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ABSTRACT In today’s digitally interconnected landscape, confirming the genuine associations between
entities—whether they are items, devices, or individuals—and specific groups is critical. This paper
introduces a new group membership verification method while ensuring minimal information loss, coupled
with privacy-preservation and discrimination priors. Instead of verifying based on a similarity score in the
original data space, we use a min-max functional measure in a transformed space. This method comprises
two stages: (i) generating candidate nonlinear transform representations, and (ii) evaluating the min-max
measure over these representations for both group assignment and transform selection. We simultaneously
determine group membership and pick the appropriate representation from the candidate set based on the
evaluation score. To solve within this framework, we employ an iterative alternating algorithm that both
learns the parameters of candidate transforms and assigns group membership. Our method’s efficacy is
assessed on public datasets across various verification and identification scenarios and further tested on
real-world image databases, CFP and LFW.

INDEX TERMS Group testing, transform learning, discrimination, identification, verification.

I. INTRODUCTION
Group testing, initially conceived duringWorldWar II to effi-
ciently identify rare defects in large populations, has evolved
into a fundamental principle across a spectrum of fields, from
medical diagnostics to contemporary computer science appli-
cations. This approach, which pools and assesses samples
concurrently, maximizes resource efficiency and identifies
specific attributes in subsets of populations. As today is
systems—be it cloud infrastructures or the Internet of Things
(IoT)—deepen their interconnectedness, there’s a burgeon-
ing demand for robust tools that can authenticate entity
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affiliations within designated groups. Such verifications not
only aid in identification but also ensure authentication
in our interconnected digital ecosystems. Yet, despite the
advances, contemporary systems present intricate challenges,
underscoring a notable gap: the integration of traditional
group testing techniques with entity affiliation verifications.
Addressing this gap is paramount. It promises not just
enhanced membership verification, especially using facial
images, but also fortifies the twin pillars of privacy and
security in digital realms.
Verification Principles and Challenges: Group mem-

bership verification, at its core, seeks to confirm the
legitimacy of a specific item, device, or individual within
a designated group. This procedure unfolds in two pivotal
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stages: firstly, the verification of the entity’s affiliation to the
group, and secondly, the identification of the entity itself.
A paramount challenge in this domain is striking a delicate
balance: ensuring accurate distinction between members and
non-members while simultaneously preserving individual
identities to uphold privacy.
Verification Mechanism: At the core of the verification

process lies the collection of templates. These encompass
representations of items (via passive physical unclonable
functions (PUFs)), devices (through active PUFs), and unique
individual traits (captured by biometrics). These templates
are securely stored within a server-side data structure.
Upon a verification request, the client transmits a distinct
signature to the server, which subsequently determines access
authorization. It is essential that this mechanism preserves
utmost anonymity to shield individual identities. The primary
goal of this protocol is to enable the server to verify group
membership with accuracy, without having detailed insight
into the system’s internal mechanisms.
Operational Model: In our operational framework, a cen-

tral server manages the group membership protocol, process-
ing requests from various clients. When a client acquires a
new template, it communicates with the server. It is essential
to recognize the potential risks posed by such servers. While
some might operate with adversarial intentions, our model
assumes the server follows an ‘‘honest but curious’’ behavior.
This implies that although the server executes its functions
reliably and adheres to the prescribed protocol, there might
be an inherent inclination to interpret cached templates or
analyze the nature of incoming requests. Such servers could
attempt to glean additional information from the data they
handle, aiming either to reconstruct the original data or
infer relationships between different queries. The system’s
design meticulously ensures that the server cannot infer
private templates, guaranteeing accurate validation of a user’s
group affiliation and determining their group identity when
necessary.

A. RELATED WORK
The paradigm of anonymous authentication for group
members has been a staple in cryptography for years [1].
However, the applications we consider, particularly for
biometrics, diverge significantly from established models of
authentication, identification, and secret binding. Traditional
approaches ensure security either at the server or client end,
but they invariably result in the revelation of the user’s
identity.

Aggregating signals into a unified representation is widely
adopted in computer vision. Techniques such as Bag ofWords
(BoW) [2] and VLAD [3] consolidate local descriptors from
an image into a comprehensive descriptor. Contemporary
adaptations like BoW encoding convolutional features of
CNNs have been introduced [4]. Arandjelovic et al. further
refined VLAD with a learnable pooling layer, termed
NetVLAD [5], with subsequent iterations exploring soft
assignment tomultiple clusters [6]. Distinctly, Zhong et al. [7]

developed a descriptor for the faces of celebrities present in
the same photo. Although their system excels with two faces
per image, performance drops with an increasing number
of faces. Our approach, while inspired by these techniques,
diverges primarily because our queries comprise a singular
face, and our group representations usually encompass more
than two faces captured under diverse conditions.

The amalgamation of templates into a collective represen-
tation is prominent in biometrics. For example, [8] combined
multiple captures of a single person’s face to offset challenges
from poses, expressions, and image quality. Contrastingly,
our focus is on aggregating unique faces from different
individuals in a group. Notably, while conventional methods
prioritize retrieving visually analogous elements, they do not
inherently provide security or privacy.

The methodologies introduced in [9] and [10] pivot on
the notion of transforming randomly-selected templates into
discrete embeddings. These are then coalesced to form a
singular group representation. Their cost-effectiveness, cou-
pled with the inherent challenges of identity reconstruction,
positions these strategies as particularly compelling. Further
intricacies, including the impact of the sparsity level of
high-dimensional features characterizing group members on
aspects like security, compactness, and verification efficacy,
are expounded upon in [11]. In a progressive stride, [12]
departs from the conventional approach. Instead of stati-
cally computing group representations based on predefined
entities, this study concurrently learns group representation
and their corresponding assignments. By adopting variance
as a metric for dissimilarity, the approach endeavors to
minimize inter-group differences while amplifying intra-
group distinctions. Empirical assessments indicate that this
dual learning mechanism fosters enhanced performance, all
while maintaining robust security measures.

B. CONTRIBUTION
We propose a novel group membership assignment based
on joint modeling and learning of nonlinear transforms
with priors and nonlinear transform representation and
group representative assignment. The model parameters
are learned by minimizing an empirical expectation of
the model log likelihood, which, under the discrimination
prior, corresponds to maximizing the discrimination power
measure. The proposed model allows a rejection option over
continuous, discontinuous, and overlapping regions in the
transform domain. Our learning strategy is based on an
iterative, alternating algorithm with three steps. The honest
but curious server cannot reconstruct the signatures, i.e., the
data structure is protected in terms of security requirements.
Moreover, the privacy of the users is guaranteed by anony-
mous verification.

C. OUTLINE
Sec. III elucidates our framework. A comprehensive perfor-
mance analysis is presented in Sec. VII. Concluding remarks
are in Sec. VIII.
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FIGURE 1. Visualization of three sparse data representation models.

D. NOTATION
Vectors and matrices are denoted by boldface lower-case
(x) and upper-case (X) letters, respectively. We consider the
same notation for a random vector x and its realization.
The difference should be clear from the context. We use
the notation [N ] for the set {1, · · · ,N }. The superscript (·)T

stands for the transpose.

II. PRELIMINARIES ON SPARSE DATA REPRESENTATION
The foundational principle of sparse representation is to
express data using fewer components than traditionally
required, without compromising the integrity or essen-
tial characteristics of the data. This principle has found
widespread application across various domains, including
feature extraction, clustering, classification, and signal recon-
struction, underscoring its versatility and impact. Three
primarymodels of sparse data representation are the synthesis
model, the analysis model, and the transform model. In the
following section, we briefly review the essence of these
models. Figure 1 visualizes the core concepts of thesemodels.

A. SYNTHESIS MODEL
The synthesis model assumes that a high-dimensional data
sample xi ∈ RN can be approximated as a linear combination
of a select few basis columns (atoms) from a dictionary D =

[d1, · · · ,dM ] ∈ RN×M , yielding a sparse representation yi ∈

RM , where ∥yi∥0 ≪ M . The deterministic formulation of the
sparse synthesis model is expressed as xi = Dyi + vi, where
vi ∈ RN denotes the approximation error in the original data
domain—essentially, the residual between the actual data and
its sparse approximation. The synthesis model is also known
as the regression model with sparsity regularized penalty.

B. ANALYSIS MODEL
The analysis model employs a dictionary A ∈ RM×N with
M > N to analyze the data sample xi ∈ RN . Given this data
sample xi∈RN and dictionaryA∈RM×N , the model assumes
the sparse representation yi=Axi, i.e., ∥yi∥0≪M .

C. TRANSFORM MODEL
The transform model assumes that a high-dimensional data
sample xi can be effectively sparsified through a linear

transformation W ∈ RM×N , resulting in Wxi = yi + zi.
In this deterministic formulation, yi ∈ RM denotes the
sparse representation, which satisfies ∥yi∥0 ≪ M , and
zi represents the approximation error within the transform
domain. This model fundamentally employs linear transfor-
mation but significantly enhances its applicability through
the integration of nonlinearities. Nonlinearities can be intro-
duced via a generalized element-wise nonlinearity operator
ψθθθ (Wxi), where θθθ denotes the parameters modulating the
nonlinearity. Examples of nonlinear transforms include the
hard thresholding function, the soft thresholding function,
and ReLU activation function.

III. PROPOSED FRAMEWORK OVERVIEW
A. ASSIGNMENT AND LEARNING APPROACH
In our research, we introduce a methodology for learning
a privacy-preserving assignment. This stands in contrast to
the works cited in [13], [14], [15], [16], [17], [18], and
[19], where various generic privacy-preserving identification
or search mechanisms have been put forward. Unlike these
approaches, our protocol assigns group membership not
by assessing similarity in the original data space, but
through evaluating a min-max functional measure within a
transformed space. This assignment procedure unfolds in two
distinct steps: (i) generation of candidate nonlinear transform
representations, and (ii) evaluation of the min-max measure
across these representations leading to the assignment of
group membership.

In our pursuit to develop an assignment mechanism
that is sparse, discriminative, information-preserving, and
respects privacy, we employ specific priors when modeling
the candidate nonlinear transforms. In the learning process,
we simultaneously focus on two core objectives: (i) esti-
mating the parameters inherent to the candidate transforms,
and (ii) assigning group membership. To achieve both the
discriminative and privacy-preserving goals, we advocate for
support intersection measures. According to these measures,
every representation of a data instance that is assigned to
a specific group should maximize its support intersection
with other representations within that same group. On the
contrary, a representation associated with a particular group
should minimize its support intersection with representations
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from different groups. Here, ‘‘support intersection’’ between
vector representations denotes the count of non-zero elements
that both vectors contain at the same index positions.

B. SETUP
Consider a dataset of K data vectors, xi ∈ RN , represented
as X ∈ RN×K . For simplicity, we postulate that each entity,
whether an item, device, or individual, belongs to a singular
group. This means that each data vector, xi, is affiliated
with one distinct group c ∈ {1, · · · ,C}. We further assume
that entities within the same group exhibit similar features,
positioning them within proximate sub-spaces.

Our primary aim is to construct an information-preserving
group representation, θθθc = [νννc,τττ c] ∈ T L×2, c ∈ [C], for a
set of members. This representation should adhere to security
requirements; specifically, it should shield the inherent
structure of the data from servers that, while trustworthy,
may be intrusively curious (honest, but curious servers). Here,
the vectors νννc and τττ c are parameters representing similarity
and dissimilarity within group c ∈ [C]. Once these security
requirements are met, we commit these group representatives
to a public server. Our coding alphabet, denoted as T , can
adopt various forms such as binary, ternary, continuous,
and so forth. In this research, we consider a non-quantized
alphabet.

Our secondary goal revolves around deriving an
information-preserving transform representation, yi. This
representation, corresponding to the original space group
member xi, should remain distinguishable from non-
members. Simultaneously, it is imperative that it maintains
the privacy of the underlying entity, thus not disclosing the
member’s identity.

C. FRAMEWORK OVERVIEW
Our framework comprises the subsequent steps, as illustrated
in Figure 2:

1) PREPARATION AT OWNER SIDE
The owner jointly estimates the sparse representations and
assigns the group representatives from the data they possess.
This estimation is achieved using a trained linear mapping,
followed by a generalized element-wise nonlinearity. These
group representatives are then transmitted to the server, which
serves as a storage facility.

2) QUERYING AT CLIENT SIDE
The client produces a sparse representation from their query
data. This is performed utilizing the same trained linear
mapping and the generalized element-wise nonlinearity.
Subsequently, the client forwards this sparse representation
to the server.

3) SEARCHING AT SERVER SIDE
The server uses the received data to conduct similarity and
dissimilarity searches among the group representatives. This

FIGURE 2. General block diagram of the proposed framework.

process aims to precisely identify the group that most closely
matches the client’s query.

IV. ASSIGNMENT PRINCIPLE AND PROBABILISTIC
MODEL
In this section, we elucidate the core principle guiding
our group assignment methodology. Our focus is on the
evaluation of candidate representations through a specific
measure, and the probabilistic model integral to our approach
of privacy-preserving group membership assignment.

A. GROUP MEMBERSHIP ASSIGNMENT PRINCIPLE
The procedure for our group membership assignment is
bifurcated into:

(i) Candidate Representation Generation, and
(ii) Group and Nonlinear TransformRepresentation Assign-

ment.

1) CANDIDATE REPRESENTATION GENERATION
To derive a candidate representation, denoted as qi,c,
we employ a nonlinear transform (NT) symbolized as TPc
equipped with parameters Pc = {W ∈ RL×N ,νννc ∈ RL ,τττ c ∈

RL
}. This NT is applied to the input data xi. We provide a

schematic representation of this NT-based generation process
below. Here, the functionψ[νννc,τττ c] (·) denotes an element-wise
nonlinearity parameterized by [νννc,τττ c] =: θθθc, which we will
unpack in subsequent sections.

For the generation of an ensemble of candidate represen-
tations, symbolized as {qi,1, · · · ,qi,C }, we leverage a set of
C NTs represented as TT = {TP1 , · · · , TPC }, paired with
their respective parameter sets PT = {P1, · · · ,PC }. Each
NT, denoted as TPc , is uniquely characterized by its parameter
set Pc = {W ∈ RL×N ,νννc ∈ RL ,τττ c ∈ RL

}, c ∈ [C], though
all share a common linear map W. Yet, every NT possesses
unique pairs [νννc,τττ c] tied to a specific group c ∈ [C]. For
brevity, we also label the set of these parameter pairs as
θθθ = {θθθ1, · · · ,θθθC } = {[ννν1,τττ 1] , · · · , [νννC ,τττC ]}.
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2) GROUP AND NT REPRESENTATION ASSIGNMENT
Given the candidate representations, we proceed with the
actual assignment. Unlike traditional similarity (or dissimi-
larity) measures, we employ a min-max functional measure.
Each candidate representation undergoes evaluation through
this measure. Based on the evaluation score, we determine the
group membership and its associated NT representation.

B. PROBABILISTIC MODEL
To introduce the probabilistic model of our framework,
let’s start with the decomposition of the joint proba-
bility distribution p (xi, yi,θθθ ,W). Using the chain rule,
we have p (xi, yi,θθθ ,W) = p (xi, yi,θθθ | W) p (W). Assuming
p (xi | W) = p (xi) and applying the chain rule again,
we have:

p (xi, yi,θθθ | W) = p (yi,θθθ | xi,W) p (xi) (1a)

= p (xi | yi,θθθ ,W) p (yi,θθθ | W) (1b)

Therefore, using Bayes’ rule, we have:

p (yi,θθθ | xi,W) ∝ p (xi | yi,θθθ ,W) p (yi,θθθ | W) (2)

Let’s assume p (yi,θθθ | W) = p (yi,θθθ), i.e., neglects the
dependence on W. This independence assumption allows us
more flexibility in the class of assumptions related to sparsity
and discrimination for the parametric prior p (yi,θθθ). Also, for
simplification, let p (W | xi) = p (W). Given K data samples
X = [x1, · · · xK ] and using (2), we can consider the following
learning model:

p (Y,W | X) = p (Y | W,X) p (W | X) (3a)

=

K∏
i=1

∫
θθθ

p (yi,θθθ | xi,W) p (W) dθθθ (3b)

=

K∏
i=1

∫
θθθ

p (xi | yi,θθθ ,W) p (yi,θθθ) p (W) dθθθ

(3c)

Using this probabilistic formulation, we characterize our
learning model through the following components:

• A sparsifying error coupled with a θθθ adjustment error,
represented by the prior p (xi | yi,θθθ ,W).

• Discrimination and sparsity prior p (yi,θθθ).
• Linear mapW prior p (W).
By adopting this structured probabilistic perspective,

we aim for a holistic understanding of the dynamics between
the observed inputs, their associated transformations, model
parameters, and their linear mapping.

V. ADDRESSING PROBABILISTIC MODELING PRIORS
A. SPARSIFYING ERROR AND MODEL PARAMETERS
ADJUSTMENT ERROR PRIOR
In our pursuit to capture the intricate relationship between
observed data and its inherent structure, we formulate a

probabilistic construct as presented below:

p(xi |yi,θθθ ,W)

∝ exp
[
−

1
βspa

dspa (Wxi, yi)−
1
βadj

dadj (Wxi,θθθ)
]
, (4)

where dspa (·, ·) : RL
× RL

→ R represents the sparsifying
error measure, and dadj (·, ·) : RL

× RL
→ R represents the

model parameters adjustment error. The parameters βspa and
βadj are scaling factors.
Our primary objective for introducing this construct is

twofold. Initially, we encapsulate the sparsifying error vector
Wxi − yi. Subsequently, and crucially, we seek to refine the
alignment of our model’s estimations with observed data by
addressing discrepancies. This is achieved by implementing
an adjustment to the discrimination parameter error vector,
denoted asWxi−νννc−τττ c. We define our measures as follows:

dspa (Wxi, yi) =
1
2
∥Wxi − yi∥22, (5)

dadj (Wxi,θθθ) =
1
2
∥Wxi − νννc − τττ c∥

2
2. (6)

where the index c corresponds to the assigned class of
the data sample xi. These measures directly influence our
probabilistic model’s likelihood expressions, described as:

p (xi | yi,W) ∝ exp
[
−

1
βspa

dspa (Wxi, yi)
]
, (7)

p (xi | θθθ ,W) ∝ exp
[
−

1
βadj

dadj (Wxi,θθθ)
]
. (8)

B. SPARSITY AND DISCRIMINATION PRIOR
We model our sparsity-inducing and discrimination prior as
follows:

p(yi,θθθ)∝exp
[
−

1
βdisc

ddisc(yi,θθθ)−
1
βp
dp(θθθ)−

1
β1
d1(yi)

]
,

(9)

where ddisc represents the discrimination prior measure, dp
denotes the similarity/dissimilarity prior measure, and d1
indicates the sparsity measure. The parameters βdisc, βp,
and β1 are scaling factors. By considering the ℓ1-norm as
the sparsity measure for vector yi, i.e., d1(yi) = ∥yi∥1,
we introduce a prior that induces sparsity in yi. The sparsity-
inducing prior on yi is given by:

p (yi)∝exp
(
−∥yi∥1/β1

)
. (10)

The discrimination prior is modeled similarly as:

p (θθθ |yi)∝exp
[
−

1
βdisc

ddisc(yi,θθθ)−
1
βp
dp(θθθ)

]
(11)

In order to define the measures ddisc and dp, we first
describe our min-max discrimination measure based on the
following assumptions:
1) The discrimination measure is characterized by relation-

ships based on the support intersection between yi, νννc
and τττ c.
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2) The discrimination measure has a min-max struc-
ture, with its expression factored with respect to νννc
and τττ c.

We then elucidate our foundational measures related to
similarity, dissimilarity, and strength, focusing on the support
intersection between the representations and the θθθc parameter
pair. Following this, we detail our min-max discrimination
functional measure.

1) QUANTIFYING REPRESENTATION SIMILARITY AND
DISSIMILARITY
The measure Sim quantifies the similarity between two
representations y1 and y2. It is defined as:

Sim(y1, y2) = ∥y+

1 ⊙ y+

2 ∥1+ ∥y−

1 ⊙ y−

2 ∥1, (12)

where y1 = y+

1 − y−

1 ,y2 = y+

2 − y−

2 , y
+

1 = max(y1, 0) and
y−

1 = max(−y1, 0).
The term ∥y+

1 ⊙ y+

2 ∥1 measures the similarity in the
positive components. Essentially, for two vectors to have high
similarity in their positive components, they should both have
positive values at the same indices, and these values should
be relatively large. This is captured by the element-wise
multiplication (⊙) and the L1 norm. Similarly, the term ∥y−

1 ⊙

y−

2 ∥1 evaluates the agreement in their negative components.
The overall similarity score, therefore, combines the extent
to which the positive components agree and the negative
components agree. The larger the score, the more similar the
two representations are in both their positive and negative
components.

The measure Dis, related to dissimilarity (oppositeness)
between two representations y1 and y2 is defined as:

Dis(y1, y2) = ∥y+

1 ⊙ y−

2 ∥1+ ∥y−

1 ⊙ y+

2 ∥1. (13)

The term ∥y+

1 ⊙ y−

2 ∥1 computes the contrast between the
positive components of y1 and the negative components of
y2. A high value in this term indicates that there are indices
where y1 has a positive value while y2 has a negative value,
or vice versa. The element-wise multiplication emphasizes
this opposition. The term ∥y−

1 ⊙ y+

2 ∥1 mirrors this idea,
identifying negative values in y1 where there are positive
values in y2.

Furthermore, the measure Stg, which correlates to the
strength on the support intersection, is articulated as:

Stg(y1, y2)=∥y1⊙ y2∥22. (14)

Figure 3 depcits a visual representation of the similarity and
dissimilarity contributions pertaining to two typical sparse
representations, y1 and y2.

2) MIN-MAX DISCRIMINATION PRIOR MEASURE
We introduce a min-max functional, denoted as ddisc (yi,θθθ):

ddisc (yi,θθθ) = min
d

max
c

[
Sim (yi,τττ d )+ Dis (yi,νννc)]

+ min
d

Stg (yi,τττ d ) . (15)

FIGURE 3. Visualization of similarity and dissimilarity measures.

This formulated metric ensures that the transform represen-
tation, yi, aligns with the following criteria:
1) The similarity relative to τττ d is minimized, as measured

by Sim.
2) The intersection strength regarding support with respect

to τττ d is minimized, as evaluated by Stg.
3) The similarity relative to νννc is maximized, as measured

by Sim.
To understand the dynamics of this prior measure, consider

the formulation as akin to a dance of forces within a physical
field. In this space, the point—our transform representation,
denoted as yi—is swayed by two principal forces: one
symbolized by Sim(yi,τττ d) and the other by Dis (yi,νννc). The
force governed by mind Sim (yi,τττ d ) highlights the minimum
similarity metric as defined by Sim. This force operates
with an intent to maximize the ‘‘distance’’ between yi and
τττ d , effectively pushing yi away from regions that resemble
τττ d . In contrast, the force dictated by maxc Dis (yi,νννc)
is somewhat paradoxical. While the term ‘dissimilarity’
might suggest repulsion, within our defined metric space,
it functions differently. This force underscores yi’s pursuit
to align as closely as possible with the representation νννc by
amplifying its ‘oppositeness’ or dissimilarity. Consequently,
it attracts yi towards νννc, seeking regions where this measure
of ‘oppositeness’ is maximized.

At the heart of this formulation is the score ddisc (yi,θθθ).
This score is not just a mere numerical value but a
manifestation of equilibrium. It embodies the delicate
balance, almost a dance, between the aforementioned forces.
As they act upon yi, they ensure its positioning is not arbitrary
but follows the intricate choreography laid out by the relations
of Sim and Dis.

3) MODEL PARAMETERS θθθ PRIOR MEASURE
We introduce the measure dp (θθθ) to quantify the combined
influence of different parameter sets within the indexed range
{1, · · · ,C}. To achieve this, we harness pairwise interactions
between distinct parameter sets, computing their aggregate
effects as follows:

dp (θθθ) =

∑
c∈{1,··· ,C}

∑
d∈{1,··· ,C}\c

ddisc (νννc,θθθd )+ ddisc (τττ c,θθθd ) .

(16)

Here, the notation {1, · · · ,C} \ c refers to the set
{1, · · · , c− 1, c+ 1, · · · ,C}, effectively excluding the ele-
ment c from the set {1, · · · ,C}. Note that we have
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p (θθθ) ∝ exp
(
−dp (θθθ) /βp

)
. Indeed, dp (θθθ) quantifies both

the similarity and dissimilarity between the parameters θθθ by
employing the discrimination measure ddisc.

The dual summation ensures that for every parameter c,
we account for its relationship with every other distinct
parameter, d . In doing so, dp encapsulates a holistic view of
parameter inter-dependencies and interactions in the model.

C. LINEAR MAP PRIOR
The purpose of the ‘linear map prior’ is to penalize infor-
mation loss while simultaneously discouraging the adoption
of undesirable matrices. To achieve this dual objective,
we regularize both the condition number and the expected
coherence of the matrix W. Specifically, the prior is defined
as:

p (W) ∝ exp (−�(W)) , (17)

where

�(W) =
1
βW1

∥W∥
2
F +

1
βW2

∥WWT
− I∥

2
F

−
1
βW3

log | detWTW|. (18)

In this formulation:

• The term ∥W∥
2
F serves as a regularizer, penalizing the

magnitude of matrixW to ensure stability.
• ∥WWT

− I∥2F aims to minimize the deviation of W from
orthogonality.

• Lastly, log | detWTW| assesses the volume scaling factor
of W, thereby promoting full rank matrices.

For a more detailed exploration and justification of the
constraint�(W) on the linear mapW, readers are directed to
the works of [14] and [15], along with associated references
contained therein.

VI. LEARNING MODEL TO ASSIGN GROUP MEMBERSHIP
A. PROBLEM FORMULATION
Consider a given training dataset, denoted by X. The
task of directly maximizing the probability function
p (xi | yi,θθθ ,W) p (θθθ |yi) p (yi) p (W) over the parameter space
{Y,θθθ ,W} is computationally burdensome, primarily due
to the high dimensionality and nonlinearities involved.
To circumvent this challenge, we pivot our approach towards
minimizing the negative logarithm of our probabilistic
model (3c), over the variables {Y,θθθ ,W}. That is we aim to
minimize the negative log likelihood

− log
K∏
i=1

∫
θθθ

p (xi | yi,θθθ ,W) p (yi,θθθ) p (W) dθθθ (19)

over the variables {Y,θθθ ,W}. However, minimizing the exact
negative logarithm is difficult since it requires integrating to
compute the marginal and the partitioning function of the
prior p (y,θθθ). Instead, we consider minimizing the negative

logarithm of its maximum point-wise estimate:∫
θθθest

p (xi | yi,θθθest,W) p (yi,θθθest) dθθθest

≤ κ p(xi | yi,θθθ ,W) p (yi,θθθ) , (20)

where κ is a constant. Here, we assume that θθθ are the
parameters at which p (xi | yi,θθθest,W) p (yi,θθθest) attains its
maximum value.

Considering Eq. (3), (19), (20), we arrive at the following
problem formulation:

{Ŷ, θ̂θθ , Ŵ} = arg min
Y,θθθ ,W

K∑
i=1

[
− log p(xi | yi,θθθ ,W)

− log p(yi,θθθ)
]

− log p(W) . (21)

By substituting the measure obtained from section V, we can
define our optimization problem as follows:

{Ŷ, θ̂θθ , Ŵ} = arg min
Y,θθθ ,W

K∑
i=1

[
dspa (ui, yi)+ λadj dadj (ui,θθθ)

+ λdisc ddisc (yi,θθθ)+ λp dp (θθθ)+ λ1∥yi∥1
]

+ λW�(W) , (22)

where ui = Wxi represents the transformed input data.
The collection {λadj,λdisc,λp,λ1,λW} denotes the set of
Lagrangian multipliers, each serving as an inverse coefficient
to their associated scaling parameters. We set λspa = 1.

An essential point of clarification here is that our derived
solution to Eq. (22) does not equate to the maximum
a posteriori (MAP) solution. While the MAP provides a
point estimate by maximizing the posterior distribution,
it is computationally intensive due to the complexity of
calculating higher-dimensional integrals in the parameter
space.

Instead, our framework articulated in Eq. (22) encapsulates
an integrated marginal minimization (IMM) strategy. This
method entails a sequence of iterative steps, where, in each
iteration, we maximize the terms of our model with respect
to the variables Y, θθθ , and W. This integrated marginal
minimization offers several advantages:
• Computational Efficiency: Unlike the MAP approach,
which often requires complex integrations over the parame-
ter space, our method iteratively maximizes simpler terms,
allowing for more efficient computational procedures.

• Flexibility: Given the iterative nature of our method,
it is more adaptable to various datasets and can better
accommodate changes in data distribution, especially in
scenarios with limited or evolving data.

• Stability: The integrated approach reduces the risk of
settling into local optima that do not represent the broader
dataset well. By considering marginal effects iteratively,
we can capture more global patterns in the data, enhancing
the model’s generalization capabilities.
In essence, while the MAP solution offers a theoretical

ideal, practical constraints necessitate the use of strategies
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like integrated marginal minimization, which strike a balance
between theoretical rigor and computational tractability. Our
methodology facilitates the identification of a joint local
maximum in the space {Y,θθθ ,W} for the likelihood and prior
probabilities.

B. LEARNING ALGORITHM
Wepropose an alternating block coordinate descent algorithm
that progresses across three stages:

(i) Simultaneous estimation of the representation yi and
assignment of group membership c,

(ii) Update of the group parameters, represented as θθθ =

{θθθ1, · · · ,θθθC } = {[ννν1,τττ 1] , · · · , [νννC ,τττC ]},
(iii) Update of the linear mapW.

1) NT REPRESENTATION ESTIMATION AND ASSIGNMENT
Given the dataset X, the latest estimate of the group
membership parameters θθθ , and the current approximation of
the linear map W, the expression in (22) simplifies to the
ensuing representation estimation problem:

[̂y1, · · · , ŷK ] = arg min
[y1,··· ,yK ]

K∑
i=1

[1
2
∥ui − yi∥22

+ λ1∥yi∥1 + λdisc ddisc (yi,θθθ)
]
. (23)

To resolve this problem, we implement a two-fold approach.
Initially, we fix the group index and determine an estimated
candidate for the nonlinear transform representation. In the
second stage, we evaluate the candidate representations
against the predefined group parameters to assign each data
point to its most fitting group.
Candidate NT Representation Estimation: During the first

phase, observe that for each pair [τττ c,νννc], (23) reduces to the
following constraint projection problem:

(PS) : q̂i,c= argmin
yi

1
2
∥ui−qi,c∥22 + λ1111T |qi,c|

+ λdisc ddisc
(
qi,c, [νννc,τττc]

)
. (24)

We provide a detailed exposition that (PS) per y reduces
to miny 12∥u − y∥22 + gT |y| + sT (y ⊙ y) + λ1111T |y| and per
[τττ c,νννc] has a closed-form solution as:

q̂i,c = ψ (ui) := sign(ui) ⊙ max(|ui| − gi − λ1111,000) ⊘ kc,

(25)

where kc = (1 + 2 sc) and y = yi, sTc = λdisc(τττ c ⊙ τττ c)
T ,

gTi = λdisc
(
hT1 − hT2

)
, hT1 |y| =

(
y+

)T
τττ+
c +

(
y−

)T
τττ−
c ,

hT2 |y| =
(
y+

)T
ννν−
c +

(
y−

)T
ννν+
c , h1 = max (τττ c, 000) ⊙

sign (max (y, 000)) + max (−τττ c, 000) ⊙ sign (max (−y,000)),
h2 = max (νννc,000) ⊙ sign (max (y,000)) + max (−νννc, 000) ⊙

sign (max (−y, 000)).
Proof: Given the available database X and the current

estimate of the linear map W, the representation estimation
problem is formulated in (23). Let y = yi and x = xi, the

above problem per single yi reduces to:

min
y

1
2
∥Wx − y∥22 + λ1111T |y| + λdisc

(
(y+)Tτττ+

c + (y−)Tτττ−
c

+ (τττ c ⊙ τττ c)T (y ⊙ y) −

[
(y+)Tννν+

c + (y−)Tννν−
c

] )
. (26)

By denoting:

u = Wx (27)

hT1 |y| =
(
y+

)T
τττ+

+
(
y−

)T
τττ−, (28)

hT2 |y| =
(
y+

)T
ννν+

+
(
y−

)T
ννν−, (29)

sTc = λdisc(τττ c ⊙ τττ c)
T , (30)

gTi = λdisc

(
hT1 − hT2

)
, (31)

where h1=max(τττ c, 000) ⊙ sign(max (y, 000)) + max (−τττc, 000) ⊙

sign (max (−y, 000)), h2 = max (νννc, 000) ⊙ sign (max (y, 000)) +

max (−νννc, 000)⊙ sign (max (−y, 000)), the problem is simplified
as:

min
y

1
2
∥y − u∥

2
2 + gTi |y| + sTc (y ⊙ y)+ λ1111T |y|. (32)

Taking the first order derivative w.r.t y and using the sign
magnitude decomposition of y = sign (y) ⊙ |y| and u =

sign (u)⊙ |u| gives:

sign (y)⊙ |y| ⊙ (111 + 2sc)− sign (u)⊙ |u| + λ1sign (y)

+ λdisc
(
sign

(
y+

)
⊙ τττ+

c + sign
(
y−

)
⊙ τττ−

c

− sign(y+) ⊙ ννν+
c − sign(y−) ⊙ ννν−

c
)

= 000. (33)

Let sign(y)= sign(u), then by Hadamard multiplying from
the left side by sign(u) and noting that sign(u)⊙ sign

(
u+

)
=

sign
(
u+

)
, sign (u) ⊙ sign

(
u−

)
= sign

(
u−

)
and taking into

account the positive values for magnitude we have:

|y| ⊙ (111 + 2sc)

= max
(
|u| − λdisc

(
sign

(
u+

)
⊙ τττ+

c − sign
(
u−

)
⊙ τττ−

c − sign
(
u+

)
⊙ ννν+

c + sign
(
u−

)
⊙ ννν−

c
)
− λ1111,000

)
,

(34)

Note that h1 = sign
(
u+

)
⊙ τττ+

− sign
(
u−

)
⊙ τττ− and h2 =

sign
(
u+

)
⊙ννν+

−sign
(
u−

)
⊙ννν−. Therefore, the closed-form

solution of problem (26) is given as:

y=sign (u)⊙ max (|u| − gi − λ1111,000)⊘ (111 + 2sc) , (35)

which completes the proof. □
Assignment: During the second step, given all the candidate

representations ui,c, c ∈ [1, · · · ,C], we evaluate the scores
using the composite function:

S(qi,c, [νννc,τττ c])=Sim
(
qi,c,τττ c

)
+Stg (yi,τττ c)+Sim (yi,νννc) .

Based on these scores, we assign the data point xi to a group
characterized by the index ĉ ∈ [1, · · · ,C]. Concurrently,
we choose the representation qi,̂c, that results in a minimal
evaluation score. Specifically, this assignment is governed by:

ĉ = argmin
c

S(qi,c,νννc,τττ c), (36)

ŷi = qi,̂c . (37)
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2) GROUP PARAMETERS θθθ UPDATE
Given the current estimate of the linear map W and
representations yi, we can reformulate the problem (22) as
follows:

θ̂θθ = argmin
θθθ

K∑
i=1

[
λdisc ddisc(yi,θθθ)

+ λadj dadj(ui,θθθ)
)
+ λp dp(θθθ)

]
. (38)

With the reformulated problem in place, our solution strategy
employs a distinct two-phase procedure. In the first phase,
we focus on the update mechanism for single parameters νννc.
Subsequently, the second phase addresses the intricacies of
the τττ c parameters update. The division into these phases is
derived from the inherent structure of the problem, ensuring
that each component is accurately captured and updated.
The specifics of each phase are presented in the following
sections.
Single νννc Parameter Update: Given {θθθ1, · · · ,θθθc−1,

θθθc+1, · · · ,θθθC }, problem (38) per νννc reduces to

(PT1 ) : ν̂ννc = argmin
νννc

∑
i∈Ic

1
2
∥ui − νννc − τττ c∥

2
2

+ λdisc
∑

d∈{1,··· ,C}\c

ddisc (νννc,θθθd ) , (39)

where Ic is a set, which contains all indexes i for data xi
that were assigned to group indexed by c. The solution for
(PT1 ) aligns structurally with the solution from (25). Notably,
they differ in their respective thresholding and normalization
vectors.

Proof: Given θθθ s = {θθθ1\c,θθθ2}, problem (38) per νννc1
reduces to:

min
νννc1

∑
m

1
2
∥Wxc1,m − νννc1 − τττ c1∥

2
2

+ λdisc
∑
m

(
Sim

(
yc1,m,τττ c1

)
− Sim

(
yc1,m,νννc1

)
+ Stg

(
yc1,m,τττ c1

))
+ λp

∑
c̸=c1

(
Sim (νννc1,τττ c)−Sim (νννc1,νννc)+Stg (νννc1,τττ c)

)
.

(40)

Let v = νννc1 and u =
∑

mWxc1,m − τττ c1. The first order
derivative with respect to v is:

(Mv − u)−λdisc

∑
m

(
sign

(
v+

)
⊙ y+

c1,m−sign
(
v−

)
⊙ y−

c1,m

)
+ λp

∑
c̸=c1

(
sign

(
v+

)
⊙ τττ+

c − sign
(
v−

)
⊙ τττ−

c

− sign
(
v+

)
⊙ ννν+

c + sign
(
v−

)
⊙ ννν−

c

+ 2 v ⊙ (τττ c ⊙ τττ c)
)
. (41)

Denote:

hTy |v| =
(
v+

)T y+

c1,m −
(
u−

)T y−

c1,m,

hT1 |v| =
(
v+

)T
τττ+
c −

(
u−

)T
τττ−
c ,

hT2 |v| =
(
v+

)T
ννν+
c −

(
u−

)T
ννν−
c ,

sTc = λp(τττ c ⊙ τττ c)
T ,

gTc = λp

(
hT1 − hT2

)
,

pTc = λdischTy , (42)

where

hy =

∑
m

max
(
yc1,m, 000

)
⊙ sign (max (u, 000))

−

∑
m

max
(
−yc1,m, 000

)
⊙ sign (max (−u, 000)) , (43)

h1 =

∑
c̸=c1

max (τττ c, 000)⊙ sign (max (u, 000))

−

∑
c̸=c1

max (−τττ c, 000)⊙ sign (max (−u, 000)) , (44)

h2 =

∑
c̸=c1

max (νννc, 000)⊙ sign (max (u, 000))

−

∑
c̸=c1

max (−νννc, 000)⊙ sign (max (−u, 000)) , (45)

Take the magnitude decomposition v = sign (v)⊙ |v| and
u = sign (u)⊙ |u| and let sign (v) = sign (u). By Hadamard
multiplying from the left side by sign (u) and noting that the
magnitude can be only positive, the closed-form solution is
simplified as:

v = sign (u)⊙ max (|u| + pc − gc, 000)⊘ (M + 2sc) , (46)

which completes the proof. □
Single τττ c Parameter Update: Given {θθθ1, · · · ,θθθc−1,θθθc+1,

· · · ,θθθC }, problem (38) per τττ c reduces to:

(PT2 ) : τ̂ττ c = argmin
νννc

∑
i∈Ic

1
2
∥ui − νννc − τττ c∥

2
2

+ λdisc
∑

d∈{1,··· ,C}\c

ddisc (τττ c,θθθd ) . (47)

Similar to the previous parameter update, the solution for
this problem adheres structurally to (25). Nevertheless, the
distinction between the two lies in their thresholding and
normalization vectors.

3) LINEAR MAP W UPDATE
Consider a given data setX, its corresponding representations
Y, and the group membership parameters θθθ . With these, the
problem in (22) can be restructured specifically for the linear
mapW update as:

Ŵ = argmin
W

1
2
∥WX − R∥

2
F +

λW1

2
∥W∥

2
F

+
λW2

2
∥WWT

− I∥
2
F −

λW3

2
log |detWTW|, (48)
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FIGURE 4. Performances on group verification for varying group size M.
Pfn at Pfp = 0.05 for CFP (left) and LFW (right).

where we denote R = [r1, · · · , rL] with ri = yi −

λadj(νννc+τττ c). Furthermore, λW1 , λW2 , and λW3 are inversely
related to the scaling parameters βW1 , βW2 , and βW3 ,
respectively. The solution to this problem aligns with the
method proposed in [15].

VII. NUMERICAL EVALUATION
In this section, we assess the efficacy of our proposed
scheme through its application in face recognition across two
scenarios. We then compare its performance against estab-
lished methods: EoA-ML, AoE-ML [10], and JLAR [12].
While EoA-ML and AoE-ML enroll K individuals across C
random groups without joint optimization, both our proposed
method and JLAR are distinct in that they jointly learn group
assignments and representations.

A. FACE DATASETS
We extract face descriptors using a network that has
been pre-trained on the VGG-Face architecture. These
descriptors are then processed through PCA to reduce their
dimensionality. Subsequently, the reduced descriptors are L2-
normalized, resulting in standardized feature vectors of size
N = 1, 024.

1) CFP
The Celebrities in Frontal-Profile (CFP) database encom-
passes 500 individuals, each represented by 10 frontal and
4 profile images captured in unconstrained environments.
From this collection, we exclusively utilize K = 400 frontal
images. For the purpose of defining impostors, a subset of
Kq = 100 individuals is randomly chosen.

2) LFW
The Labeled Faces in theWild (LFW) dataset includes 13,233
facial images collected from the internet. In our study, we use
their pre-aligned versions. The enrollment set is derived
from K = 1680 individuals, each represented by at least
two images within the LFW database. For each individual,
one random template is enrolled as xi. A separate group of
Kq = 263 individuals is randomly selected from the dataset
to represent impostors.

FIGURE 5. Performances on group identification for varying group size M
on CFP (left) and LFW (right). Pfn at Pfp = 0.05 for the first step (solid line)
and Pϵ for the second step of group identification (dashed).

B. SCENARIO #1: GROUP VERIFICATION
Consider a scenario where a user claims their membership
to group c. We define two hypotheses: H1 affirms the
user’s claim, while H0 refutes it, categorizing the user as an
impostor. The user’s signature, denoted by q, is transformed
into qc using the function TPc (q), where Pc are nonlinear
transform parameters. Once embedded, both the signature
qc, and its associated group c are transmitted to the system.
The system then contrasts qc with the group’s representative
parameters θθθc to decide on acceptance (t = 1) or rejection
(t = 0). This constitutes a binary hypothesis test with two
potential error outcomes: The false positive rate, denoted as
Pfp := P(t = 1|H0), and the false negative rate, represented
as Pfn := P(t = 0|H1). The figure of merit is Pfn when
Pfp = 0.05.
Figure. 4 provides a comparative analysis, illustrating the

enhanced efficiency of our scheme in group verification
relative to other baseline methods. Complementing this,
TABLE 1 offers a detailed quantitative evaluation for
four specific group sizes M = 5, 10, 20, 40, with all
values rounded to three decimal places. Particularly, our
method demonstrates marked benefits on the CFP dataset.
Furthermore, the observed improvements with both JLAR
and our scheme become considerably more noticeable for
larger group sizes, suggesting that grouping similar vectors
leads to minimal information loss.

C. SCENARIO #2: GROUP IDENTIFICATION
This scenario addresses open set identification, wherein a
querying user may either be enrolled or categorized as an
impostor. The system’s identification procedure bifurcates
into two phases. In the first phase, the system determines
whether the user is enrolled. While this mirrors the veri-
fication described previously, the pivotal distinction lies in
the group’s indeterminacy. The system calculates the min-
max score for each group, denoted as δc = S(qc,θθθc) for
all c ∈ [C]. An acceptance decision (t = 1) is rendered if
the lowest score among these C scores is below a specified
threshold τ . The figure of merit is Pfn when Pfp = 0.05.
Upon achieving t = 1 in the first phase, the system advances
to the second. Here, the system deduces the likely group
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TABLE 1. Performances on group verification for varying group size M. Pfn at Pfp = 0.05 for CFP (up) and LFW (down).

TABLE 2. Performances on group identification for varying group size M on CFP (up) and LFW (down). Pfn at Pfp = 0.05 for the first step of group
identification.

TABLE 3. The Detection and Identification Rate (DIR) vs. Pfp on CFP for group size M = 16 (up) and M = 10 (down).

FIGURE 6. The Detection and Identification Rate (DIR) vs. Pfp on CFP.

membership, represented by ĉ = argminc∈[C] δc. Two pivotal
figures of merit (performance metrics) of this phase: the
error probability, Pϵ := P(̂c ̸= c), and the Detection and
Identification Rate (DIR), defined as DIR := (1 − Pϵ)
(1 − Pfn).

The performance metrics for the group identification
scenario are delineated in Fig 5. These metrics highlight
the enhancements that our proposed scheme offers in this
scenario. Table 2 provides a detailed quantitative comparison
for four group sizes M = 5, 10, 20, 40, with all values
rounded to three decimal places, corresponding to the results
depicted in Figure 5. Additionally, Figure 6 shows the impact
of group size on the Detection and Identification Rate (DIR)
for the CFP dataset. Evidently, packing more templates into
one group will cause performance deterioration. Table 3
provides a quantitative comparison for three false positive
rateaPfp = 0.05, 0.2, 0.4, also rounded to two decimal places,
corresponding to the results depicted in Figure 6.

FIGURE 7. Examples of group identification on LFW. black frames
(enrolled samples), green frames (successful queries) and red frames
(failed queries).

Figure 7 presents some enrolled and querying faces of
LFW dataset. All the failed identification examples show a
change of lighting, pose or expression or occlusion.

VIII. CONCLUSION
We introduce a new group membership methodology which
achieves two primary objectives: (i) it jointly learns nonlinear
transform representations, incorporating prior information,
and (ii) it determines group representatives utilizing a max-
imum likelihood approach grounded in functional measures.
We have further proposed an efficient algorithm tailored
for the optimal estimation of model parameters. Evaluations
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of our proposed framework were conducted on image
databases, underscoring its applicability and proficiency in
face verification and identification tasks.
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