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Abstract

Presentation Attack Detection (PAD) is essential for en-
suring the security of face recognition (FR) systems, par-
ticularly in the context of mobile authentication in vari-
ous sectors, such as online banking and government ser-
vices. However, current PAD methods are often sensitive
to the data domain, partly due to the limitations of train-
ing PAD datasets. In this paper, we introduce the SO-
TERIA dataset, which provides captures of bona-fide and
diverse Presentation Attacks (PAs) recorded using smart-
phones.  The dataset was collected responsibly from 70
consenting individuals, as opposed to web scraping. It
includes face videos, motion data, and depth information
(when available) as well as a novel projector-based replay
attack. To demonstrate the utility of the SOTERIA dataset,
we evaluate the vulnerability of a SOTA FR model (IRes-
Netl00) to the PAs in the dataset. We also analyze the PAD
capabilities of a SOTA PAD model (DeepPixBis) through
cross-dataset experiments as well as on real attacks ob-
served in an industrial application. Our findings show the
effectiveness and versatility of the SOTERIA dataset in ad-
vancing PAD research, in particular toward generalization.

1. Introduction

Relying on the advances of Deep Learning (DL) tech-
nologies, Face Verification (FV) has matured and is today
widespread in various applications, including mobile au-
thentication or remote identity verification. However, as
their popularity grows, FV systems are increasingly tar-
geted by Presentation Attacks (PA) from fraudsters aiming
to spoof identities, as illustrated in Figure 1. Consequently,
there is a growing need for PAD solutions [20].

PAD has progressed significantly over the past few years
due to the advances in DL technologies. This was sup-
ported by dedicated PAD datasets captured by the commu-
nity. While intra-dataset evaluations appear excellent, cur-
rent PAD systems are under-performing in cross-dataset
experiments and thus lacking generalization capabilities,
which is key to widespread adoption. This is partly caused
by the limits of PAD datasets, which have fewer samples
than general-purpose face datasets, and which lack diversity
in terms of attacks, devices, environments and identities,
leading to bias in trained PAD models and/or over-fitting to
a single domain.
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Figure 1. Cropped faces and their corresponding negative cosine
distances [1, 4] to the reference cropped face, using IResNet100
model.

In this paper, we present the SOTERIA dataset, captured
using multiple smartphones, which addresses the aforemen-
tioned dataset limitations. It provides high-quality yet
noisy bona-fide (BF) and PA data, close to real-world ap-
plications, through diverse identities, recording scenarios,
Presentation Attack Instruments (PAls), and Capture Instru-
ments (CIs). Demographic information is also provided,
enabling bias evaluation and mitigation. It is composed
mainly of color images and videos, but also includes mo-
tion (accelerometer and gyroscope) data and depth map for
the compatible devices. In total, the dataset includes 8400



BF captures from 70 consenting volunteers, and more than
24000 PAs including a novel (to the best of our knowl-
edge) projector-based replay attack, making it one of the
largest and most diverse self-captured datasets in the litera-
ture. The remainder of this paper provides an overview of
existing PAD datasets, describes the SOTERIA dataset, and
presents a vulnerability analysis of a SOTA FV model and
an evaluation of a SOTA PAD method on this dataset. For
reprodicibility purposes, the source code is made publicly
available'.

2. Related work

Supporting the progress of DL based PAD, more than
40 face PAD datasets have been published since 2010 [20].
As we focus on general public and mobile use cases, we
put aside multimodal datasets relying on specialized sen-
sors [20, 13, 9], thus reducing the scope to 26 PAD datasets
captured using RGB cameras. We provide an overview of
the most recent ones in Table 1.

The lack of generalisation of PAD models is currently the
main challenge faced by the PAD community: while intra-
dataset performance is usually high, cross-dataset evalu-
ations often show models to under-perform [8, 14, 18,
17, 15]. This can be partly explained by the lack of
representativity in PAD datasets due to their acquisition
cost [10, 13, 20]. Such weaknesses can manifest in vari-
ous ways: (1) Several datasets, such as OULU-NPU [5],
RECOD-MPAD [2] or CRMA [7], only provide a few tens
of identities. Such lack of diversity may impact PAD algo-
rithms by rendering the models sensitive to a subject’s bio-
metric traits, and potentially biased and unfair. Many PAD
datasets are demographically imbalanced [13], yet some of
them, such as CASIA-SURF CefA [12], provide multiple
sensitive attributes, enabling bias quantification and mitiga-
tion. (2) The size of PAD datasets tends to be small. OULU-
NPU [5] and RECOD-MPAD [2] only include a few thou-
sand samples, well below the size of general purpose face
datasets. This is detrimental to achieving robust and generic
PAD models [10]. (3) PAD models need to be robust to ev-
ery capture condition, environment, CI, and, importantly,
any kind of PA. While datasets may offer diversity for one
of these factors, such as PA and devices [21], PAI [16], and
recording scenarios [9], almost no dataset provides an ex-
tensive and global variability, leading to potential bias and
lack of model flexibility across different domains.

Overall, while some datasets try to address one issue,
all self-captured datasets are subject to at least one weak-
ness. To alleviate the volume and representativity chal-
lenges, researchers have resorted to extracting samples from
the web, drastically reducing the cost of acquisition of a
large number of samples. Celeba-spoof [21] and Flickr-
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PAD [16] belong in this category: BF samples are ex-
tracted from the web and the effort was put into capturing
PAs. WFAS [19] is the only dataset to extract both BF and
PA samples from the web. Face images extracted from pho-
tos, screens or toys, are labeled as PA. The quality and noise
of such an approach is open to discussion, but no vulnera-
bility analysis has been conducted. However, web extracted
datasets are subject to legal constraints: as identities were
extracted without their consent, such datasets are not com-
pliant with most data protection laws, in particular the EU
GDPR, rendering them unusable by part of the PAD com-
munity. Alternatively, following the recent breakthrough in
generative models, SynthASpoof [8] explored their applica-
tion to PAD, with promising yet unsatisfactory results.

3. SOTERIA Dataset

The publicly available SOTERIA dataset> was con-
structed with the aim of achieving robust face PAD in a mo-
bile FV context. This was achieved through the acquisition
of realistic samples matching the variability of industry cap-
tures, which enable trained models to be agnostic to context
noise. Hence, our acquisition protocol, described in this
section, emphasizes the capture of diverse BF and PA sam-
ples by considering a high pool of consenting volunteers,
devices, PAIs, and loosely controlled captured scenarios.

3.1. Bona-fide Face Captures

BF face samples were acquired from 70 data subjects
using a dedicated application installed on the capturing de-
vices (smartphones). Each volunteer explicitly gave their
written consent to have their face data captured and used,
and the data collection process was both ethical and le-
gal. Various demographic traits were recorded for the data
subjects, to evaluate (in the future) bias in FV and PAD
algorithms, including gender, age, skin color (Fitzpatrick
scale), and the wearing of glasses. Our dataset boasts an
almost perfect gender split (49% females and 51% males),
a wide age range of about 20-80 years old (although most
subjects were in the 20-30 age range), and skin colours
across the whole Fitzpatrick-scale spectrum (with Types 11
and III being the most common). More information on the
demographics is available in [11], which is a related work
on personalised hygienic mask PAs.

To add variability to the data captures, the volunteers
were asked to attend two capture sessions, which were gen-
erally separated by approximately 3 weeks. During a cap-
ture session, the data subject was tasked with recording
themselves using the dedicated application, and using the
front and main cameras of 5 smartphones (Apple iPhone
6s and 12, Xiaomi Redmi 6 Pro and 9A, and Samsung
Galaxy S9) as CI in 3 scenarios, with and without hygienic

Zhttps://www.idiap.ch/dataset/soteria



Dataset Year | #Id | #BF/#PA | #sbf | pa #pai | #ci | #spa | form | Dem. | srchf | gdpr
Replay-Mobile[6] | 2016 | 40 | 550/640 | 5 |[PAnt |1 2 | 2 | vid | no | sc | yes
replay | 1
OULU-NPUIS] | 2017 | 55 | 7202880 | 3 ROt |2 6 1 | vid | no | sc | no
replay | 2
RECOD-MPAD [2] | 2020 | 45 | 450/1800 | 5 [BAnt |1 2 2 | vid | yes | sc | yes
replay | 2 1
print | 6

Celeba-spoof[21] | 2020 | 10k | 156k/469k - replay | 3 >10 8 img yes ws no
mask 1
print 1

CASIA-S.CeFA[12] | 2021 | 1607 | 6300/24k 1 replay | 1 1 6 vid yes sc no
mask | 2

CRMA[7] | 2022 | 47 | 423n3c | 3 |Pnt |1 3 1 | vid | no | sc | no
replay | 4

Flicki-PAD[16] | 2023 | 3000 | 3k/11k _ o jprnt | 242 |, 2 |img | no | ws | no
replay | 7+
print 8

WFAS[19] | 2023 | 148k | 530k/828k | - fflziy‘l‘ - | - |img | no | ws | no
other | 3

i print 1 1 img

SynthASpoof(8] | 2023 | 25k 25k/79k replay | 3 i 1 vid no ge yes

SOTERIA | 2024 | 70 | 8400024k | 3 [RAnt |2 8 3| V4 es | ose | yes
replay | 8 img

Table 1. Overview of main RGB PAD datasets since 2020, and two commonly used mobile-based datasets (Replay-Mobile and OULU-
NPU) where: # = number, sbf = BF capture scenario, ci = Capture Instrument, spa = PA capture scenario, form = Data format, Dem =
Demographic data, srcbf = Source of BF samples (sc = Self Captured, ws = Web scraped, ge = Generated), gdpr = consensual and GDPR

compliant.

masks, for a total of 60 captures. Three lighting scenar-
ios were defined to ensure variability in the captures: in-
door, indoor low, and outdoor lateral. These scenarios en-
compass an ideal/normal capture scenario, but also under-
and over-lit environments, challenging the CIs and adding
noise to the captures (back-light and glare were nevertheless
avoided). The acquired dataset also includes a large variety
of backgrounds, particularly for outdoor captures. Addi-
tionally, to emulate the facial motion challenge employed in
various PAD products, volunteers were prompted to move
their head side-to-side after the first 5 seconds of recording.
Hence, the acquired BF videos contain both still, frontal
face views, as well as faces turning left and right. Motion in-
formation and depth were also recorded when possible®. In
total, the BF part of the SOTERIA dataset consists of 8400
diverse captures from 70 identities.

3.2. Presentation Attack Captures

The BF samples were used to create and capture 4 dif-
ferent types of attack: print, mobile replay, TV replay, and
projector replay. For each type of PA, several indoor sce-

3Can be exploited for future work on multimodal PAD systems. This
paper considers only the RGB data for benchmarking.

narios were considered in order to add variety and noise. A
sample of the 24000 captured PAs is provided in Figure 2.

Print attacks: Best-effort print attacks were tar-
geted. Face photos were printed on glossy paper using a
laser printer, and matte paper using an inkjet printer. The
print attacks were then recorded using both the front and
main cameras of Cls in 3 scenarios: (a) normal light, (b) low
light, and (c) curved. Some print attacks were recorded
from the side with an unconstrained angle, including frontal
views. The printed photos were also curved and recorded
front-on.

Mobile replay attacks: Smartphones were used as both
PAI (attacking device) and CI (attacked device). We defined
a set of pairs of attacked/attacking devices (Table 2) so that
each Cl is attacked via two display technologies (OLED and
LCD-Based).

Two configurations of mobile replay were performed: (1)
best-effort PA, where for each identity, only the best BF
capture was used to perform PAs through multiple at-
tacked/attacking device pairings; and (2) medium-effort PA,
where all BF captures were used to perform a single PA
each, with rolling pairings.

Four scenarios were applied: (d) normal light, (e) low
light (nominal), (f) vertical tilted low light, (g) horizontal
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Figure 2. Examples of captures included in the SOTERIA dataset

tilted low light. The low light scenario minimizes reflection
in the recording and is considered to be the best-effort cap-
ture scenario.

Attacked Device Attacking Devices
iPhone 12 iPhone 6S & S9
iPhone 6S iPhone 12 & Redmi 6
S9 iPhone 12 & Redmi 9A
Redmi 6 pro iPhone 12 & Redmi 9A
Redmi 9A iPhone 12 & S9

Table 2. Pairing attacked(CI)/attacking(PAI) devices considered
for mobile replays attacks.

TV replay attacks: For each data subject, two captures
were selected and replayed on a wide HD TV. Replays were
captured using the front CIs in 4 scenarios: (h) normal
light, (i) low light (nominal), (j) vertical tilted low light,
and (k) horizontal tilted low light.

Projector replay attacks: A lamp-based projector
(IBM iLM300) was used to project the videos on two
screens: white and green. The projector was placed 2m
away from the projection screen. The attacks were recorded
with the front CIs by replaying two captures per identity in
3 scenarios: (1) normal light, (m) low light, and (n) tilt.

4. Vulnerability Analysis

This section presents a vulnerability analysis of the FV
model IResNet100 # to PAs in different scenarios. We chose
IResNet100 as it is one of the best off-the-shelf SOTA
FV models in use today. The vulnerability to four differ-
ent PAs (print and replay mobile/TV/projector) is evalu-
ated by analysing the relationship between the BF genuine
(G), zero-effort impostor (ZEI), and PA scores. The deci-
sion threshold was computed on IJB-C @FMR=0.1%. As
mentioned in Section 3.1, data subjects participated in two
recording sessions. For the vulnerability analysis, the first
and second session data were used for enrollment and prob-
ing, respectively.

The vulnerability analysis provides insight into the abil-
ity of the IResNet100 FV model to differentiate between
PAs and BF presentations, and therefore the ability of the
SOTERIA PA dataset to spoof this model. We analyze
the results in terms of the distribution of scores obtained
from the BF face comparisons (G and ZEI) and each PA
type (Figure 3). We also quantify the vulnerability to each
PA in terms of Impostor Attack Presentation Match Rate
(IAPMR) (Table 3), which indicates the percentage of PAs
that are falsely “accepted” as G users of the FV system. So,
the higher the IAPMR, the more vulnerable the system is to
the PA.

In Figure 3, it is evident that the clearest separation is be-

4https ://github.com/deepinsight/insightface



Print

Replay mobile Replay TV Replay projector

matte-inkjet glossy-laser LCD OLED LCD Green  White
Normal light 99.5 99.6 92.1 931 91.9 83.9 95.0
Low light 96.7 99.8 915 903 922 82.8 96.8
Curved 99.7 99.5 - - - - -
Tilted - - 843 854 88.5 58.0 89.1
Avg 99.3 88.3 90.3 81.9 89.2

Table 3. IAPMR (%) for different PA scenarios. The threshold was set on [JB-C @ FMR=0.1%. Columns represent the attack device:
paper & printer types for print attacks, replay device for replay mobile and TV attacks, background wall colour for projector attacks. Rows
represent different recording conditions: normal & low light for all attacks, tilted recording angle for replay attacks, and curved paper for

print attacks.

OFMR@0.1%

G: frontal G: movements G: mask ZEI PAs

Figure 3. BF G scores when face data was acquired only front-
on (G: frontal), with side-to-side head movements (G: move-
ments), and with a hygienic mask (G: mask). ZEI distribu-
tion corresponds to BF ZEI scores (both frontal and side-to-side
head movement face captures). PAs distribution represents the
combined scores for print, replay-mobile, replay-tv, and replay-
projector PAs. Decision threshold is set @ FMR=0.1% on 1JB-C.

tween the G: frontal face and ZEI scores. This would result
in the best FV accuracy. Adding variations like side-to-side
head movements and hygienic masks has the effect of dis-
persing the G scores and pushing the distribution closer to
the ZEI distribution. This would result in a decrease in
FV accuracy. Regarding the PAs score distribution, for the
most part there is a clear overlap with the genuine scores
(particularly the frontal face and side-to-side head move-
ment distributions). This is confirmed by the high average
IAPMR of 89.2% across all PA types in Table 3, which im-
plies that 89.2% of the print and replay attacks considered
in this analysis would succeed in fooling the IResNet100
FV model (i.e., the model would classify these attacks as
genuine BF face samples). Table 3 also shows that, on av-
erage, the IResNet100 FV model is most vulnerable to print
attacks (99.3% IAPMR), least vulnerable to projector-based
replay attacks (81.9% IAPMR), and almost equally vulner-
able to mobile-based and TV-based replay attacks.

Figure 4 presents the score distributions for the four dif-

ferent PA types separately. For all PAs, it appears that light-
ing does not have a significant effect on the comparison
scores obtained by the IResNet100 FV model. This is con-
firmed by Table 3, where the IAPMR between the “normal
light” and “low light” scenarios differs by a maximum of
only about 3% across all PAs. For print attacks, curving the
paper on which the face has been printed when presenting it
to the attacked device, also has no perceivable effect on the
obtained scores. The IAPMR is 99.5% — 99.7% depending
on the type of paper used for the PA (Table 3). For mobile-
based replay attacks, changing the screen technology (i.e.,
LCD versus OLED) also does not affect the vulnerability
of IResNetl100 to a high degree (Table 3 shows a maxi-
mum IAPMR difference of about 1%). Tilting (horizontally
or vertically) the attacked device (CI) when attempting a
mobile- or TV-based replay attack seems to lower the result-
ing scores, pushing more of them below the match thresh-
old @FMR of 0.1%. This makes it more likely that a score
would be classified as a ZEI — consequently, the IAPMR
(vulnerability) is reduced, making the attacks less likely to
fool the IResNet100 FV system. This effect is most pro-
nounced in projector-based replay attacks, when the back-
ground colour is changed from white to green, in which case
the ITAPMR drops to 58%. This makes sense, because im-
ages projected on a green screen add an unnatural hue to
the face image (see Figure 2(1)), incorporating a tilt skews
the face (see Figure 2(n)), and these two factors combined
make it more difficult to match the PA to the original (gen-
uine) face (thereby reducing the system’s vulnerability to
this PA).

Overall, our analysis shows that IResNet100 is highly
vulnerable to all PAs in the SOTERIA dataset, except for
projector replay attacks on a green screen combined with
tilting the CI. Changing the lighting in the recording envi-
ronment, the curvature of printed face photos, the type of
paper and printer used for creating print attacks, the screen
technology for replay mobile attacks, and in most cases
the tilting of the CI, do not significantly reduce the sys-
tem’s vulnerability (IAPMR). Since IResNet100 is one of
the most popular SOTA FV models, our observations sug-
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Figure 4. IResNet100 score distributions for 4 different PA types.

gest that the PAs in SOTERIA are sufficiently challeng-
ing to fool modern FV systems. This highlights the rele-
vance of our dataset in the current face recognition land-
scape. Furthermore, as all PAs in SOTERIA can be eas-
ily created by the average person, our vulnerability analysis
suggests a pressing need for PAD algorithms that are capa-
ble of thwarting such PAs.

5. Presentation Attack Detection

This section evaluates the PAD capabilities of an open-
source PAD model, DeepPixBiS [3], trained and/or tested
on the SOTERIA dataset. DeepPixBiS is a frame-level
CNN-based framework for PAD that relies on pixel-wise
binary supervision by using a loss function combining bi-
nary loss and pixel-wise binary loss. Section 5.1 presents a
cross-dataset analysis of DeepPixBiS on publicly available
PAD datasets, and Section 5.2 applies DeepPixBiS to PAs
acquired in a real industrial scenario.

5.1. Cross-dataset Analysis

We trained DeepPixBis on three public, self-captured,
and mobile-centric datasets: Replay-Mobile[6], OULU-
NPUI[5], and our new dataset (SOTERIA). For Replay-
Mobile we used the default training protocol, for OULU-
NPU we used protocol 4, and for SOTERIA we split the
dataset into 30-20-20 subjects for train, dev and eval, re-
spectively. For training, we used 10 frames equally spaced
over the length of the video, and for evaluation we used
20. When training a PAD model, ideally we want it to

generalize across different PAD datasets. This would pro-
vide confidence in the model’s ability to detect PAs across
different domains, and not only PAs captured in the same
conditions as the PAs on which the model was trained. To
evaluate the suitability of SOTERIA for training a general-
izable PAD model, Table 4 compares the APCER of Deep-
PixBiS when trained on SOTERIA versus Replay-Mobile
and OULU-NPU.

From Table 4 we see that, when DeepPixBiS is trained
on SOTERIA, the cross-dataset APCER is comparable to
the intra-dataset APCER for some PA types. For print at-
tacks, the APCER of 4.1% obtained when evaluating Deep-
PixBiS on Replay-Mobile is better than the APCER of
11.8% on SOTERIA. When evaluating on OULU-NPU,
however, the APCER of 20.7% is worse than that on SO-
TERIA. In comparison, when DeepPixBiS is trained on
OULU-NPU, the cross-dataset APCER is always worse
than the intra-dataset APCER: 64.8% on SOTERIA’s print
attacks and 23.9% on Replay-Mobile, compared to 8.9% on
OULU-NPU itself. A similar trend can be observed when
DeepPixBiS is trained on Replay-Mobile (albeit with lower
APCERs). So, in terms of print attacks, the SOTERIA-
trained model seems reasonably generalizable, at least more
so than the Replay-Mobile and OULU-NPU models.

In terms of replay attacks, Table 4 shows that, when
DeepPixBiS is trained on SOTERIA, the APCER of 3.4%
for replay attacks on OULU-NPU is comparable to the 0.8
—7.3% APCER for replay attacks on SOTERIA. However,
the APCER of 30.6% on Replay-Mobile’s matte screen (re-



Replay-Mobile

OULU-NPU

PAI print matte screen \ print replay \ print replay-mobile replay-tv replay-projector

Replay-Mobile 0.0 0.0 149 27.7
OULU-NPU 239 22.7 89 51
SOTERIA 4.1 30.6 20.7 34

SOTERIA
12.9 52.8 253 45.6
64.8 10.2 41.2 32.9
11.8 0.8 7.3 6.2

Table 4. APCER(%) @EER of DeepPixBiS when trained (rows) and tested (columns) on different datasets.

play) attacks is much higher than the APCER achieved
on SOTERIA’s replay attacks. This is understandable, be-
cause SOTERIA contains no PAs captured on matte screen
devices (e.g., tablets). When DeepPixBiS is trained on
OULU-NPU instead, the cross-dataset APCERs of 22.7%
for matte screen attacks on Replay-Mobile and 10.2 —
41.2% on SOTERIA’s replay attacks are all higher than
the APCER of 5.1% for replay attacks on the OULU-NPU
dataset itself. Similarly, when DeepPixBiS is trained on
Replay-Mobile, the cross-dataset APCER for replay attacks
is always much worse than the 0% intra-dataset APCER
(27.7% on OULU-NPU and 25.3 — 52.8% on SOTERIA).
So it seems that, even for replay PAs, the SOTERIA-trained
DeepPixBiS model generalizes reasonably well, more so
than the Replay-Mobile and OULU-NPU models.

The final observation from Table 4 is that, when Deep-
PixBiS is trained on Replay-Mobile or OULU-NPU, the
PAD performance on SOTERIA’s attacks suffers. In par-
ticular, the Replay-Mobile model achieves an intra-dataset
APCER of 0%, but on SOTERIA the APCER varies from
12.9% to 52.8%. Similarly, on its own dataset the OULU-
NPU model obtains APCER of 5.1 — 8.9%, whereas on SO-
TERIA the APCER is 10.2 — 64.8%. This may be attributed
to the use of different devices in capturing the SOTERIA
PAs, as well as to two novelties in SOTERIA that are not
present in the other datasets (highlighting the need to in-
clude these PAs in PAD training): (i) the replay TV and
projector attacks, and (ii) the inclusion of side-to-side head
movements in all replay attacks. So, we may conclude that
the Replay-Mobile and OULU-NPU datasets do not lend
themselves well to training a PAD model (at least Deep-
PixBiS) that is generalizable across the set of PAs repre-
sented in SOTERIA.

These findings suggest that training on the SOTERIA
dataset results in PAD models that are more generalizable
than models trained on the Replay-Mobile or OULU-NPU
datasets. However, to improve the overall performance of
the PAD model, a better approach may be to train it on mul-
tiple datasets instead of a single one. This way, a larger
number and greater variety of BF and PA samples would be
present in the training data, so we could expect the trained
PAD model to be more agnostic to the different datasets’
domains and thus more generalizable. This will be studied
in future works.

5.2. Application to Industrial Scenario

As a complementary analysis, we conducted experi-
ments using attacks observed in an industrial application.
Identity verification companies usually provide services to
automatically authenticate an identity document and its
owner. This includes a face verification step that is con-
ducted by comparing a video “selfie” to the face picture in
the document: this check is subjected to PAs, which are
commonly observed. As the selfie is captured by the user
“in the wild”, recordings are noisy and diverse in terms
of environment, capture quality, acquisition device, post-
processing and compression. PA are also highly diverse
in terms of type (see Distribution in Table 5) and quality,
yet most PA are low-effort. We extracted and manually la-
beled 20000 sessions from an industrial production flow,
among which approximately 1000 samples are PAs. This
includes various PAs, one of which is a new PA unseen
by all explored datasets: referred to as ID Doc., it corre-
sponds to the presentation of an identity document instead
of a selfie, which is usually glossy with security features
possibly overlaying the face zone. As these data are con-
fidential, this short analysis exclusively aims to provide in-
sights into challenges that must be dealt with for PAD mod-
els to be industry-ready.

The three models trained for the cross-dataset analysis in
Section 5.1 were applied to these data. The APCER per ob-
served PA type for each model is presented in Table 5. We
can see that the model trained using the SOTERIA dataset
outperforms the two others, with lower APCER for all PA
types, thus underlining the generalization capabilities en-
abled by our dataset. We also observe that, while PAs using
monitors and prints as PAI tend to be encountered less fre-
quently than the other PAs in practice, they also seem to
be harder to detect, with up to 17.9% of print attacks and
16.7% of picture replays from monitors not being rejected.

Overall, the model trained using SOTERIA achieves
10.61% EER, and 55.81% BPCER @ APCER of 1%. In
industry, a minimal APCER is targeted; however, the re-
sulting BPCER achieved by our best model is impractical
as more than half of BF presentations would be wrongfully
rejected.
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Distribution (%) 12.2 19.3 43.6 3.50 17.9 2.40
Replay-Mobile 45.5 57.2 39.2 25.0 339 20.8
OULU-NPU 285 7.7 219 389 21.7 29.2
SOTERIA 179 4.10 8.2 16.7 12.2 12.5

Table 5. APCER(%) @EER achieved by DeepPixBis models,
trained on 3 datasets, on production samples.

6. Conclusion

We captured and presented the SOTERIA dataset, which
provides over 8k BF samples from 70 consenting subjects,
and 24k PA samples crafted and recorded using different
devices and in diverse scenarios. Our cross-dataset and
industry-based experiments show that SOTERIA enables
PAD models to achieve decent generalization capabilities
for both print and replay PAs, compared to training on other
mobile-based PA datasets like Replay-Mobile and OULU-
NPU. The richness of the dataset allows for further analyses
that we plan to present in future work, including an analysis
of the effect of devices (as PAI or CI) and recording en-
vironments on PAD capabilities, an investigation into the
impact of motion challenge on PAD, and an evaluation of
the fairness of PAD algorithms (e.g., gender bias). Areas of
improvement include the addition of new PAs, in particular
prints attacks, which are under-represented in the dataset.
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