representation by querying gradients to execute a trajectory
tangential to the SDF level sets. As the robot moves around
the object of interest, partial-view depth data is collected
by an in-hand Intel RealSense D415 sensor. The collected
surface samples are used to incrementally update the SDF,
directly shaping the trajectory of the manipulator. Once the
object shape is sufficiently explored, the reconstructed distance
field is used to generate a valid grasp and execute it without
colliding with the object. To enable fast performance on
CPU, we utilize cubic polynomials with 4 segments per input
dimension and point-by-point updates. The described learning
and control framework is run with a mean timestep of 33.7 ms
on a 3.6 GHz Intel Core i9-9900K CPU. Figure 7 shows our
experiment setup and resulting SDF used to perform a grasp.

V. DISCUSSION

Figures 4 and 5 demonstrate that our incrementally learned
representation can achieve similar distance and gradient re-
construction accuracy as baseline methods on the provided
test set. Table I further shows that these results are consistent
across data volumes, and that valid field reconstructions are
maintained at different distances. As shown in Section IV-B,
our model relies on a low number of parameters to achieve
these results, and the incremental learning scheme does not
require storing the training data after model updates. Perfor-
mance and accuracy of the proposed model can be balanced
by adjusting the number of segments or degree of utilized
polynomial basis functions. Inference time scales linearly
with the number of weights and batch size, allowing for fast
queries that correspond to calculating a weighted sum of basis
functions. This is further reflected by full SDF reconstruction
times in Table III. At the expense of increased memory usage,
faster large-scale inference (e.g., for visualization purposes)
can be achieved by precomputing the basis function values.
Additional efforts in performance optimization might consider
leveraging local weight updates and further parallelization.

Qualitative reconstructions in Figure 3 display visually
accurate distance and mesh reconstructions across the test
set, with a noted over-smoothing effect due to polynomial
approximation on a low-resolution grid. The over-smoothing
effect becomes less pronounced as spatial resolution is in-
creased by further segmenting the input space. However, as
our implementation relies on a uniform grid for segmenting the
input space, this can rapidly increase the number of weights
and result in higher computation times reflected by Figure 6
and training time comparisons in Table II. Scaling the model
for higher accuracy and larger or more complex environments
might therefore require combining the online paradigm with
adaptive grids or hierarchical models such as octrees, which
will be a topic of our future work.



MARIĆ et al.: ONLINE PIECEWISE POLYNOMIAL SDF 7

The physical experiment showcases the interplay of in-
cremental updates and fast queries of analytical gradients to
adapt the trajectory of a manipulator as surface samples are
collected. Furthermore, it validates the use of an incrementally
updated prior for motion planning with noisy and partial point
cloud data. For fast performance on CPU, the utilized model
was reduced to 4 segments per input dimension, showing that
the resulting distance and gradient fields are still accurate
enough for a surveying and grasping task. This demonstrates
the viability of using a basis function representation of the
SDF in a simple manipulation scenario, and opens the way
toward methods further leveraging the properties of Bernstein
polynomials and related families of basis functions for learning
and reconstruction. Future work will focus on additional quan-
titative evaluation to investigate how accuracy and robustness
of the proposed method scale to more complex manipulation
tasks, higher levels of measurement noise, and more dynamic
scenes. Lastly, we intend to explore contact-rich scenarios
where incremental updates with tactile and proximity data
might be of particular interest, and investigate the use of more
informative priors conditioned on modalities such as RGB or
tactile data.

VI. CONCLUSION

This paper presented an online formulation of signed dis-
tance fields using piecewise polynomial basis functions. Start-
ing from an arbitrary prior shape, our method incrementally
builds a smooth distance representation from incoming surface
points. It offers analytical access to gradients and ensures a
desired order of continuity through constraints on the basis
function weights. Furthermore, performance of the underlying
model can be balanced through interpretable hyperparameters.
Our results show that a low number of parameters can be used
to achieve similar reconstruction accuracy to Gaussian process
and neural network baselines on a test set of household objects.
Finally, we demonstrated the use of the online basis function
representation in a physical surveying and grasping task with
noisy partial observations, and discussed possible extensions
for further scalability.

REFERENCES

[1] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3D Euclidean Signed Distance Fields for On-Board MAV
Planning,” in Proc. IEEE/RSJ IROS, pp. 1366–1373, 2017.

[2] Y. Li, Y. Zhang, A. Razmjoo, and S. Calinon, “Representing robot
geometry as distance fields: Applications to whole-body manipulation,”
in Proc. IEEE ICRA, 2024.

[3] E. Pujol and A. Chica, “Adaptive approximation of signed distance fields
through piecewise continuous interpolation,” Computers & Graphics,
vol. 114, pp. 337–346, 2023.

[4] S. Calinon, “Mixture Models for the Analysis, Edition, and Synthe-
sis of Continuous Time Series,” in Mixture Models and Applications
(N. Bouguila and W. Fan, eds.), pp. 39–57, Springer, Cham, 2019.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[6] L. Han, F. Gao, B. Zhou, and S. Shen, “FIESTA: Fast incremental
euclidean distance fields for online motion planning of aerial robots,”
Proc. IEEE/RSJ IROS, pp. 4423–4430, 2019.

[7] M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson,
J. Bohg, and M. Schwager, “Vision-Only Robot Navigation in a Neural
Radiance World,” IEEE Robotics and Automation Letters (RA-L), vol. 7,
no. 2, pp. 4606–4613, 2022.

[8] E. Sucar, S. Liu, J. Ortiz, and A. Davison, “iMAP: Implicit Mapping
and Positioning in Real-Time,” Proc. IEEE/CVF ICCV, pp. 6209–6218,
2021.

[9] M. Breyer, J. J. Chung, L. Ott, S. Roland, and N. Juan, “Volumetric
Grasping Network: Real-time 6 DOF Grasp Detection in Clutter,” in
Proc. CoRL, pp. 1602–1611, 2020.

[10] P. Liu, K. Zhang, D. Tateo, S. Jauhri, J. Peters, and G. Chalvatzaki,
“Regularized Deep Signed Distance Fields for Reactive Motion Gener-
ation,” in Proc. IEEE/RSJ IROS, pp. 6673–6680, 2022.

[11] D. Driess, J.-S. Ha, M. Toussaint, and R. Tedrake, “Learning Models
as Functionals of Signed-Distance Fields for Manipulation Planning,” in
Proc. CoRL, 2021.

[12] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3D Neural Scene
Representations for Visuomotor Control,” in Proc. CoRL, pp. 112–123,
2021.

[13] J. J. Park, P. R. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove,
“DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation,” Proc. IEEE CVPR, pp. 165–174, 2019.

[14] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit Ge-
ometric Regularization for Learning Shapes,” in Proc. ICML, vol. 119,
pp. 3789–3799, 2020.

[15] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and
M. Mukadam, “iSDF: Real-Time Neural Signed Distance Fields for
Robot Perception,” in Proc. RSS, 2022.

[16] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Muller, A. Evans, D. Fox,
J. Kautz, and S. Birchfield, “BundleSDF: Neural 6-DoF Tracking and
3D Reconstruction of Unknown Objects,” Proc. IEEE CVPR, 2023.

[17] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis,” Comm. ACM, vol. 65, p. 99–106, Dec 2021.

[18] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian
Splatting for Real-Time Radiance Field Rendering,” ACM Transactions
on Graphics, vol. 42, July 2023.

[19] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
NeRF: Neural Radiance Fields for Dynamic Scenes,” in Proc. IEEE
CVPR, 2020.

[20] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in Proc. IEEE ICRA,
pp. 2845–2850, 2011.

[21] B. Lee, C. Zhang, Z. Huang, and D. D. Lee, “Online Continuous
Mapping using Gaussian Process Implicit Surfaces,” Proc. IEEE ICRA,
pp. 6884–6890, 2019.

[22] L. Wu, K. M. B. Lee, L. Liu, and T. Vidal-Calleja, “Faithful Euclidean
Distance Field From Log-Gaussian Process Implicit Surfaces,” IEEE
Robotics and Automation Letters (RA-L), vol. 6, no. 2, pp. 2461–2468,
2021.

[23] L. Wu, K. M. B. Lee, C. Le Gentil, and T. Vidal-Calleja, “Log-GPIS-
MOP: A Unified Representation for Mapping, Odometry, and Planning,”
IEEE Transactions on Robotics (T-RO), vol. 39, no. 5, pp. 4078–4094,
2023.

[24] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical Movement Primitives: Learning Attractor Models for Motor
Behaviors,” Neural Computation, vol. 25, pp. 328–373, 02 2013.

[25] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
Movement Primitives,” in Proc. NIPS, pp. 2616–2624, 2013.

[26] B. Jüttler and A. Felis, “Least-Squares Fitting of Algebraic Spline
Surfaces,” Advances in Computational Mathematics, vol. 17, pp. 135–
152, Jul 2002.

[27] G. Taubin, “Smooth Signed Distance Surface Reconstruction and Appli-
cations,” in Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications, pp. 38–45, 2012.

[28] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased Estimation
for Nonorthogonal Problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[29] B. Calli et al., “Yale-CMU-Berkeley dataset for robotic manipulation
research,” The International Journal of Robotics Research, vol. 36, no. 3,
pp. 261–268, 2017.

[30] J.-A. Ting, S. Vijayakumar, and S. Schaal, “Locally weighted regres-
sion for control,” in Encyclopedia of Machine Learning, pp. 613–624,
Springer, 2010.

[31] W. W. Hager, “Updating the Inverse of a Matrix,” SIAM Rev., vol. 31,
pp. 221–239, 1989.


	Introduction
	Implicit environment representations
	Implicit signed distance functions
	Gaussian process implicit surfaces
	Basis function representations

	Piecewise polynomial SDF
	Bernstein polynomial basis functions
	Computation of weights
	Incremental formulation

	Evaluation
	Reconstruction accuracy
	Computational requirements
	Physical experiment

	Discussion
	Conclusion
	References

