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Abstract

Customer Satisfaction (CS) in call centers influences customer
loyalty and the company’s reputation. Traditionally, CS evalua-
tions were conducted manually or with classical machine learn-
ing algorithms; however, advancements in deep learning have
led to automated systems that evaluate CS using speech and
text analyses. Previous studies have shown the text approach
to be more accurate but relies on an external ASR for transcrip-
tion. This study introduces a cross-transfer knowledge tech-
nique, distilling knowledge from the BERT model into speech
encoders like Wav2Vec2, WavLM, and Whisper. By enriching
these encoders with BERT’s linguistic information, we improve
speech analysis performance and eliminate the need for an ASR.
In evaluations on a dataset of customer opinions, our methods
achieve over 92% accuracy in identifying CS categories, provid-
ing a faster and cost-effective solution compared to traditional
text approaches.
Index Terms: Customer satisfaction, cross-transfer knowledge,
Spoken Language Understanding

1. Introduction
Customer satisfaction (CS) is a relevant metric in call centers,
serving as an indicator of the matching between customer ex-
pectations and products, services, and customer experience pro-
vided by the company [1]. CS directly influences customer loy-
alty, retention, and the overall reputation of the organization.
This implies that a company grows as satisfied customers tend
to make more purchases and recommend products and services
to other people, thereby attracting more customers [2]. There-
fore, assessing CS is essential for companies aiming to enhance
their quality of service (QoS). Typically, CS evaluations were
conducted manually by QoS experts who would select and an-
alyze a small sample of call or voicemail recordings. However,
the recent advancements in deep learning (DL) have led to the
development of automated methods for CS assessment, focus-
ing on two primary approaches: speech and text analysis.

Some studies have explored the use of speech representa-
tions for CS analysis, dividing these representations into two
main categories: emotion-oriented/knowledge-based and data-
driven approaches. Emotion-oriented features aim to model
emotions that influence CS, encompassing different speech di-
mensions such as prosody, articulation, voice-quality, spectral
characteristics, and patterns of silence and pause [3, 4, 5]. Con-
versely, data-driven approaches rely on algorithms to learn rep-
resentations directly from the data, producing general yet com-
plex speech features suitable for various tasks. Wav2Vec [6, 7]
stands out as a notable data-driven technique applied in CS

modeling [8, 9, 10]. Other popular approaches for speech pro-
cessing tasks include WavLM [11] and HuBERT [12]. Despite
the advancements in speech-based methods, evidence suggests
that text-based analysis often yields higher accuracy in CS eval-
uation [13, 14].

Recent improvements in automatic speech recognition
(ASR) and natural language understanding (NLU) systems have
enhanced the reliability of text analysis. Also known as Spo-
ken Language Understanding (SLU), this method aims to di-
rectly extract meaning or intent from spoken utterances [15].
Conventionally, its pipeline comprises two main steps. First,
an ASR system is responsible for converting a spoken utter-
ance into a text transcript. Then, the transcripts are processed
by an NLU system intended to model CS concepts. Various
studies have demonstrated the effectiveness of NLU systems
based on text features like such as TF-IDF [16], Word2Vec [17],
and BERT [18] for modeling CS concepts [9, 19, 20]. How-
ever, using these traditional SLU approaches in call center ap-
plications presents three main challenges. Firstly, poor-quality
speech transcripts can adversely affect performance in down-
stream tasks, as demonstrated empirically in [21, 22]. Secondly,
relying on an external ASR for text transcription introduces
additional complexity for modeling, thereby increasing the re-
quired inference processing time. Finally, call recordings often
contain sensitive information about the customers, posing a risk
of exposure during the transcription process [23]. Hence, imple-
menting new mechanisms to protect the privacy of the speaker
is essential.

In response to these challenges, end-to-end (E2E) SLU sys-
tems have emerged as a pivotal technology. In this new sce-
nario, a single trainable model can directly model semantic pat-
terns from a spoken utterance, eliminating the need for produc-
ing a text transcription [24, 25]. Consequently, the model be-
comes more compact and can be fully optimized directly on the
targeted metric for the downstream task. This makes the E2E
approach practical for industrial applications where optimal use
of computational resources is crucial. Despite widespread adop-
tion in intent classification, E2E SLU systems remain under-
investigated in CS evaluation.

This paper compares traditional methods based on uni-
modal and multimodal approaches to classify satisfied vs. un-
satisfied customers using voicemails from a call center dataset.
For the speech modality, we explore three data-driven feature
encoders: Wav2Vec2, WavLM, and the Whisper encoder [26].
For text analysis, we employ BERT representations to capture
linguistic cues. In the multimodal approach, we combine the
optimal features from each modality using late and early fu-
sion, as well as Gated Multimodal Units (GMU), which are
based on DL and perform information fusion at an intermediate
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Figure 1: General methodology followed in this study. Figure
adapted from [24].

level [27]. We then introduce an E2E SLU system to directly
model CS patterns from speech. This involves developing a
teacher-student architecture to transfer knowledge from BERT
to the three speech encoders. This process generates linguisti-
cally enriched speech representations, which are subsequently
utilized for classification. The key contributions of our study
are summarized as follows:

1. The E2E SLU framework, which is underexplored in CS
tasks, is evaluated in spoken opinions. This approach high-
lights the benefits of eliminating ASR systems, simplifying
the process, and protecting the privacy of customer voice-
mails.

2. Typical works in English use linguistically rich datasets for
pre-training [24]; however, this is not the case for Span-
ish. Therefore, we evaluate three state-of-the-art (SOTA)
pre-trained speech encoders. Using these encoders allows
us to focus pre-training on specific layers, such as the non-
contextual (NC) embedding layer and the cross-attention
layer, using low-resource Spanish data.

3. By leveraging cross-transfer knowledge, our approach
achieves accuracies of up to 92%, and it outperforms tradi-
tional text-based methods by being five times faster in terms
of inference processing.

2. Methodology
The methodology is divided into two main steps: cross-transfer
knowledge1 and classification. Figure 1 illustrates the method-
ology followed in this study 2.

2.1. Cross-transfer knowledge

This study employs a teacher-student architecture to distill
knowledge from BERT into the three different data-driven
speech encoders, as described below.

1Here, the terms ‘cross-transfer knowledge’, ‘knowledge distilla-
tion’, and ‘pre-training’ are used interchangeably.

2Code available at: https://github.com/lfelipeparra/
cross-transfer-knowledge

Speech encoder: To extract speech embeddings, we employ
three SOTA systems in speech processing tasks: Wav2Vec2,
WavLM, and the Whisper encoder. The first two encoders
are pre-trained using self-supervised learning (SSL) techniques.
These models are designed to capture general representations
from speech. Whisper is a task-specific model trained for ASR
tasks, making it valuable for extracting speech representations
with linguistic content.
NC word embeddings: It is essentially a lookup table that
maps each word to a vector representation. In this study, this
layer is initialized by duplicating the word embedding layer
pre-trained on BERT. It mimics the structure found in BERT
preceding the stack of transformers. Replicating the NC layer
ensures consistency between the teacher and student models by
maintaining identical sequence dimensions. Furthermore, this
replication simplifies the alignment process, as the student is
already familiar with aspects of the teacher, allowing it to fo-
cus mainly on the transformer stack, which models contextual
information.
BERT: This model is a SSL language model based on trans-
former layers, designed to extract meaningful linguistic rep-
resentations. For this study, we utilizes BETO [28] as the
teacher model, which follows BERT’s model architecture but
was specifically trained on a Spanish dataset.
Cross-attention mechanism : In our study, we implement a
standard attention mechanism [29, 30], assigning speech en-
coder outputs as both key and value, while text outputs as the
query. This allows text to obtain contextual information from
speech modality. The formula used is:

Attention(Q,K,V ) = softmax

(
QK⊤
√
dk

)
V ,

where Q, K, and V are the matrices for query, key, and
value, with dk as the feature dimension.
Contrastive loss: Once the contextual representation Bs is
generated, it is then aligned with the semantically rich BERT
contextual representation B on a token-by-token basis, given
that both shared the same sequence length n. To accomplish
this, we employ the tokenwise contrastive loss, as proposed
in [24], which ensures alignment of the representations at the
token level. The contrastive loss is defined as:

Lcon = − τ

2b

b∑
i=1

log
exp(sii)∑b
j=1 exp(sij)

+ log
exp(sii)∑b
j=1 exp(sji)

where sij represents the cosine similarity between rows i
and j in B and Bs, and τ is a temperature hyperparameter of
the cosine similarity function.

2.2. Classification stage

After performing cross-transfer knowledge, we can train a clas-
sifier on the downstream task using BERT-like speech fea-
tures. At this stage, transcripts of the recordings are unavail-
able. Therefore, the NC [CLS] learned during pre-training is
processed through the cross-attention layer to attend over the
speech sequence. This procedure allows capturing context di-
rectly from speech, generating a contextual BERT-like token
[CLS] as a sentence-level representation for classification.

3. Experiments
This section presents information about the KONECTADB
dataset, provides details of the implementation, and introduces



the baseline methods. Subsequently, the results obtained are
discussed.

3.1. Dataset

KONECTADB [5] is employed to evaluate CS in a real-world
scenario. The database comprises spoken customer opinions
(voicemails) recorded at the end of conversations with agents
at the Konecta call center. In these voicemails, customers gave
spontaneous evaluations of the quality of the service provided
by the agent. Before recording the voicemails, customers were
informed that their speech was going to be recorded. All par-
ticipants were adults who were native speakers of Colombian
Spanish. The recordings were captured at 8kHz with 16-bit
resolution. A total of 2364 recordings were collected and an-
notated by QoS experts from Konecta. They listened to and
evaluated the voicemails, labeling whether the customers were
satisfied or not. The recordings were automatically transcribed
by Whisper large-v3. Table 1 describes the data distribution
for KONECTADB. Gender balance was assured by a chi-square
test with p ≈ 1.
Table 1: Data distribution and general information for the
KONECTADB

Dissatisfied Satisfied
Number of samples 1259 1105
Duration (µ± σ) 34±23 s 16 ±11 s
Number of male 711 532
Number of female 548 573

3.2. Implementation details and metrics

The proposed method, described in Section 2, is evaluated on
KONECTADB. The dataset follows a bootstrapping strategy
of 80% for training, 10% for validation, and 10% for test-
ing. Due to time constraints, we do not employ nested cross-
validation. This is because pre-training the speech encoders
and training the classifier for each fold are time-consuming
processes. Speech features are extracted from the voice-
mails recordings while both NC word embeddings and BERT
representations are computed from text transcripts. Due to
the difference in feature dimensions between both representa-
tions, we process the speech features through a fully-connected
layer to match the dimension dk outlined in Subsection 2.1,
Cross-transfer knowledge.

In the cross-transfer knowledge stage, we use the speech-
text pairs from the training split on KONECTADB. Here, the
validation split is utilized for model selection. The experiment
is conducted on an NVIDIA RTX 3090 GPU for 200 epochs.
We employ a batch size of 64 voicemails and the AdamW op-
timizer with a learning rate set at 1e-4. The temperature hyper-
parameter τ is adjusted to 0.07.

In the classification stage, an SVM classifier with a ra-
dial basis function (RBF) kernel is used to classify contextual
BERT-like representations. The hyperparameters were opti-
mized through grid search for C ∈ {100, 101, . . . , 103} and
γ ∈ {10−6, 10−5, . . . , 102}, using logarithmic steps. The
model optimization is conducted on an Intel(R) Core(TM) i7-
7700K CPU @ 4.20GHz processor. Similar to the cross-transfer
knowledge stage, the model is trained on the training split, with
the validation split used for hyperparameter optimization and
model selection. Area Under ROC curve (AUC), Accuracy
(ACC), Sensitivity (SEN) and Specificity (SPE) are computed
over the test split.

3.3. Baseline methods

We conduct speech and text analyses using Wav2Vec2, WavLM,
Whisper, and BERT representations for CS classification in uni-
modal settings. For the multimodal approach, we select the best
representations from each modality and apply early and late fu-
sion strategies, as well as the one based on GMU [27] model,
to merge speech and text. Late fusion employs a weighted av-
eraging approach, with weights being optimized through grid
search. The search space for these weights ranges from 0.1
to 0.9, incrementing in steps of 0.1. The GMU is jointly op-
timized with DL classifiers by minimizing the objective func-
tion. Two classification methods are evaluated: SVM and DL.
For the SVM classifier, we use the settings defined in Subsec-
tion 3.2, except that the input consists of a static representation
obtained by averaging the embeddings. For the DL classifier,
we explore two contextual layers: a bidirectional LSTM (128
units per direction) and a self-attention layer (scaled-dot prod-
uct method). Their contextual outputs are globally averaged
and fed into a classifier comprising a 128-unit ReLU-activated
hidden layer, followed by a Softmax classification layer. To en-
sure consistency with other studies utilizing the same database,
both classifiers are evaluated following a 5-fold cross-validation
approach. In each fold, 10% of the training split is randomly
selected for hyperparameter optimization and model selection.
To measure performance, the predictions of the test split from
each fold (as well as the ground truth labels) are concatenated.
Subsequently, metrics are calculated across the entire dataset.

3.4. Results and discussion

Baseline: The results of baseline methods for both unimodal
and multimodal analyses are presented in Table 2. Results from
methods detailed in [5], denoted with an asterisk (*), are also in-
cluded for comparative analysis. In the speech scenario, all con-
sidered representations outperform previous studies, improving
by about 10% in absolute accuracy when comparing Whisper
to Wav2Vec*. We believe the improvement can be attributed to
three factors: (1) Wav2Vec2, fine-tuned on a Spanish corpus, is
better at modeling speech patterns in Spanish and its output in-
cludes linguistic information due to training on ASR tasks. (2)
WavLM, trained under challenging acoustic conditions such as
noisy/overlapping recordings, is well-suited for real-world data
like KONECTADB. (3) The Whisper encoder is effective in rep-
resenting speech features with linguistic content, as it is a SOTA
model trained on multilingual ASR tasks. In the text scenario,
BERT emerges as the best-performing method after fine-tuning,
achieving an accuracy of 94.25%. The nature of the task, in
which customers might linguistically express positive/negative
opinions without exhibiting any specific emotional traits while
speaking, makes text analysis is more reliable than speech anal-
ysis. That is why the application of text models proves to be
more accurate than acoustic analysis. In multimodal analy-
sis, fusion techniques do not significantly enhance classification
performance, with an absolute improvement of 0.16% when
comparing late(Whisper, BERTft) to BERTft. This suggests
that acoustic representations may not offer complimentary in-
formation to text, which already performs very well. Moreover,
the increased model complexity makes the optimization process
harder.

Cross-transfer knowledge: The results are presented in Ta-
ble 3. Note that we also measure the inference time required
to process a sample of 30 seconds long for each model. This
means that the time required by Whisper large-v3 is also



Table 2: Comparison of different unimodal and multimodal ap-
proaches on KONECTADB. ∗ indicates the methods emerged
from [5]. The results are given in [%]. ft suffix means fine-
tuning.

Feature representation Model AUC ACC SEN SPE
Speech features

Articulation * - 73,50 75,90 70,80
xvector * - 66,30 70,60 61,30
I2012PC * - 74,20 79,50 68,10
WavLM

SVM

90,89 82,90 84,42 81,18
Wav2Vec * - 77,40 80,10 74,60
Wav2Vec2 88,14 80,23 83,71 76,28
WavLM 90,48 82,61 82,76 82,44
Whisper

BiLSTM

93,35 86,75 88,32 84,98
Wav2Vec2 89,39 82,22 87,67 76,01
WavLM 91,98 84,00 87,36 80,18
Whisper

Attention
96,90 88,56 89,65 87,32

Text features
Word2Vec * - 87,90 89,25 86,90
BERT SVM 96,06 89,25 89,59 88,86
Word2Vec * - 90,90 92,60 89,20
BERT BiLSTM 95,67 89,67 89,11 90,22
BERT 97,89 92,76 94,43 90,86
BERTft

Attention 98,72 94,25 95,47 92,85
Multimodal

early(Artic, Word2Vec) * - 87,80 88,90 86,60
early(Whisper, BERT) 97,38 92,29 93,32 91,13
early(Whisper, BERTft) 98,30 94,28 94,75 93,75
late(Whisper, BERT) 97,62 92,17 93,08 91,13
late(Whisper, BERTft)

SVM

98,49 94,41 94,91 93,84
intern(Wav2Vec, Word2Vec) * - 90,80 92,40 89,30
intern(Whisper, BERT) 97,23 91,96 93,16 90,49
intern(Whisper, BERTft)

GMU
98,37 94,07 94,83 93,21

considered for the traditional text analysis. Overall, speech rep-
resentations show improvement after applying knowledge dis-
tillation from the BERT model when compared to non-distilled
baseline counterparts. Furthermore, all distilled models obtain
an additional gain of about 2 percentage points in ACC when a
specialized teacher (BERTft) is used. This indicates that the ro-
bustness of BERT models is successfully transferred to speech
encoders, making them more efficient in modeling spoken opin-
ions.

The BERTft-like Whisper model outperforms other dis-
tilled representations across all performance metrics. How-
ever, this model is more complex than its counterparts, requir-
ing roughly twice the time to process a 30s sample. Both dis-
tilled Wav2Vec2 and WavLM models show similar performance
in terms of ACC, being Wav2Vec2 faster by 3 seconds for the
same sample.

One of the most significant advantages of using distilled
models is their efficiency in terms of inference processing time.
Both BERT and BERTft representations need 212.33 seconds
to process a 30s spoken opinion, which is considerably higher
than that of any of the listed speech encoders. For instance,
the BERTft-like Whisper can process the same sample about
Table 3: Speech encoder performance before and after applying
cross-transfer knowledge. ft: fine-tuned model. Time: infer-
ence processing time in sec. for a sample of 30s.

Feature AUC ACC SEN SPE Time
Wav2Vec2 89,14 82,45 86,90 77,37 23,06
WavLM 89,89 81,81 84,12 79,18 26,41
Whisper encoder 96,96 88,58 93,25 83,26 42,01
BERT 96,24 90,06 92,46 87,33 212,33
BERTft 97,20 94,29 95,63 92,76 212,33
BERT-like Wav2Vec2 92,66 84,35 88,88 79,18 24,01
BERTft-like Wav2Vec2 91,98 86,05 92,06 79,19 24,01
BERT-like WavLM 91,08 85,20 86,90 83,26 27,36
BERTft-like WavLM 92,48 85,84 88,89 82,35 27,36
BERT-like Whisper 97,03 90,70 94,05 86,88 42,96
BERTft-like Whisper 98,06 92,60 94,44 90,49 42,96

Table 4: Feature importance scores for late fusion and GMU
strategies. sW - the importance score for Whisper. sB - the
importance score for BERT or BERT-like, when applicable.

Combinations Late Fusion GMU
sW sB sW sB

Whisper + BERT 0.50 0.50 0.02 0.98
Whisper + BERTft 0.34 0.65 0.00 1.00
Whisper + BERT-like 0.43 0.57 0.00 1.00
Whisper + BERTft-like 0.22 0.78 0.33 0.67

five times faster (in just 42.96 seconds), offering a much more
efficient solution without substantially compromising perfor-
mance. This type of system also eliminates the need for tran-
scribing spoken utterances, a crucial advantage in safeguard-
ing private and sensitive customer information, which could be
compromised by exposure to transcription data. These results
suggest that the introduced systems are ideal for call center ap-
plications where inference processing time is critical to timely
evaluate and improve the quality of service and reduce usage
costs while keeping sensitive information secure.
Feature importance analysis: To confirm the potential of the
new linguistically enriched features for modeling CS, we per-
form a feature importance analysis by merging the speech repre-
sentations with the generated BERT-like features. We hypothe-
size that late fusion and GMU strategies would favor BERT-like
features. In late fusion, importance scores are obtained from
weights optimized in the validation set. For the GMU approach,
as described in [27], we average the gate vector z generated in
each test sample to determine the significance of each modality.
Here, important scores correspond to the portion of samples in
the test set that lean towards the language modality (z <= 0.5)
and how many towards the speech (z > 0.5). Table 4 shows the
importance scores for Whisper, BERT, and BERT-like in each
method. Generally, BERT-like features carry more weight than
original speech features. In the late fusion context, the incorpo-
rated features exhibit a trend consistent with the findings related
to BERT. A similar pattern is observed in the GMU configura-
tion, where the model is almost entirely focused on BERT-like
features, except for BERTft-like, which demonstrates an im-
portance value of 0.67.

4. Conclusion
This research explored the efficacy of linguistically enriched
speech features for CS evaluation in call center environments,
introducing a novel approach that leverages cross-transfer
knowledge and classification techniques. Our methodology in-
volved a teacher-student architecture, where BERT serves as the
teacher to enrich speech encoder representations. These en-
riched representations were then evaluated for their classifica-
tion performance. Our experiments demonstrated that SOTA
speech encoders, such as Wav2Vec2, WavLM, and Whisper,
when enhanced with BERT’s linguistic capabilities, outper-
formed traditional speech-only models in CS evaluation tasks,
with the Whisper encoder yielding better performance. BERT-
like Whisper representations achieved approximately 92% ac-
curacy in distinguishing between satisfied and dissatisfied cus-
tomers, providing shorter inference processing times compared
to conventional text analysis techniques. The feature impor-
tance analysis further confirmed our hypothesis that BERT-like
features are more critical for accurate CS evaluation than tradi-
tional speech features. This was confirmed in both, late fusion
and GMU strategies, where BERT-like features consistently car-
ried more importance.
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