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Fig. 1: 3D-Rendered images of human faces [6] (left image in each column), and
post-processing images by image-to-image translation (right image in each column)
for boosting the performance of a Face Recognition trained on the synthetic data.

Abstract. In this paper, we investigate the potential of image-to-image
translation (I2I) techniques for transferring realism to 3D-rendered fa-
cial images in the context of Face Recognition (FR) systems. The pri-
mary motivation for using 3D-rendered facial images lies in their ability
to circumvent the challenges associated with collecting large real face
datasets for training FR systems. These images are generated entirely
by 3D rendering engines, facilitating the generation of synthetic iden-
tities. However, it has been observed that FR systems trained on such
synthetic datasets underperform when compared to those trained on real
datasets, on various FR benchmarks. In this work, we demonstrate that
by transferring the realism to 3D-rendered images (i.e., making the 3D-
rendered images look more real), we can boost the performance of FR
systems trained on these more photorealistic images. This improvement
is evident when these systems are evaluated against FR benchmarks like
IJB-C, LFW which utilize real-world data by 2% to %5, thereby paving
new pathways for employing synthetic data in real-world applications.
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1 Introduction

Given the increasing dependency on artificial intelligence (AI) systems in our
everyday lives, it becomes essential to comprehend and rectify any potential
problems that might arise within these systems. A primary issue with today’s
systems is their strong dependency on large volumes of data required for training.
This dependency presents numerous problems, both ethically and legally, in areas
such as vision and language models. For instance, datasets often collected from
web crawls may contain ethically and legally sensitive content, with inherently
uncontrollable and inaccurate labels. This issue becomes even more critical in the
sensitive task of Face Recognition (FR) systems, which requires the collection
of personal and sensitive image modalities containing faces. Furthermore, con-
sidering legal policies such as GDPR and other digital ethics guidelines [1, 23],
the use of existing datasets like WebFace260M [55] and CASIA-WebFace [51]
could be problematic when deployed in critical applications. Besides these con-
cerns, the necessity to collect large sample sizes for training an effective deep FR
model poses another challenge. Therefore it is crucial to address these issues,
which involve one of the most important applications of AI systems in our daily
lives: FR systems [11,21] (e.g., unlocking our phones, security gates). Due to the
mentioned problems with data captured from the real world, there has been an
increase in research exploring the applicability of synthetic data as an alternative
or complement to real datasets in various computer vision problems [6, 14, 24].
For instance, studies using a 3D rendering pipeline [46] have shown that for
tasks like Face Parsing and Landmark Localization, the accurate labels pro-
vided by rendering pipelines can surpass the performance of models trained on
real datasets in landmark localization tasks (since the images are rendered using
a model-based face, the landmark locations are accurate compared to those in
human-annotated datasets collected from the real world).

Recently, authors in [5] have demonstrated that by using the conditional
generation of different classes with a pre-trained denoising diffusion model [4,
39], it is possible to boost the performance of downstream classification tasks,
emphasizing the potential benefits of using synthetic data to enhance AI models.

As mentioned earlier, collecting large datasets for specific computer vision
tasks can be challenging, especially in the domain of facial images, which are
considered one of the most sensitive data modalities. To alleviate this problem,
there has been a surge in research within the community focused on developing
methodologies for creating datasets that either complement existing ones [30]
(mainly for bias mitigation, addressing the problem of underrepresented data
for some sensitive groups) or entirely replace the datasets used for training FR
systems. Methods such as IDiffFace [8], Digiface1M [6], and DCFace [22] aim to
generate useful datasets for training an FR system from scratch. To generate a
useful dataset for training an FR system, we need to include various identities
with diverse demographic labels (i.e., inter-class variability on the order of tens
of thousands), and for each identity, variations of the same identity (i.e., intra-
class variability, such as different poses and expressions, etc.). When generating
variations of the same identity, it is crucial to ensure the preservation of the
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identity, for example, when changing the pose. Current methods in literature
enforce this condition by using a separate, strong, pre-trained FR system [8,22] or
by utilizing identity attribute labels in large datasets like CASIA-WebFace [51].
However, the challenge lies in replacing the training dataset of the FR system
with synthetic data, not using a strong pre-trained FR system trained on real
data to generate synthetic data which is a strong and unreasonable prior.

It is difficult to quantify the benefits gained through synthetic datasets, as
they often fall short of the performance achieved by the pre-trained FR systems
used during their generation phase.

Another approach involves using 3D-rendering engines, as seen in publicly
available datasets like Digiface1M [6]. This method is advantageous because it
does not require any specific enforcement for identity preservation when gen-
erating variations of the same identity, given direct access to the exact mesh
and vertices that will eventually be rendered into a face image using different
rendering methodologies.

Hence, we can conclude that by changing the pose of the subject or the
lighting of the environment, the identity remains unchanged. However, a signifi-
cant downside is observed when training an FR system with these 3D-rendered
datasets, like Digiface1M, and evaluating it against standard FR benchmarks
such as IJB-C [26]. There exists a large performance gap, possibly due to an
Out-of-Distribution (OOD) problem [6].

1.1 Research Problem

The collection of datasets containing identity-labeled human faces is often im-
peded by privacy concerns [32]. Consequently, there is an increasing trend toward
synthesizing such data, which is then utilized to train FR models. This paper
investigates the following hypothesis:

Face images in existing rendered datasets can be made more realistic while
preserving identities, without the need for identity labels or a pre-trained
FR model, thereby improving the accuracy of FR models trained on this
data.

Our primary contribution is to validate this hypothesis through extensive exper-
iments. It tries to address the OOD problem of 3D Face Renderings compared
to face images captured from the real world.

1.2 Key Contributions

In this paper, our key contribution lies in investigating and analyzing the po-
tential of introducing photorealism into 3D-rendered datasets, as depicted in
Figure 2, without using any identity labels or a trained FR system. We demon-
strate that we can achieve a performance gain with an FR system trained on
our more photorealistic dataset (i.e., transferring realism), thereby opening new
avenues for exploring this topic. To the best of our knowledge, this is the first
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attempt to study the effect of photorealism on top of 3D-rendered facial images
for gaining performance improvement in FR systems.

Our contributions are as follows:
– We analyze the applicability of transfer learning methodologies to bridge

the gap between imperfect simulation of the real world in the 3D rendering
engines, specifically in the domain of face images.

– In contrast to previous works, which require a strong pre-trained FR model
to generate useful data for training an FR model, we observe a performance
boost without relying on any pre-trained FR system or identity labels in the
challenging task of FR.

– We introduce a mathematical formulation for the realism transfer idea and
reformulate other approaches using this unified framework.

In Section 2, we lay some background on the problem and introduce relevant
methods to our analysis. In Section 3, we define our problem setting. Finally, in
Section 4, we explain our experimental analysis.

Fig. 2: In this paper, we study the efficacy of image-to-image translation methodolo-
gies applied to enhance the performance of face recognition—in essence a challenging
classification task. Starting with a dataset of 3D-rendered human faces (i.e. Dsyn), that
exhibit a domain shift compared to real-world human face images, we apply various
image-to-image translation and Face Restoration methodologies (i.e., Realism Trans-
fer Method Block) that only require limited identity unlabeled real datasets (i.e.,
Dreal) or subset of unrealistic images (i.e., D′

syn) themselves to train. We then train a
face recognition network on both the original (unrealistic-looking) and the newly trans-
lated (more realistic) images, DRT, to investigate whether this approach can improve
the accuracy of FR systems.

2 Related Work

In this section, we will briefly overview relevant topics related to the usage and
generation of synthetic data, as well as methods that can be applied to our
problem setting.



Synthetic to Authentic 5

2.1 Synthetic Data in Computer Vision

Synthetic data generation has become a key strategy for creating vast quanti-
ties of accurately annotated data, which is necessary for computer vision tasks
that often require detailed labeling. This approach facilitates the development
of comprehensive datasets essential for training and improving vision-based al-
gorithms and has been extensively explored in the research community recently.
For example, synthetic data has been utilized in tasks such as Semantic Image
Segmentation [7,24,44], Optical Flow Estimation [41], Face Parsing [46] and Face
Recognition [6], Human Motion Understanding [15, 25], and other computer vi-
sion tasks that require dense, accurate labels. Some of these approaches [6,14,46]
utilize 3D-rendering engines and physics simulators [10] to model the underlying
physics of the real world. This ensures that the distribution of the generated
data is similar to that of data gathered from the real world, making it useful
for the applicability of these data and the models trained on them. Our analysis
in this paper makes a significant stride in alleviating the domain gap caused by
imperfect simulation, modeling, and the limited computing power available to
simulate the real world.

2.2 Unpaired Image-to-Image Translation

In this section, we briefly highlight methodologies that are particularly promis-
ing for enhancing realism in computer graphics applications—a critical challenge
in the domain of FR. Among these, VSAIT [42] introduces a novel method for
unpaired image-to-image translation using Vector Symbolic Architectures (VSA)
to minimize semantic flipping, which occurs when the content of the translated
images does not match the semantic context of source domain. This is specifi-
cally important as it plays a key role in the photorealism of computer graphics
applications [34]. The authors propose leveraging the VSA framework’s capac-
ity for high-dimensional symbolic computation to maintain content consistency
between the source and translated images. This is especially useful since the
VSA framework is robust against noise. This method is one of the methods
that we examine for the Realism Transfer Method in Figure 2. In the Density
Changing Regularized Unpaired Image Translation (DECENT) method [49], the
authors focused on the concept of density-changing regularization. The method
assumes that image patches of high probability density in one domain should be
mapped to patches of high density in another domain. To enforce this principle,
two density estimators were trained for each domain, and penalties were ap-
plied to the variance in density changes. This approach allows for more accurate
preservation of neighboring information without relying on pairwise distances.
Recently, authors in [20] introduced the Unpaired Neural Schrödinger Bridge
(UNSB) method, which formulates the Schrödinger Bridge problem for the I2I
task as a sequence of adversarial learning tasks. By leveraging discriminators
and regularization techniques, they effectively overcome the curse of dimension-
ality. Essentially, their approach minimizes transport costs under constraints of
Kullback-Leibler divergence.
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2.3 Inverse Problem and Generative Prior
Among the approaches that incorporate a generative prior, inverse problem
methodologies can also be applied to enhance realism. We consider two main
types of generators: GAN-based and Diffusion-based. Specifically, in the case
of employing StyleGANs [17, 19], which are trained on the domain of real data
(e.g., FFHQ [18] or its recent extension LPFF [47]), and inverting unrealistic
images to one of the StyleGANs’s latent-spaces (e.g., W, W+) using various
methodologies, we aim to achieve the desired realism by reconstructing the re-
sulting latent point. There are various methods for StyleGAN inversion, includ-
ing Optimization-Based [2,3], Encoder-Based, such as e4e [43] and pSp [33] and
HyperNetwork-Based [13]. We leave the interested reader to recent surveys for
details of each approach [48].

Diffusion models [4, 40] have recently emerged as a powerful new approach
to generative modeling. In the diffusion process, these models introduce small
amounts of noise to the original image in steps. During the reverse process,
they attempt to estimate and remove the noise added to the original image.
By repeating this process in the forward phase, we can transition from a signal
domain to white Gaussian noise. In the denoising reverse process, it is possible
to reconstruct the original signal. In the context of diffusion models, DDIM
inversion [40] is a fundamental technique that introduces small increments of
noise to a given image to approximate the corresponding input noise. Running
a reverse diffusion with DDIM and this noise allows for the reproduction of the
original image. In our problem setting, similar to StyleGAN Inversion, we utilize
an unconditional diffusion model trained exclusively on a dataset like FFHQ. Our
objective is to invert synthetic images back to a noise map and then reconstruct
the input image. This approach allows us to uniquely bridge the distribution gap
between real and synthetic images.

2.4 Face Restoration Methodologies
Face Restoration in computer vision aims to enhance degraded facial images
through methods like super-resolution, denoising, and deblurring. Deep learning
models, especially Convolutional Neural Networks (CNNs) and Generative Ad-
versarial Networks (GANs), have shown significant advancements in addressing
this problem. The authors in CodeFormer [54] applied the idea of vector quan-
tization [45] to pre-train a quantized autoencoder through self-reconstruction,
thereby obtaining a high-quality discrete codebook of face images and the cor-
responding decoder. The combination of the codebook’s prior knowledge and
the decoder is then used for face restoration. Based on this codebook prior, a
Transformer is employed for the accurate prediction of code combinations from
low-quality inputs. Additionally, a controllable feature transformation module
is introduced to enable a flexible trade-off between the restoration quality and
fidelity of the downgraded face images. The authors in PGDiff [50] introduced
the concept of partial guidance, in which the diffusion prior acts as a regular-
ization, and guidance is provided only on the desired properties of high-quality
images. The key to [50] is constructing proper guidance for each task of restora-
tion, inpainting, and masking separately. Methods like PGDiff [50] cannot be
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directly applied to our problem setting, as they require the use of a pre-trained
FR system for their restoration guidance.

2.5 Synthetic Data Generation for Face Recognition

The authors in SYNFace [29] utilize DiscoFaceGAN [12] to create facial images
with detailed control over specific attributes such as identity, pose, expression,
and illumination. This addresses the issue of limited variation within synthetic
datasets, which impacts the performance of FR systems. By blending features
from two synthetic identities to create new ones, SYNFace suggests a method
to closely mimic real-world data, recommending a combination of synthetic and
real images. In [9], the authors invert a dataset containing binary attribute labels
of faces into the W space of a StyleGAN2 generator. They then fit a Support
Vector Machine, using the distance to the hyperplane as a measure of the varia-
tion’s scale. By moving in the direction perpendicular to the hyperplane for each
attribute, they generated a small dataset to evaluate an FR system. As men-
tioned earlier, DigiFace-1M [6] provides a large-scale synthetic dataset for FR,
produced through computer graphics. It uniquely defines each identity with spe-
cific facial details, allowing for varied expressions and environments. This model,
which is independent of real data, narrows the gap between synthetic and real
data, setting a new benchmark for accuracy. However, it faces challenges such
as unrealistic textures and an unexamined demographic distribution.

DCFace [22], a newer Diffusion model, is designed for synthetic FR and
features a two-stage process: generating synthetic identities and mixing these
identities with styles from a “style bank.” This approach demonstrates a strong
capacity for creating unique and diverse identities, as evidenced by its perfor-
mance in comparison with other approaches. However, as previously mentioned,
the use of pre-trained FR systems or datasets with large identity is an unrea-
sonable prior as the goal is to generate synthetic data for training FR system
primarily. In IDiffFace [8], the authors introduced a method for generating syn-
thetic datasets for face recognition by leveraging conditional Latent Diffusion
Models (LDM) [35]. Significant emphasis is placed on the diffusion model’s con-
ditioning mechanism on face embeddings from a pre-trained FR system. This
approach enables the creation of highly realistic and varied synthetic faces by
conditioning the generative process on compact, identity-specific embeddings,
albeit at the cost of utilizing a separate pre-trained FR system and the identity
labels provided by large FR datasets. GANDiffFace [27] relies on the popular pre-
trained model provided by Stable Diffusion. This approach comprises two steps:
the first is dedicated to the synthesis of identities based on StyleGAN3 [17] and
transformation in its latent space. This transformation is based on directions
in the latent space that change specific attributes of images to introduce small
intra-class variability, such as altering the pose. Subsequently, relying on the
pre-trained text-to-image generator Stable Diffusion and the DreamBooth [36]
personalization fine-tuning approach, they introduce more intra-class variability.
The problem with this approach is its high reliance on large datasets [37] used
to train Stable Diffusion, which are not privacy-friendly.
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3 Transferring Realism to 3D Rendered Faces

3.1 Problem Formulation

Consider a dataset Dsyn comprising 3D-rendered images {{xk
n}

Kn

k=1}Nn=1 ⊆ X
of human faces, consisting of N identities. For each identity, n ∈ {1, · · · , N},
there exists an identity-dependent number of variations, Kn, representing dif-
ferent variations of the same identity. Let PX denote the empirical probability
distribution of the synthetic 3D-rendered data.

Our objective is to improve the utility of the synthetic dataset Dsyn with
respect to a utility measure, by utilizing either an unlabeled real dataset Dreal

with few samples, or a subset of the synthetic dataset Dsyn itself, denotes as
D′

syn, for training FR systems. In the following, we explore various approaches to
post-process the synthetic dataset Dsyn to obtain a new dataset DRT for training
the FR systems. We denote the generating distribution of post-processed data
by PY.

Consider two measurable spaces X and Y, where X represents the domain of
3D-rendered images (source), and Y represents the domain of images captured
from the real world (target). Let X ∼ PX and Y ∼ PY be random objects rep-
resenting random realizations from these spaces, with distributions PX and PY

respectively, where X ∈ X and Y ∈ Y. Let f : X → Y denote a mapping func-
tion that transforms elements from the source domain to the target domain, and
let g : Y → X denote a mapping function for the reverse transformation. These
mappings can be implemented as deep neural networks due to their flexibility
and capacity for learning complex transformations. However, our study primar-
ily focuses on the forward mapping f : X → Y, which transforms elements from
the source domain X to the target domain Y.

The objective of the image-to-image translation problem is to learn (find)
these mappings f and g such that: (i) the distribution of the mapped object
approximates the distribution of the target object, i.e., Pf(X) ≈ PY and/or
PX ≈ Pg(Y); and (ii) the mapping preserves or captures specific characteristics
or features of the input images. This objective can be formally expressed as
a constraint optimization problem, where the mapped images maintain certain
predefined properties or metrics of similarity with the input images, fundamental
to tasks like style transfer, domain adaptation, or generative modeling.

Let dist
(
Pf(X), PY

)
denote a discrepancy measure between the distributions

of the transformed source images and the target images. For example, one can
use the f-divergence dist(Pf(X), PY) = Df(Pf(X)∥PY) as such a measure. The
optimization problem then aims to minimize a loss function that quantifies both
the distributional similarity and the preservation of image characteristics:

min
f,g

dist
(
Pf(X), PY

)
+dist(Pg(Y), PX)+λxΦx(X, f (X))+λyΦy(Y, g (Y)), (1)

where Φx and Φy are penalty functions that enforce the preservation of desired
features in the transformed images, with λx and λy balancing the importance of
distribution similarity and feature preservation.
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3.2 Applying General Formulation to Related Works

DECENT [49]: The DECENT objective is introduced as:

min
f

Lgan + λidentity Lidentity + λdensity Ldensity, (2)

where Lgan= EPX
[log(1−D(f(X))] + EPY

[logD(Y)], Lidentity= EPY
[f(Y)−Y],

and Ldensity = V
(

hX (X)
hY(f(X))

)
, with V as the variance function, hX and hY being

density estimators for the corresponding domains, and D as the discriminator
(scoring function).

Given our general problem formulation as described in equation (1), it’s im-
portant to note that in many I2I translation models—particularly those influ-
enced by the CycleGAN framework—the functions f and g work together to
enforce cycle consistency. This means that for any image X ∈ X , the transfor-
mation sequence X → f(X) → g(f(X)) should closely approximate X. Similarly,
this principle applies in reverse, ensuring that the mappings f and g function
as approximate inverses of one another. This preserves the content of the im-
ages while facilitating translation between domains. Therefore, the identity loss
Lidentity is strategically implemented to reinforce this principle by encouraging
the function f to act as an identity map when provided with inputs from its tar-
get domain Y. Thus, Lgan corresponds to dist

(
Pf(X), PY

)
, Lidentity corresponds

to Φy(Y, g (Y)), and Ldensity corresponds to Φx(X, f (X)) in (1).
VSAIT [42]: The VSAIT objective is introduced as follows:

min
f

Lgan + λLVSA, (3)

where Lgan represents the hypervector adversarial loss, aimed at aligning the
distribution of generated images with that of the target images. Meanwhile,
LVSA is a loss designed to ensure the generator preserves the source content and
minimizes semantic flipping.
UNSB [20]: In the context of our general problem formulation, the Schrödinger
Bridge for image-to-image translation is tailored to find a mapping f : X → Y
that minimizes:

min
f

dist
(
Pf(X), PY

)
+ λ Φx(X, f(X)), (4)

where dist
(
Pf(X), PY

)
= DKL(Pf(X)∥PY) is the Kullback-Leibler divergence.

CodeFormer [54]: The objective of CodeFormer is introduced as follows:

min
f

LL1 + Lperceptual + Lcode + λgan Lgan, (5)

where LL1 represents the L1 loss in the image domain (between source and
targeted images), Lperceptual denotes the L2 loss in the embedding space (between
embeddings of the source and target images), Lcode is the L2 loss of codeword
approximations, and Lgan is the typical adversarial loss between the source image
and the reconstructed image. Considering our general problem formulation (1),
the LL1 and Lgan losses contribute towards the dist

(
Pf(X), PY

)
+dist(Pg(Y), PX)

terms, while the other terms act as penalty functions. For more details, we refer
the readers to Section 6 of [31], where the authors address generative compression
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techniques from the perspective of the transform coding problem and the classical
Shannon rate-distortion theorem.
DDIM Inversion [40]: The objective of DDIM Inversion can be aligned with
the general problem formulation in equation (1) by introducing an optimization
problem that seeks to minimize:

min
f

dist
(
Pf(X), PY

)
+ λxΦx(X, f (X)). (6)

Having outlined the brief theoretical underpinnings and methodological frame-
works for enhancing the realism of synthetic 3D imagery, we now proceed to
empirically validate these approaches through a series of experiments designed
to assess their efficacy in practical applications.

4 Experiments
Methodology: For transferring realism, we began by exploring various meth-
ods mentioned in Section 2, namely, CodeFormer [54], VSAIT [42], UNSB [20],
Decent [49], DDIM Inversion and StyleGAN Inversion [48]. The goal is to apply
Realism Transfer methods to unrealistic images (i.e., Dsyn) to get more photo-
realistic versions (i.e., DRT). These versions are used for training and evaluating
a FR system. For evaluation, we report verification accuracy (i.e., True Accep-
tance Rate (TAR)), where the thresholds are set using cross-validation [16] (see
Table 2), and TARs at different thresholds determined by fixed False Match
Rates (FMR) in Table 3 [26].

Experiment Setup: In the case of the CodeFormer, we utilized the pre-trained
models provided by the authors. These models were trained solely on the FFHQ
dataset [18], which does not contain any identity labels, as the identity informa-
tion was not used in their restoration method.

For training unpaired I2I methods, specifically, VSAIT, UNSB, and DE-
CENT, we randomly selected five shards for the source domain (i.e., 3D-rendered
human face images), each containing 20, 000 images from the DigiFace1M dataset.
Similarly, for the target domain, we randomly selected five shards, each contain-
ing 20, 000 images from the FFHQ dataset, and experimented with training
these three models using multiple combinations of source and target shards. Af-
ter training the realism transfer methods, we selected two according to the time
they needed to process an image and qualitative examination of the processed
images, which are depicted by Time/Image (s) and Qualitative Ex respectively
in Table 1. The processing time was measured on an NVIDIA RTX 3090 Ti
across all methods. Figure 3 presents some qualitative results of various meth-
ods. As can be qualitatively observed from Figure 3, CodeFormer generally per-
formed very well across all samples, preserving the entire facial structure. In

Table 1: Processing time (i.e., Time/image(s)) and Qualitative Image quality assess-
ment (i.e., Qualitative Ex) of different realism transfer methods.

PPPPPPPMetric
Method CodeFormer VSAIT DECENT UNSB DDIM Inversion

Time/Image (s) 0.41 0.015 0.13 0.38 8.7
Qualitative Ex Good Average Average Average Good
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contrast, VSAIT, DECENT, and UNSB did not consistently produce quality
images. Notably, these models sometimes dislocated parts of the images, result-
ing in multiple eyes and mouths. Surprisingly, as we will demonstrate in the
next section, VSAIT boosted the performance of FR systems. Here, ‘UNSB-NE-
1’ and ‘UNSB-NE-5’ refer to the number of Neural Evaluation (NE) steps of
the method; for more details, please refer to the original paper. Finally, images
produced by DDIM-Inversion appear as smoothed-out versions of the originals.
Among the examined methods, we chose CodeFormer because of its good quality
and reasonable compute time and VSAIT for its lower compute time and slightly
better quality than other I2I methods for the final FR experiments in the next
section.

4.1 Face Recognition Experiments
For a fair comparison between different methods, we trained an FR system con-
sisting of a ResNet50 backbone as modified in ArcFace’s implementation [11],
with the AdaFace [21] head for contrastive loss. We trained a separate network
for each of the methods mentioned in the previous section, namely, the original
DigiFace1M, and translated versions of the images generated using CodeFormer
and VSAIT. We name the translated dataset RealDigiFace. We also included
an FR baseline that methods like DCFace and IDiffFace are using; we used the
pre-trained model provided by the AdaFace paper, which was trained on the
WebFace4M dataset. For FR benchmarking, we considered various datasets in-
cluding LFW [16], CFPFP [38], CPLFW [52], CALFW [53], AgeDB [28], which
consist of high-quality images with various lighting, poses, and ages. We also
benchmarked against IJB-C [26], which is amongst the most challenging FR
benchmarks in the literature. The results are reported in Table 2 and Table 3.

In the tables mentioned, the first column, Transfer Method, refers to the
translation method used to translate the dataset. For example, if we want to
translate the DigiFace1M dataset using CodeFormer, the Transfer Method col-
umn for the row corresponding to this experiment is set to CodeFormer. For the
case of the WebFace4M, IDiffFace, and DCFace, we did not apply the translation,
as expected, since they are not 3D-Rendered data, and we wanted to compare
with these datasets as is. The Type column refers to the nature of the dataset,
which can be either Real (collected from the real world), Syn (synthetically
generated), or Syn-RT (translated from a Syn dataset using the method men-
tioned in the Transfer Method). The SynGen Req columns depict whether the
Transfer Method or the method used for generating the DigiFace1M, DCFace,
and IDiffFace dataset requires the identity labels or a pre-trained FR system.
Here, No-Req means that neither the translation method nor the method used
to generate the original dataset (i.e., DigiFace1M in our experiments) requires
the identity label or pre-trained FR system, and Pre-Trained FR indicates that
generating the dataset required a pre-trained FR system, which is undesirable
for the problem setting.

We want to emphasize that we repeated the experiments two to four times,
reporting the mean and standard deviation (std) across all benchmarks (i.e., if
we observed high variance we repeated the experiment), and also trained the FR
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Fig. 3: From the left to right, the first column corresponds to the original DigiFace1M
dataset, and the next columns are from after applying different translation tasks to
the original images, CodeFormer, VSAIT, DECENT, UNSB-NE-1, UNSB-NE-5 and
DDIM Inversion, respectively.
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models under the same settings (i.e., all were trained using an IR50 backbone
and AdaFace head, with the same early stopping procedure, etc.) for a fair
comparison and to ensure that the conclusions drawn are more reliable.

In the case of Table 2, compared to the model trained on the DigiFace1M,
we observed an average improvement of 2.0% over the FR model trained on
images generated after transferring them using CodeFormer and VSAIT, with
CodeFormer demonstrating a slight advantage in all datasets: LFW, CFPFP,
CPLFW, CALFW, and AgeDB. However, it can be observed that there is a
significant performance gap between the model trained on the WebFace4M and
all other methods, including the DCFace and IDiffFace models, which use such
a competitive FR system for generating their images.

In the challenging benchmark of IJB-C, as shown in Table 3, we first want
to highlight the significant gap in performance between a strong FR system
trained on the WebFace4M dataset across all FMR values, and both DCFace
and IDiffFace, as well as our models trained on the transferred images. The
performance boost observed of Realism images in the IJB-C across different
FMR values is larger than that reported in Table 2, with an average gain of
about 3− 5%.

The performance boost of Realism Transfer is notably larger at lower FMR
values. Specifically, for models trained on images translated using CodeFormer,
the performance approaches that of DCFace and IDiffFace at lower FMRs. Fur-
ther, we also plotted ROC Curves in the Figure 4, is also emphasizes that models
trained on synthetic data are lagging far behind the models that are trained on

Table 2: Results of different synthetic data generation methodologies used to train
multiple FR systems evaluated on the LFW, CFPFP, CPLFW, CALFW, and AgeDB,
the last column is the average test accuracy over these five datasets. We are reporting
mean and std over multiple runs of experiments in each row.

Transfer Method Dataset Type SynGen Req LFW CFPFP CPLFW CALFW AGEDB Avg

None WebFace4M Real - 99.78±0.00 98.97±0.00 94.17±0.00 95.98±0.00 97.78±0.00 97.34±0.00

None DigiFace1M Syn No-Req 91.29±0.57 88.62±0.69 70.28±0.42 73.38±1.15 68.24±2.17 78.14±0.84

VSAIT [42] DigiFace1M Syn-RT No-Req 92.87±0.15 90.25±0.17 72.91±0.68 75.98±0.28 70.83±1.22 80.32±0.25

CodeFormer [54] DigiFace1M Syn-RT No-Req 93.07±0.27 90.50±0.26 73.02±0.62 76.59±0.19 70.19±2.57 80.40±0.29

None IDiffFace [8] Syn Pre-Trained FR 96.37±0.15 95.54±0.11 73.00±0.47 86.24±0.29 78.29±0.63 84.58±0.16

None DCFace [22] Syn Pre-Trained FR 97.94±0.14 97.87±0.08 78.99±0.49 90.35±0.30 87.46±0.46 89.51±0.13

Table 3: Results of different synthetic data generation methodologies used to train
multiple FR systems evaluated on the IJB-C benchmark, here the numbers in the
header of the last six columns represent the different TAR@FMR. We are reporting
mean and std over multiple runs of experiments in each row.

Transfer Method Dataset Type SynGen Req 1e-06 1e-05 1e-04 0.001 0.01 0.1

None WebFace4M Real - 91.78±0.00 95.22±0.00 96.98±0.00 98.14±0.00 98.84±0.00 99.40±0.00

None DigiFace1M Syn No-Req 18.80±3.83 28.96±5.16 41.35±5.32 56.38±5.18 72.11±4.30 87.55±2.76

VSAIT [42] DigiFace1M Syn-RT No-Req 20.14±2.98 30.94±2.82 43.98±2.88 59.84±2.12 75.69±1.67 90.21±0.67

CodeFormer [54] DigiFace1M Syn-RT No-Req 23.72±2.76 32.48±3.53 45.88±3.53 61.74±2.61 77.27±1.54 90.72±0.81

None IDiffFace [8] Syn Pre-Trained FR 29.21±3.97 41.77±2.66 56.19±1.51 71.42±0.79 85.59±0.33 95.44±0.02

None DCFace [22] Syn Pre-Trained FR 40.89±0.21 58.58±1.93 72.69±0.53 83.80±0.00 91.97±0.12 97.25±0.02



14 P. Rahimi et al.

10 6 10 5 10 4 10 3 10 2 10 1

False Positive Rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC on IJB-C

[WebFace4M (AUC = 99.7101 %)]
[DCFace (AUC = 98.8821 %)]
[IDiffFace (AUC = 98.1838 %)]
[CodeFormer (AUC = 96.3727 %)]
[VSAIT (AUC = 95.5028 %)]
[DigiFace1M (AUC = 93.0767 %)]

Fig. 4: ROC Curve on the IJB-C benchmark, for each dataset we selected one of the
models in which we trained an FR on top of it, and plotted the ROC curve.

real data (i.e., WebFace4M), we can also clearly observe the performance boost
of Realism Transfer with respect to the DigiFace1M baseline.

5 Conclusion and Future Work
In this paper, we have explored the potential of utilizing various I2I and face
restoration methodologies to address the challenges posed by imperfect rendering
in 3D-rendered FR datasets, with the aim of making them more realistic.

Surprisingly, we found that by solely employing transfer models that do not
incorporate identity labels in their training paradigm, we can boost the perfor-
mance of FR systems across all benchmarks—LFW, CFPFF, CPLFW, CALFW,
AGEDB, and IJB-C—by 2% to 5%. This improvement is observed in comparison
with models trained on the original DigiFace1M dataset, thereby narrowing the
performance gap with models that use pre-trained FR data for generating their
data. Moreover, this approach moves us closer to our ultimate goal of achieving
performance parity with models trained on real data. This opens new avenues
for exploring the use of transfer methodologies in the domain of data enhance-
ment for improved downstream model performance. Given that the pipeline for
developing a new transfer method and applying it to the entirety of a source
dataset is cumbersome and time-consuming—especially since it necessitates mul-
tiple trainings of the FR system on the generated data for conclusions—a future
work, could be to explore a form of quality assessment metric. This metric would
correlate with the final performance of the FR system when trained on the gen-
erated dataset, allowing for the evaluation of the transferred data independently.
This approach could significantly streamline the process of assessing the poten-
tial of newly generated datasets for FR applications.
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