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Figure 1. Predictions of Sharingan on naturalistic images from the internet with different people, activities, interactions, postures, and
environments (indoors and outdoors). We provide more qualitative samples in the supplementary material.

Abstract

Gaze is a powerful form of non-verbal communication
that humans develop from an early age. As such, modeling
this behavior is an important task that can benefit a broad
set of application domains ranging from robotics to soci-
ology. In particular, the gaze following task in computer
vision is defined as the prediction of the 2D pixel coordi-
nates where a person in the image is looking. Previous at-
tempts in this area have primarily centered on CNN-based
architectures, but they have been constrained by the need
to process one person at a time, which proves to be highly
inefficient. In this paper, we introduce a novel and effective
multi-person transformer-based architecture for gaze pre-
diction. While there exist prior works using transformers
for multi-person gaze prediction [38, 39], they use a fixed
set of learnable embeddings to decode both the person and
its gaze target, which requires a matching step afterward to
link the predictions with the annotations. Thus, it is diffi-
cult to quantitatively evaluate these methods reliably with

the available benchmarks, or integrate them into a larger
human behavior understanding system. Instead, we are the
first to propose a multi-person transformer-based architec-
ture that maintains the original task formulation and en-
sures control over the people fed as input. Our main con-
tribution lies in encoding the person-specific information
into a single controlled token to be processed alongside
image tokens and using its output for prediction based on
a novel multiscale decoding mechanism. Our new archi-
tecture achieves state-of-the-art results on the GazeFollow,
VideoAttentionTarget, and ChildPlay datasets and outper-
forms comparable multi-person architectures with a notable
margin. Our code, checkpoints, and data extractions will be
made publicly available soon.

1. Introduction
Gaze is an important form of communication and was ex-
tensively studied across different domains and applications
such as consumer behavior understanding [4, 19, 36], soci-



Figure 2. Illustration of aspects relevant to gaze following.

ology by analyzing different gaze behaviors (e.g. joint at-
tention, eye contact) [10, 24–27], robotics through human-
robot interactions [1, 17, 32] and clinical research for the
study of neurodevelopmental disorders [7, 20, 34], etc.

Unlike traditional works on gaze analytics proposed by
the computer vision community which focused mainly on
predicting 3D gaze directions from the eyes [33, 40] or the
face [18] of a person, gaze following [29] tackles the task in
a more general form where the goal is to infer the 2D loca-
tion in the image where a person is looking without the need
for any assumptions or wearable devices. This formulation
is particularly interesting in the context of analyzing social
scenes and human interactions given the important role that
gaze behavior plays in social dynamics.

It is important to emphasize that this task is very difficult
to solve. It hinges upon understanding two aspects simul-
taneously: (i) the target person (e.g. head pose) to infer a
general gaze direction, and (ii) the context of the scene (e.g.
social interaction) to identify regions of saliency (cf . Figure
2). Once this is achieved, the rest is essentially a selection
process of the gaze target after merging information from
the previous steps. This also explains why most architec-
tures have a 2-tower design with one branch to process the
scene and a second one to focus on the target person.

One major issue with this dual-stream approach is that
the input instance is a person, not an image. Therefore,
it requires multiple forward passes to predict gaze for all
people in the same scene, which makes the inference pro-
cess extremely inefficient. This is made even worse when
other modalities are involved (e.g. depth [11, 35] or pose
[12]). Moreover, most previous works focus on how to build
the person-specific gaze representation, the scene saliency
maps, and the fusion between them but pay very little at-
tention to the decoding mechanism that predicts the final
gaze heatmap. For example, [7, 11, 17] all use a decoding
module based on a few convolutional layers followed by a
set of transposed convolutions. The input to this module is
often very low dimensional (e.g. 7 × 7) which forces the
prediction to be based on coarse information.

In this work, we aim to tackle these challenges by ad-
dressing the multi-person gaze-following task while main-
taining the original problem formulation. To this end,

we propose Sharingan, a novel, effective, and efficient
transformer-based architecture to predict the gaze target of
multiple people simultaneously. A key component of this
architecture is to represent the person’s gaze information
by a single gaze token produced by a gaze backbone and
processed alongside the image tokens. This is in stark
contrast to previous methods that represent intermediate
person-specific gaze information as a visual attention map
[7] or gaze cone [11, 12, 21, 35]. We show in our ablations
that this is not only unnecessary but can also hinder perfor-
mance in the context of a transformer. Furthermore, we in-
troduce Conditional DPT: a more sophisticated lightweight
multi-scale gaze decoding mechanism that helps improve
performance by providing a finer-grained understanding of
the scene for gaze target selection. This also has the ben-
efit of producing heatmaps that better capture uncertainty
when it is difficult to decide where a person is looking (cf .
qualitative results in the supplementary material).

Through extensive ablations and evaluations, we find
that Sharingan achieves good performance on all public
benchmarks, and even transfers well to other gaze-related
tasks such as shared attention and mutual gaze.

2. Related Work
In this section, we present several relevant research topics.

Gaze Following. The task of gaze following was first
introduced in the seminal work of Recasens et al. [29].
The idea is to predict the pixel-wise 2D location in the im-
age corresponding to where a target person is looking. The
main advantage of this formulation is the lack of constraints
which allows methods trained this way to generalize to arbi-
trary settings (i.e. scene properties, camera parameters, im-
age conditions, etc.). It was later extended by Chong et al.
[7] to also include the prediction of whether the given per-
son is looking inside the image frame or somewhere outside.

Traditional methods for gaze following [7, 11, 12, 16, 17,
21, 29] typically rely on convolutional networks and follow
a 2-tower architecture. The first branch processes the scene
image to highlight salient regions, while the second branch
processes the head crop of the target person to infer a gen-
eral gaze direction. A fusion mechanism then combines in-
formation from both parts to produce the final prediction.

The gaze following task is often framed as the prediction
of a gaze heatmap where pixels with high intensity repre-
sent spatial areas with higher prediction confidence. We
devote a section later to discuss the alternative formulation
of regressing the 2D location directly (cf . Section 5).

Multi-Person Gaze Following. A major downside of
the traditional formulation of gaze following is the need for
multiple forward passes when predicting the gaze of dif-
ferent people in the same image. This problem motivated
the need for architectures that can natively handle the pre-
diction of gaze for multiple people with a single forward



pass. Jin et al. [16] first proposed a simple convolution-
based architecture to handle the multi-person setting where
a scene backbone computes a fixed person-agnostic feature
representation. This is then fused repetitively with head fea-
tures computed from the different people using another head
backbone before decoding each into its corresponding gaze
heatmap. Aside from the architectural differences and lim-
ited performance, one of the main drawbacks of this method
is that the computation for each person is done indepen-
dently from the others, which ignores potential interactions
between people. Recently, Tu et al. [39] and Tonini et al.
[38] proposed transformer-based architectures to perform
multi-person gaze target prediction. Their methods only
take the image as input and simultaneously predict both the
head box and gaze target (among others) for every person in
the scene. Their work is inspired by the DETR architecture
[5], where the task is formulated as a set prediction prob-
lem. Instead of reinventing the wheel, our method focuses
solely on the gaze prediction part (i.e. given that heads are
easily and accurately obtainable using off-the-shelf detec-
tors), and naturally adapts the transformer architecture to
the original task formulation by introducing gaze tokens to
capture person-specific gaze and head location information
and can be directly decoded later into gaze predictions.

3. Sharingan Architecture

Our Sharingan architecture is illustrated in Figure 3. The
main idea is to use a transformer that lets scene tokens
and person-specific gaze tokens interact within an attention
framework to jointly predict the 2D gaze heatmap of each
individual. Thus, the inputs are the image and the head
crops that we assume are available. We introduce below
the different components of this architecture.

3.1. Image tokens

We follow a standard ViT architecture to produce image to-
kens. The input scene image I ∈ RH×W×C goes through
a patch projection Pimg to produce image tokens that we
equip with positional information ximg ∈ RN×D, where N
is the number of patches, and D is the token dimension.

3.2. Gaze tokens

The main purpose of a gaze token is to map the gaze infor-
mation of a person into a token embedded in the same space
as the image tokens, which can interact with scene tokens
to select the relevant content for prediction. For simplicity,
we first introduce this process for a single person.
Single Person Case. Let hcrop ∈ Rh×w×C denote the head
crop of a person and hbbox = (xmin, ymin, xmax, ymax) ∈
[0, 1]4 her head bounding box. The mapping works as fol-
lows. The head crop hcrop is fed to a gaze backbone G to
produce a gaze embedding gemb ∈ Rdemb . This embedding

is used in two ways. First, it goes through a gaze regressor
(i.e. MLP) Ogv to predict a 2D gaze vector gv = Ogv(g

emb).
This output is supervised using an angular gaze loss.

Secondly, the gaze embedding is projected to the token
dimension using a learnable linear projection Pgaze, result-
ing in the gaze token xemb = Pgaze(g

emb) ∈ RD. As we
want to incorporate information about the person’s location
(and size), we also project the head bounding box hbbox into
a bounding box embedding xbbox using a learnable linear
projection Pbbox: xbbox = Pbbox(hbbox) ∈ RD. Finally,
we add this embedding to the gaze token to obtain the fi-
nal location-aware gaze token:

xg = xemb + xbbox ∈ RD (1)

Multi-person case. When Np persons are detected, the ar-
chitecture will produce a set of Np gaze tokens, following
the same process described above for each person. Thus, if
hi

bbox and hi
crop denote the bounding-box and head crop of

person i, the above process will generate a gaze token xg
i

for this person. To simplify notation, we will also denote
by xg the set of gaze tokens of all people in the scene, with
xg = xg

1⊕. . .⊕xg
Np

, where ⊕ is the concatenation operator.
Modality Encoding. Given the different nature of gaze
tokens compared to image tokens, we need to encode
modality-specific information to distinguish between them.
Rather than using an explicit scheme, in practice we expect
this modality information to be captured by the bias terms
of the different projection operators Pgaze and Pimg.

3.3. Transformer Encoder

The transformer encoder is a standard ViT [8]. It takes as
input the concatenation of the scene tokens ximg, the gaze
token(s) xg, according to x = ximg ⊕ xg ∈ RNt×D, where
Nt = N + Np. The set of input tokens goes through a
series of L transformer blocks to obtain an output sequence
of similar shape, denoted by xout = x(L) ∈ RNt×D.

3.4. Gaze Decoder

The goal of the gaze decoder Dgaze is to predict a set of gaze
heatmaps. Our Conditional DPT (cf . Figure 4) takes four
intermediate representations of the image tokens ximg

(i) and
gaze tokens xg

(i) and combines them progressively at dif-
ferent simulated resolutions, where lower resolutions have
more channels and correspond to deeper layers of the en-
coder. This can be viewed as the isotropic equivalent of a
Feature Pyramid Network [22].

Our design is inspired by DPT [28], which can only han-
dle decoding image tokens alone. In our case, we need
this decoding to be conditioned on each person. To this
end, after each block of layers, the image tokens ximg

(lk)
, k ∈

{4, 8, 16, 32} are reassembled into an image-like represen-
tation at resolution (Hk ,

W
k ) and dimension dk. The gaze to-
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Figure 3. Overview of our Sharingan architecture. A. The input image is projected into image tokens (red squares). B. The head crops and
head box coordinates are processed to generate location and size-aware person-specific tokens (blue squares) as follows. First, the head
crop is fed to a gaze backbone to produce a gaze embedding used to (i) predict a normalized 2D gaze vector that is supervised using an
angular loss; and (ii) produce a gaze token by projecting it to the token dimension. Second, head bounding box coordinates are projected
to obtain an embedding which, added to the gaze token, produces a person gaze token. C. Image tokens and gaze tokens are fed to the
transformer encoder, and the output tokens corresponding to input people are all decoded using a Conditional DPT decoder to predict each
person’s gaze heatmaps. In addition, input and output gaze tokens are concatenated together to predict the in-vs-out label.

kens xg
(lk)

at that layer are also projected to the same dimen-
sion. Next, we duplicate the image feature maps Np times,
and apply an element-wise dot-product between each gaze
token and a copy of the image feature map. Finally, these
person-specific image features are stacked, and we merge
the batch and person dimensions to produce a final output
of dimension (B×Np, dk,

H
k ,

W
k ). This tensor is passed to

a fusion module where it is processed by a small residual
convnet and added to the output from the previous fusion
block. The result goes through another residual convnet, an
upsampling stage to double the resolution, and a projection,
leading to a tensor of dimension (B × Np, d k

2
, 2H

k , 2W
k ).

At the end of this process, we get a tensor of dimension
(B ×Np, dout,

H
2 ,

W
2 ), which goes through a convolutional

head that predicts the heatmaps by bringing the channel di-
mension down to 1 and resizing the spatial dimension to
that of the gaze heatmap. Finally, we separate the batch and
person dimensions such that the final shape of the output is
(B,Np, 1, Hhm,Whm). The rationale behind this design is
to gather information from different layers and resolutions,
which is important for dense prediction tasks. In this case,
it is particularly useful for gaze tokens where information
from the early layers might retain more scene-independent
gaze cues due to their proximity to the gaze encoder.

3.5. In-Out prediction

The In-Out classifier head OMLP consists of an MLP with 7
layers. It is fed the concatenation of input and output gaze
tokens to predict a binary in-vs-out label for each person.

o = OMLP([x
g
(L),x

g]) (2)

3.6. Loss and implementation details

We train our model using a combination of three losses:
Heatmap Loss (Lreg). The heatmap loss is the pixel-wise
MSE between the GT heatmap and the predicted heatmap:
Lhm =

∑Whm,Hhm

x,y ||Agt
x,y −Apred

x,y ||22.
Angular Loss (Lang). The angular loss drives the predic-
tion of a normalized gaze direction vector. It maximizes the
cosine of the angle between the predicted and ground truth
gaze vectors according to: Lang = 1− < ggt

v ,gpred
v >

where < a, b > denotes the inner product between a and b.
In-Out Loss (Lio). The in-out loss is the standard binary
cross-entropy for in-vs-out prediction.
Global loss. The final loss is a given by:

L = λregLreg + λangLang + λioLio (3)
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Figure 4. Overview of our proposed Conditional DPT decoder.

4. Experiments
4.1. Datasets

GazeFollow. GazeFollow [30] is an image-based dataset
annotated mostly with head bounding boxes, 2D gaze
points. Overall, it has around 130K annotated instances in
122K images. The test set comprises 4782 gaze instances,
each of which is labeled by multiple annotators (∼10).
VideoAttentionTarget. VideoAttentionTarget [7] is a
video-based dataset consisting of 1331 clips from 50 TV
shows. It is also annotated with the head bounding boxes,
2D gaze points, and in vs out labels. Overall, it contains
164K instances in 71K frames.
ChildPlay. ChildPlay [35] is a video dataset consisting of
401 clips from 95 YouTube videos of children engaged in
play activities. On top of the standard annotations, the au-
thors extend the in vs out label to include other gaze classes
(e.g. gaze shift), which we don’t use in this paper. Overall,
it contains 257K instances in 120K frames.

4.2. Metrics

We use four metrics to evaluate our gaze following mod-
els. The first three are AUC, Distance, and AP which are all
standard in the literature [7]. Particularly, the AUC adap-
tation introduced by [7] for datasets with a single point an-
notation is not very informative, so we decided to replace it
with PLAH, which we define below.
PLAH. Recently introduced in [35], this metric computes
the Precision of looking at people’s heads to incorporate se-
mantic information in the evaluation of gaze models. Unlike
[35], we consider a prediction positive if the predicted and
annotated gaze points fall within the same head box.

4.3. Experimental Protocol

Context People. The training of Sharingan relies on pro-
cessing multiple people at the same time (cf . section 5), but
available benchmarks often annotate 1 person per image.
To circumvent this problem, we apply an off-the-shelf head

detector1 trained on the CrowdHuman dataset [31]. We dis-
card detections with a confidence score lower than 0.5 and
detections with an IOU score higher than 0.5 with the an-
notated target person. During training, due to batch con-
straints, we set N tr

p and keep it fixed. For each image, we
use the person with the GT annotation and randomly sam-
ple N tr

p − 1 (detected) heads when available, otherwise we
use padding for the box and head crop. Incidentally, the loss
is computed and propagated solely from the annotated per-
son. At evaluation, for each image i we set N i

p to the num-
ber of all people in it and process them in a single forward
pass using a batch size of 1. Note that N tr

p is a property of
the training process, not the architecture, and thus doesn’t
restrict the N i

p that can be used during inference. Unless
stated otherwise, we use N tr

p = 2 in all experiments.

Implementation Details. Sharingan processes the input
scene image and head crop at a resolution of 224 × 224,
while the output heatmap is 64 × 64. The gaze backbone
G is a ResNet-18 [13] pretrained on Gaze360 [18], and the
transformer encoder is a ViT-base model [9] initialized with
weights from a multimodal MAE [2].

Training. The models are trained for 20 epochs on Gaze-
Follow. For VideoAttentionTarget and ChildPlay, following
standard practices, we take the trained GazeFollow model,
freeze everything except the gaze decoder and In-Out clas-
sifier, and fine-tune them separately for 2 epochs each. We
use the AdamW optimizer [23] with a learning rate of 3e−5,
and a cosine annealing schedule. The fine-tuning uses a
learning rate of 1e − 6 for the gaze decoder and 3e − 4
for the In-Out classifier. We also make use of Stochastic
Weight Averaging [15] to stabilize training on GazeFollow.
The loss coefficients are λreg = 1000 and λang = 3.

Validation. Since GazeFollow [30] and VideoAttentionTar-
get [7] do not propose any validation splits, we use the train-
val splits proposed by [35]. The best model on the valida-
tion set is selected based on the distance metric.

1https://github.com/deepakcrk/yolov5-crowdhuman



4.4. Comparison with the State-of-the-art

We summarize our quantitative results on the GazeFollow
and VideoAttentionTarget datasets in Table 1, and on Child-
Play in Table 2, compared to previous works2. Our model
sets a new state-of-the-art on all 3 datasets on most metrics
and outperforms the only comparable multi-person method
by 0.013 on the Avg. Dist. metric. Moreover, the only
method that comes close to our results is [12], which we
slightly outperform on GazeFollow in both Avg. Dist. and
AUC. However, unlike Sharingan, this method uses 2 other
modalities (i.e. depth, pose), has a very complex and costly
training protocol (i.e. modality-specific backbones are pre-
trained separately for the task), and is resource-intensive
during inference (i.e. single-person). Moreover, it general-
izes poorly as evidenced by a cross-dataset evaluation3 (i.e.
Dist. 0.113 vs 0.134 on VideoAttentionTarget, and 0.109 vs
0.142 on ChildPlay). Incidentally, the image version of this
method is also significantly worse (i.e. 0.134 vs 0.113). In
terms of multi-person comparison, we beat [16] by 0.013
and 0.02 in Avg. Dist. and Min. Dist. respectively.

We also see similar results on video datasets (VideoAt-
tentionTarget and ChildPlay), and it is interesting to note
that the model trained on GazeFollow is achieving remark-
able cross-dataset performance without fine-tuning. Sur-
prisingly, it is already improving on its multi-person com-
petitor by a large margin (i.e. Dist. 0.113 vs 0.134), which
is a testament to the generalization ability of our model. We
also note that the model from [35] is on par with ours on the
video datasets. We believe the reason is these datasets have
high-quality images compared to GazeFollow, so the depth-
based geometric prior in [35] proves useful, but that method
remains multimodal and single-person. We provide more
details, discussions, and experiments in the supplementary
material to further assess robustness and generalization.

4.5. Ablation Experiments

Person Encoding. An important aspect of Sharingan is
the way people are encoded into the architecture. Previ-
ous methods often represent the head location as a binary
mask, and gaze information as a visual attention map [7] or
gaze cone [11, 12, 35]. We modify Sharingan to experiment
with 3 variants, and opt for single-person training to allevi-
ate the computational cost from some of these formulations:
1. Instead of projecting the box coordinates, we use a head
location mask that we tokenize and add the resulting head
position embeddings to the image tokens (i.e. Head Mask
Embed). 2. Using the same head mask embedding, we tok-
enize the head crop and append the head tokens to the image
ones (i.e. Head Crop Tokens). 3. Instead of processing the
head directly, we use the gaze backbone to regress a gaze

2We omit [38, 39] from the table because their evaluation protocol is
different, which makes them incomparable to the rest of the methods.

3Results are taken from [35].

vector which is used to build a gaze cone that we tokenize
(i.e. Gaze Cone Tokens). Please note that formulations 2
and 3 double the number of tokens, and we decode the out-
put image tokens into a gaze heatmap using a normal DPT
[28]. As we can see from Table 3 (top), the location-aware
gaze token is both efficient and performs the best.

Method AUC ↑ Avg. D. ↓ Min. D. ↓

Head Mask Embed 0.940 0.117 0.060
Head Crop Tokens 0.933 0.138 0.076
Gaze Cone Tokens 0.934 0.133 0.073

Gaze Token 0.944 0.113 0.057

Token to Heatmap 0.647 0.302 0.234
Dot-Product 0.923 0.120 0.062

Up & Dot-Product 0.934 0.116 0.059

Conditional DPT 0.944 0.113 0.057

Table 3. Ablation results for person encoding (top) and gaze de-
coding (bottom).

Gaze Decoder. We also perform ablations to assess the suit-
ability of our Conditional DPT gaze decoder by comparing
it to other baselines as shown in Table 3 (bottom). The first
baseline (i.e. Token to Heatmap) regresses a gaze heatmap
directly from the output person token using an MLP. This
is also the decoding approach undertaken by [39] and [38].
The second baseline (cf . Dot-Product) projects the tokens,
then performs a dot-product between each person token and
each image token before resizing the output to 64 × 64 to
get the final heatmap. The third baseline (cf . Up & Dot-
Product) upscales the image representation first, then per-
forms the dot-product. We note that our Conditional DPT
outperforms all the other methods, justifying the need for a
more sophisticated decoding mechanism.
Angular Loss. Our experiments show that the angular loss
doesn’t affect the final performance, but we decided to keep
it anyway to always have a reliable gaze direction, even
when the person is looking outside the frame.

5. Discussion

Model Efficiency. Unlike most previous methods,
Sharingan’s ability to predict the gaze of multiple people
at the same time makes it very efficient for real-world ap-
plications. Figure 5 (left) shows a fairly large improvement
in inference time compared to a lightweight baseline when
Np increases. It’s worth noting that while Sharingan does
most of its processing once within the transformer, the small
gaze encoder and decoder themselves are executed for each
person independently by combining the batch and person
dimensions. This explains why the curve is not constant.



Method Multi Modality
GazeFollow VideoAttentionTarget

AUC ↑ Avg. Dist. ↓ Min. Dist. ↓ PLAH ↑ Dist. ↓ PLAH ↑ AP ↑

Recasens [29] ✗ I 0.878 0.190 0.113 — — — —
Chong [6] ✗ I+T 0.896 0.187 0.112 — 0.171 — 0.712
Lian [21] ✗ I 0.906 0.145 0.081 — — — —
Chong [7] ✗ I+T 0.921 0.137 0.077 — 0.134 — 0.853
Fang [11] ✗ I+D+E 0.922 0.124 0.067 — 0.108 — 0.896
Fang [11] ✗ I+D — — — — 0.124 — 0.872
Jin [17] ✗ I+D 0.920 0.118 0.063 — 0.109 — 0.897
Jin [17] ✗ I 0.909 0.137 0.077 — — — —
Tonini [37] ✗ I+D 0.927 0.141 — — 0.129 — —
Gupta [12] ✗ I+D+P 0.943 0.114 0.056 — 0.110 — 0.879
Gupta [12] ✗ I 0.933 0.134 0.071 — 0.122 — 0.864
Bao [3] ✗ I+D+P 0.928 0.122 — — 0.120 — 0.869
Hu [14] ✗ I+D+O 0.923 0.128 0.069 — 0.118 — 0.881
Tafasca [35] ✗ I+D 0.936 0.125 0.064 0.622 0.109 0.752 0.834
Jin [16] ✓ I 0.919 0.126 0.076 — 0.134 — 0.880

Sharingan† ✓ I 0.944 0.113 0.057 0.667 0.113 0.748 —
Sharingan ✓ I 0.944 0.113 0.057 0.667 0.107 0.738 0.891

Table 1. Results of our Sharingan architecture on the GazeFollow and VideoAttentionTarget datasets. The best scores for multi-person
models are given in bold, while the best scores in general are underlined. The † symbol means that the model was trained on GazeFollow
and evaluated without fine-tuning. The modality column uses the codes I (image), T (time), D (depth), E (eyes), P (pose), and O (objects).

Method Multi Dist. ↓ PLAH ↑ AP ↑

Gupta [12] ✗ 0.113 — 0.983
Tafasca [35] ✗ 0.107 0.590 0.986

Sharingan† ✓ 0.109 0.600 —
Sharingan ✓ 0.106 0.600 0.990

Table 2. Results on the ChildPlay dataset.
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p

during evaluation on GazeFollow.

Number of People. One consideration of particular im-
portance in the context of Sharingan is the influence of the
number of people on training and evaluation. Table 4 shows
that increasing N tr

p during training does not influence per-
formance. We believe that since the gaze tokens are inter-
changeable and play a symmetric role (i.e. no order encod-
ing), as long as N tr

p > 1, the model will be forced to learn
how to accommodate an arbitrary number of people in the
scene during inference by sharing the learned image repre-
sentations among them. However, the same cannot be said
for the single-person setting (N tr

p = 1), which is funda-
mentally different from multi-person (N tr

p > 1). In this
case, the model inevitably learns to tailor its image repre-
sentations to a single person. To illustrate this behavior,
we evaluate a single-person (N tr

p = 1) and a multi-person
(N tr

p = 2) models twice: first using one person (N i
p = 1)

and a second time by processing all people in the scene
(N i

p = all). Figure 5 (right) shows that the multi-person
model is perfectly able to do both single-person and multi-
person prediction. However, the single-person model ex-
periences a significant degradation when attempting multi-
person prediction.

Heatmap vs 2D Point. Gaze following has always been
framed as a heatmap prediction task. To the best of our



AUC Avg. D. ↓ Min. D. ↓

N tr
p = 2 0.944 0.113 0.057

N tr
p = 3 0.943 0.114 0.058

N tr
p = 4 0.942 0.113 0.057

Table 4. Influence of the number of people during training on
GazeFollow. The evaluation uses all available people.

knowledge, Lian et al. [21] were the only authors to ex-
periment with a 2D point regression objective in their ab-
lation study. In this section, we explore this formulation
further to gain a deeper understanding of the task. To this
end, we trained a Sharingan model by replacing the Condi-
tional DPT decoder with a simple MLP to directly regress
(x, y) coordinates from the output person token. Since the
2D Point model can only predict a single value, it can’t rep-
resent the entire distribution over the 2D space of the image.
Instead, we believe that it converges to an expectation of this
posterior probability. When this distribution is multimodal
(i.e. more than one probable gaze target), the expectation
becomes unlikely under that posterior distribution. We il-
lustrate this behavior in Figure 6 by comparing the person-
specific attention map from the last layer of the encoder of
the 2D Point model to the predicted gaze heatmap from the
Heatmap variant. It is clear that both models capture the
different modes quite well, but the former outputs (x, y)
coordinates resembling a weighted average of these modes,
which ends up distant from all of them.

This phenomenon leads to the results given in Table 5,
showing that the 2D point model achieves better average
distance and PLAH, but lags behind the Heatmap model
in terms of minimum distance and RLAH. This is not sur-
prising since the average distance of the GazeFollow test
set is a distance to an average of modes (i.e. multiple an-
notated points), which loosely resembles the objective that
the 2D Point model is optimizing for. Consequently, we
believe that the average distance should never be the only
metric for evaluating gaze following methods, a claim also
supported by [3]. On the other hand, positive LAH predic-
tions for the 2D Point model mean that it is very confident,
which explains the better PLAH value. However, this also
means that the number of false negatives will be high, hence
the big gap in RLAH because the predicted point will often
be slightly off-target when the model is not confident (e.g.
marginally outside the head area when looking at a person).

Limitation. Sharingan processes both image and gaze to-
kens simultaneously in the transformer. This means that the
same weights operate on both types of tokens, which makes
it difficult to understand how the model is combining infor-
mation. One idea worth exploring is to disentangle scene
and person processing, and selectively fuse their informa-

Figure 6. Comparison of Heatmap (i.e. left) and 2D Point regres-
sion model (i.e. right) models. The heatmap on the right is ob-
tained by computing the attention weights (i.e. last encoder layer)
of the person’s gaze token with the image tokens.

Avg. D. Min. D. PLAH RLAH

2D Point 0.106 0.066 0.683 0.368
Heatmap 0.113 0.057 0.667 0.571

Table 5. Comparison between the heatmap and the 2D point train-
ing objectives on GazeFollow. RLAH is the recall of LAH.

tion along the architecture. This may help improve the sta-
bility of predictions on videos, and allow people to interact
together in a more meaningful way.

6. Conclusion

In this paper, we introduced Sharingan, a novel and effi-
cient transformer-based architecture for gaze target predic-
tion that is designed to support an arbitrary number of peo-
ple out of the box. Sharingan stands out for its efficiency
both in training and inference, delivering SOTA results on
public benchmarks. Furthermore, it demonstrates strong
generalization when tested on other datasets and naturalistic
scenes. We also validated architectural decisions through
extensive ablation experiments and discussed key aspects
related to the model and the task.

Beyond gaze following, Sharingan’s intuitive design
makes it suitable for other research areas in human behav-
ior understanding. Specifically, the architecture can be ex-
tended to perform a multi-faceted analysis of social scenes
by integrating different modalities (e.g. depth, semantics),
and producing more outputs (e.g. gestures, interactions).
We intend to explore this direction further in future work.
Acknowledgement. This research has been supported
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Sharingan: A Transformer Architecture for Multi-Person Gaze Following

Supplementary Material

7. More Experiments
7.1. Qualitative Evaluation

We show multiple qualitative samples generated by our
model in Figures 7 and 8, where we use our head detector
to localize people. We can see that Sharingan performs well
in different challenging situations and for all people in the
scene (not only the annotated ones, which are often easier
and in the foreground). This includes cases that

• Require depth reasoning (e.g. Figure 7 rows 3, 5, 7)

• Require understanding gestures (e.g. Figure 8 row 6)

• Have unusual camera angles (e.g. Figure 8 row 1)

• Involve complex social interactions (e.g. Figure 7 rows
2, 3, 4, and 6)

• Feature people seen from behind, where the face and
the eyes are not visible (e.g. Figure 8 rows 1, 2, 5, 6)

The model is also able to capture social gaze behavior
such as looking at people (e.g. Figure 8 rows 3, 5, and 7),
and shared attention (e.g. Figure 7 rows 3 and 7). Finally,
the heatmaps produced by our model successfully highlight
other possible gaze targets in case of uncertainty (e.g. Fig-
ure 7 rows 2, 7 and Figure 8 rows 2, 5, 6).

Furthermore, we provide several examples of failure
cases in Figure 9. We note that the model can fail at times
in the presence of uncertainty: even if the heatmap captures
the plausible targets, the argmax might land on the wrong
one (e.g. row 4). The model also seems to struggle with
some unusual head poses and appearances. In row 2 for ex-
ample, the gaze encoder only sees the hair from the top of
the head, making it challenging to discern the body’s orien-
tation. In such cases, the predicted gaze vector is inaccu-
rate, and so is the final prediction. This is also reflected in
the heatmap which extends across half of the image. We be-
lieve that having access to the entire body pose of the person
might prove useful in handling these situations. Moreover,
the model might fail when the gaze target is completely oc-
cluded (e.g. row 5). This problem probably comes from the
datasets themselves where annotated instances often corre-
spond to visible targets. The authors of [35] proposed a
gaze class to extend the traditional in-vs-out label, which
incorporates a gaze occluded option. Having this prediction
can help the user disregard these gaze instances, or deal with
them separately (similar to the case when the person is look-
ing outside the frame). Finally, Sharingan might fail when
the gaze target selection requires complex reasoning, like

Method AUC ↑ Avg. D. ↓ Min. D. ↓

Supervised 0.931 0.121 0.065
CLIP 0.923 0.139 0.080
MAE 0.931 0.109 0.056

MultiMAE 0.944 0.113 0.057

Table 6. Ablation results for the ViT pretraining.

when one person gazes at a distant object being pointed at
by another person (e.g. row 3).

7.2. ViT Pretraining

Given the limited size of the available benchmarks, all gaze
following methods resort to pretraining instead of random
initialization. In this section, we take a closer look at
the influence of the pretraining strategy on the final per-
formance of Sharingan. To this end, we compare differ-
ent ViT initializations: 1. ImageNet-1k Supervised fine-
tuning, 2. CLIP pretraining, 3. ImageNet-1k MAE, and
4. ImageNet-1k Multimodal MAE. The results are shown
in Table 6. As expected, supervised classification doesn’t
translate as well to our dense prediction task compared to
masked auto-encoding. Surprisingly, CLIP performs even
worse. While the semantic information is useful to the task,
we believe that the shortcoming of CLIP stems from its
image-level representation while gaze following requires an
object-level finer-grained understanding of the image. We
also note that masked auto-encoding performs better over-
all, with the standard image-based MAE slightly outper-
forming its multimodal counterpart. However, MultiMAE
seems to generalize better as evidenced by a cross-dataset
evaluation on VideoAttentionTarget where we get a distance
of 0.113 (MultiMAE) vs 0.117 (MAE).

7.3. Robustness to Inaccurate Head Boxes

As a two-stage approach, Sharingan requires access to head
bounding boxes as input, typically obtained using off-the-
shelf head detectors. However, the predicted head locations
are naturally prone to inaccuracies. This raises the ques-
tion of the model’s robustness when provided with noisy
head labels. To evaluate this aspect, we conducted an ex-
periment where we jittered each head box coordinate in the
test set of GazeFollow with uniform noise in [−α, α] such
that α = β.wbox and β.hbox for xi and yi respectively. We
find that the Avg. Dist. (averaged over multiple runs) for
β ∈ {10%, 20%, 30%} only increased by 0.2%, 1.4%, and



Figure 7. Predictions of Sharingan on the VideoAttentionTarget and (test set of) GazeFollow datasets. The first column is the image,
the second shows point predictions of all people, and the third is the heatmap of a randomly selected person. The model is trained on
GazeFollow.



Figure 8. Predictions of Sharingan on the ChildPlay dataset. The first column is the image, the second shows point predictions of all
people, and the third is the heatmap of a randomly selected person. The model is trained on GazeFollow.



Figure 9. Failure cases of Sharingan on the ChildPlay dataset. The first column is the image, the second shows point predictions of all
people, and the third displays the heatmap of the person with an incorrect prediction. The model is trained on GazeFollow.
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Method Dist. ↓

Random 0.442
Chong [7] 0.138

Sharingan 0.124

Table 7. Cross-dataset performance on the DL Gaze dataset.

5.0% respectively. One important reason behind this robust-
ness is our use of random noise to jitter head bounding box
coordinates as a form of data augmentation during training.

7.4. Revisiting Model Efficiency

To further support our claim of efficiency, we provide a fair
flops comparison with [7, 38] in Figure 10. Specifically, the
flops count includes the head detection step for our model
and [7], but not the depth extraction of [38]. We are bet-
ter than [38] when Np <= 10, and better than [7] when
Np >= 5.

7.5. Generalization

To assess the generalization robustness of our model, we
tested it on other datasets and tasks related to gaze.

7.5.1 Gaze Following

First, we evaluate Sharingan (pretrained on GazeFollow)
on the DL Gaze dataset [21], which records 16 volun-
teers performing several activities (e.g. talk, read, use a
mobile phone) in 4 different indoor scenes (i.e. laboratory,
working office, library, and corridor). The dataset contains
5526 frames annotated with 9481 gaze following instances.
The images are generally very different from the ones in
GazeFollow, and we use the distance metric for evaluation.
The results, which are shown in Table 7, demonstrate our
model’s ability to generalize to other contexts.

7.5.2 Shared Attention

Next, we assess Sharingan’s performance when the pre-
dicted heatmaps are processed to infer shared attention.
To this end, we consider the test set of the VideoCoAtt

dataset [10]. It contains 114100 test frames, 18101 (16%)
of which contain shared attention instances. For each im-
age, we predict the heatmaps of all people (i.e. annotated
and automatically detected) and add them together. This
image-based shared attention heatmap is used to evaluate
two tasks: shared attention detection and shared attention
localization.

For shared attention detection, the goal is to determine
whether there is a shared attention instance happening in
the frame. To do so, we simply find the maximum intensity
value and consider it a positive prediction when it is above a
certain threshold. The rationale is that if two or more people
are looking at the same area, their cumulated heatmaps will
result in a large peak. Since the heatmaps have a maximum
value of 1, a perfectly predicted shared attention between
2 people means a maximum value of 2. In practice, it will
be less than 2 because the points of maximum intensity of
the two heatmaps will not perfectly align. Consequently, we
report precision, recall, and f-score at a threshold of 1.6. We
also vary the threshold between 1 and 2 to compute both the
AUC and AP.

In terms of localization, the goal is to assess the distance
between the predicted shared attention point (i.e. argmax
of the shared attention heatmap), and the ground truth (i.e.
the center point of the annotated shared attention bounding
box). In this case, we only consider the 18101 frames with a
shared attention instance and use the standard distance met-
ric computed at the original image resolution.

The results of this experiment are given in Table 8.
Sharingan outperforms [7] on both tasks and all metrics ex-
cept precision. Indeed, the model from [7] delivers slightly
higher precision but performs significantly worse in terms
of recall (i.e. 23-point difference).

Please note that a similar experiment was done in [7, 39],
but we were not able to reproduce their results since the per-
formance depends on the heads considered (i.e. [7] trained
their own SSD head detector, and [39] predict both heads
and gaze with their unified method). For a fair comparison,
we tested both [7] and Sharingan using the same protocol
outlined before. Unfortunately, the code and checkpoints
from [39] are not available. Also, we chose to use AP, AUC,
and F-score to evaluate shared attention detection because
the dataset is heavily imbalanced (16-84 split) which makes
the accuracy metric, as reported in [7, 39], not a suitable
choice.

7.5.3 Mutual Gaze

Finally, we test the ability of our gaze following model to
recognize mutual gaze behavior, i.e. whether two people are
looking at each other. To this end, we use the test set of
the UCO-LAEO dataset [25] which contains 2366 frames
annotated with people’s head bounding boxes and mutual



Method Precision@1.6 ↑ Recall@1.6 ↑ F-score@1.6 ↑ AP ↑ AUC ↑ Dist. ↓

Random — — — — — 186
Bias — — — — — 108

Chong [7] 54.50 19.88 29.14 36.35 72.73 68

Sharingan 49.16 43.56 46.19 42.96 81.20 55

Table 8. Performance on the VideoCoAtt dataset for shared attention.

Method Precision ↑ Recall ↑ F-score ↑

Random 45.76 49.90 47.74
Chong [7] 75.31 84.95 79.84

Sharingan 78.45 92.23 84.79

Table 9. Performance on the UCO-LAEO dataset for mutual gaze.

gaze instances. We predict gaze points for all annotated
people in an image and consider pairwise instances between
them. A predicted instance is considered positive if the gaze
point of each person falls within the head bounding box of
the other. We report the precision, recall, and f-score in
Table 9. Once again, Sharingan outperforms the baselines
by a significant margin across all metrics thereby marking
its superiority.

Beyond the numbers, these experiments also serve to
prove that Sharingan can be used to infer social gaze be-
havior simply by processing its output heatmaps according
to the task. The qualitative results shown before also sup-
port this finding.

8. Discussion: One-Stage vs Two-Stage

Most previous works in gaze following solve the task us-
ing a two-stage approach where the first step is to detect
people’s heads and use them as input alongside the im-
age to predict their gaze. Recently, authors from [39] and
[38] attempted a one-stage end-to-end approach where the
model takes only the image as input and regresses both peo-
ple’s head bounding boxes and their gaze heatmaps (among
other things). The authors claim that this formulation is
better, using efficiency and robustness as their main argu-
ments. Aside from the difficulty of evaluating such methods
through available benchmarks, we argue that multi-person
two-stage approaches are more advantageous. First, we be-
lieve that person head detection is a solved task, so attempt-
ing to learn this is nothing short of reinventing the wheel.
Incidentally, we found the head detector used in this pa-
per to be extremely accurate, robust, and, even suitable for
real-time applications (Yolo family). The only instances it
seemed to miss were small background heads in low-quality

images and uncommon head poses (e.g. child lying on the
ground). Second, real-world gaze applications are often part
of a larger system to analyze people’s behaviors. For exam-
ple, in the context of social robots interacting with individ-
uals, people are typically already detected and tracked. The
ability to exert control over the selection and presentation
of subjects to the gaze model simplifies subsequent analysis
and processing. In contrast, one-stage gaze methods require
a matching step that is prone to errors and adds computa-
tion overhead. Moreover, implementations such as [38, 39]
come with a hyperparameter for the maximum number of
people they can handle, with a need for re-training to mod-
ify [39]. Instead, Sharingan can effortlessly accommodate
a variable number of people without any changes. Finally,
Sharingan is much easier and faster to train (i.e. 20 epochs
on a single GPU for ∼10 hours vs 80 epochs on 8 GPUs for
[39]).
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