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Vulnerability of State-of-the-Art Face Recognition
Models to Template Inversion Attack

Hatef Otroshi Shahreza, Vedrana Krivokuća Hahn, and Sébastien Marcel

Abstract—Face recognition systems use the templates (ex-
tracted from users’ face images) stored in the system’s database
for recognition. In a template inversion attack, the adversary
gains access to the stored templates and tries to enter the
system using images reconstructed from those templates. In this
paper, we propose a framework to evaluate the vulnerability
of face recognition systems to template inversion attacks. We
build our framework upon a real-world scenario and measure
the vulnerability of the system in terms of the adversary’s success
attack rate in entering the system using the reconstructed face
images. We propose a face reconstruction network based on
a new block called “enhanced deconvolution using cascaded
convolution and skip connections” (shortly, DSCasConv), and
train it with a multi-term loss function. We use our framework
to evaluate the vulnerability of state-of-the-art face recognition
models, with different network structures and loss functions (in
total 31 models), on the MOBIO, LFW, and AgeDB face datasets.
Our experiments show that the reconstructed face images can be
used to enter the system, which threatens the system’s security.
Additionally, the reconstructed face images may reveal important
information about each user’s identity, such as race, gender, and
age, and hence jeopardize the users’ privacy.

Index Terms—biometrics, face recognition, face reconstruction,
embedding, template inversion, vulnerability evaluation.

I. INTRODUCTION

FACE recognition (FR) systems are being widely used in
different applications and are among the most popular

biometric recognition systems. In particular, in the recent
years, FR is increasingly used as a secure authentication tool in
a broad range of applications such as smart phone unlocking1,
border control2, etc. In addition to the security purposes, FR
is used for entertainment3 and also in social media4.

Despite the recent increase in the number of FR appli-
cations, there is a growing concern regarding the privacy
of users in such systems. For this reason, Facebook for
example, announced in November 2021 that the company is
going to shut down its FR system and “delete more than
a billion people’s individual facial recognition templates”5.
Furthermore, data protection regulations, such as the European
Union General Data Protection Regulation (EU-GDPR)6 have
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Fig. 1: Sample face images from the FFHQ dataset and
their corresponding reconstructed images, using our template
inversion method in a face recognition system based on the
iResNet100-ArcFace model. The values below each image
show the cosine similarity between the corresponding face
templates. The decision threshold corresponding to FMR =
10−3 is 0.24 on the LFW dataset.

been put in place to legally protect our digital identities, which
highlights the fact that biometric data is sensitive information
and must be protected.

Generally, in state-of-the-art (SOTA) FR systems, a deep
convolutional neural network (CNN) is applied to the input
face images to extract features (called face “templates” or
“embeddings”). These features are extracted from each user’s
face and are stored as reference templates in the system’s
database during the enrollment stage. Then, during the recog-
nition stage, similar features are extracted from the user’s
face, and the resulting probe template is compared with the
reference templates. Since the face templates convey important
information about the facial characteristics, and therefore
identities, of the corresponding users, attacks on biometric
recognition systems may jeopardize both the users’ privacy
and the system’s security.

To address the potential threats to FR systems, different
types of attack have been considered in the literature, and the
vulnerability of FR systems to such attacks has been studied
[1]–[4]. Amongst potential attacks to FR systems, template
inversion7 (TI) significantly endangers the users’ privacy. In a
TI attack, the adversary has access to the templates stored in
the system’s database, and they try to invert these templates
to reconstruct the underlying face images. Then, the adversary
may use the reconstructed face image to impersonate a user
by injecting this image into the system and bypassing the
camera [5]. The adversary can also use the reconstructed

7Also known as template reconstruction.
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face image as a presentation attack to the FR system. So,
a successful TI attack can lead not only to breaking the
security by accessing the system, but also to a reconstructed
image of each user’s face, which may reveal the identity
of the user or at least some important information such as
race, gender, age, etc. For instance, Fig. 1 shows sample face
images from the FFHQ [6] database and their corresponding
reconstructed images after our TI attack on a FR system
using the iResNet100-ArcFace [7] model. As illustrated in this
figure, the reconstructed faces can be recognized by the system
since the similarity of features extracted from the original and
reconstructed faces may be higher than the system’s decision
threshold. Moreover, we observe that the reconstructed faces
reveal important information about each user’s identity (e.g.,
gender, age, race). Hence, a TI attack is a crucial security
and privacy threat to biometric recognition systems, which
demands specific attention.

In this paper, we focus on TI attack on FR systems and
propose a framework to evaluate the vulnerability of FR
systems to this type of attack. To this end, we propose a
new neural network to reconstruct face images from face
templates. Our neural network is based on a new block, called
“enhanced deconvolution using cascaded convolution and skip
connections” (shortly, DSCasConv). DSCasConv generates
outputs with the same size as the deconvolution layer, while
enhancing the deconvolution output through several cascaded
convolutional layers with skip connections. Each convoultional
layer in DSCasConv enhances the output of previous layer,
and in total, the residual cascaded convolutional layers recover
and improve local dependencies of deconvolution output. We
train our face reconstruction network with a multi-term loss
function. In particular, to improve the TI attack, we use a
loss term that minimizes the mean absolute error and cosine
distance between the templates extracted from the original and
reconstructed face images. For vulnerability evaluation, we
consider the real-world scenario where the adversary gains
access to the system’s database and wants to enter the system
by inverting the enrolled face templates and impersonating the
enrolled users by employing the reconstructed face images. We
consider the case where the adversary can bypass the camera
and inject the reconstructed face image into the system. Our
experiments show that the face images reconstructed by our
TI network can be recognized by FR systems, and they also
provide crucial identity information about the users enrolled
in the system database. In our experiments, we evaluate the
vulnerability of SOTA FR methods to our TI attack. We
consider different SOTA FR methods with various network
structures (different “backbones”) as well as with different loss
functions (different “heads”). In summary, the contributions of
our paper are as follows:

• We propose a framework to evaluate the vulnerability
of face recognition systems to template inversion attack.
We define an evaluation protocol based on the real-world
scenario, where the adversary gains access to the system’s
database and tries to invert the stored templates, to
reconstruct the underlying face images, and impersonate
the enrolled users using the reconstructed face image.

We investigate the vulnerability of SOTA FR methods
(including different network structures and different loss
functions) to our TI attack in the proposed vulnerability
evaluation framework.

• We propose a new network to reconstruct face images
from face templates using a new block, called DSCas-
Conv. Each DSCasConv block includes a deconvolutional
layer followed by cascaded convolutional layers and skip
connections. The residual cascaded convolutional layers
recover and improve local dependencies of deconvolution
output.

• We use a multi-term loss function, including a loss term
which improves the TI attack and minimizes the mean
absolute error and cosine distance between the templates
extracted from the original and reconstructed face images.

In the following sections, we first review the related works
in section II. Next, in section III, we describe our proposed
framework to analyse the vulnerability of FR systems to our TI
attack, and in section IV we discuss our experimental results.
Finally, the paper is concluded in section V.

II. RELATED WORKS

There are two scenarios when attempting to invert a face
template, based on what information is available about the
FR model: whitebox scenario and blackbox scenario. In the
whitebox scenario, the FR model is fully available (i.e., model
parameters and internal functioning are known). However,
in the blackbox scenario, there is no information about the
parameters and internal functioning of the FR model, but we
can use the FR model to generate templates from the given
face image (e.g., using the Software Development Kit (SDK)
of the FR system). Accordingly, in the blackbox scenario, the
adversary does not have access to exact values of gradient of
the input to the FR model, and therefore it is difficult to use the
FR model either in a continuous gradient-based optimization8

process or in a loss function for training a TI neural network.
In [8], authors proposed an iterative gradient ascent-based

algorithm to reconstruct face images. They started from ran-
dom noise or a guiding image, and optimized the template
extracted from that. In addition, they used total-variation and
Laplacian pyramid gradient normalization [31] to generate
a smooth image. Furthermore, they minimized the ℓ2 dis-
tance between the intermediate layers of the reconstructed
image and the guiding image to enforce face orientations.
As another approach, they also proposed a neural network
including deconvolutional layers to reconstruct face images
from facial templates, and they trained their deconvolutional
neural network with the same loss function. Therefore, they
did not use the original face image even in the training of their
reconstruction network. The main drawback of their method is
that the reconstructed face images look similar to the guiding
image and do not reveal any privacy-sensitive information
about the underlying user. We should also note that they only
discussed the visual reconstruction quality and did not provide

8Some works also use the FR model for other types of optimization (i.e.,
non-gradient-based) in blackbox attacks. For instance, in [30] a particle swarm
optimization was used.
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TABLE I: Comparison with related works

Reference method basis Target FR model whitebox /blackbox Security Evaluation Available
source code

[8] 1) optimization
2) learning

FaceNet [9] whitebox None ✗

[10] learning FaceNet [9]
VGG-Face [11]

whitebox
+ blackbox

histogram of scores (between original and reconstructed face images) on LFW [12] (only
for FaceNet)

✗

[13] learning FaceNet [9] blackbox attack1 (against the original images) and attack2 (against a different face image of the same
user) on LFW [12], Color FERET v2.0 [14], and FRGC [15]

✓

[16] learning ArcFace [7]
FaceNet [9]
SphereFace+ [17]

whitebox
(+ blackbox by disti-
lation of FR model)

matching accuracy (by substituting an image in each positive pair with its reconstructed
version) on LFW [12], AgeDB [18], and CFP-FP [19]

✗

[20] learning ArcFace [7] blackbox attack1 (against the original images) and attack2 (against a different face image of the same
user) on LFW [12] + 1 COTS PAD

✓

[21] optimization FaceNet [9] blackbox cosine and ℓ2 distance between templates of the original and reconstructed face images on
20 random images of FFHQ [6]

✓

[22] optimization ArcFace [7]
(3 different
backbones)

blackbox attack1 (against the original images) and attack2 (against a different face image of the same
user) on LFW [12] and Color FERET v2.0 [14]+ 3 COTS PAD

✓

[23] learning ArcFace [7]
ElasticFace [24]
(3 different
backbones)

whitebox
+ blackbox

SAR in entering FR systems by injecting the reconstructed face image on MOBIO [25],
LFW [12]

✓

[26] learning ArcFace [7]
ElasticFace [24]
(4 different
backbones)

whitebox
+ blackbox

SAR in entering FR system using the reconstructed face images from 3D reconstruction by
1) injection 2) presentation attack on MOBIO [25], LFW [12]

✓

Ours learning ArcFace [7]
ElasticFace [24]
AdaFace [27]
EdgeFace [28]
PocketNet [29]
17 SOTA backbones
9 SOTA heads

whitebox SAR (at different FMRs) in entering FR system by injecting inverted versions of the tem-
plates which are stored in system’s database on MOBIO [25], LFW [12], and AgeDB [18]

✓

any TI vulnerability evaluation of applying their methods on
a FR system.

In [10], authors used a multi-layer perceptron (MLP) to find
facial landmark geometry (optimized with mean squared error)
and a convolutional neural network, including transposed
convolutional layers, to generate face texture (optimized with
mean absolute error) from the given templates. Then, they used
a differentiable warping to combine estimated landmarks and
textures to reconstruct the face images. In a whitebox scenario,
they trained all the networks simultaneously using mean
squared error (for landmark estimation), mean absolute error
(for texture generation), and cosine distance between the input
templates and the templates extracted from the reconstructed
face (for the reconstructed face). However, in the blackbox
scenario, they trained their MLP and CNN separately, and
used the warping function only in the inference stage. From the
security aspect, they only reported and compared the histogram
of scores between templates extracted from the reconstructed
images and original faces.

In [13], authors considered a blackbox scenario and trained
convolutional neural networks to reconstruct face images.
Inspired by DenseNet [32] and MemNet [33], they proposed
two new blocks, named neighborly deconvolution blocks A/B
(shortly, NbBlock-A and NbBlock-B), each of which includes
deconvolutional and convolutional layers but differ in the
concatenations. Based on these two blocks, they proposed two
reconstruction networks, called NbNet-A and NbNet-B, by
stacking corresponding NbBlocks. Moreover, they considered
two different loss functions, pixel loss (mean absolute error

of the reconstructed and original images) and perceptual loss
(square of ℓ2 norm of features at a middle layer of VGG-
19 [34] when given the reconstructed and original images), and
trained different networks with only one of these loss functions
(resulting in four face reconstruction models in total). For
the vulnerability analysis, they evaluated their reconstruction
models against two types of attacks. In the first type of attack,
they compared the reconstructed images against the original
images, and in the second type of attack, they compared the
reconstructed images against a different face image of the same
user.

In [16], authors proposed a generative adversarial net-
work (GAN) framework to reconstruct face images from face
templates using bijection learning. They used the generator
structure of PO-GAN [35] (with convolutional blocks) along
with a feature conditional branch (with fully connected layers)
and trained their generator network with a multi-term loss
function, including an adversarial term (for optimizing the
generator in a GAN-based framework), a bijection term (to
learn distances in the bijection space), a distillation term
(weighted summation of distances between layers of FR for the
reconstructed and original face images), and a reconstruction
term (mean absolute error of the reconstructed and original
face images). In a whitebox scenario, they used the FR model
to calculate the distillation loss term; however, in a blackbox
scenario, they trained a new neural network (called student
network) to mimic the FR network, and they used the new
network instead of the FR model to calculate the distillation
loss term in training their generator network. While they
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reported the performance for their blackbox scenario to be
close to that in the whitebox scenario, they have not provided
more details (and no published source code), such as the
network structure and training data, for learning the student
networks. For the vulnerability analysis, they reported the
matching accuracy by substituting an image in each positive
pair with its reconstructed version and keeping the other image
in both whitebox and blackbox scenarios.

In [21], authors considered a blackbox scenario and pro-
posed a greedy random optimization using simulated annealing
[36] on the latent space of StyleGAN [6] that can generate
a reconstructed face image. In their proposed method, they
repeatedly generated new guesses (for latent vectors of Style-
GAN) by adding random noises to the previous guess, and
compared the templates of the generated image by StyleGAN
with the original templates. If the new guess could generate
face image with a template closer to the original template, they
updated their best guess with the new guess. For the vulner-
ability analysis, they randomly selected only 20 images from
the the FFHQ [6] dataset and calculated cosine and ℓ2 distance
between the templates of the original and reconstructed face
images. Similarly, in [22], an optimization on the latent space
of StyleGAN was proposed, and authors used the standard
Genetic Algorithm (GA) [37] to solve this optimization. For
the security evaluation, they considered two types of attacks
(similar to [13]) and evaluated the reconstructed face images.
In addition, they used three commercial-off-the-shelf (COTS)
presentation attack detection (PAD) systems to evaluate the
reconstructed face images. Along the same lines of using
StyleGAN for face reconstruction, Dong et al. [20] trained
a MLP regression using the mean squared error (MSE) loss
function to map the templates to the StyleGAN latent vector.
For the security evaluation, they evaluated the reconstructed
face images in two types of attacks (similar to [13]) and using
a COTS PAD. Similarly, in [23] a learning-based approach
was used to map facial templates to the intermediate latent
space of StyleGAN using adversarial training. The method
can be applied for both whitebox and blackbox scenarios. In
the whitebox scenario, the same feature extractor was used in
the loss function, but in the blackbox scenario a different FR
model (which adversary has access) was instead used in the
loss function. For the security evaluation, the reconstructed
face images were injected to the FR system to evaluate the
vulnerability of the FR system. The authors also explored
important area in the reconstructed face image and investigated
transferability of reconstructed face images.

In [26], a geometry-aware face reconstruction method
(called GaFaR) was proposed to reconstruct 3D face from fa-
cial templates. They used a semi-supervised learning approach
to learn a mapping from facial templates to the intermediate
latent space of a face generator network based on Generative
Neural Radiance Fields (GNeRF). In the supervised learning
part, synthetic training images were used, where the inter-
mediate latent codes are available, and in the unsupervised
learning part, a GAN-based learning was deployed to learn
the intermediate latent space. Then, the mapped intermedi-
ate latent codes were used along with camera parameters
to generate reconstructed face image through generator and

renderer part of GNeRF model. Therefore, after finding the
mapped intermediate latent code, the adversary can generate
frontal reconstruction of face image. In addition, the adversary
can generate any arbitrary pose using the GNeRF model,
and thus can find the pose image that maximize the success
attack rate using greed search (GS) or continuous optimization
(CO) on the camera parameters of the GNeRF model. Similar
to [23], the method can be applied for both whitebox and
blackbox scenarios (with a proxy FR model in the loss function
for blackbox). For security evaluation, the reconstructed face
images were used to inject as query to the target FR system
and the transferability across different FR systems were also
evaluated. In addition, the reconstructed face images were used
to perform practical presentation attack using digital reply and
printed photograph with different settings.

Table I compares our work with the previous works in the
literature on the inversion of templates extracted by deep FR
models. In summary, our contributions include proposing a
novel neural network structure (based on the proposed DSCas-
Conv block) and using a multi-term loss function to train our
network. In addition, we consider a real-world attack to FR
systems and propose an open-source evaluation framework to
evaluate vulnerability of FR systems. We evaluate the vulner-
ability of 31 different SOTA FR models (including different
backbones and different heads), in terms of an adversary’s
Success Attack Rate9 (SAR) in our framework. The SAR
refers to the attacker’s success rate when they attempt to im-
personate an enrolled user of the FR system, using the image
reconstructed by inverting the user’s template. The SAR is
computed at different False Match Rate (FMR) configurations,
which refer to the FR system’s decision thresholds. It is also
noteworthy that the source code of all the experiments in this
paper is publicly available to help other researchers reproduce
our results as well as to allow them to use our framework
to evaluate the vulnerability of their own FR systems to a TI
attack10.

III. PROPOSED FRAMEWORK

In this section, we introduce our proposed framework (as
depicted in Fig. 2), to evaluate the vulnerability of FR systems
to a TI attack. First, we describe the threat model that we
consider in this study, in section III-A. Then, we propose
our face reconstruction network in section III-B. Finally, we
describe our vulnerability evaluation protocol in section III-C.

A. Threat model

To evaluate the vulnerability of a given FR system, we need
to first define the threat model that characterises the adversary
on which we wish to base our vulnerability analysis [2], [13],
[38]. Considering a real-world attack scenario11, we define the
following properties for the adversary:

9Also referred to as Attack Success Rate (ASR).
10Source code: https://gitlab.idiap.ch/bob/bob.paper.tifs2024 faci ti
11We should note that our threat model is aligned with the full-disclosure

scenario defined in the ISO/IEC 30136 standard [38] for evaluating invertibil-
ity of biometric templates.
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Step 1: Generating Training Dataset Step 2: Training Face Reconstruction Network
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(injecting image)

Fig. 2: Block diagram of the proposed framework

• Adversary’s goal: The attacker aims to impersonate a user
enrolled in the target FR system.

• Adversary’s knowledge: The attacker is assumed to have
only the following information:
1) The target face templates xt of a user enrolled in the

system’s database.
2) The whitebox knowledge (including structure and

internal values, e.g., CNN parameters) of the feature
extraction model F (.), which can be used to generate
a face template x = F (I) from a face image I.

However, the attacker is assumed not to have any other
information, neither from the target system nor from the
target template. In particular, the attacker is assumed not
to have the following information:
– Any additional information or prior knowledge about

the identity of the target template, including age, gen-
der, etc.

– Any information about the training set of the feature
extraction model. Therefore, the attacker is assumed
not to be able to use the same (or similar) dataset to
learn TI.

– Any knowledge about the comparison and decision
making submodules of the target system, including
the similarity score function and the system’s decision
threshold.

• Adversary’s capability: The attacker is assumed to have
the following capabilities:
1) The attacker can inject the reconstructed face images

directly into the feature extractor of the target system
and bypass the sensor (i.e., camera).

2) For each target template, the attacker is allowed only
one attempt to enter the system.

• Adversary’s strategy: Under the above assumptions, the
attacker can reconstruct face image Ŷt = GW (xt)

from the target template xt using a reconstruction model
GW (.). Then, the attacker can use the reconstructed face
image Ŷt as a query to enter the target FR system.
The weights W of the reconstruction model GW (.) can
be learned using a dataset of face images and their
corresponding face templates extracted by the feature
extractor model F (.).

B. Face Reconstruction Network

In this section, we introduce our neural network GW (.)
to invert a face template x and reconstruct a face image
Ŷ = GW (x). To train our network, we first need to generate
training data, including pairs of face template x and face image
Y, which is described in section III-B1. We train our network
with a multi-term loss function as described in section III-B2.
Our network structure, which includes multiple DSCasConv
blocks, is described in section III-B3.

1) Generating Training Data: To generate our training
dataset, let us assume that we have a dataset of face images
I = {Ii}Ni=1, where Ii and N indicate the ith image and
the total number of images, respectively. Also, let us assume
that we have the coordinates of the facial landmarks (e.g.,
eyes), Li, for image Ii in the dataset I. In addition, let
A(Ii,Li) denote the function used prior to feature extraction,
which accepts Ii and Li as inputs and returns an aligned
and cropped face image. We can generate our training dataset
of aligned images and associated templates, D, by extracting
facial features from all face images in the face dataset I after
alignment:

D = {([F ◦A](Ii,Li), A(Ii,Li))}Ni=1, (1)

where F (.) indicates the feature extraction model.
However, our experiments show that an augmented dataset

can improve the generalization and performance of our TI
network. So, we augment the dataset I and generate a new
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dataset Ia = {Ia,j}Mj=1 using a random transformation func-
tion T (.), where M is the number of images in the augmented
dataset Ia, and Ia,j is an image augmented by T (.), i.e.,
Ia,j = T (Ik), 0 ≤ k < N . To increase the robustness
of the inversion network, we also add random noise to the
coordinates of landmarks before feature extraction. However,
in our augmented training dataset, Da, we pair up each
extracted feature with its corresponding aligned face using the
original values of landmark coordinates (i.e., without noise).
Hence, we generate the augmented training dataset Da as
follows:

Da = {([F ◦A](Ia,j ,Lj +Nj), A(Ia,j ,Lj))}Mj=1, (2)

where Nj is random noise with a uniform distribution in
(−δ, δ). We consider δ = 4 in our experiments. It is worth
mentioning that using the original facial landmark coordinates
in feature extraction helps our inversion network to generate
all images with the same alignment and thus eliminates the
additional work of finding the landmark coordinates and
reconstructing face images in different locations. Adding noise
to the coordinates of landmarks before feature extraction in-
creases the variation in the template space, thereby enhancing
the robustness of our inversion network to the alignment.

It is worth mentioning that for the random transformation
function T (.) in this paper, we use a random combination
of the following transformations: random PCA color augmen-
tation [39], randomly adjusting contrast, randomly adjusting
brightness, Gaussian blurring (random standard deviation), and
JPEG compression (random compression rate).

For simplicity, in the rest of the paper, the augmented
training dataset in Eq. 2 is denoted as Da = {(xj ,Yj)}Mj=1,
where xj = [F ◦A](Ia,j ,Lj +Nj) and Yj = A(Ia,j ,Lj).

2) Loss Function: To train the reconstruction network,
GW (.), we optimize its weights W using loss function L(., .)
on the augmented training dataset Da such that:

W ∗ = argmin
W

E
(x,Y)∈Da

L(Ŷ,Y), (3)

where (x,Y) denotes a pair of face template x and face image
Y in our augmented training dataset Da, and Ŷ = GW (x) is
the reconstructed face image. To this end, we define a multi-
term loss function including:

• Mean Absolute Error (MAE): To help the network to
generate a face image that is similar to the original image,
we use the Mean Absolute Error (MAE) loss term, which
includes the ℓ1-norm of the reconstruction error:

LMAE(Ŷ,Y) = ||Ŷ −Y||1 (4)

• Dissimilarity Structural Index Metric (DSSIM): In addi-
tion to MAE of the reconstructed face, we maximize the
objective quality of the reconstructed image. To this end,
we use the Similarity Structural Index Metric (SSIM) [40]
of the reconstructed image and optimize the DSSIM loss
term as follows:

LDSSIM(Ŷ,Y) =
1− SSIM(Ŷ,Y)

2
(5)

• Perceptual Loss: In addition to DSSIM, we use a percep-
tual loss by minimizing the ℓ1-norm of the difference

between the features extracted from Y and Ŷ by a
convolutional neural network trained on ImageNet [41].
This helps the model to generate images with a similar
representation of the original image (i.e., face). In this
paper, we use a pre-trained VGG-16 [34] model and con-
sider its middle feature maps to calculate the perceptual
loss. Let us denote the feature mapping of VGG-16 as
P (.). Then the perceptual loss can be expressed as:

LPerc(Ŷ,Y) = ||P (Ŷ)− P (Y)||1 (6)

• ID loss: In addition to the aforementioned loss terms, we
would like the templates extracted from the reconstructed
face image to be close to the templates of the original face
image, to increase the chances of a successful TI attack.
So, we minimize the distance between the templates
extracted from the reconstructed face Ŷ and original
face Y. To achieve this, we minimize the ℓ1-norm of
the difference between the extracted features and also
maximize their cosine similarity. Thereby, we define ID
loss with two terms as follows:

LID(Ŷ,Y) = LID,ℓ1(Ŷ,Y) + LID,cos(Ŷ,Y)

= ||F (Ŷ)− F (Y)||1︸ ︷︷ ︸
minimizing ℓ1-norm

+
−F (Ŷ).F (Y)

||F (Ŷ)||2.||F (Y)||2︸ ︷︷ ︸
maximizing cosine similarity

(7)

We use a linear combination of the above loss terms as the
total loss:

L = LMAE + α1LDSSIM + α2LPerc + α3LID, (8)

where α1, α2, and α3 are weights of each loss term. To train
the proposed face reconstruction network with this multi-term
loss function, we use the Adam [42] optimizer with the initial
learning rate of 10−3 and decrease the learning rate by a factor
of 0.5 every 10 epochs.

3) Network Structure: To reconstruct face images from
their corresponding templates, we can use deconvolution
layers to build our face reconstruction network (e.g., [8],
[13]). However, since deconvolution acts as upsampling, the
deconvolution output suffers from insufficient detail [13].
In particular, similar to upsampling, in deconvolution, local
dependencies are weakened, which leads to a blurry output.
To address these shortcomings, we propose a new block,
called “enhanced deconvolution using cascaded convolutions
and skip connections” (shortly, DSCasConv), which generates
outputs with the same size as the deconvolution layer. In
the proposed block, we apply multiple cascaded convolutional
layers on the deconvolution output. Considering the significant
effect of residual learning [43], we also use skip connections
to further enhance the output by forcing the convolutional
layers to learn residuals. In addition, skip connections can
enhance the gradient flow and prevent gradient vanishing
problem [43] in our deep DSCasConv block. Hence, we use
a skip connection for each of the convolution layers as well
as a skip connection over all cascaded convolution layers in
our DSCasConv block. Using cascaded convolutional layers
with skip connections after deconvolution can recover and
improve local dependencies, and therefore result in sharper
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Fig. 3: Block diagram of the mth DSCasConv block
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Fig. 4: Structure of the proposed face reconstruction network

and more detailed outputs. Indeed, each residual convolutional
layer enhances the result of previous layers, and in total, the
residual cascaded convolutional layers improves the deconvo-
lution output.

To formulate the proposed block, let Xm and X̃m denote the
input and output of the mth DSCasConv block, respectively.
Assume that the mth DSCasConv block consists of the decon-
volution operator, Dm(.), and a set of convolution operations,
Cm = {Cm

i (.)|i = 1, .., nm
c }, where nm

c is the number of
convolution operations at the mth DSCasConv block. Let us
define X̃m

d = Dm(Xm) as the output of the deconvolution
operator and X̃m

cs,i as the summation of the ith convolution
operation and its corresponding skip connection as follows:

X̃m
cs,i =

{
X̃m

cs,i−1 + Cm
i (X̃m

cs,i−1) if i > 0

X̃m
d if i = 0

. (9)

Then, we define the output of the mth DSCasConv block
as below:

X̃m = X̃m
d + X̃m

cs,nm
c

(10)

Fig.3 illustrates the block diagram of the mth DSCasConv
block.

We build our network with 6 DSCasConv blocks (each
includes 1 deconvolution and 3 convolution operations) with
512, 256, 128, 64, 32, 16 filters, respectively. For decon-
volution and convolution layers in our DSCasConv blocks,
we use kernels of sizes 4 and 3, respectively. In addition,
we use Batch Normalization [44] and a rectified linear unit
(ReLU) after each deconvolution and convolution operation
in our DSCasConv blocks. Finally, we pass the output of the
last DSCasConv block to 4 parallel convolutional layers with
different kernel sizes (including sizes of 1, 3, 5, and 7), which
are added and passed through a sigmoid function to generate
the final reconstructed face. Fig. 4 depicts the general structure
of our face reconstruction neural network.

C. TI Vulnerability Evaluation Protocol
To evaluate the vulnerability of a FR model to a TI attack,

we consider a real-world scenario based on the assumptions

described in section III-A. To this end, we consider a FR
system with several enrolled users. Based on our threat model,
we assume that the attacker can access the system’s database
and aims to invert the enrolled templates to reconstruct the
underlying face images. The images are then injected into
the feature extractor to impersonate the enrolled users, and
therefore, enter the system. We should note that there might be
several templates for each user stored in the system’s database,
but according to our threat model, the attacker does not have
any knowledge of this.

To train the face reconstruction network, based on our
threat model we assume that the attacker does not have any
information about the training set of the feature extractor.
Therefore, the attacker uses a different training dataset for the
inversion model. So, we have three different datasets in our
evaluation: 1) dataset used for training the feature extractor (by
the system designer), 2) dataset enrolled in the FR system, and
3) dataset used for training the TI model (by the attacker).

We assume that the attacker trains the inversion model (as
in section III-B), then uses the inversion model to invert the
enrolled templates, and injects the reconstructed face images
into the system. Again according to our threat model, the
attacker is allowed only one attempt to enter the system for
each inverted target template. Hence, in our evaluation, for
each template stored in the system’s database, we invert the
template and reconstruct the face image. Then, we extract
the template from the reconstructed face image and find the
system’s comparison score between this template and the
corresponding reference templates. If the score is greater than
the system’s threshold, the attack is considered successful,
meaning that the attacker can enter the system. Hence, similar
to the Receiver Operating Characteristic (ROC) plot, we use
the comparison scores of inverted templates to plot the Success
Attack Rate (SAR) versus the system’s False Match Rate
(FMR) by changing the system’s decision threshold in the
impostors’ score range. This plot can be used to compare the
vulnerability of FR models at different FMRs. Fig. 2 illustrates
the general block diagram of the proposed TI evaluation
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framework.

IV. EXPERIMENTS

In this section, we describe the experiments used to evaluate
our framework and analyze the vulnerability of SOTA FR
models using this framework. First, in section IV-A, we
describe the experimental setup and the FR models used in
our experiments. Next, as a primary experiment, we evaluate
the vulnerability of the iResNet100-ArcFace [7] model, which
is a well-known SOTA FR model, in section IV-B. Next,
we compare our proposed face reconstruction method with
previous methods in the literature in section IV-C against the
iResNet100-ArcFace [7] model. Then, in section IV-D, we
provide an ablation study on the effect of our network structure
(section IV-D2) and our loss function (section IV-D1) on
the performance of the primary experiment. After evaluating
our proposed framework, in section IV-E we evaluate the
vulnerability of different SOTA FR models, with different
backbones (section IV-E1) and different heads (section IV-E2),
using our framework. Finally, we discuss the experimental
findings in section IV-F.

A. Experimental Setup

In our experiments, we evaluate the vulnerability of SOTA
FR models to our TI attack. For the primary experiment,
we use the iResNet100-ArcFace12 [7] model to study the
performance of our face reconstruction network and compare
the proposed face reconstruction network with previous meth-
ods in the literature. Furthermore, we evaluate the vulnera-
bility of different FR model backbones, including Mobile-
FaceNet [45], ResNet [43], SE-ResNet [46], HRNet [47], Effi-
cientNet [48], GhostNet [49], AttentionNet [50], TF-NAS [51],
ResNeS t [52], ReXNet [53], RepVGG [54], LightCNN [55],
and Swin [56]. Moreover, we evaluate the vulnerability of
FR models which are trained with different loss functions
(different heads), including AM-Softmax [57], ArcFace [7],
AdaCos [58], AdaM-Softmax [59], CircleLoss [60], Curric-
ularFace [61], MV-Softmax [62], NPCFace [63], and Mag-
Face [64]. We should note that when we compare the vul-
nerability of different backbones, we use the same head (i.e.,
MV-Softmax [62]) for all the models, and when we compare
the vulnerability of different heads, we use the same backbone
(i.e., MobileFaceNet [45]) for all the models. In addition to
iResNet100-ArcFace and also SOTA backbones and heads,
we also evaluate the vulnerability of four other pretrained
SOTA FR models in the literature, including ElasticFace [24],
AdaFace [27], EdgeFace [28], and PocketNet [29]. All the
aforementioned FR models, except EdgeFace, are trained on
the MS-Celeb-1M dataset [65], and EdgeFace is trained on the
WebFace260M dataset [66].

To train our face reconstruction network for each FR model,
we use the FFHQ dataset [6], which consists of 70,000 face
images (with no identity labels) and includes variations in
terms of age, ethnicity, accessories, and image background.
For a fair comparison, we train each of the face reconstruction

12iResNet100 backbone trained with ArcFace loss.

TABLE II: Recognition performance (TMR) and vulnerability
to template inversion attack (SAR) of the iResNet100-ArcFace
model, at FMR = 10−2 and FMR = 10−3 on the MOBIO,
LFW, and AgeDB datasets.

Dataset FMR = 10−2 FMR = 10−3

↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%)

MOBIO 100.00 100.00 100.00 100.00

LFW 97.70 97.44 96.63 96.48

AgeDB 96.97 94.03 93.77 84.60

networks with 90 epochs. We use a random 90% portion of
the FFHQ dataset to generate the training set as explained
in section III-B1, by generating 10 augmented images for
each original image. The remaining 10% portion is used for
validation. After training our face reconstruction network, we
use the MOBIO [25], Labeled Faced in the Wild (LFW) [12],
and AgeDB [18] datasets to build the FR systems and evaluate
their vulnerability in our framework. The MOBIO dataset is a
bimodal dataset including audio and face data acquired using
mobile devices from 150 people. We use the development
subset of the mobio-all protocol13 in our experiments. The
LFW database includes 13,233 images of 5,749 people, where
1,680 people have two or more images. We use the View 2
protocol14 to evaluate the models. The AgeDB [18] dataset
contains 16,488 images of 568 famous people. The minimum
and maximum age in this dataset are 1 and 101, respectively,
and the average age range for each subject is 50.3 years. We
use the 30-year protocol (i.e., the age difference of each pair’s
faces is equal to 30) in our experiments.

In our experiments, we use the Bob15 toolbox [67] to both
build the FR systems and develop the TI evaluation framework.
We use the PyTorch package to train the face reconstruction
networks. For the implementation of iResNet100-ArcFace, we
use its official pretrained (InsightFace)16 model ported into
PyTorch17. For the other SOTA FR models with different
backbones and different heads, we use the FaceX-Zoo18 [68]
toolbox. For other FR models, we use the pretrained models
from their corresponding repository. In our experiments, we
consider α1 = 0.75, α2 = 0.02, and α3 = 0.025 as the
weights of our loss function in Eq. 8. We also provide an
ablation study on the effect of these weights in section IV-D1.
The source code of the experiments is publicly available to
help reproduce the results19.

B. Primary Experiment

As a primary experiment, we evaluate the vulnerability
of the iResNet100-ArcFace [7] model using our framework,
on the MOBIO, LFW, and AgeDB datasets. To this end, as

13The implementation of the mobio-all protocol for the MOBIO dataset is
available at https://gitlab.idiap.ch/bob/bob.db.mobio

14The implementation of the View 2 protocol for the LFW dataset is
available at https://gitlab.idiap.ch/bob/bob.db.lfw

15Available at https://www.idiap.ch/software/bob
16Available at: https://github.com/deepinsight/insightface
17Available at https://gitlab.idiap.ch/bob/bob.bio.face
18Available at https://github.com/JDAI-CV/FaceX-Zoo
19Source code: https://gitlab.idiap.ch/bob/bob.paper.tifs2023 faci ti
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Fig. 5: Histogram of scores (negative cosine distance) for genuine templates and impostor templates, as well as scores for the
templates extracted from reconstructed face images when injecting the reconstructed face images into the system using (a)
MOBIO, (b) LFW, and (c) AgeDB datasets.

discussed in section III-C, we train our face reconstruction net-
work using the FFHQ dataset. Fig. 1 depicts the reconstructed
face images of sample faces in our validation set from the
FFHQ dataset. Next, we use our face reconstruction network
to invert the facial templates stored in the FR system and inject
the reconstructed face images into the system. Fig. 5 illustrates
the histogram of scores for genuine and impostor templates, as
well as scores for the templates extracted from reconstructed
face images when injecting the reconstructed face images into
the FR system. As this figure shows, the scores between the
templates extracted from the reconstructed face images and
the reference templates enrolled in the system’s database are
close to the genuine scores and, therefore, are likely to break
the system. Table II reports the recognition performance and
vulnerability of the iResNet100-ArcFace model to a TI attack
in terms of True Match Rate (TMR) and SAR, respectively, at
FMR = 10−2 and FMR = 10−3, on the MOBIO, LFW, and
AgeDB datasets. As this table shows, while the iResNet100-
ArcFace model achieves high recognition performance on the
MOBIO, LFW, and AgeDB datasets, it is seriously vulnerable
to our whitebox TI attack.

C. Comparison with Previous Methods

We compare the performance of our face reconstruction net-
work with the methods proposed20 in [8], [13], [20]–[23], [26]
in attacks against iResNet100-ArcFace model. As mentioned
in Table I, [13], [20], [21] are based on the blackbox scenario21

and [8] is based on the whitebox scenario. Methods in [23],
[26] can be used for both whitebox and blackbox scenarios,
and we use their whtebox implementation in our experiments.
For each method, we train a separate face reconstruction
networks using FFHQ dataset, and use the trained network
to invert facial templates stored in the FR system. We use
the reconstructed face images to inject into the system and
evaluate vulnerability of iResNet100-ArcFace on the MOBIO,
LFW, and AgeDB datasets using our framework. Table III
compares the performance of these different methods in terms
of SAR in attacks against the iResNet100-ArcFace model on
the MOBIO, LFW, and AgeDB datasets. As this table shows,

20The source codes of other methods in Table I are not publicly available
and we could not reproduce their results.

21We should note that having access to whitebox model is a realistic
assumption in many practical cases, and the question remains how the
adversary can perform a successful attack in whitebox scenario. In such a
case, the adversary may use whitbox or blackbox methods to reconstruct face
images. In the case of blackbox methods, not using the knowledge of the
available whitebox model is the limitation of blackbox methods in whitebox
attacks, but the adversary can still use blackbox methods for the attack.

TABLE III: Comparison of different face reconstruction meth-
ods against the iResNet100-ArcFace model in terms of SAR
at FMR=10−2 and FMR=10−3 on the MOBIO, LFW, and
AgeDB datasets.

method MOBIO LFW AgeDB
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

Zhmoginov and
Sandler [8]

100.00 85.71 93.01 85.87 82.40 54.18

NBNetA-M [13] 2.86 0.48 16.06 5.35 3.75 0.42

NBNetA-P [13] 15.24 1.43 29.61 12.16 8.26 1.14

NBNetB-M [13] 19.52 0.48 26.10 10.79 6.06 0.49

NBNetB-P [13] 51.90 21.9 60.33 39.49 21.56 5.18

Dong et al. [20] 24.85 3.33 28.21 13.21 9.56 1.80

Vendrow and
Vendrow [21]

69.52 29.05 77.00 57.70 40.94 16.56

Dong et al. [22]
85.71 58.57 87.25 75.31 58.79 43.22

Otroshi Shahreza
and Marcel [23]

100.00 92.38 93.64 86.82 75.87 62.08

GaFaR [26]
95.71 82.86 89.27 79.84 63.30 48.94

GaFaR+GS [26]
97.62 85.23 90.77 82.52 67.86 53.10

GaFaR+CO [26]
97.62 89.05 91.87 84.25 71.95 58.00

[Ours] 100.00 100.00 97.44 96.48 94.03 84.60

our proposed method outperforms previous methods in [8],
[13], [20]–[23], [26]. In particular, our method achieves better
performance compared to low-resolution face reconstruction
methods (i.e., [8], [13]). This is achieved as the result of
our network structure and loss function which are further
studied in section IV-D. Comparing other methods which
generate high-resolution face images (i.e., [20]–[23]) or 3D
face (i.e., [26]), the reconstructed face images by our method
still achieve superior performance, which elaborates on a
trade-off between resolution of reconstructed face images and
performance in terms of SAR in our method and these methods
in the literature. Among different face reconstruction methods
in the literature, [23], [26] achieve the best performance
after our proposed method in attack against FR systems and
generate high-resolution and 3D face, respectively.

D. Ablation Study

In this section, we describe our ablation study on the effect
of network structure (section IV-D2) and loss function (section
IV-D1) on the face reconstruction performance. In our ablation
studies, we consider a FR system based on the iResNet100-
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Fig. 6: Effect of loss function (as in Eq.11) on the per-
formance of our face reconstruction network in a template
inversion attack against a face recognition system based on
the iResNet100-ArcFace model evaluated using (a) MOBIO,
(b) LFW, and (c) AgeDB datasets.
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Fig. 7: Effect of weights (α1, α2, and α3) in our loss function
(as in Eq. 8) on the performance of our face reconstruction net-
work in a template inversion attack against a face recognition
system based on the iResNet100-ArcFace model evaluated on
the AgeDB dataset.

ArcFace model, and we evaluate the SAR over different values
of the system’s FMR using the MOBIO, LFW, and AgeDB
datasets.

1) Ablation Study on the Loss Function: To evaluate the
effect of each loss term, we train different face reconstruction
networks with different loss functions. Considering our multi-
term loss function in Eq. 8, let us denote linear combinations
of different loss terms as follows:

L1 = LMAE,

L2 = LMAE + α1LDSSIM,

L3 = LMAE + α1LDSSIM + α2LPerc,

L4 = LMAE + α1LDSSIM + α2LPerc + α3LID,ℓ1 ,

L5 = LMAE + α1LDSSIM + α2LPerc + α3LID,cos,

L6 = LMAE + α1LDSSIM + α2LPerc + α3LID,

(11)

where LID = LID,ℓ1 +LID,cos as in Eq. 7. Fig. 6 compares the
performance of face reconstruction networks trained with these
different loss functions. As this figure shows, each of the terms
enhances the performance of the face reconstruction network.
In particular, using either of the terms in ID loss improves the
performance, but using both results in the best performance.
However, we should note that ID loss terms require full
knowledge of the FR model (i.e., whitebox scenario), which
is the assumption we make in the evaluations presented in this
paper. To further investigate the effect of weights α1, α2, and
α3 in our loss function, we perform an ablation study where
we change the value of each of these weights and keep the
other ones unchanged. Fig. 7 shows the effect of these weight
in the performance of our method on the AgeDB dataset. The
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Fig. 8: Effect of network structure on the face reconstruction
performance, when trained with our loss function (first row)
as well as L4 (second row) and L3 (third row) of Eq. 11, in
a template inversion attack against a face recognition system
based on the iResNet100-ArcFace model, evaluated using (a)
MOBIO, (b) LFW, and (c) AgeDB datasets.

(a) original (b) Deconv (c) NBNet-A (d) NBNet-B (e) DSCasConv

Fig. 9: Sample face images from the FFHQ dataset and their
reconstructed images from iResNet100-ArcFace templates us-
ing face reconstruction networks based on different blocks: (a)
original image, (b) deconvolution, (c) NBNet-A, (d) NBNet-
B, and (e) DSCasConv.

results in this figure show that compared to other weights, α3

is very sensitive and has a significant effect on the performance
of our model. In other words, ID loss has the most contribution
to the performance of our method, which is aligned with our
ablation study in Fig. 6.

2) Ablation Study on the Network Structure: For evaluat-
ing the efficacy of the proposed network, we train several
face reconstruction networks with similar structures but built
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TABLE IV: Comparison of face recognition models with
different SOTA backbones and the same head in terms of
the number of parameters, MACs, recognition performance
(TMR), and vulnerability to template inversion (SAR) at
FMR = 10−3 on the MOBIO, LFW, and AgeDB datasets.

Model Params MACs MOBIO LFW AgeDB
↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%)

MobileFaceNet 1.19M 227.57M 89.86 98.57 53.47 67.49 65.70 69.48

Resnet50 43.57M 6.31G 98.00 100.00 72.87 72.77 89.67 75.97

Resnet152 71.14M 12.33G 98.00 100.00 77.07 73.96 90.63 72.94

HRNet 70.63M 4.35G 98.34 99.52 79.77 79.88 88.50 68.70

EfficientNet-B0 33.44M 77.83M 94.13 99.05 61.53 70.44 69.37 66.49

TF-NAS-A 39.59M 534.41M 92.59 99.52 62.87 68.80 78.27 69.37

LightCNN-29 11.60M 2.84G 87.76 93.81 52.70 66.15 56.17 57.40

GhostNet 26.76M 194.49M 87.51 100.00 55.00 65.05 49.90 48.75

Attention-56 98.96M 6.34G 98.75 99.52 67.33 69.05 87.30 67.04

Attention-92 134.56M 10.62G 98.12 99.05 73.00 74.32 92.13 72.46

ResNeSt50 76.79M 5.55G 99.02 97.62 89.37 86.97 91.53 71.51

ReXNet 15.20M 429.64M 92.15 97.62 67.57 73.30 70.03 62.70

RepVGG-A0 39.94M 1.55G 89.77 99.05 45.43 57.87 72.37 66.01

RepVGG-B0 46.65M 3.44G 93.58 95.71 44.80 52.85 83.60 75.85

RepVGG-B1 106.75M 13.21G 96.87 98.10 62.70 62.66 85.17 65.91

Swin-T 46.74M 4.37G 96.78 100.00 79.97 83.58 90.30 85.11

Swin-S 68.01M 8.53G 99.02 100.00 88.07 89.81 91.23 83.94

with different blocks22, including typical deconvolution block,
NBNet-A block [13], NBNet-B block [13], and DSCasConv
block. We train these networks with L3, L4, and L6 (our
loss function) of Eq. 11. Fig. 8 compares the performance of
these networks in terms of SAR over different values of FMR,
evaluated on the MOBIO, LFW, and AgeDB datasets. As this
figure shows, due to the dominant effect of our loss function,
these blocks achieve competitive performance when trained
with this loss function (L6 of Eq. 11). However, when trained
with L4, our proposed network achieves the best performance
on the LFW dataset and competitive performance with NBNet-
B on the MOBIO dataset. Finally, when using loss L3, our
proposed network clearly outperforms other network structures
on both the MOBIO, LFW, and AgeDB datasets.

Fig. 9 illustrates sample reconstructed face images using
face reconstruction networks with deconvolution, NBNet-A,
NBNet-B, and our proposed DSCasConv blocks trained with
the same loss function (i.e., Eq. 8). As the results in this figure
show, the reconstructed face images using the network with
DSCasConv blocks have better visual quality and fewer visual
artifacts.

E. TI Vulnerability Analysis of SOTA FR Models

In this section, we evaluate the vulnerability of SOTA FR
models to a TI attack using our proposed framework, on
the MOBIO, LFW, and AgeDB datasets. The vulnerability
of FR models with different SOTA backbones and the same
head is evaluated in section IV-E1. We then evaluate the

22We should note that the typical deconvolution block is used in [8]. Also,
[20]–[23] used StyleGAN which generates high-resolution images and is not
comparable to our reconstructed face images. Similarly, [26] used a GNeRF
model to generate 3D face which is neither directly comparable to our method.
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TABLE V: Comparison of face recognition models with dif-
ferent SOTA heads and the same backbone (MobileFaceNet)
in terms of recognition performance (TMR) and vulnerability
to template inversion (SAR) at FMR = 10−3 on the MOBIO,
LFW, and AgeDB datasets.

Model MOBIO LFW AgeDB
↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%)

AM-Softmax 92.29 98.57 63.37 72.37 56.90 63.92

AdaM-Softmax 89.57 98.57 66.03 73.85 50.87 58.33

AdaCos 84.83 97.62 61.33 70.69 48.20 56.33

ArcFace 88.73 98.57 60.43 71.17 66.90 71.60

MV-Softmax 89.86 98.57 53.47 67.49 65.70 69.48

CurricularFace 87.51 97.62 48.87 66.28 49.20 59.38

CircleLoss 87.98 99.52 45.43 63.87 63.70 71.72

NPCFace 87.07 98.1 63.93 72.98 60.87 68.53

MagFace 88.00 97.62 59.23 70.74 63.20 70.21

vulnerability of FR models with different SOTA heads and
the same backbone in section IV-E2.

1) Different Backbones: Table IV compares FR models
with different SOTA backbones and the same head (i.e.,
MV-Softmax) in terms of the number of parameters and the
number of multiply/accumulate operations (MACs)23, as well
as recognition performance (i.e., TMR) and vulnerability to
TI (i.e., SAR) at FMR = 10−3 on the MOBIO, LFW, and
AgeDB datasets. Fig. 10 also compares the reconstructed face
images of these models from the validation subset of the
FFHQ dataset. The values below each image in this figure
report the cosine similarity between the templates extracted
by the corresponding FR model from the original image and
the reconstructed image.

2) Different Heads: Table V compares FR models with
different SOTA heads and the same backbone (i.e., Mobile-
FaceNet24) in terms of recognition performance (i.e., TMR)
and vulnerability to TI (i.e., SAR) at FMR = 10−3 on the
MOBIO, LFW, and AgeDB datasets. Fig. 11 also compares the
reconstructed face images of these models from the validation
subset of the FFHQ dataset. Similarly to Fig. 10, the values
below each image in Fig. 11 report the cosine similarity
between templates extracted from the original image and the
reconstructed image by the corresponding FR model.

F. Discussion

Our experiments in sections IV-B to IV-E show the privacy
and security threat of a TI attack to FR systems. In particular,
Fig. 1, Fig. 10, and Fig. 11 suggest that the reconstructed
face images reveal important information about the users,
including race, gender, age, etc. In addition, as shown by
the relatively high SAR values in Fig. 6, Fig. 8, Table IV,
and Table V, the reconstructed face images can be used to
enter the system by impersonating the corresponding enrolled
users, which threatens the security of the FR system. In
many cases in Table II, Table IV, and Table V, the values of

23The values for the number of parameters and the number of MACs are
from [68].

24which has the least number of parameters in Table IV.
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Fig. 11: Faces from the FFHQ dataset and their reconstructed
versions using our TI method for different heads. The values
below each image show the cosine similarity between the
corresponding templates.

SAR are even higher than the values for system recognition
performance in terms of TMR. This is due to the fact that in
our evaluation framework, the templates of reconstructed face
images are compared to the templates of original face images
(i.e., reference templates stored in the system’s database).
However, in the evaluation of recognition performance (i.e.,
TMR) other samples of the enrolled users are used to enter
the system. Therefore, a good reconstructed face image may
have a higher chance than another sample of the same subject
to enter the system. Our experiments in section IV-C show that
the proposed face reconstruction achieves higher SAR values
than previous methods in the literature [8], [13], [20], [21] in
TI attacks against FR systems.

In our threat model in section III-A, we consider the case
where the attacker is assumed not to have any other informa-
tion about the target FR system except the feature extractor.
In particular, we assume that the attacker does not have
any knowledge about the comparison and decision making
submodules of the target system. However, in our experiments
in sections IV-B-IV-E, we used negative cosine distance as
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TABLE VI: Comparison of SAR against FR systems with
iResNet100-ArcFace model and using different similarity
score functions at FMR=10−3 on the MOBIO, LFW, and
AgeDB datasets. In each case, the value of distance for
probe and reference comparison is multiplied by −1 to get
a similarity score.

Function MOBIO LFW AgeDB
↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%)

Cosine distance 100.00 100.00 96.63 96.48 93.77 84.60

Euclidean distance 99.98 100.00 87.27 81.61 86.1 77.74

Manhattan (L1) distance 99.98 100.00 86.13 80.02 85.93 77.34

Correlation distance 100.00 100.00 96.63 96.46 93.70 84.51

Canberra distance 100.00 100.00 95.63 95.22 91.80 77.42

Bray-Curtis distance 100.00 100.00 96.07 96.16 93.50 83.06

TABLE VII: Complexity comparison of different network
structures.

Network Params Exe Time (ms)
CPU GPU

DCNN 6.98M 4.87 0.10

NBNet-A 4.13M 3.59 0.24

NBNet-B 5.23M 4.43 0.33

DSCasConv 16.44M 13.69 0.57

the similarity score between reference and probe templates.
To evaluate the effect of this assumption in the performance
of our proposed method, as another experiment, we consider
different functions25 for the comparison and decision making
submodules of the target system. Table VI compares the
recognition performance of the iResNet100-ArcFace model
and its vulnerability to our attack on the MOBIO, LFW, and
AgeDB datasets. As this table shows, regardless of scoring
function, the values for SAR are considerably high for each
case and comparable to the value of the system’s recognition
performance.

Our ablation study in section IV-D shows that our loss
function and proposed network structure are very effective at
reconstructing the underlying face images from their enrolled
face templates. In addition to the experiment in section IV-D1,
which shows the effectiveness of the proposed loss function,
our experiments in section IV-D2 also confirm that using
LID,cos plus LID,ℓ1 (as in Eq. 7) improves the reconstruction
such that all the studied network structures achieve competitive
performance. However, when using weaker loss functions such
as L3 and L4 of Eq. 11, our network structure was generally
found to outperform other network structures. Sample recon-
structed face images in Fig. 9 show that DSCasConv can result
in better perceptual reconstruction quality and fewer visual
artifacts. We also compare the complexity and execution times
of the different network structures studied in section IV-D2.
Table VII compares the network complexity in terms of the
number of parameters and the average inference execution
time (milliseconds) in the reconstruction of 112×112 face im-
ages from 512 dimensional templates, using a system equipped

25Implementations of all these scoring functions are available in the SciPy
package: https://scipy.org

TABLE VIII: Comparison of performance of our face recon-
struction network when trained on different datasets (FFHQ
and CASIA-WebFace) in template inversion attack (SAR)
against FR with the iResNet100-ArcFace model, evaluated on
the MOBIO and LFW datasets.

FMR = 10−2 FMR = 10−3

FFHQ CASIA-WebFace FFHQ CASIA-WebFace

MOBIO 100.00 100.00 100.00 100.00

LFW 97.44 97.84 96.48 97.03

TABLE IX: Comparison of reconstruction quality of the
proposed network trained with (Da) and without (D) data
augmentation, on the validation set of FFHQ.

Training Data ↑SSIM ↓FID ↓LPerc

w data aug. (Da) 0.37 114.66 2.69

wo data aug. (D) 0.35 149.93 2.77

with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and
an NVIDIA GeForce GTX 1080 Ti GPU. As this table shows,
with a similar number of blocks, our network has the highest
number of parameters and the slowest execution time, because
compared to other structures, DSCasConv block has additional
convolutional operations (i.e., multiple cascaded convolutional
layers with skip connections). Therefore, there is a trade-off
between the complexity and the reconstruction performance
in our proposed network. However, we should note that the
number of parameters in our face reconstruction network is
still much smaller than that of almost all SOTA FR models in
Table IV, and therefore the TI network is inverting FR models
using a lower network capacity (in terms of the number of
parameters).

To investigate the effect of training data, as another ex-
periment, we train our face reconstruction network using the
CASIA-WebFace dataset [69]. Table VIII compares the perfor-
mance of models trained with FFHQ and CASIA-WebFace. As
the results in this table show, the performance of our method in
terms of SAR remains comparable when trained with different
datasets. There is, however, a slightly better performance when
the model is trained with CASIA-WebFace. This may be
due to the fact that CASIA-WebFace contains 494,414 face
images while FFHQ contains 70,000 images. Therefore, when
the model is trained with CASIA-WebFace, there are more
variations in the images, and thus the model can be more
generalizable in the test stage. In addition, while FFHQ has
high-quality images, the quality of images in CASIA-WebFace
is more similar to the test datasets, which can also contribute
to improvement in the performance of the face reconstruction
model on the test set when the model is trained on CASIA-
WebFace.

It is noteworthy that in all our experiments, we used the
data augmentation method described in section III-B1. Fig. 12
compares sample face images reconstructed from iResNet100-
ArcFace templates using our network trained over training set
D as in Eq. 1 (without data augmentation) and also over the
augmented training set Da as in Eq. 2. As depicted in Fig.
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Fig. 12: Sample face images from the FFHQ dataset (first row)
and their corresponding reconstructed image using our face
reconstruction network trained with (second row) and without
(third row) data augmentation in template inversion of a face
recognition system based on the iResNet100-ArcFace model.
The values below each image show the cosine similarity
between the corresponding templates.

12, the reconstruction network trained with data augmentation
generates face images with better visual reconstruction quality.
Table IX also compares the quality of the reconstructed images
in terms of LPerc as in Eq.6, SSIM [40], and Fréchet Inception
Distance (FID) [70] for the validation data of the FFHQ
dataset. As this table shows, the network trained with data
augmentation generates images of better quality.

Last but not least, the experiments in section IV-E1 and
section IV-E2 show the vulnerability of SOTA FR models to
our TI attack. Comparing Table IV and Table V, we can see
that changing the FR model backbone seems to have more
effect than changing the head, on the recognition performance
(in terms of TMR) of the FR model and also its TI vulner-
ability (in terms of SAR). For example, in the case of the
LFW dataset, changing the head of the FR model can change
the TMR and SAR in the range of 45.43% − 66.03% and
63.87%− 73.85%, respectively, while changing the backbone
of the FR model can change the TMR and SAR in the range
of 44.80% − 89.37% and 52.85% − 89.81%, respectively.
Therefore, not only are the ranges of change in recognition
performance (TMR) and TI vulnerability (SAR) larger when
the backbone is changed, but the maximum value of each
range is also greater. Table IV and Table V further suggest
that models with higher recognition performance are more
likely to be more vulnerable to this type of attack. As
another experiment, we evaluate the vulnerability of four
other pretrained SOTA FR models in the literature, including
ElasticFace [24] and AdaFace [27] as two SOTA FR models
as well as EdgeFace [28] and PocketNet [29] as two SOTA
lightweight FR models. Table X reports the vulnerability of
these pretrained state-of-the-art face recognition models in
the literature (including iResNet100-ArcFace) on the MOBIO,
LFW, and AgeDB datasets. As the results in this table show, all
these models are highly vulnerable to TI attacks. Since these
models also have high recognition performance, this table also
supports the hypothesis that models with higher recognition
performance are more likely to be more vulnerable to this

TABLE X: Vulnerability evaluation of state-of-the-art pre-
trained face reconstruction models in terms of SAR at
FMR=10−3 on the MOBIO, LFW, and AgeDB datasets.

method MOBIO LFW AgeDB
↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%) ↑TMR(%) ↓SAR(%)

ArcFace [7] 100.00 100.00 97.44 96.48 94.03 84.60

ElasticFace [24] 100.00 99.52 94.70 94.33 92.30 87.26

AdaFace [27] 100.00 99.52 98.40 95.85 95.10 68.39

EdgeFace-S [28] 99.48 100.00 92.70 91.27 75.23 64.67

PocketNet-S [29] 99.34 100.00 90.27 91.09 76.43 78.09

type of attack.

V. CONCLUSION

In this paper, we proposed a framework for evaluating the
vulnerability of FR systems to a TI attack. In our threat model,
we considered a real-world scenario where the adversary gains
access to the system’s database and tries to invert the stored
templates, to reconstruct the underlying face images. Then,
the adversary attempts to inject the reconstructed face images
into the FR system. We proposed a face reconstruction (TI)
network based on a new block, DSCasConv, and trained our
network with a multi-term loss function. We measured the
vulnerability of FR systems to our TI attack in terms of the
Success Attack Rate (SAR). Our ablation study using the
iResNet100-ArcFace model shows that our loss function and
our proposed network structure are highly effective at recon-
structing the underlying face images from the corresponding
face templates. In addition to the iResNet100-ArcFace model,
we evaluated the vulnerability of SOTA FR models (with
different backbones and different heads) to our TI method
on the MOBIO, LFW, and AgeDB datasets. The experiments
show that FR models with higher recognition performance
tend to be more vulnerable to this type of attack. Furthermore,
changing the backbone may have more effect than changing
the head on the vulnerability of the FR models. Our exper-
iments also confirm that the reconstructed face images may
reveal important information about each user, including race,
gender, age, etc. Therefore, a TI attack, in addition to being a
security threat to the FR system itself, can be also considered
as a privacy threat to FR systems’ users.
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