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Abstract— Face recognition systems tend toward ubiquity
and are commonly utilized for security purposes. These sys-
tems operate based on facial representations, called templates,
extracted by a deep neural network from each face image.
However, it has been shown that face recognition templates
can be inverted to reconstruct underlying face images, posing
new security and privacy threats to face recognition systems. To
mitigate such attacks against face recognition systems, several
biometric template protection schemes have been proposed
in the literature. The ISO/IEC 24745 standard requires each
biometric template protection scheme to fulfill several require-
ments, among which non-invertibility is of the utmost impor-
tance. Therefore, each of the proposed template protection
schemes in the literature used an ad-hoc approach to investigate
the invertibility of the protected templates. In this paper, we
consider a scenario where an adversary gains knowledge of a
template protection scheme as well as its secrets, and tries to
reconstruct a face image using a leaked protected template. We
consider different template protection schemes, including Bio-
Hashing, MLP-Hashing, and Homomorphic Encryption (HE),
and reconstruct face images from protected templates. We also
use different state-of-the-art face recognition models in both
whitebox and blackbox scenarios. To our knowledge, this is the
first work on learning-based reconstruction of face images from
protected facial templates.

I. INTRODUCTION

Face recognition systems are being widely used in differ-
ent applications which require automatic authentication, such
as unlocking cell phones, e-banking, border control, etc. In
such systems, a deep neural network is often used to extract
some features (also known as embeddings or templates)
from each face image, and then the extracted features are
stored in the database of the system which are later used
for automatic recognition. However, the extracted facial
templates contain privacy-sensitive information about each
individual. For example, it has been shown that an adversary
can reconstruct the face image of the corresponding subject
based on raw facial templates [22], [35], [36].

To prevent such types of attacks against face recognition
systems, and in the light of data protection regulations1

which consider biometric data as sensitive information, sev-
eral biometric protection (BTP) schemes have been proposed

This research is based upon work supported by the H2020 TReSPAsS-
ETN Marie Skłodowska-Curie early training network (grant agreement
860813).

1such as the EU General Data Protection Regulation (GDPR) [27]
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Fig. 1: Sample face images from the FFHQ dataset (first
row) and their corresponding reconstructed face images from
ArcFace templates protected with Homomorphic Encryption
(BFV) in a whitebox attack. The values indicate cosine
similarity between templates of the original and recon-
structed face images. The decision threshold corresponding
to FMR = 10−3 is 0.24 for ArcFace on the LFW dataset.

in the literature. The ISO/IEC 24745 standard [12] also estab-
lishes four main requirements for each BTP scheme, includ-
ing renewability, unlinkability, irreversibility, and recognition
performance preservation. The ISO/IEC 30136 standard [13]
defines different scenarios where the adversary has different
levels of knowledge of the biometric system and its secrets
to evaluate each of BTP requirements. Among these require-
ments, the irreversibility of protected templates is of signif-
icant importance for each BTP scheme. However, it is al-
ways challenging to investigate the invertability of protected
templates since BTP schemes have different mechanisms,
and therefore for each BTP scheme, a specific inversion
method has been used in the literature. In addition, despite
general measures in the literature to evaluate linkability of
protected templates (such as [42]), there is no general method
to investigate invertability of protected templates.

In this paper, we focus on the inversion of face images
from protected facial templates. We consider a scenario
where the adversary gains knowledge of the template protec-
tion scheme as well as its secrets2 and tries to reconstruct the
face image using a leaked protected template. We consider
different template protection schemes, including BioHashing,

2which is the case in the full-disclosure scenario defined in the ISO/IEC
30136 standard [13] for evaluating the invertibility of protected templates.



MLP-Hashing, and Homomorphic Encryption (HE), and
reconstruct face images from protected templates. We also
use different state-of-the-art face recognition models in both
whitebox (where the adversary has a complete knowledge of
feature extractor) and blackbox (where the adversary has a
blackbox knowledge of feature extractor) scenarios. Fig. 1
presents sample reconstructed face images from ArcFace
templates protected with Homomorphic Encryption (BFV)
in a whitebox attack using our method. To our knowledge,
this is the first work on the reconstruction of face images
from protected facial templates, which is independent of
the template protection scheme and can be applied against
different protection schemes.

The remainder of this paper is organized as follows. First,
we review related work in the literature in Section II. Then,
in Section III, we describe the threat model and explain
our face reconstruction method. In Section IV, we present
our experimental results. Finally, the paper is concluded in
Section V.

II. RELATED WORK
In this section, we review the related work in the literature

on biometric template protection and reconstruction of face
images from facial templates.

A. Biometric Template Protection
In the last two decades, several biometric template pro-

tection (BTP) schemes have been proposed in the literature
[29], [30]. The main objective of each BTP scheme is to
generate new (protected) templates from raw templates that
contain less leakage of information from raw (unprotected)
biometric data. To satisfy the non-invertiblity of protected
templates, each BTP scheme is using some secrets, which
are referred to as key, along with raw templates in their al-
gorithms. In cancelable biometrics protection methods (such
as BioHashing [14], MLP-Hashing [32], IoM-Hashing [15],
etc.), a transformation function is used to generate protected
templates. The transformer function is dependent on a key
and raw templates. The generated protected templates are
then used instead of raw (unprotected) templates, and the
recognition is made by comparing the protected templates
[25], [29], [40]. In biometric cryptosystems (such as fuzzy
vault [16], fuzzy commitment [17], etc.), a key is either
bound with a biometric template or generated from a bio-
metric template. Then, recognition is performed based on
the correct retrieval or generation of the key [26], [43]. Some
works also used Homomorphic Encryption (HE) to generate
protected templates in the ciphertext. Then, the comparison
is carried out in the ciphertext, and then the comparison
score [4], [9], [41] or decision [2], [3] is decrypted into
the plaintext. Since the irreversibility of protected templates
is an important requirement of each BTP scheme, each of
the proposed methods in the literature has used an ad-hoc
approach to investigate the inversion of protected templates.

B. Face Reconstruction from Facial Templates
Several works in the literature explored the reconstruction

of face images from facial templates, particularly from raw

(unprotected) templates. In general, methods for reconstruct-
ing face images from raw facial templates can be categorized
into optimisation-based [8], [44] and learning-based [22],
[31], [33]–[37], [39]. In optimization-based methods, an
iterative algorithm is used to generate a face image that has
a similar facial template as the target template. In contrast,
in the learning-based methods, a neural network is trained
to reconstruct face images from facial templates. The face
reconstruction methods can also be categorized based on
the required knowledge of the feature extractor into white-
box and blackbox. While some of the face reconstruction
methods used pretrained face generator networks [8], [35],
[36], [39], [44], some other works trained a convolutional
neural network to reconstruct face images from facial tem-
plates [22], [31], [33]. In [38], it has been shown that an
adversary can reconstruct face images even if a portion of
face template is leaked.

In contrast to most work on the reconstruction of face
images from raw templates, [19] used the network in [22] to
reconstruct binarised facial features. However, no template
protection mechanism was considered, and the authors only
considered a simple binarisation transformation being ap-
plied to raw templates. To our knowledge, no learning-based
approach has been used in the literature to reconstruct face
images from protected biometric templates. In this paper,
we consider the situation where the adversary has access
to secrets of the BTP scheme and directly reconstructs face
images from protected templates.

III. PROPOSED METHOD

In this section, we present our method to reconstruct face
images from protected facial templates. We describe our
threat model in Section III-A, where the adversary gains
access to a protected template and aims to reconstruct the
underlying face image. We also describe our network to
reconstruct face images from leaked protected templates in
Section III-B.

A. Threat Model

We consider the protected face recognition system with
the situation where an adversary gains access to a protected
facial template and aims to reconstruct a face image from
the leaked protected template and use the reconstructed face
image to impersonate. We consider the following properties
for the adversary:

• Adversary’s goal: The adversary aims to impersonate a
user enrolled in the FR system.

• Adversary’s knowledge: The adversary has the follow-
ing information:

1) A leaked protected face template tbtp of a user
enrolled in the database of the face recognition
system.

2) Complete knowledge of template protection
scheme P and its secrets kbtp.

3) The whitebox knowledge (including parameters
and internal functioning) or blackbox knowledge
of the feature extraction model F (.) of the face



recognition system. In the case of the blackbox
scenario, the adversary is assumed to have white-
box knowledge of an alternative feature extraction
model Fadv(.).

• Adversary’s capability: The adversary can inject the
reconstructed face image into the feature extractor of the
target face recognition system and bypass the camera.
For simplicity and to verify how similar is the recon-
structed face image to the original image, we assume
that injection is made to a similar system without
protection.

• Adversary’s strategy: Under the above assumptions,
the adversary can use the leaked protected template
and underlying reconstruct face image Î using a face
reconstruction method. Then, the adversary can use
the reconstructed face image Î to inject a query to
impersonate.

B. Face Reconstruction

Our network for reconstructing face images from the
leaked protected templates stems from the network proposed
in [33] for reconstructing unprotected facial templates. We
consider a dataset of face images I = {Ii}Ni=1, with N
images. We extract facial templates t = F (I) from each
face image I, and then generate the protected version tbtp =
P (t,kbtp) with the template protection scheme P using the
leaked secret kbtp. The secret kbtp can be user-specific or
identical for all subjects (i.e., application-based key). In
either case, it is assumed to be known by the adversary. In
case of encryption-based template protection (such as HE),
the protected templates tbtp are in the ciphertext, however
since the adversary is assumed to have access to secret key,
the adversary can decrypt the protected template into the
plaintext3 as tbtp,adv and use it for the inversion attack. In
other cases where the protection is not based on encyption
(such as cancelable biometric schemes), the adversary can
directly use the protected template for the inversion attack,
i.e., tbtp,adv = tbtp. Then, the adversary can build the training
dataset D = {(tbtp,adv,i, Ii)}Ni=1 with N pairs of protected
templates tbtp,i and their corresponding face images Ii. We
use the network structure in [33], composed of enhanced
deconvolution using cascaded convolution and skip connec-
tions (shortly, DSCasConv) blocks, and use the protected
template (instead of the unprotected template) as the input.
We optimize our model with a multi-term loss function,
including:

• Mean Absolute Error (MAE): To reduce the pixel level
reconstruction error, we minimize the `1 of reconstruc-
tion error:

LMAE(̂I, I) = ||̂I− I||1, (1)

3In such cases, the protected templates in the ciphertext tbtp,ciphertext =
Enc(M(t),kbtp) are generated by encrypting the mapped template M(t),
where M(.) is a transformation function which is specific to the encryption
algorithm (e.g., quantization). Therefore, decrypting the protected version
into the plaintext willl lead to tbtp,plaintext = Dec(tbtp,ciphertext,kbtp) =
M(t), which is the mapped version of unprotected template, and thus
tbtp,adv = M(t). We should note that Enc(., .) and Dec(., .) denote
encryption and decryption, respectively.

where Î and I are the reconstructed and original face
images, respectively.

• Dissimilarity Structural Index Metric (DSSIM): To en-
hance the quality of the reconstructed image in terms of
the Similarity Structural Index Metric (SSIM) [48], we
further minimize the DSSIM loss term [28] as follows:

LDSSIM(̂I, I) =
1− SSIM(̂I, I)

2
(2)

• ID loss: To preserve the identity information in the
reconstructed face image, we use a feature extractor
Fadv and minimize the distance between the features
extracted from the original face I and reconstructed face
Î images. We minimize the `1-norm distance and cosine
distance of the extracted templates as follows:

LID(̂I, I) = LID,`1 (̂I, I) + LID,cos(̂I, I)

= ||Fadv(̂I)− Fadv(Y)||1 +
−Fadv(̂I).Fadv(I)

||Fadv(̂I)||2.||Fadv(I)||2
(3)

Similar to [34]–[36], in the whitebox scenario we con-
sider Fadv = F , but in the blackbox scenario we assume
that the adversary has access to an alternative model
Fadv and uses it in the loss function.

We use a weighted summation of these loss terms as our
total loss:

L = LMAE + γ1LDSSIM + γ2LID (4)

We experimentally found that the choice of γ1 = 0.75, and
γ2 = 0.025 achieves the best performance.

IV. EXPERIMENTS

In this section, we present our experimental results and
discuss our findings. In Section IV-A, we describe our
experimental setup. Then, we present our experimental result
in the reconstruction of protected templates in Section IV-B.
Finally, we discuss our findings in Section IV-C.

A. Experimental Setup

Biometric template protection schemes: We consider
different biometric template protection schemes, including
two cancelable biometric schemes as well as a template pro-
tection method based on Homomorphic Encryption (HE). For
cancelable biometric, we consider BioHashing [14] (which
is a simple and popular scheme) and MLP-Hash [32] (which
is a recently proposed scheme). We consider the protected
systems with these schemes to be operating with a user-
specific key setting, and thus, the adversary knows the key
for the leaked facial template. For the HE-based method,
different algorithms have been used for biometric template
protection. For instance, HE based on the CKKS scheme
supports floating-point encryption, and thus decryption of
the protected template using the leaked template will lead
to the original unprotected template. In contrast, some other
schemes, such as BFV, support integers and, therefore, re-
quire quantization before encryption. That means the decryp-
tion of the protected templates leads to quantized templates



TABLE I: Recognition performance of face recognition models used in our experiments in terms of true match rate (TMR)
at the thresholds correspond to false match rates (FMRs) of 10−2 and 10−3 evaluated on the MOBIO, LFW, and AgeDB
datasets. The values are in percentage.

FR model MOBIO LFW AgeDB
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

ArcFace 100.00 99.98 97.60 96.40 98.33 98.07
ElasticFace 100.00 100.00 96.87 94.70 98.20 97.57
AttentionNet 99.71 97.73 84.27 72.77 97.93 96.90
HRNet 98.98 98.23 89.30 78.43 97.67 96.23
RepVGG 98.75 95.80 77.20 58.07 95.93 93.93
Swin 99.75 98.98 91.70 87.83 98.03 97.10

in plaintext. In our experiments, we consider the protection
based on HE schemes that require quantized templates. We
should note that in the HE-based protection, the secret key
(i.e., private key) is often the same for all subjects.

Face recognition models: We use state-of-the-art face
reconstruction models including ArcFace [6] and ElasticFace
[5] as well as four different face recognition models with
state-of-the-art backbones from FaceX-Zoo [46], including
AttentionNet [45], HRNet [47], RepVGG [7], and Swin [21].
We use the pretrained models of each of these network
trained on the MS-Celeb-1M dataset [10]. Table I compares
the recognition performance of these models on the MOBIO,
LFW, and AgeDB datasets.

Dataset: We use the Flickr-Faces-HQ (FFHQ) [18] dataset
for training our face reconstruction model. The FFHQ dataset
contains 70,000 face images that we randomly split into 90%
training and 10% validation. We also evaluate our models
on the MOBIO [23], LFW [11], and AgeDB [24] datasets.
We build protected face recognition systems using the men-
tioned face recognition model and BTP schemes on each
of our evaluation datasets. Then, we use our corresponding
reconstruction model trained on FFHQ to invert enrolled
protected templates and reconstruct face images. We inject
the reconstructed face image as a query to the system to
evaluate the performance of face reconstruction in terms of
an adversary’s Success Attack Rate (SAR) in entering an
unprotected face recognition system with the same feature
extractor when the system is configured at False Match Rate
(FMR) of 10−3.

Implementation: We use the PyTorch package and Bob
toolbox [1] in our implementations. We train our face recon-
struction networks using the Adam [20] optimizer with the
initial learning rate of 10−3, and we decrease the learning
rate every 10 epochs, by a factor of 0.5. The source code of
our experiments is publicly available4.

B. Face Reconstruction from Protected Templates

We consider face recognition systems protected with Bio-
Hashing, MLP-Hash, and HE and assume that the adversary
knows the template protection scheme and its secrets. We
train our face reconstruction network and use the protected
templates stored in the database of the face recognition
system to reconstruct the face images. We use ArcFace as

4https://gitlab.idiap.ch/bob/bob.paper.fg2024 breaking btp.

Fadv and evaluate the performance of our method in attack
against protected templates of different face recognition
models. Table II and Table III report the adversary’s success
attack rate in entering a face recognition with the same
feature extractor on false match rates (FMRs) of 10−2 and
10−3 on the MOBIO, LFW, and AgeDB datasets. We should
note that since we use ArcFace as Fadv, the attacks against
ArcFace are whitebox attacks but against other face recogni-
tion models are blackbox attacks. As the results in these
tables shows, the reconstructed face images by inverting
protected templates using our method achieve significant
performance in attacks against protected templates. Fig. 1
shows sample reconstructed face images using our method in
the reconstruction of ArcFace templates protected with Ho-
momorphic Encryption (HE) in a whitebox attack. Fig. 2 also
shows sample reconstructed face images using our method
in the reconstruction of ElasticFace templates protected with
different template protection schemes in blackbox attacks
using ArcFace as Fadv. As the sample reconstructed face
images show, inversion of protected templates can reveal
important information about underlying subjects.

To further explore the effect of Fadv, we consider HE-
protected templates and use ElasticFace as Fadv. In addition,
we consider the whitebox scenario, where the adversary
has access to the feature extractor of the face recognition
model and uses it as Fadv. As the results in Table IV show,
using the same feature extractor (i.e., whitebox attack) or
different feature extractor (i.e., ArcFace or ElasticFace in
blackbox attacks), the reconstructed face images achieve
very similar performances. Even in some cases, such as
attacks against AttentionNet, we can see that the blackbox
attack using ArcFace as Fadv achieves better performance
than the whitebox attack. This observation can be interpreted
considering the superior performance of ArcFace compared
to other face recognition models used in our experiments, as
reported in Table I. Therefore, we can expect that ArcFace
enhances the reconstruction when it used as Fadv.

C. Discussion

Our experiments in Section IV-B show that if the template
protection scheme and its secrets are known, then an adver-
sary can reconstruct face images from protected facial tem-
plates. We considered different feature extractors protected
with different template protection schemes and evaluated

https://gitlab.idiap.ch/bob/bob.paper.fg2024_breaking_btp


TABLE II: Performance of reconstructed face images from protected templates in attacking a face recognition system with
same feature extractor evaluated on the MOBIO, LFW, and AgeDB datasets for the false match rate of 10−2. The ArcFace
model is used as Fadv, and thus the attacks against ArcFace are whitebox but against other face recognition models are in
blackbox (denoted as cell color in gray ). The values are in percentage.

Dataset BTP Face Recognition
ArcFace ElasticFace AttentionNet HRNet RepVGG Swin

MOBIO
BioHashing 100.0 100.0 98.57 99.05 95.71 100.0
MLP-Hash 96.67 91.9 84.29 82.86 75.24 94.76

HE 100.0 100.0 100.0 99.05 98.1 99.52

LFW
BioHashing 95.74 96.34 79.73 85.73 69.31 90.18
MLP-Hash 88.2 91.0 58.09 66.04 47.62 77.61

HE 97.18 96.57 82.87 87.52 73.07 91.65

AgeDB
BioHashing 83.23 88.13 73.51 71.63 67.44 89.79
MLP-Hash 62.89 64.73 32.94 32.74 28.42 58.8

HE 92.75 90.88 77.99 78.61 72.93 91.8

TABLE III: Performance of reconstructed face images from protected templates in attacking a face recognition system with
same feature extractor evaluated on the MOBIO, LFW, and AgeDB datasets for the false match rate of 10−3. The ArcFace
model is used as Fadv, and thus the attack against ArcFace is whitebox and against other face recognition models are in
blackbox (denoted as cell color in gray ). The values are in percentage.

Dataset BTP Face Recognition
ArcFace ElasticFace AttentionNet HRNet RepVGG Swin

MOBIO
BioHashing 99.52 100.0 91.43 95.24 89.05 100.0
MLP-Hash 78.57 80.95 56.67 59.05 47.62 85.71

HE 100.0 99.52 97.62 97.14 96.19 99.52

LFW
BioHashing 92.69 92.79 66.4 68.29 56.3 85.21
MLP-Hash 77.51 77.1 30.44 30.83 24.49 63.62

HE 95.92 93.91 72.54 73.51 60.58 87.52

AgeDB
BioHashing 62.47 76.81 49.34 44.57 50.92 73.54
MLP-Hash 36.37 45.34 13.05 11.8 15.03 31.68

HE 82.35 82.1 56.34 53.43 57.4 79.63

TABLE IV: Performance of reconstructed face images from HE-protected templates in attacking a face recognition system
with same feature extractor using different models as Fadv, evaluated on the MOBIO, LFW, and AgeDB datasets for the false
match rate of 10−3. In case Fadv is the same as target face recognition model, the adversary is assumed to have knowledge
of the target model and thus the attack is whitebox; otherwise, the attack is blackbox (denoted as cell color in gray ). The
values are in percentage.

Dataset Fadv
Face Recognition

ArcFace ElasticFace AttentionNet HRNet RepVGG Swin

MOBIO
ArcFace 100.0 99.52 97.62 97.14 96.19 99.52

ElasticFace 100.0 99.52 97.62 97.14 96.19 99.52
same (i.e., whitebox) 100.0 99.52 95.24 97.14 96.19 99.52

LFW
ArcFace 95.92 93.91 72.54 73.51 60.58 87.52

ElasticFace 95.92 93.91 71.25 73.51 60.58 87.02
same (i.e., whitebox) 95.92 93.91 71.38 73.51 60.58 87.61

AgeDB
ArcFace 82.35 82.1 56.34 53.43 57.4 79.63

ElasticFace 82.35 82.1 54.05 53.42 57.4 79.0
same (i.e., whitebox) 82.35 82.1 55.21 53.42 57.4 79.41

them on the MOBIO, LFW, and AgeDB datasets. How-
ever, the reconstructed face images from different feature
extractors have different performances when comparing for
the same protection scheme and the same dataset. For most
cases, the model with higher recognition performance in
Table I is more vulnerable to reconstruction attack. Similarly,
if the performance of a model is better on a dataset in Table I,
the attack rates are higher on that dataset in Table II and
Table III. Comparing different template protection schemes,

we can see that in most cases, protected templates with HE
are the most invertible, but protected templates with MLP-
Hash are more robust to inversion and lead to the lowest
invertibility.

One of the limitations of our work is that the adversary
needs to train a face reconstruction network for each set
of secrets. In protected systems that have the same secrets
for all subjects (such as in HE), the adversary needs only
to train a single face reconstruction network. However, to
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Fig. 2: Sample face images from the FFHQ dataset (first
row) and their corresponding reconstructed face images from
ElasticFace templates protected with BioHashing (second
row), MLP-Hash (third row), and Homomorphic Encryption
(fourth row) in blackbox attacks. The values indicate cosine
similarity between templates of the original and recon-
structed face images. The decision threshold corresponding
to FMR = 10−3 is 0.29 for ELasticFace on the LFW dataset.

attack a protected system with a user-specific key setting, the
adversary needs to train different face reconstruction models
for each leaked protected template. This limitation, however,
can be resolved if the adversary applies optimization-based
approaches described in Section II-B, which do not require
gradients in their method.

All in all, our experiments in this paper demonstrate
that protected templates are still vulnerable to template
inversion attacks. In particular, if an adversary gains access
to the template protection scheme and its secrets, they can
reconstruct face images directly from the protected template.
The recent social concerns on privacy in biometric systems
and in the view of data protection regulations demand more
future work toward secure and protected biometric systems.
We would like to highlight that while in this paper we show
the vulnerability of protected face recognition systems, we
do not condone using our work with the intent of attack to
real face recognition systems. In fact, the main motivation
for this work is to demonstrate such a vulnerability in the
protected face recognition systems and to encourage the
scientific community to develop the next generation of safe
and protected face recognition systems. As the results in this
paper show, the disclosure of protection keys poses critical
vulnerability in the protected face recognition systems and
necessary measures should be taken for the secrecy of

protection keys. We should also note that the project on
which the work has been conducted has passed an Internal
Ethical Review Board (IRB).

V. CONCLUSION

In this paper, we proposed the first learning-based method
for the inversion of protected templates, which can be
used for different protection mechanisms. We considered
a protected face recognition system in a situation where
an adversary gains knowledge of the template protection
scheme and its secrets and tries to reconstruct the face image
using a leaked protected template. To this end, we trained
a neural network to generate face images from protected
facial templates. In our experiments, we considered different
template protection schemes, including BioHashing, MLP-
Hashing, and Homomorphic Encryption (HE), and recon-
structed face images from protected templates. We also used
different state-of-the-art face recognition models and inverted
their protected templates in both whitebox and blackbox
scenarios. The experimental results show that our method can
be used to reconstruct face images from templates protected
by different template protection schemes and shed light on
the vulnerability of protected face recognition systems to
template inversion attacks. Considering the importance of
template protection in the light of data protection regulations,
our proposed method and experimental results pave the way
for evaluating the vulnerability of protected face recognition
systems and shed light on the necessity of more research
toward robust and protected biometric systems.
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