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Template Inversion Attack using Synthetic Face
Images against Real Face Recognition Systems

Hatef Otroshi Shahreza and Sébastien Marcel

Abstract—In this paper, we use synthetic data and propose a new method for template inversion attacks against face recognition
systems. We use synthetic data to train a face reconstruction model to generate high-resolution (i.e., 1024× 1024) face images from
facial templates. To this end, we use a face generator network to generate synthetic face images and extract their facial templates
using the face recognition model as our training set. Then, we use the synthesized dataset to learn a mapping from facial templates to
the intermediate latent space of the same face generator network. We propose our method for both whitebox and blackbox TI attacks.
Our experiments show that the trained model with synthetic data can be used to reconstruct face images from templates extracted from
real face images. In our experiments, we compare our method with previous methods in the literature in attacks against different
state-of-the-art face recognition models on four different face datasets, including the MOBIO, LFW, AgeDB, and IJB-C datasets,
demonstrating the effectiveness of our proposed method on real face recognition datasets. Experimental results show our method
outperforms previous methods on high-resolution 2D face reconstruction from facial templates and achieve competitive results with
SOTA face reconstruction methods. Furthermore, we conduct practical presentation attacks using the generated face images in digital
replay attacks against real face recognition systems, showing the vulnerability of face recognition systems to presentation attacks
based on our TI attack (with synthetic train data) on real face datasets.

Index Terms—Face Recognition, Face Reconstructuin, Real Face Image, Synthetic Face Image, Template Inversion
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1 INTRODUCTION

Automated face recognition (FR) systems are spreading
worldwide and are increasingly present in our everyday
lives, with applications from unlocking a smartphone to
border control checkpoints, etc. Typically, in state-of-the-art
(SOTA) FR systems a deep neural network is used to ex-
tract some features (also called “embeddings” or “templates”)
from face images. These features are stored in the systems’
database during the registration stage and are later used
for recognition. Thereby, the facial features can represent
the face in a compressed space, and thus have important
information about the face of each subject.

With the growth of FR systems for authentication and
security applications, different types of attacks against FR
systems are studied in the literature [1], [2], [3], [4], [5], [6],
[7]. Among different potential attacks against FR systems,
template inversion (TI) can put both the security and pri-
vacy of users in jeopardy. In a TI attack, an adversary gains
access to a facial template and aims to invert it to reconstruct
the underlying face image. Reconstructing the underlying
face image can reveal privacy-sensitive information about
subjects. Moreover, the adversary can use the reconstructed
face image to enter the system, and thus cause a security
threat against the FR system.

On the other side, the recent growth in the develop-
ment of generative models and synthetic data has created
new problems and perspectives in the research landscape
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Fig. 1: Sample real face images from the LFW dataset (first
row) and their reconstructed images (second row) using
from facial templates extracted by ArcFace. The values be-
low each image show the cosine similarity between the cor-
responding templates of original and reconstructed face im-
ages. The decision threshold corresponding to FMR = 10−3

is 0.24 on the LFW dataset.

of FR systems [8]. In this paper, we focus on TI attacks
against FR systems and propose a new method to recon-
struct high-resolution (i.e., 1024 × 1024) face images from
facial templates using synthetic data in our training. We
use StyleGAN [9] as a face generator network to generate
synthetic face images and extract their facial templates.
During the generation of synthetic face images for our
training dataset, we also keep the intermediate latent codes
of StyleGAN when synthesizing each face image. Then, we
learn a mapping from facial templates to the intermediate
latent space of StyleGAN. The trained model with synthetic
data can be used to reconstruct face images from templates
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extracted from real face images. We propose our method for
both whitebox (i.e., internal functioning and parameters of
feature extractor are known) and blackbox (i.e., the internal
functioning of feature extractor is unknown) TI attacks. In
our experiments, we compare our method with previous
methods in the literature in terms of adversary’s success
attack rate (SAR)1 in attacks against different state-of-the-
art face recognition models on four different face datasets,
including the MOBIO [10], LFW [11], AgeDB [12], and IJB-
C [13] datasets. In addition, we perform practical presenta-
tion attacks using the generated face images in TI attacks
against real FR systems. We conduct digital replay attacks
and evaluate the vulnerability of FR systems to presentation
attacks based on our TI attack (with synthetic train data)
on real face datasets. Fig. 1 shows sample face images from
the LFW dataset and their corresponding reconstructed face
images in whitebox attack against ArcFace [14] templates.

To elucidate the contributions of our paper, we list them
hereunder:

• We propose a method based on synthetic data to recon-
struct high-resolution face images from facial templates
in TI attacks against FR systems. To train the face
reconstruction model is trained using synthetic data only
and the reconstructed face images can be used in TI
attacks against FR systems with real face images.

• Our method can be used in in whitebox and blackbox TI
attacks against FR systems. Experimental results show
our method outperforms previous methods on high-
resolution 2D face reconstruction from facial templates
and achieves competitive results with SOTA face recon-
struction methods.

• We provide extensive experimental results on four dif-
ferent FR datasets, demonstrating the effectiveness of
our face reconstruction method on real face images. We
also conduct presentation attacks using reconstructed
face images, which shows the vulnerability of face
recognition systems to our TI attacks.

The remainder of the paper is organized as follows.
We first review the related work in Section 2. Then, we
describe our threat model and present our proposed method
in Section 3. We report our experimental results in Section 4
and discuss our results. Finally, we conclude the paper in
Section 5.

2 RELATED WORK

Previous template inversion methods in the literature can
be categorized into optimization-based and learning-based
methods. While optimization-based methods are slow in the
inference stage, they do not require training stage, and thus
do not need training data. In contrast, learning-based meth-
ods are faster in the inference stage, but require training
stage and training data. While most learning-based methods
in the literature used real training data, synthetic data can be
an alternative option, which eases the attack by eliminating
the necessity for real training data for the adversary. From
the adversary’s knowledge of the FR model, TI attacks can
also be categorized into whitebox and blackbox attacks.

1. also referred to as attack success rate (ASR).

In addition to the method basis and training data, pre-
vious works in the literature can be categorized based on
the output resolution, i.e., low-resolution (e.g., 112 × 112)
or high-resolution (e.g., 1024 × 1024) reconstructed face
images. However, most works in the literature generate low-
resolution face images [15], [16], [17], [18], [19], [20], [21]. In
[15], an optimization-based method for whitebox TI attacks
was proposed, where starting from a random noise or a
guiding image an iterative gradient-ascend approach is used
to generate an image that has a similar facial template. The
authors also used multiple regularization terms to generate
smooth images. They also used the same loss function to
train a convolutional neural network (CNN) to reconstruct
face images. For evaluation of their method, they reported
only sample reconstructed images and discussed the visual
quality of the reconstruction. Similarly, in [16], a learning-
based method for low-resolution whitebox TI attacks was
proposed, where a CNN network was used to reconstruct
face images. To train this CNN, several loss terms were
used to optimize the pixel-level reconstruction quality, and
one loss term used the feature extractor of the whitebox FR
model to preserve identity in the reconstructed face images.
For the security evaluation, the reconstructed face images
were injected into the FR system and the adversary’s success
attack rate was reported.

In [17], a learning-based method is proposed to re-
construct face images. The authors trained a multi-layer
perceptron (MLP) and a CNN to estimate landmark coordi-
nates and facial features, respectively. Then, a differentiable
warping function was used to combine estimated landmarks
and textures to reconstruct the face images. In the white-
box scenario, they trained their model end-to-end with a
loss function, including a term to minimize the distance
between templates of the original and reconstructed face
images. However, in the blackbox scenario, they trained
their MLP and CNN separately and combined the results
with the warping function. For the security analysis, they
only reported the histogram of similarity of original and
reconstructed face images.

In [18], a blackbox scenario was considered and a
learning-based method was proposed. The authors pro-
posed two networks, called NBNetA and NBNetB, and
trained each with two different loss functions, mean abso-
lute error and perceptual loss. Considering the variations in
the network structures and loss function, they proposed four
different models, called NBNetA-M, NBNetA-P, NBNetB-
M, and NBNetB-P. They defined two types of attacks and
compared the templates of the reconstructed face image
with the same and different images of the same subject and
found the success attack rate.

In [23], a learning-based method is used for reconstruct-
ing face images from facial templates. The authors used
bijection learning and trained a generative adversarial net-
work (GAN) to generate face images. For whitebox attacks,
they used the FR model to minimize the distance between
the templates of the original and reconstructed face images.
In the blackbox attack, they proposed to use knowledge
distillation to mimic the FR model and used the learned
model in the training of their GAN model (similar to their
whitebox attack). For the security analysis, they reported the
matching accuracy between an original and a reconstructed
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TABLE 1: Comparison with related work in the literature.

Reference Method Basis Training Data Resolution Whitebox/Blackbox Available code

Zhmoginov and Sandler [15] 1) optimization N/A low whitebox 7
2) learning real

Otroshi Shahreza et al. [16] learning real low whitebox 3

Cole et al. [17] learning real low both 7

Mai et al. [18] learning real low blackbox 3

Doung et al. [19] learning real low both 7

Akasaka et al. [20] learning + opt. real low blackbox 7

Ahmad et al. [21] learning real low blackbox 7

Vendrow and Vendrow [22] optimization N/A high blackbox 3

Dong et al. [23] learning synthetic high blackbox 3

Dong et al. [24] optimization N/A high blackbox 3

Otroshi Shahreza and Marcel [25] learning real+synthetic high both 3

[Ours] learning synthetic high both 3

face from another image in each positive pair.

In [20], a blackbox method with three steps was proposed.
In the first step, the authors trained a general face generator
model based on GAN to generate face images from noise
vectors. Then, in their second step, they trained a mapping
network using a MLP to map the templates of the target FR
model (blackbox) to the templates of a known FR model. In
the last step, they applied optimization on the input (i.e.,
noise) of the GAN model to maximize the score of the GAN
discriminator (to generate real images) and also maximize
the similarity between mapped templates and the templates
of the reconstructed face images extracted with the known
FR model. For their security evaluation, they evaluated the
adversary’s success attack rate, but they did not specify the
system’s operation configuration (e.g., false match rate of
the FR system). Similarly, in [21], a GAN-based method is
used to reconstruct face images from facial templates in the
blackbox scenario. They focused on the size of the training set
and investigated the amount of images that the adversary
needs for training. They assumed that the adversary has
access to multiple FR models, and has templates extracted
by different models. However, this assumption may not be
feasible in the real-world scenario since it is difficult to have
access to templates of the same subject extracted by different
models. In addition, in their method, the adversary still
requires some real face images to use in the training set and
they did not investigate the application of synthetic training
images.

In contrast to low-resolution methods, there are a few
works in the literature [22], [23], [24] to generate high-
resolution face images from facial templates. These models
use StyleGAN [9], [26], [27] to generate high-resolution face
images. StyleGAN is a GAN-based face generator network
that can generate high-resolution and realistic face images.
It consists of two sub-networks, a mapping network, and a
synthesis network. The mapping network takes a random
noise z ∈ Z in the input and generates an intermediate
latent code w ∈ W , which is then fed to the synthesise
network to generate a high-resolution face image. The in-
termediate latent space is shown to provide more control
for editing the synthesized face image [9], [26], [27], [28],
[29]. In [23], a blackbox learning-based method was used
to reconstruct face images using StyleGAN [27]. The au-
thors generated random face images using StyleGAN and

extracted facial templates using the FR model. Then, they
trained a MLP to map facial templates to the input (noise z)
of StyleGAN. For the security analysis, they considered two
types of attacks similar to [18] and compared the templates
of reconstructed and original face images. In addition, they
used a commercial off-the-shelf (COTS) presentation attack
detection (PAD) system to evaluate the reconstructed face
images. However, they did not perform a practical presenta-
tion attack, where the reconstructed face images needed to
be recaptured by a camera.

In contrast to [23] that used learning-based method,
in [22], [24] optimization-based methods are proposed to
reconstruct high-resolution face images in blackbox TI at-
tacks. In [22], authors proposed a hill-climbing approach
by a greedy random optimization enhanced with simulated
annealing [30] to find input (noise z) of StyleGAN for the
given facial template. Similarly, In [24] the authors used
an optimization-based approach to find input (noise z) of
StyleGAN, but solved the optimization using the genetic
algorithm [31]. For the security analysis, authors in [24]
reported similar evaluation as [23], but authors in [22] recon-
structed only 20 face images and compared the similarity
between templates of the original and reconstructed face
images.

In [25], a learning-based method (called GaFaR) was
proposed to reconstruct high-resolution and 3D face from
facial templates in whitebox and blackox TI attacks against
FR systems. To this end, a semi-supervised and adversarial
learning approach using real and synthetic face images was
used to train a mapping from facial templates to the inter-
mediate latent space of a generative neural radiance fields
(GNeRF) model, from which the adversary can generate
reconstructed face images with any arbitrary pose using the
renderer part of the GNeRF model. While the frontal recon-
structed face image can be used to attack the system, in [25]
the adversary can also perform optimization on the camera
parameter to find the best pose that enhances the success
attack rate. For the security analysis, the reconstructed face
images were used to attack the target FR system, and the
success attack rate was reported.

Table 1 compares our proposed method with related
work in the literature. Compared to most methods in the
literature that reconstructed low-resolution face images, our
method generates high-resolution and realistic face images.
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Fig. 2: Block diagram of the proposed method in the training and inference stages.

The low-resolution reconstruction has several limitations
for practical attacks and cannot be used for presentation
attacks based on the reconstructed low-resolution face im-
ages. However, a few methods [22], [23], [24] were proposed
for high-resolution face reconstruction from facial templates,
where facial templates were mapped to noise vectors in the
input space Z of StyleGAN. In contrast, we train a mapping
form facial templates to the intermediate latent space W of
StyleGAN, which is shown to have more control over the
generated face image. In [25], facial templates were also
mapped to the intermediate latent space of a GNeRF model,
however training such mapping was proposed using a semi-
supervised and adversarial learning approach, and included
real face images in the training. We should highlight that in
contrast to most works in the literature, which use real face
images for training the face reconstruction networks, we use
synthetic face images as training data. Using synthetic data
has two merits: first, the adversary does not need to find
a dataset of real face images to use for training. Second,
since we generate the training dataset, we can have the
corresponding intermediate latent code for each face image,
and thus use the correct intermediate latent codes directly in
our training. This helps train our mapping to the intermediate
latent space of StyleGAN. In contrast to most methods that
work only for whitebox or blackbox scenarios, our method
can be applied for both whitebox and blackbox TI attacks.

Our experiments also show that our method outperforms
previous methods on high-resolution face reconstruction in
the literature in terms of the adversary’s success attack rate
in TI attacks against FR systems.

3 METHODOLOGY

We assume the threat model described in Sec. 3.1 and use
the proposed method in Sec. 3.2 to reconstruct face images
from facial templates.

3.1 Threat Model
We consider the scenario where the adversary gains access
to the templates from the database of the FR system and
aims to invert the template to impersonate. We assume the
threat model with the following properties:

• Adversary’s Goal: The adversary’s goal is to reconstruct
face images from face templates stored in the database
of the FR systems and use the reconstructed face image
to impersonate into the FR system.

• Adversary’s Knowledge: We assume that the adversary
has the following knowledge:
1) The adversary has access to templates from the

database of the FR system.
2) The adversary also has a whitebox or blackbox

knowledge of the feature extractor of the FR system.
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In the case of the blackbox knowledge, we assume
that the adversary has the whitebox knowledge of
another FR model.

3) The adversary also has access to a general face
generator network.

• Adversary’s Capability: We consider two scenarios:
1) The adversary can use the reconstructed face image

from the TI attack to inject it as a query into the
feature extractor of the FR system.

2) The adversary can use the reconstructed face image
to perform a presentation attack to enter the FR
system.

• Adversary’s Strategy: The adversary trains a face recon-
struction network to invert facial templates. Then, the
adversary uses the trained network to reconstruct face
images from the leaked facial templates. The adversary
can use the reconstructed face images to inject a query
into the system or conduct a presentation attack.

3.2 Proposed Face Reconstruction Method

To reconstruct face images from facial templates, we con-
sider the situation where the adversary has access to a
pretrained face generator model such as StyleGAN [9]. As
described in Section 2, the StyleGAN model is composed
of two sub-networks, a mapping network and a synthesis
network. Let us denote the mapping network withMStyleGAN
and the synthesis network with SStyleGAN. The mapping
network gets a random noise vector z ∈ Z as input and gen-
erates an intermediate latent code w = MStyleGAN(z) ∈ W ,
which is then fed to the synthesis network to generate the
face image I = SStyleGAN(w).

To generate a training dataset for learning a face recon-
struction network, we use the StyleGAN model to generate
synthetic face images and extract facial templates from
the synthesized face images. To this end, we sample K
noise {zi|z ∈ Z ∼ N (0, I), i = 1, . . . ,K} from Gaussian
distribution N (0, I) for the input of StyleGAN. Next, we
generate corresponding intermediate latent codes wi =
MStyleGAN(zi) and synthetic images Ii = SStyleGAN(wi), and
then use the feature extractor of the target FR system2

to extract facial templates ti = F (Ii) from our synthetic
face images. Finally, we can have our training dataset
D = {(Ii, ti,wi)|, i = 1, . . . ,K} which has triples of
synthetic face images Ii as well as their corresponding facial
templates ti and the StyleGAN intermediate latent codes wi.

After generating our dataset D, we can use this dataset
to train a new mapping network M(.) to project the facial
template t to the intermediate latent code ŵ = M(t) in
W space of StyleGAN. Then, we use the the intermediate
latent code ŵ = M(t) as input to the synthesis network of
StyleGAN SStyleGAN to generate the reconstructed face image
Î = SStyleGAN(ŵ). We train our new mapping network M(.)
with parameters θM using the following multi-term loss
function:

Ltotal = Lw + Lpixel + LID, (1)

2. As mentioned in our threat model in Section 3.1, we only need the
blackbox knowledge of target FR model, and it is not necessary to have
the whitebox knowledge.

Algorithm 1 Training process in our proposed method.

Require: : nepoch: number of epochs, niteration: number of
iterations in each epoch, α: learning rate.

1: procedure TRAINING
2: Initialize weights θM of our new mapping network
3: for epoch = 1, ..., nepoch do
4: for itr = 1, ..., niteration do
5: Sample a batch of random noise vectors:
6: z ∈ Z ∼ N (0, I)
7: Generate training data:
8: w =MStyleGAN(z)
9: I = SStyleGAN(w)

10: t = F (I)
11: Reconstruct image from template t:
12: ŵ =M(t)
13: Î = SStyleGAN(ŵ)
14: Calculate loss Ltotal and optimize θM :
15: gθM ← ∇θMLtotal
16: θM ← θM − α ·Adam(θM , gθM )
17: end for
18: end for
19: end procedure

where Lw, Lpixel and LID are the intermediate latent space
loss, pixel loss, and ID loss, respectively, and are defined as
follows:

Lw = ‖w −M(t)‖22 , (2)

Lpixel =
∥∥I − SStyleGAN(M(t))

∥∥2
2
, (3)

LID =
∥∥∥Floss(I)− Floss(Î)

∥∥∥2
2
. (4)

The intermediate latent space loss (Lw) is used to min-
imize the error in the estimated intermediate latent code
ŵ =M(t) in the intermediate latent spaceW of StyleGAN.
Since we use synthetic face images, we have the correct
values of intermediate latent codes w to calculate Lw. The
pixel loss (Lpixel) is also applied to minimize the pixel-
level reconstruction error for the reconstructed face image
Î = SStyleGAN(M(t)) compared to the original image I .
Finally, the ID loss is used to optimize the similarity between
the facial templates extracted from the reconstructed and
original face images using a FR feature extractor Floss(.).
In the whitebox TI attack, the adversary can use the same
feature extractor as the one in the target FR system (i.e., F )
as Floss(.); however, in the blackbox scenario, the adversary
needs to use a different feature extractor that has access to3.
Therefore, in blackbox TI attacks, Floss(.) is different from
the target FR system4. Algorithm 1 summarizes our training
process and Fig. 2 illustrates the block diagram of our
proposed face reconstruction method. In our experiments,
we generate 25,000 synthetic face images for our training

3. Note that the adversary needs to have whitebox knowledge of
feature extractor used in Floss to be able to calculate gradients in
optimizing loss function for training face reconstruction model.

4. Note that the alternate model is only used in the blackbox scenario
and is only applied for Floss(.) in the loss function LID (not to extract
the initial templates t). In both whitebox and blackbox scenarios, feature
extractor of the target FR system (i.e., F ) is always used to extract the
initial templates t in generating training dataset D.
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TABLE 2: Recognition performance of FR models in terms of true match rate (TMR) at false match rates (FMRs) of 10−2

and 10−3 on the MOBIO, LFW, AgeDB, and IJB-C datasets. The values are in percentage.

FR model MOBIO LFW AgeDB IJB-C
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

ArcFace 100.00 99.98 97.60 96.40 98.33 98.07 95.29 90.90
ElasticFace 100.00 100.00 96.87 94.70 98.20 97.57 93.73 84.70
AttentionNet 99.71 97.73 84.27 72.77 97.93 96.90 92.65 82.43
HRNet 98.98 98.23 89.30 78.43 97.67 96.23 89.68 78.25
RepVGG 98.75 95.80 77.20 58.07 95.93 93.93 87.67 77.42
Swin 99.75 98.98 91.70 87.83 98.03 97.10 93.40 89.35

TABLE 3: Comparison with previous TI methods in attacks against SOTA FR models in terms of success attack rate (in
percentage) at systems’ FMR = 10−2 on the MOBIO, LFW, AgeDB, and IJB-C datasets . For attacks using our method, we
use ArcFace and ElasticFace as Floss in our loss function. The best two values in attack against each system is embolden.

method MOBIO LFW
ArcFace Els.Face Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

NBNetA-M [18] 2.86 10.0 4.76 4.76 6.19 6.67 14.30 37.13 10.37 20.19 10.64 13.18
NBNetA-P [18] 23.81 60.95 15.24 14.29 44.76 30.48 35.61 60.05 6.80 16.83 26.44 25.92
NBNetB-M [18] 20.95 30.0 21.43 25.24 21.43 27.62 26.91 52.99 17.62 31.74 18.18 27.00
NBNetB-P [18] 49.05 70.95 66.67 64.76 51.43 71.43 61.66 81.74 43.42 56.30 38.12 61.02
Dong et al. [23] 24.29 34.76 38.57 16.19 24.76 18.10 28.21 34.56 19.17 24.87 14.76 26.62
Vendrow and Vendrow [22] 69.52 74.29 55.71 43.81 39.52 70.00 77.00 79.37 46.52 49.52 22.4 66.07
Dong et al. [24] 87.62 90.95 80.48 71.90 44.29 82.38 87.26 89.00 55.40 59.46 28.60 69.07
GaFaR [25] 95.71 91.90 89.05 87.62 87.14 96.19 89.27 89.78 56.57 67.64 46.89 78.91
GaFaR + GS [25] 97.62 93.33 90.00 90.00 90.95 96.19 90.77 91.28 62.03 72.28 51.27 81.39
[Ours] (Floss= Els.Face) 88.57 92.38 87.14 83.33 82.38 93.33 84.70 92.28 60.75 70.78 49.78 75.09
[Ours] (Floss= ArcFace) 96.67 93.33 90.48 91.43 86.67 93.33 92.32 92.71 67.49 77.23 56.30 78.60

AgeDB IJB-C
ArcFace Els.Face Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

NBNetA-M [18] 2.56 8.44 1.85 2.45 2.85 1.89 3.29 6.91 1.84 0.79 1.38 4.98
NBNetA-P [18] 9.31 20.07 2.43 1.54 10.14 4.72 11.19 16.11 1.19 0.44 5.68 10.75
NBNetB-M [18] 5.40 14.56 3.83 3.68 4.72 3.70 7.76 13.83 4.47 2.22 2.77 12.89
NBNetB-P [18] 23.89 44.47 17.19 14.83 18.62 21.48 28.22 42.51 19.26 11.77 15.4 37.81
Dong et al. [23] 9.13 12.11 7.58 6.02 6.82 7.62 7.80 6.54 5.77 2.64 3.5 10.79
Vendrow and Vendrow [22] 44.75 52.17 35.48 24.65 27.39 40.43 38.33 37.91 22.68 15.45 16.61 38.52
Dong et al. [24] 58.80 66.10 36.82 32.45 14.98 37.81 57.29 59.22 33.00 25.94 10.86 50.01
GaFaR [25] 63.30 63.45 33.23 31.56 31.71 49.17 69.18 61.16 45.34 37.79 37.92 69.17
GaFaR + GS [25] 67.86 68.82 40.26 38.53 38.78 55.20 73.72 66.46 51.31 44.14 44.02 73.76
[Ours] (Floss= Els.Face) 57.94 77.28 43.28 41.95 44.07 51.78 63.33 71.05 49.22 42.25 43.67 66.56
[Ours] (Floss= ArcFace) 73.78 76.98 49.92 50.57 48.36 59.95 78.75 71.84 55.03 49.60 51.01 71.26

set and use Adam optimizer [32] with the learning rate of
10−4. In the inference stage, we use our trained mapping
network to project the facial template to the intermediate
space of StyleGAN, and then use the synthesis network to
generate the reconstructed face image.

4 EXPERIMENTS

In this section, we present our experiments and discuss our
results. First, in Section 4.1 we describe our experimental
setup. Then, in Section 4.2 we compare the performance of
our method with previous methods in the literature in TI
attacks against SOTA FR models. In Section 4.3, we report
our vulnerability evaluation of FR systems to practical pre-
sentation attacks using the reconstructed face images from
TI attacks. We discuss further our experimental results in
Section 4.4.

4.1 Experimental Setup
4.1.1 Face Recognition Models
We use SOTA FR systems and evaluate their vulnerabil-
ity to our TI attack on real face images. In our exper-
iments, we consider ArcFace [14], ElasticFace [33], and

also four FR models with different SOTA backbones from
FaceX-Zoo [34], including AttentionNet [35], HRNet [36],
RepVGG [37], and Swin [38]. Table 2 presents the recogni-
tion performances of these models.

4.1.2 Evaluation Datasets
We evaluate the performance of our face reconstruction net-
work on real face datasets, including MOBIO [10], Labeled
Faced in the Wild (LFW) [11], AgeDB [12], and IARPA Janus
Benchmark-C (IJB-C) [13] datasets. The MOBIO dataset in-
cludes face images of 150 subjects captured using mobile
devices in 12 sessions. The LFW database consists of 13,233
face images of 5,749 people, where 1,680 people have two or
more images. The AgeDB dataset consists of 16,488 images
of 568 subjects (famous people) with the average age range
of 50.3 years. The IJB-C dataset includes 31,334 images of
3,531 subjects.

4.1.3 Evaluation Protocol
To evaluate the vulnerability of the FR system to TI attacks,
we consider the situation in which the adversary gains
access to the database of the FR system and reconstructs the
underlying face images to enter the system. As described in
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TABLE 4: Comparison with previous TI methods in attacks against SOTA FR models in terms of success attack rate (in
percentage) at systems’ FMR = 10−3 on the MOBIO, LFW, AgeDB, and IJB-C datasets . For attacks using our method, we
use ArcFace and ElasticFace as Floss in our loss function. The best two values in attack against each system is embolden.

method MOBIO LFW
ArcFace Els.Face Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

NBNetA-M [18] 0 2.38 0 0 0 0 4.32 10.90 1.24 1.60 1.13 3.82
NBNetA-P [18] 4.76 16.19 0.48 0 14.29 7.14 16.83 26.98 0.66 1.44 5.72 9.70
NBNetB-M [18] 1.90 3.80 3.33 7.14 3.33 8.57 10.98 21.44 3.22 4.47 3.21 11.23
NBNetB-P [18] 15.24 43.81 31.90 26.67 23.81 44.29 40.26 58.16 16.29 18.42 15.24 40.76
Dong et al. [23] 3.33 8.10 10.48 6.67 9.05 3.33 13.21 12.61 3.90 4.07 3.22 12.38
Vendrow and Vendrow [22] 29.05 43.81 27.14 26.67 20.95 45.24 57.70 53.03 21.12 18.85 9.62 46.84
Dong et al. [24] 61.43 76.67 42.86 49.05 20.00 65.71 74.48 73.67 32.07 31.73 10.89 53.59
GaFaR [25] 82.86 84.76 72.38 76.67 72.86 89.05 79.84 74.54 33.59 37.80 25.40 67.11
GaFaR + GS [25] 85.23 86.62 80.00 83.80 73.33 93.33 82.52 78.67 38.42 43.27 29.84 70.82
[Ours] (Floss= Els.Face) 80.00 87.62 78.10 78.10 68.57 79.05 71.31 80.41 36.92 43.13 29.33 61.63
[Ours] (Floss= ArcFace) 84.76 86.67 81.90 85.24 70.95 84.76 85.01 81.70 43.58 50.04 35.75 66.57

AgeDB IJB-C
ArcFace Els.Face Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

NBNetA-M [18] 0.81 2.55 0.22 0.38 0.44 0.27 0.03 0.12 0.03 0.01 0.04 0.67
NBNetA-P [18] 3.99 8.93 0.34 0.14 3.71 1.02 0.40 0.30 0 0 0.31 1.58
NBNetB-M [18] 1.88 6.28 0.50 0.77 1.06 0.68 0.36 0.32 0.13 0.06 0.13 2.40
NBNetB-P [18] 13.18 28.94 5.08 5.61 7.93 8.75 3.15 4.1 1.27 1.12 2.32 15.11
Dong et al. [23] 3.94 4.88 1.58 1.97 2.23 2.48 0.40 0.13 0.21 0.09 0.26 2.45
Vendrow and Vendrow [22] 29.65 34.89 15.06 12.02 14.49 21.10 7.49 5.41 2.86 2.17 4.13 20.73
Dong et al. [24] 43.22 48.98 17.22 17.89 7.07 21.40 19.31 16.90 4.82 4.36 2.43 30.91
GaFaR [25] 48.94 47.37 14.59 17.09 18.02 30.05 29.77 19.28 17.10 12.99 17.42 50.75
GaFaR + GS [25] 53.10 53.10 18.76 22.40 24.01 35.20 34.92 24.69 23.12 18.08 22.80 58.02
[Ours] (Floss= Els.Face) 42.35 61.84 19.42 24.12 28.22 30.86 25.93 33.42 16.08 15.46 19.58 46.04
[Ours] (Floss= ArcFace) 60.03 62.43 25.81 30.84 19.15 37.43 45.42 32.73 21.27 21.33 28.40 52.58

Section 3.1, we consider two scenarios in our threat model.
In the first scenario, we consider the situation where the
adversary can inject the reconstructed face images from
the TI attack into the feature extractor of the target FR
system. In the second scenario, we consider the situation in
which the adversary performs a presentation attack using
the reconstructed face images from the TI attack. In each
case, we evaluate the vulnerability of the FR system in terms
of the adversary’s success attack rate (SAR) in entering the
system using the reconstructed face images from the TI
attack.

4.1.4 Implementation Details
We use the Bob5 toolbox [39], [40] to build the pipelines for
the FR systems in our experiments and also evaluate the TI
attacks against FR systems. We also use the PyTorch package
and trained our models on a system equipped with an
NVIDIA GeForce RTXTM 3090. We use the pretrained model
of StyleGAN36 to generate 1024× 1024 high-resolution face
images. The source codes of our experiments are publicly
available to facilitate the reproducibility of our results7.

4.2 Comparison with Previous TI Methods
We compare the performance of our face reconstruction
method with state-of-the-art TI methods in the literature,
including NBNetA-M [18], NBNetA-P [18], NBNetB-M [18],
NBNetB-P [18], Dong et al. [23], Vendrow and Vendrow [22],
Dong et al. [24], GaFaR [25], and GaFaR+GS [25]. Among
these methods and according to Section 2, Dong et al. [23],
Vendrow and Vendrow [22], and Dong et al. [24] used

5. Available at https://www.idiap.ch/software/bob/
6. Available at https://github.com/NVlabs/stylegan3
7. https://gitlab.idiap.ch/bob/bob.paper.tbiom2024 face ti

StyleGAN to reconstruct high-resolution face images. We
consider the scenario where the adversary can inject the
reconstructed face image as a query to the feature extractor
of the target FR system. Table 3 compare the performance
of different methods in terms of the adversary’s success
attack rate (SAR) in TI attacks against SOTA FR systems
at the system FMR of 10−2 on the MOBIO, LFW, AgeDB,
and IJB-C datasets. Table 4 reports similar results for the
system threshold corresponding to FMR of 10−3 on the
MOBIO, LFW, AgeDB, and IJB-C datasets. As the results
in these tables show, while our method is trained on syn-
thetic data, it achieves high SAR in TI attacks against FR
systems. Furthermore, compared to other methods, our ex-
perimental results show that our method achieves superior
performance than SOTA TI methods on high-resolution face
reconstruction. In particular, compared to Dong et al. [23],
Vendrow and Vendrow [22], and Dong et al. [24] which
also used StyleGAN for face reconstruction our method
achieves higher SAR values. Compared to GaFaR+GS [25],
our method achieve competitive performance. However,
we should note that GaFaR+GS [25] use a geometry-aware
network to reconstruct 3D face images and then find the best
pose for each image to enhance SAR.

In our experiments in Table 3 and Table 4, we use two FR
models, ArcFace and ElasticFace, as Floss in our proposed
method. As the results in these table shows, face recon-
struction with ArcFace achieves higher SAR values in our
method. Besides, the recognition performances in Table 2
also show that ArcFace has a better recognition accuracy.
Therefore, a model with a better recognition accuracy can
more help training in our proposed method and lead to
better reconstruction performance.

Fig. 3 illustrates sample face images from the LFW
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Fig. 3: Sample real face images from the LFW dataset (first row) and their reconstructed images from ArcFace templates
in whitebox (second row) and blackbox (third row). The values below each image show the cosine similarity between the
corresponding templates of original and reconstructed face images. The decision threshold corresponding to FMR = 10−3

is 0.24 on the LFW dataset, and thus all these reconstructed images pass this threshold.

(a) Our Setup

(b) Reconstructed

(c) Captured

Fig. 4: (a) Presentation attack evaluation setup, (b) The
reconstructed face image from TI attack that is used for pre-
sentation attack, (c) The captured image by the smartphone
camera (iPhone 12) in our presentation attack.

dataset and their corresponding reconstructed face image
from ArcFace in the whitebox (using ArcFace as Floss)
and blackbox (using ElasticFace as Floss) TI attacks. The
reconstructed face images are realistic and reveal important
privacy-sensitive information about underlying users (such
as gender, ethnicity, etc.). In addition, the reconstructed face
images have similar facial templates to the templates of the
original face images and can be recognized as the same
subject by the FR system with the FMR of 10−3 on the LFW
dataset. We should note that the reconstructed face images
are also high-resolution (i.e., 1024×1024) and can be used for
presentation attack, which is discussed in Section 4.3.

TABLE 5: Vulnerability of the FR system with ArcFace
model against presentation attack using reconstructed face
images from whitebox and blackbox TI attacks in terms
of SAR/IAPMR at system FMRs of 10−2 and 10−3 on the
MOBIO dataset. The values are in percentage.

Attack Type Eval. Scenario Camera
SAR/IAPMR

FMR=10−2 FMR=10−3

whitebox

injection N/A 96.67 84.76

Replay Attack
iPhone12 98.10 85.24
Galaxy S9 96.19 86.19
Redmi A9 96.67 86.67

blackbox

injection N/A 88.57 80.76

Replay Attack
iPhone12 89.04 78.09
Galaxy S9 88.09 77.62
Redmi A9 88.57 80.00

4.3 Presentation Attack using Reconstructed Face Im-
ages

As another experiment, we consider the situation where the
adversary can reconstruct face images from facial templates
and use the reconstructed face images to perform a pre-
sentation attack to impersonate into the FR system. To this
end, we use the reconstructed face images to display with
a tablet (Apple iPad Pro) and take it in front of a camera
as the sensor of the FR system. We use cameras of three
different smartphones, including Apple iPhone 12, Samsung
Galaxy S9, and Xiaomi Redmi 9A, in our experiment. Fig 4
illustrates our presentation attack evaluation setup.

We consider whitebox (using ArcFace as Floss ) and black-
box (using ElasticFace as Floss) TI attacks against ArcFace
templates on the MOBIO dataset and reconstruct facial tem-
plates using our proposed method. Fig. 5 shows sample face
images from the MOBIO dataset and their corresponding
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Whitebox Blackbox
Original Reconstructed iPhone 12 Galaxy S9 Redmi9A Reconstructed iPhone 12 Galaxy S9 Redmi9A

Fig. 5: Sample face images from the MOBIO dataset and their corresponding reconstructed face images in whitebox and
blackbox attacks as well as the captured images from our digital replay attack using cameras of different smartphones.

reconstructed face images in whitebox and blackbox attacks as
well as the captured images from our digital replay attack
using different smartphones. We evaluate the performance
of replay attacks using our reconstructed face images in
terms of adversary’s SAR8. Table 5 reports the vulnerability
of a FR system with ArcFace model to replay attacks using
reconstructed face images in whitebox and blackbox TI attacks
with our method for FMRs of 10−2 and 10−3 on the MOBIO
dataset. As the results in this table show, our reconstructed
face images achieve high SAR values when captured with
different smartphones. Also, the results in this table show
that our replay attacks achieve comparable performance
with TI attacks using the injection of reconstructed face
images. This experiment demonstrates the vulnerability of
real FR systems to the reconstructed face images using our
method.

4.4 Discussion
While our experiments in Section 4.2 show that our pro-
posed method achieves state-of-the-art performance, there
are still some failure cases where the reconstructed face im-
ages do not match the original face image. Fig. 6 illustrates
some sample reconstructed face images in the whitebox TI
attack against ArcFace on the LFW dataset that do not match
the original face images, and therefore the attack is not
successful. As shown in this figure, some of the failure cases

8. The ISO/IEC 30107-3 standard [41] suggests to refer to the ad-
versary’s success attack rate in evaluations of presentation attacks
as Impostor Attack Presentation Match Rate (IAPMR). However, for
consistency with our previous experimental results, we use SAR to
report the success attack rate in our presentation attack (replay attack)
evaluation.
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Fig. 6: Sample failure cases from the LFW dataset (first row)
and their corresponding (second row) reconstructed face
images using our method in the whitebox TI attack against
ArcFace. The values below each image show the cosine
similarity between templates of original and reconstructed
face images. The values below each image show the cosine
similarity between the corresponding templates of original
and reconstructed face images.

correspond to people with dark skin color or the eldery. As
a matter of fact, the StyleGAN model has been trained on
the FFHQ dataset, which is not a balanced face dataset and
has a bias on some demography groups. In addition, the
face recognition model used in this attack (ArcFace) is also
shown to have bias [42].

Despite such failure cases, SOTA FR models are still
significantly vulnerable to our TI attacks as shown in Sec-
tion 4.2 and Section 4.3. To investigate the effect of each
loss term in our proposed method, we implement an abla-
tion study and train our mapping network with different
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TABLE 6: Ablation study on the effect of loss terms in our
proposed method in whitebox attack against ArcFace in
terms of SAR for a FR system with FMRs of 10−2 and 10−3

on the MOBIO and LFW datasets.

Loss function MOBIO LFW
FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

Ltotal = Lpixel + LID 0 0 0.32 0.02
Ltotal = Lw 43.81 13.80 47.69 27.54
Ltotal = Lw + Lpixel 40.00 13.81 45.61 25.98
Ltotal = Lw + Lpixel + LID 97.62 89.05 92.89 85.84

loss functions. We consider the whitebox TI attack against
a FR system with ArcFace and evaluate the adversary’s
SAR on the MOBIO and LFW datasets. Table 6 reports
our ablation study on the effect of each loss term in our
proposed method. As the results in this table show, each of
our loss terms contributes to the reconstruction of our TI
attacks against FR systems. Using the latent space loss is
particularly important as it has a significant effect on the
training compared to using all other terms except the latent
code loss term. When using the latent space loss, our ID loss
also considerably enhances the reconstruction compared to
other cases in which we do not use the ID loss. However,
the pixel-level loss slightly degrades the reconstruction in
terms of SAR, but it reduces the pixel-level errors (e.g., hair
color, etc.) in the reconstructed face images.

In our method, we use synthetic data to train our face
reconstruction network and use the trained network in
TI attacks against FR systems with real face images. Our
experiments in Section 4.2 show that our proposed method
outperforms SOTA TI methods in the literature on high-
resolution face reconstruction. The results also indicate the
vulnerability of SOTA FR models to our TI attacks. Our
experiments in Section 4.3 also demonstrate that our recon-
structed face images can be used to perform presentation
attacks by the adversary, and can achieve high SAR val-
ues. We should note that this work is conducted with the
motivation of showing the vulnerability of FR systems, and
we do not condone misuse of our work for the intention of
attacking real FR systems. As a matter of fact, to mitigate TI
attacks against FR systems and in the light of data protection
regulations such as European Union General Data Protec-
tion Regulation (EU-GDPR) [43], several biometric template
protection schemes are proposed in the literature [44], [45],
[46], [47], [48]. In particular, the ISO/IEC 24745 standard [49]
considers irreversibility of protected templates as one of the
main properties of biometric template protection methods.
According to this property, it should be infeasible for an
adversary to invert protected templates and reconstruct the
corresponding unprotected biometric templates.

5 CONCLUSION

In this paper, we used synthetic data and proposed a new
method to reconstruct high-resolution (i.e., 1024 × 1024)
face images from facial templates in TI attacks against FR
systems. We used a face generator network to generate
synthetic face images and extracted their facial templates
to build our training dataset. Then, we used our generated
training dataset to learn a mapping from facial templates

to the intermediate latent space of the face generator net-
work using a multi-term loss function. We proposed our
method for both whitebox and blackbox TI attacks against
FR systems and evaluated our model (trained with synthetic
data) in TI attacks against FR systems with real face images.
We provided extensive experiments on four different face
datasets, including the MOBIO, LFW, AgeDB, and IJB-C
datasets, demonstrating the superiority of our proposed
method compared to SOTA TI methods on high-resolution
face reconstruction. Moreover, we used the reconstructed
face images from our TI attacks to perform digital replay
attacks against real FR systems, showing the vulnerability
of FR systems to presentation attacks based on the recon-
structed face images with our model (trained only with
synthetic train data) on real face datasets.
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