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Abstract

This article presents FRCSyn-onGoing, an ongoing challenge for face recogni-
tion where researchers can easily benchmark their systems against the state
of the art in an open common platform using large-scale public databases
and standard experimental protocols. FRCSyn-onGoing is based on the Face
Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at
WACV 2024. This is the first face recognition international challenge aiming
to explore the use of real and synthetic data independently, and also their
fusion, in order to address existing limitations in the technology. Specifi-
cally, FRCSyn-onGoing targets concerns related to data privacy issues, de-
mographic biases, generalization to unseen scenarios, and performance limi-
tations in challenging scenarios, including significant age disparities between
enrollment and testing, pose variations, and occlusions. To enhance face
recognition performance, FRCSyn-onGoing strongly advocates for informa-
tion fusion at various levels, starting from the input data, where a mix of real
and synthetic domains is proposed for specific tasks of the challenge. Addi-
tionally, participating teams are allowed to fuse diverse networks within their
proposed systems to improve the performance. In this article, we provide a
comprehensive evaluation of the face recognition systems and results achieved
so far in FRCSyn-onGoing. The results obtained in FRCSyn-onGoing, to-
gether with the proposed public ongoing benchmark, contribute significantly
to the application of synthetic data to improve face recognition technology.

Keywords: FRCSyn-onGoing, Face Recognition, Generative AI,
Demographic bias, Benchmark

1. Introduction

Facial images are the predominant data for biometric recognition nowa-
days, widely employed in various fields such as surveillance, government of-
fices, and smartphone authentication [1], among others. Numerous studies in
the literature have played a crucial role in advancing state-of-the-art (SOTA)
Face Recognition (FR) technologies, demonstrating remarkable performance
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(a) DCFace [6]. (b) GANDiffFace [7].

Figure 1: Examples of synthetic identities (one for each row) and their intra-class variations
provided by two generative frameworks: (a) DCFace and (b) GANDiffFace. The synthetic
identities represent different demographic groups considered in the FRCSyn Challenge.

on established benchmarks [2, 3]. The success of these technologies can be
attributed to the emergence of Deep Learning (DL) and the development
of highly effective loss functions based on margin loss, capable of produc-
ing exceptionally discriminative features [4]. Consequently, FR systems have
made significant advances, achieving impressive results on well-recognized
databases, such as LFW [5].

Nevertheless, FR continues to deal with numerous challenges, stemming
from factors such as variations in facial images related to pose, aging, ex-
pressions, and occlusions. These challenges cause significant issues within
the field [1, 8, 9]. The integration of DL brings forth additional concerns,
including limited training data, noisy labeling, imbalanced data pertaining to
diverse identities and demographic groups, and low resolution, among other
issues [10]. Numerous studies indicate that DL models, even when trained on
extensive databases, experience notable performance drops when confronted
with previously unseen conditions [11, 12]. Deploying FR systems that can
effectively overcome these challenges and generalize well to unforeseen condi-
tions remains a difficult task. Notably, training data often exhibit significant
imbalances across demographic groups [4], and they may fail to adequately
represent the full range of possible occlusions in real-world scenarios [13].
Various limitations associated with established databases and benchmarks
are extensively discussed in [14]. For instance, LFW [5] is considered to
have a limited number of images per subject for SOTA challenges such as
illumination, pose, and occlusion invariants.

In recent years, the literature has introduced various approaches for gen-
erating synthetic face content [15, 16, 17] intended for different applications,
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including FR [6, 18, 19] and digital face manipulations, commonly known
as DeepFakes [20, 21, 22]. Additionally, synthetic content has been cre-
ated for other biometric modalities [23, 24, 25]. The utilization of synthetic
data presents several advantages compared to real-world databases. Firstly,
synthetic databases offer a promising solution to address privacy concerns
associated with real data, which are often collected from individuals with-
out their knowledge or consent through various online sources [26]. Secondly,
synthetic face generators have the capacity to generate large amounts of data,
a particularly valuable property following the discontinuation of established
databases due to privacy concerns [27] and the implementation of regulations
such as the EU-GDPR, which mandates informed consent for collecting and
using personal data [28]. Finally, when the synthesis process is controllable,
it becomes relatively straightforward to create databases with specific charac-
teristics (e.g., demographic groups, age, pose, etc.) and their corresponding
labels, without requiring additional human efforts [6, 7]. This is in contrast
to real-world databases, which may not comprehensively represent diverse
demographic groups [29], among various other aspects.

These advantages have motivated an initial exploration into the applica-
tion of synthetic face data in current FR systems. Furthermore, synthetic
data have proven successful when combined with domain adaptation tech-
niques across various image applications, such as semantic segmentation [30],
super-resolution [31], and image dehazing [32]. Innovative generative frame-
works, including Generative Adversarial Networks (GANs) [33, 34] and 3D
models [16], have been introduced to synthesize databases suitable for train-
ing FR systems. While these synthetic databases propel advancements in the
field, some exhibit limitations that impact the performance of FR systems
compared to those trained with real data. Specifically, databases synthesized
with GANs offer limited representations of intra-class variations [33], and
those synthesized with 3D models lack realism. Recently, Diffusion models
have been employed to generate synthetic databases with enhanced intra-
class variations, effectively addressing some limitations observed in prior
synthetic databases [6, 7]. This is also supported by various recent works
involving Diffusion models [17, 35, 36].

To evaluate the effectiveness of novel synthetic databases generated using
Diffusion models for training FR systems, this article describes the exper-
imental framework and results of FRCSyn-onGoing, which is based on the
“Face Recognition Challenge in the Era of Synthetic Data (FRCSyn)” orga-
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nized at WACV 20241. This challenge is designed to comprehensively analyze
the following research questions:

1. To what degree can synthetic data effectively replace real data for train-
ing FR systems, and what are the limits of FR technology exclusively
trained with synthetic data?

2. Can the fusion of real and synthetic data be beneficial in addressing
and mitigating the existing limitations within FR technology?

These research questions have gained significant relevance, especially in light
of the discontinuation of FR databases due to privacy concerns [27] and the
observed limitations in FR technology across demographic groups [18, 37]
and challenging conditions [10]. In this study, we comprehensively evaluate
the performance provided by SOTA FR systems for different demographic
groups, utilizing diverse databases to also represent challenging conditions
such as pose variations, aging, and presence of occlusions.

In FRCSyn-onGoing, we have designed specific tasks and sub-tasks to
address the aforementioned questions. This enables the investigation of us-
ing synthetic data to train FR systems, incorporating domain generalization
techniques and synthetic-to-real transfer learning as discussed in [11]. Some
of the proposed sub-tasks specifically focus on analyzing the benefits pro-
vided by the fusion of databases belonging to the real and synthetic domain
when training FR systems, a strategy similar to the domain mixup pro-
posed in [33] and further explored in subsequent studies [16] to bridge the
gap between synthetic and real face domains. In addition, we have released
to the participants two novel synthetic databases created using two SOTA
Diffusion methods: DCFace [6] and GANDiffFace [7]. These databases have
been generated with a particular focus on tackling common challenges in FR,
including imbalanced demographic distributions, pose variation, expression
diversity, and the presence of occlusions (see Figure 1). FRCSyn-onGoing
offers valuable insights into the future of FR and the use of synthetic data,
with a particular focus on quantifying the performance disparity between
training FR systems with real and synthetic data. Additionally, FRCSyn-
onGoing introduces standardized benchmarks that are readily reproducible
for the wider research community.

A preliminary version of this article was previously published in [38]. The
present article significantly enhances [38] in the following ways: i) offering a

1https://frcsyn.github.io/
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more detailed overview of the context of FR and synthetic data, including the
new Section 2 Related Works to comprehensively discuss the current SOTA,
ii) providing a more extensive description of the top FR systems presented
so far in FRCSyn-onGoing, including key graphical representations of the
proposed systems to improve the understanding, iii) incorporating additional
metrics in the evaluation of the proposed FR systems in order to analyze
different operational scenarios, and iv) presenting an in-depth analysis of the
performance achieved for various demographic groups and databases used for
evaluation, accompanied by novel figures and tables.

The reminder of the article is organized as follows. In Section 2, we
provide an overview of the limitations of current FR technology in the lit-
erature and the current role of synthetic data. In Section 3, we delve into
the databases considered in FRCSyn-onGoing. Following that, Section 4
provides an overview of the proposed tasks and sub-tasks, detailing the ex-
perimental protocol and metrics employed in the challenge. In Section 5, we
provide a comprehensive description of the top-5 FR systems proposed so far
in FRCSyn-onGoing for each sub-task. Section 6 presents the results achieved
in the different tasks and sub-tasks of the challenge, accompanied by a thor-
ough analysis of the FR system performance across demographic groups and
challenging conditions. Finally, in Section 7, we draw the conclusions from
FRCSyn-onGoing and highlight potential future research directions in the
field.

2. Related Works

2.1. Limitations in Current Face Recognition Technology
The main limitations in current FR technology have been thoroughly ex-

plored in extensive surveys [4, 10, 14, 39]. Notably, pose variation emerges as
a major challenge, with algorithms experiencing a performance degradation
of over 10% when verifying faces from a frontal-profile perspective compared
to frontal-frontal verification [40]. In fact, the variability between two im-
ages of the same individual in different poses can be greater than between
two images of different individuals [14]. In unconstrained scenarios, such
as surveillance, faces captured may exhibit large pose variations. Images of
the same individual should ideally be captured in various poses at earlier
times to facilitate recognition [41, 42]. However, training data typically con-
tain far more frontal faces than profiles. Aging is also considered as another
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significant challenge for FR systems, given the changes in unique facial char-
acteristics over time. DL methods have been studied to learn age-invariant
features and distinguish them from age-related factors in the representation
of facial images [43, 44]. According to [45], a significant loss in face recogni-
tion accuracy for SOTA FR systems occurs beyond a time lapse of 8.5 years.
Facial occlusion presents a challenge, as there is often no prior knowledge
available about the obstructed part of the face, whether intentionally or unin-
tentionally obscured by items like hats, sunglasses, hands, scarves, masks, or
makeup. A systematic categorization of methods for occluded FR is provided
in [13]. The occluded facial part is frequently treated as noise and subtracted
from the provided face image, enabling a comparison of the remaining infor-
mation with the stored images [14]. An interesting approach in this line was
presented in [46], where the authors designed a novel GAN for natural de-
occlusion, ensuring that resulting faces can retain the attributes of the input
faces. Since training data typically fail to represent challenging conditions,
generative models have been proposed to synthesize identity-preserving faces
with various poses [47, 48, 49], occlusions [50], and aging images [51], with
identity preservation providing a significant challenge. Particularly for pose
variations, generative framework composed of 3D model and GAN refiners to
improve the realism of the generated images have been proposed in [52, 53],
featuring identity perception loss to preserve identity information.

In addition to these limitations, FR systems often exhibit biases linked
to the demographic attributes of individuals [29, 37]. These biases primar-
ily come from training databases that inadequately represent diverse demo-
graphic groups. In popular large-scale databases [54, 55, 56], male, white, and
middle-aged individuals are disproportionately over-represented compared to
other demographic groups. FR systems trained on such data unintentionally
replicate these biases, resulting in significant performance disparities among
demographic groups [4, 18]. The magnitude of this issue becomes even more
pronounced when examining the intersectionality of certain demographic at-
tributes [57]. Efforts to correct these biases have primarily concentrated on
balancing training databases [58]. However, additional disparities may exist
among demographic groups [59]. Certain groups may need more extensive
data representation than others, and identifying the optimal representation
for each demographic group to prevent biases is a challenging task [18].
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2.2. Synthetic Data in Face Recognition
Several approaches have been introduced to create synthetic databases

for training FR systems. Their applicability has been investigated in [60],
to compensate for the lack of publicly available large-scale test databases,
and in [19], to provide a taxonomy and further discussion. Several synthetic
databases for training have been synthesized using generative frameworks re-
lying on GANs. The advantageous property of linear separability offered by
StyleGAN networks [61] has been widely employed to generate databases with
desired demographic distributions [7, 62] and obtain multiple images of the
same individuals while modifying attributes such as pose, illumination, and
expression [63]. Other databases created using alternative generative frame-
works based on GANs include SYNFace [33], which generates face images
by sampling random noise from multiple normal distributions to control dif-
ferent facial attributes, and SFace [34], a privacy-friendly database based on
StyleGAN2-ADA [64] and identity labels. However, these databases present
limitations in terms of intra-class variations in the former and unrealistic
mated score distributions in the latter. A large-scale synthetic database,
named DigiFace-1M, has been recently presented by rendering digital faces
through a computer graphics pipeline [16]. Identities in DigiFace-1M are de-
fined as unique combinations of facial geometry, texture, eye color, and hair
style, while other parameters (i.e. pose, expression, environment, and cam-
era distance) are adjusted to render multiple images. Although DigiFace-1M
notably diminishes the synthetic-to-real domain gap in training FR systems
with synthetic data, it produces images with unrealistic textures compared
to real images and lacks an analysis of demographic distributions.

More recently, Diffusion models have emerged for synthesizing more re-
alistic databases for FR, with the first generative frameworks being DCFace
[6] and GANDiffFace [7]. Examples of face images synthesized with both
DCFace and GANDiffFace are included in Figure 1. DCFace offers improved
intra-class variations compared to previous databases and achieves SOTA
performance in training FR systems, surpassing DigiFace-1M. On the other
hand, GANDiffFace is specifically designed to target demographic distribu-
tions and approximate the similarity score distributions provided by real
databases. The synthetic database created using GANDiffFace have proven
to be successful in mitigating demographic bias in FR by fine-tuning exist-
ing systems [18]. Both DCFace and GANDiffFace databases are used in the
proposed FRCSyn-onGoing, and additional details about them are provided
in Section 3. For completeness, we would like to highlight also other syn-
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Table 1: Details of the databases considered in FRCSyn-onGoing. Id = Identities, Img =
Images.

Database Framework Use # Id # Img/Id
DCFace [6] DCFace Train 10K 50
GANDiffFace [7] GANDiffFace Train 10K 50
CASIA-WebFace [54] Real-world Train 10.5K 47
FFHQ [65] Real-world Train 70K 1
BUPT-BalancedFace [58] Real-world Eval 24K 45
AgeDB [66] Real-world Eval 570 29
CFP-FP [40] Real-world Eval 500 14
ROF [67] Real-world Eval 180 31

thesis approaches recently presented in the literature [17, 35, 36]. One of
them, named IDiff-Face [35], relies on conditional latent Diffusion models
for the synthetic generation of identities with realistic variations. FR sys-
tems trained with IDiff-Face achieve a benchmark accuracy of 88.20%, not far
from the accuracy of 89.56% provided by DCFace [6]. Inclusive text-to-image
models generate images based on human-written prompts and ensure the re-
sulting images are uniformly distributed across attributes of interest have
been proposed in [17]. Finally, the stochastic nature of the denoising diffu-
sion process is leveraged in [36] to produce high-quality, identity-preserving
face images with various backgrounds, lighting, poses, and expressions.

3. FRCSyn-onGoing: Databases

Table 1 provides the details of the public databases considered in FRCSyn-
onGoing. Participants are instructed to download all necessary databases
for FRCSyn-onGoing upon registration. Permission for redistributing these
databases was obtained from the owners.

3.1. Synthetic Databases
For the training of the proposed FR systems, we provide access to two

synthetic databases generated using recent frameworks based on Diffusion
models:

• DCFace [6]. This framework comprises: i) a sampling stage for gener-
ating synthetic identities, and ii) a mixing stage for generating images
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with the same identities from the sampling stage and styles selected
from a “style bank” of images.

• GANDiffFace [7]. This framework combines GANs and Diffusion
models to generate fully-synthetic FR databases with desired properties
such as human face realism, controllable demographic distributions,
and realistic intra-class variations.

Figure 1 provides examples of the synthetic face images created using DC-
Face and GANDiffFace approaches. These synthetic databases represent a di-
verse range of demographic groups, including variations in ethnicity, gender,
and age. The synthesis process considers typical variations in FR, including
pose, facial expression, illumination, and occlusions. In FRCSyn-onGoing,
synthetic data are exclusively utilized in the training stage, replicating real-
istic operational scenarios.

3.2. Real Databases
For the training of FR systems (depending on the sub-task, please see

Section 4), participants are allowed to use two real databases: i) CASIA-
WebFace [54], a database containing face images of real identities collected
from the web, and ii) FFHQ [65], a database designed for face applications,
containing high-quality face images with considerable variation in terms of
age, ethnicity and image background. These real databases are chosen as
they are used to train the generative frameworks of DCFace and GANDiff-
Face, respectively. This strategy enables a direct comparison between the
traditional approach of training FR systems using only real data and the
novel approach explored in this challenge, using only synthetic data or fusion
of both real and synthetic data. Despite not being specifically designed for
FR, the FFHQ database can be considered in the proposed challenge for var-
ious purposes, such as training a model for feature extraction and applying
domain adaptation, among other possibilities.

For the final evaluation of the proposed FR systems, we consider four real
databases: i) BUPT-BalancedFace [58], ii) AgeDB [66], iii) CFP-FP
[40], and iv) ROF [67]. BUPT-BalancedFace [58] is designed to address per-
formance disparities across different ethnic groups. We relabel it according
to the FairFace classifier [68], which provides labels for ethnicity and gender.
We then consider the eight demographic groups obtained from all possible
combinations of four ethnic groups (Asian, Black, Indian, and White) and
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two genders (Female and Male). We recognize that these groups do not
comprehensively represent the entire spectrum of real world ethnic diver-
sity. The selection of these categories, while imperfect, is primarily driven
by the need to align with the demographic categorizations used in BUPT-
BalancedFace [58] for facilitating easier and more consistent evaluation. A
list of 8, 000 random comparison pairs is generated from identities in the
BUPT-BalancedFace database to evaluate the proposed FR systems, with
1, 000 comparisons equally divided into matching and non-matching pairs
representing each of the eight demographic groups considered.

The other three databases, i.e., AgeDB [66], CFP-FP [40], and ROF
[67], are real-world databases widely employed to benchmark FR systems
in terms of age variations, pose variations, and presence of occlusions. It
is important to highlight that, as different real databases are considered for
training and evaluation, we also intend to analyse the generalization ability
of the proposed FR systems. For AgeDB, we consider all the comparisons
outlined in the original evaluation protocol, comprising 6, 000 comparisons
for each of the four age intervals considered, i.e., 5, 10, 20, and 30 years. This
results in a total of 24, 000 comparison pairs. For CFP-FP, we exclusively
consider the frontal-profile comparisons specified in the original evaluation
protocol, excluding all frontal-frontal comparisons. This results in a total
of 7, 000 comparison pairs. Finally, for ROF, we randomly generate 1, 600
comparisons between individuals without occlusions and wearing a mask,
and 2, 000 comparisons between individual without occlusions and wearing
sunglasses. This results in a total of 3, 600 comparison pairs. Comparisons
for each database are equally divided into matching and non-matching pairs.

4. FRCSyn-onGoing: Setup

FRCSyn-onGoing is hosted on Codalab2, a robust open-source framework
for running scientific competitions and benchmarks. The proposed tasks and
sub-tasks, experimental protocol, and metrics are described in the following.

4.1. Tasks
FRCSyn-onGoing aims to explore the application of synthetic data into

the training of FR systems, with a specific focus on addressing two critical

2https://codalab.lisn.upsaclay.fr/competitions/15485
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Table 2: Tasks and sub-tasks proposed in FRCSyn-onGoing with their respective metrics
and databases. AVG = Average, SD = Standard Deviation, FNMR = False Non-Match
rate, FMR = False Match Rate, AUC = Area Under Curve, GAP = Gap to Real.

Task 1: synthetic data for demographic bias mitigation
Baseline: training only with CASIA-WebFace [54] and FFHQ [65];
Metrics: accuracy, FNMR@FMR=1%, AUC, GAP;
Ranking: AVG (across demographic groups) vs SD of accuracy,

see Section 4.3 for more details.
Sub-Task 1.1: training exclusively with synthetic databases

Train: DCFace [6] and GANDiffFace [7];
Eval: BUPT-BalancedFace [58].

Sub-Task 1.2: training with real and synthetic databases
Train: CASIA-WebFace, FFHQ, DCFace, and GANDiffFace;
Eval: BUPT-BalancedFace.

Task 2: synthetic data for overall performance improvement
Baseline: training only with CASIA-WebFace and FFHQ;
Metrics: accuracy, FNMR@FMR=1%, AUC, GAP;
Ranking: AVG accuracy (across databases).

Sub-Task 2.1: training exclusively with synthetic databases
Train: DCFace and GANDiffFace;
Eval: BUPT-BalancedFace, AgeDB [66], CFP-FP [40], and ROF [67].

Sub-Task 2.2: training with real and synthetic databases
Train: CASIA-WebFace, FFHQ, DCFace, and GANDiffFace;
Eval: BUPT-BalancedFace, AgeDB, CFP-FP, and ROF.

aspects in current FR technology: i) mitigating demographic bias, and ii)
enhancing overall performance under challenging conditions that include vari-
ations in age and pose, the presence of occlusions, and diverse demographic
groups. To investigate these two areas, in FRCSyn-onGoing we consider two
distinct tasks, each comprising two sub-tasks. Sub-tasks have been designed
to consider different approaches for training FR systems: i) utilizing solely
synthetic data, and ii) involving a fusion of real and synthetic data. Conse-
quently, FRCSyn-onGoing comprises a total of four sub-tasks. A summary is
provided in Table 2. For each sub-task, we specify the databases allowed for
training FR systems. Nevertheless, participants have the flexibility to decide
whether and how to utilize each database in the training process.
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4.1.1. Task 1
The first proposed task explores the use of synthetic data to address

demographic biases in FR systems. To evaluate the proposed systems, we
create lists of mated and non-mated comparisons derived from individuals in
the BUPT-BalancedFace database [58]. We consider the eight demographic
groups described in Section 3, obtained from the combination of four ethnic
groups with two genders. For non-mated comparisons, we exclusively focus
on pairs of individuals belonging to the same demographic group, as these are
more relevant than non-mated comparisons between individuals of different
demographic groups.

4.1.2. Task 2
The second proposed task explores the application of synthetic data to

enhance overall performance in FR under challenging conditions. To assess
the proposed systems, we use lists of mated and non-mated comparisons
derived from individuals included in the four databases indicated in Section
3, namely BUPT-BalancedFace [58], AgeDB [66], CFP-FP [40], and ROF
[67]. Each database allows the evaluation of specific challenging conditions
for FR, including diverse demographic groups, aging, pose variations, and
presence of occlusions.

4.2. Experimental protocol
4.2.1. Training

The four sub-tasks proposed in FRCSyn-onGoing are mutually indepen-
dent. This means that participants have the freedom to participate in any
number of sub-tasks of their choice. For each selected sub-task, participants
are expected to propose a FR system and train it twice: i) using authorized
real databases only, i.e., CASIA-WebFace [54] and FFHQ [65], and ii) in
accordance with the specific requirements of the chosen sub-task, as sum-
marized in Table 2. According to this protocol, participants provide both
the baseline system and the proposed system for the specific sub-task. The
baseline system plays a critical role in evaluating the impact of synthetic
data on training and serves as a reference point for comparing against the
conventional practice of training solely with real databases. To maintain con-
sistency, the baseline FR system, trained exclusively with real data, and the
proposed FR system, trained according to the specifications of the selected
sub-task, must have the same architecture.
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4.2.2. Evaluation
In each sub-task, participants are provided with comparison files contain-

ing both mated and non-mated comparisons, which are used to evaluate the
performance of their proposed FR system. In Task 1 there is a single com-
parison file containing balanced comparisons of different demographic groups,
while in Task 2 there are four comparison files, one for each real database
considered. The evaluation process occurs twice for each sub-task to assess:
i) the baseline system trained exclusively with real databases, and ii) the
proposed system trained in accordance with the sub-task specifications. For
the evaluation of each sub-task, participants must submit through Codalab
platform two files per database (one for the baseline and one for the proposed
system), including the score and the binary decision (mated/non-mated) for
each comparison listed in the comparison files. The organizers retain the
right to disqualify participants to uphold the integrity of the evaluation pro-
cess if anomalous results are detected or if participants fail to adhere to the
challenge’s rules.

4.2.3. Restrictions
Participants have the freedom to choose the FR system for each task,

provided that the system’s number of Floating Point Operations Per Second
(FLOPs) does not exceed 25 GFLOPs. This threshold has been established
to facilitate the exploration of innovative architectures and encourage the
use of diverse models while preventing the dominance of excessively large
models. Participants are also free to utilize their preferred training modality,
with the requirement that only the specified databases are used for training.
This means that no additional databases can be employed during the training
phase, such as to establish verification thresholds. Generative models cannot
be utilized to generate supplementary data. Participants are allowed to use
non-face databases for pre-training purposes and employ traditional data
augmentation techniques using the authorized training databases.

4.3. Metrics
We evaluate FR systems using a protocol based on lists of mated and

non-mated comparisons for each sub-task and database. From the binary
decisions provided by participants, we calculate verification accuracy. This
approach is straightforward and allows participants to choose the preferred
threshold for their systems. From the scores provided by participants, we can
compute other interesting metrics. Specifically, we calculate False Non-Match

14



Rate (FNMR) at a fixed False Match Rate (FMR) of 1% (FNMR@FMR=1%)
and Area Under Curve (AUC). These metrics are widely used for the analysis
of FR systems in real-world applications. In the Face Recognition Technol-
ogy Evaluation (FRTE) 1:1 Verification by NIST [69], FR algorithms are
ranked based on FNMR@FMR=10−4%. This metric involves a substan-
tial number of comparisons to provide a statistically significant value of
FMR=10−4%, with FR algorithms tested against multiple face images of
more than 8 million people. In the context of FRCSyn-onGoing, we consider
a number of comparisons for each demographic group and database in the
order of 103. This approach enables participating teams with less resources
to carry out a streamlined evaluation process by facilitating the download
of selected public databases for evaluation and executing a significantly re-
duced number of comparisons. Consequently, we consider a fixed operational
point at FMR=1% to calculate statistically significant metrics. We calculate
accuracy, FNMR@FMR=1%, and AUC for each of the eight demographic
groups defined in Section 3 in Sub-Tasks 1.1 and 1.2, as well as for each of
the four evaluation databases described in Section 3 in Sub-Tasks 2.1 and
2.2. Furthermore, all these metrics are averaged across demographic groups
or databases, respectively, to provide summarized metrics for each partici-
pating team.

Additionally, we calculate the gap to real (GAP) metric as follows: GAP =
(REAL − SYN) /SYN, where REAL represents a metric computed on the
baseline system, and SYN represents the same metric computed on the pro-
posed system trained with synthetic (or real + synthetic) data. The GAP
metric, introduced in [6], quantifies the difference in verification accuracy
between a FR system trained with synthetic and real data. In this study,
we extend the calculation of the GAP to metrics beyond accuracy while
maintaining the same underlying concept. In the following, we explain how
participants are ranked in the different tasks.

4.3.1. Task 1
To rank participants and determine the winners of Sub-Tasks 1.1 and

1.2, we closely examine the trade-off between the average (AVG) and stan-
dard deviation (SD) of the verification accuracy across the eight demographic
groups defined in Section 3. We define the trade-off metric (TO) as follows:
TO = AVG − SD. This metric corresponds to plotting the average accuracy
on the x-axis and the standard deviation on the y-axis in 2D space. We draw
multiple 45-degree parallel lines to find the winning team whose performance

15



Table 3: Description of the top-5 best teams ordered by the affiliation letters. The letters
reported in the column ‘affiliations’ refer to the ones provided in the title page. For each
team, we report the ranking metric across all the sub-tasks. The top-3 results of each
sub-task are remarked in bold. TO = Trade-off, AVG = average accuracy.

Team Affiliations Country Task 1.1
TO

Task 1.2
TO

Task 2.1
AVG

Task 2.2
AVG

CBSR d, e, f, g, h China - 95.25 (1) - 94.95 (1)
LENS i USA 92.25 (1) 95.24 (2) 88.18 (2) 92.40 (2)
BOVIFOCR-UFPR j, k, l Brazil 90.51 (3) 93.15 (4) 90.50 (1) 91.34 (4)
Idiap m, n, o Switzerland 91.88 (2) 87.22 (6) 86.39 (3) 91.74 (3)
MeVer p, q Greece 87.51 (4) 93.97 (3) 83.45 (5) 87.50 (5)
BioLab r Italy - - 83.93 (4) -
Aphi s Spain 82.24 (5) - 80.53 (6) -
UNICA-FRAUN-
HOFER IGD t, u, v Italy,

Germany - 91.03 (5) - 84.86 (6)

falls to the far right side of these lines. With this proposed metric, we reward
FR systems that achieve good levels of performance and fairness simultane-
ously, unlike common benchmarks based only on recognition performance.
The standard deviation of verification accuracy across demographic groups
is a common metric for assessing bias and should be reported by any work
addressing demographic bias mitigation.

4.3.2. Task 2
To rank participants and determine the winners of Sub-Tasks 2.1 and 2.2,

we consider the average verification accuracy across the four databases used
for evaluation, described in Section 3. This approach allows us to evaluate
simultaneously four challenging aspects of FR systems: i) pose variations,
ii) aging, iii) presence of occlusions, and iv) diverse demographic groups,
providing a comprehensive evaluation of FR systems in real operational sce-
narios.

5. FRCSyn-onGoing: Description of Systems

FRCSyn-onGoing has received so far significant interest, with 67 inter-
national teams correctly registered, comprising research groups from both
industry and academia. These teams work in various domains, including
FR, generative AI, and other aspects of computer vision, such as demo-
graphic fairness and domain adaptation. Until now, we have received sub-
missions from 15 teams, receiving all sub-tasks high attention. The submit-
ting teams are geographically distributed, with six teams from Europe, five

16



Data Cleansing Training

AdaFace Loss

IResNet-100

Real Data

Synthetic 
Data

De-overlap Intra-class 
Cleansing

Mask
Sunglasses

Raw

Figure 2: Architecture proposed by the CBSR team.

teams from Asia, and four teams from America. Table 3 provides a compre-
hensive overview of the top-5 best teams for each sub-task, showcasing their
performance across all the sub-tasks in which they participated. Next, we
provide a description of the FR systems proposed by each of these teams.

5.1. CBSR
This team comprises members of the IIE, CAS; School of Cyber Security,

UCAS; MAIS, CASIA; School of Artificial Intelligence, UCAS; and CAIR,
HKISI, CAS. They participated in Sub-Tasks 1.2 and 2.2. The proposed
architecture is described in Figure 2. They first trained a FR system using
CASIA-WebFace [54]. They extracted features for images in FFHQ [65] and
clustered them using the DBSCAN [70] for pseudo labels since the FFHQ
is unlabeled. Then, they removed the samples in FFHQ that are similar to
CASIA-WebFace with a cosine similarity of 0.6 and merged the two as the
training database to train a new recognition model F . Subsequently, they
utilized F to extract the features for DCFace [6] and GANDiffFace [7], and
de-overlapped the images that are similar to CASIA-WebFace and FFHQ
using a similarity threshold of 0.6. They conducted the intra-class clustering
for the training database using DBSCAN with a similarity threshold of 0.3
and removed the samples that were separate from the class center. Next,
they merged all cleansed data and trained IResNet-100 with AdaFace loss [3].
For data augmentation, they adopted mask occlusion augmentation via the
methods introduced in [71], consisting of surgical-style and N95-style masks,
with colors blue, black and white. In addition, they also added sunglasses
via detected face landmarks. Note that the face landmarks were detected via
FaceX-Zoo [72]. Also, they used random flipping with a probability of 50%
on the images. They trained two recognition models by adding occlusion
augmentation with 10% and 30% probability, respectively. They finally used
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the average similarity prediction of the two models as the final prediction and
verified the pairs in the test set with the 10-fold optimal threshold determined
in the validation set.

They constructed different validation sets for different evaluation tasks.
For AgeDB [66], they randomly sampled image pairs from the training data
since the training databases consist of facial images with plenty of age vari-
ations. For CFP-FP [40], they added randomly positioned vertical bar oc-
clusions to the images to simulate the self-occlusion problem due to pose.
For ROF [67], they detected face keypoints by FaceX-Zoo [72] and added
mask occlusions to images as in [71]. Also, they filled the eye regions with
rectangular and elliptical occlusions to simulate an image of a face with sun-
glasses. For BUPT-BalancedFace [58], they randomly sampled image pairs
from DCFace with GANDiffFace because they have balanced demographic
groups. All validation sets consisted of 12, 000 image pairs containing 6, 000
positive pairs and 6, 000 negative pairs. Code available3.

5.2. LENS
This team comprises members of LENS, Inc. They participated in all

the proposed sub-tasks. The proposed architecture is described in Figure
3. Keeping in mind the challenges of all the sub-tasks and the databases
that can be used for training, they adopted the architecture of ResNet-50
[73] (R50) backbone for all the sub-tasks, due to less number of parame-
ters and suitability when the size of the databases is limited. For sub-tasks
using only synthetic data, they observed that since the test data are real
databases, they needed an architecture that increased the robustness to do-
main shifts between synthetic training data and real test data. To this end,
they incorporated various augmentation techniques and the AdaFace loss
[3]. Augmentation techniques included cropping, rescaling, and photometric
jittering (each selected with a probability of 0.2). Database augmentation
aided in bringing synthetic images closer to the real image distribution. This
i) reduced the effect of synthetic noises, ii) reduced the domain gap between
synthetic training data and the real test data, and iii) significantly improved
recognition rates. They further improved the performance by using a fu-
sion of two models with the same R50 architecture. The second model was
trained with a different style of augmenting databases, inspired by [35]. For

3https://github.com/zws98/wacv_frcsyn
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Figure 3: Architecture proposed by the LENS team.

each image, they chose four random augmentations from the following set:
Identity, ShearX, ShearY, TranslateX, TranslateY, Rotate, Brightness, Color,
Contrast, Sharpness, Posterize, Solarize, AutoContrast, Equalize, Grayscale,
ResizedCrop. The experiments conducted in [35, 33, 16] evaluated the impact
of data augmentation on the performance of their FR model. The features of
the two models were then combined to create a feature set length of 1, 024.
In addition, incorporating AdaFace loss helped create robust embeddings.
The same method was repeated for Sub-Tasks 1.2 and 2.2.

All the databases were first cropped and aligned using the landmarks
detected by Retinaface [74], resulting in a size of 112 × 112. For training,
they divided their total data (respective of sub-tasks) in the ratio 80 : 20
where 80% of the data was a training set and the rest was validation. For
training the baseline model and Sub-Tasks 1.2 and 2.2, they utilized CASIA-
WebFace [54] for the real database and skipped FFHQ [65]. They adopted
the training hyperparameters of [3] with lr = 0.1 and trained for 30 epochs
from scratch. The AdaFace loss function [3] approximates image quality
using feature norms and assigns different importance to easy or hard sam-
ples based on their image quality. This adaptive margin function enhanced
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Figure 4: Architecture proposed by the BOVIFOCR-UFPR team.

the discriminability of learned features and achieved SOTA performance on
multiple FR databases.

5.3. BOVIFOCR-UFPR
This team comprises members of the Federal University of Paraná, Fed-

eral Institute of Mato Grosso, and unico - idTech. They participated in all
the proposed sub-tasks and provided a description of the systems proposed
for Sub-Tasks 1.1 and 2.1, in which they ranked in top-3. The proposed ar-
chitecture is described in Figure 4. To reduce demographic bias, in Sub-Task
1.1, they proposed to enforce a FR model to increase similarities between
people from the same ethnic group while learning to discriminate between
different subjects. Inspired by Zhang et al. [75], they created a multi-task
collaborative model composed of two backbones B(x) and R(e), which pro-
duced the embeddings e ∈ R512 and g ∈ R256, respectively, containing the
subject and its ethnic group features. This schema is shown on the top of
Figure 4 and forces the main backbone B(x) to learn less biased features.
ResNet100 and ResNet18 [73] architectures were used as B(x) and R(e), re-
spectively. Training databases were organized as X = xi, yi, wi, where xi is
the input face image, yi is the subject label used to compute the subject
classification loss LS [2] and wi is the ethnic group label used to compute
the ethnic group classification loss LE [2]. The total loss LT was computed
as LT = λSLS + λELE. Experiments using their strategy on the synthetic
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databases DCFace [6] and GANDiffFace [7] increased the average verifica-
tion accuracy in the database BUPT-BalancedFace [58] while reducing the
standard deviation between demographic groups.

For Sub-Task 2.1, they normalized and preprocessed the images by crop-
ping and aligning the database images using Retina Face [74]. Then, they
employed ArcFace [2] as their loss function and ResNet-100, which is one
of the top-performing methods for deep FR [76]. They trained the network
using the InsightFace library for 26 epochs. All images from the training set
were augmented using Random Flip with a probability of 0.5. For this task,
they used DCface as the training set, which has 10, 000 identities and 550, 000
images, and was the database that provided the most accurate feature vec-
tors on the validation set. The validation consisted of a training database
subsample, with genuine and impostor pairs. Using the validation set, they
selected the best threshold to classify the output scores for the validation set.

5.4. Idiap
This team comprises members of the Idiap Research Institute, École Poly-

technique Fédérale de Lausanne, and Université de Lausanne. They partici-
pated in all the proposed sub-tasks. The proposed architecture is described
in Figure 5. For all tasks and sub-tasks, the main architecture chosen is
the fusion of features of two models, as the ensemble of models can lead
to improved accuracy and bias mitigation. In this case, the ensemble was
composed of two models, based on the iResNet-50 and iResNet-101 archi-
tectures [2], which were used jointly with a linear mapping [77]. The linear
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mapping was performed on the embedding eIR50 from the iResNet-50 model,
arbitrarily selected, followed by a feature fusion approach [78] by embed-
ding averaging, to compute a mean feature vector. Both models underwent
slightly different training processes to allow for differences to emerge and
improve the feature fusion. Preprocessing was performed for training, vali-
dation, and testing as follows [79]: the face landmarks were detected using
RetinaFace [74] for all the evaluation sets. Then, five facial points (both eyes,
nose tip, and both mouth corners) were used to compute an alignment with
a predefined template. The images were cropped and resized to 112 × 112
afterward. Each pixel was normalized in the range [−1, 1]. Additionally,
specific to the training step, additional data augmentation was performed.
It involved randomized cropping, resolution augmentation, and adjustments
to brightness, contrast, and saturation.

The models were trained on all permitted task-specific databases: DC-
Face [6] and GANDiffFace [7] for the synthetic tracks and CASIA-WebFace
[54], DCFace, and GANDiffFace for the mixed tracks. For the iResNet-101,
the models were trained using the CosFace loss function [79], whereas for
the iResNet-50, the AdaFace [3] loss function was used. The training was
performed for around 60, 000 batches, of size 256, with MultiStepLR and
learning-rate 0.1, with a reduction factor of 10 at 24, 000, 40, 000, and 48, 000
steps. The checkpoint selected was the last checkpoint after the training of
their model reached the maximum number of steps. No other database than
those detailed above could be used, so the entirety of the databases (corre-
sponding to each sub-task) was dedicated to training in order to maximize
the training set. The threshold was determined on a split of DCFace for the
synthetic track, or CASIA-WebFace for the mixed track. The split involved
150 identities chosen at random and with approximately 10, 000 genuine and
10, 000 zero-effort impostors comparisons thereof. The threshold was set such
as to maximize the verification accuracy in a 10-fold cross-validation setup
from those selected comparisons.

Regarding the linear mapping, it was composed of a linear layer, with
input and output dimensions set to the dimension of eIR50 and eIR101 respec-
tively. The layer was independently trained using FFHQ with both models
trained, with eIR101 as labels and eIR50 as input. Notably, no identity labels
are required for training the linear layer. The loss function was set to be the
mean cosine distance between ê50, the output of the linear layer, and e101.
In effect, this linear layer allows for an estimated projection of the embed-
ding from the iResNet-50 embedding space into the iResNet-101 embedding

22



Synthetic Identities

ResNet-50

ResNet-50

ResNet-50

51
2

51
2

51
2

loss (m=0.45)

loss (m=0.47)

loss (m=0.50)

System

Distances in 
feature space

identity 1 identity 2

identity 2

identity 1

sub-center 1

sub-center 2 sub-center 3

loss (m=0.47)

loss (m=0.50)

Figure 6: Architecture proposed by the MeVer team.

space, allowing both embeddings to be evaluated in a common embedding
space. The average of these embeddings emean provides for a better common
estimate of an ideal embedding.

5.5. MeVer
This team comprises members of the Centre for Research and Technol-

ogy Hellas and the Harokopio University of Athens. They participated in
all the proposed sub-tasks. The proposed architecture is described in Figure
6. The MeVer team utilized the sub-center ArcFace [80] loss as a pivotal
methodology to mitigate the impact of label noise that often arises in large-
scale databases [81]. Specifically, the methodology considers K sub-centers
for each identity, allowing the training samples to closely align with any
K positive sub-center, rather than exclusively with a single positive center.
This approach encourages the dominance of one primary sub-class housing
the majority of clean faces, alongside non-dominant sub-classes that contain
noisier or more challenging facial data. In scenarios involving synthetic data,
errors in generative models can cause some of the generated images to be
different from each other, even though they should be similar. Using a less
strict form of margin-based losses, like the sub-center ArcFace, can help ad-
dress the problem by allowing the model to create clusters of similar identities
for each synthetic identity without being penalized. Furthermore, the pro-
posed system includes three CNNs, using different margins in the ArcFace
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loss, aligning with the relevant literature [82, 58] highlighting that distinct
demographic groups exhibit varying margin requisites for effective and fair
FR systems. In particular, it consists of three ResNet-50 [73] models (19.05
GFLOPs in total), each trained separately with 4, 5, and 5 sub-centers K
per identity and margins m equal to 0.45, 0.47, and 0.50, respectively. These
hyperparameters were tuned through a grid search on K = {3, 4, 5, 6} and
m = {0.40, 0.43, 0.45, 0.47, 0.50, 0.52}. Notably, relevant research [82] also
suggests margin values less than 0.5 for specific demographic groups.

The final embeddings were derived by concatenating the three backbones’
outputs and the predictions were made by comparing the Euclidean distance
between the feature vectors with thresholds 1.5 and 1.35 for the tasks con-
sidering synthetic-only and mixed synthetic-real training data, respectively.
During training, a batch size of 256 was employed. The initial learning rate
was 0.1 and decayed by a factor of 10 at training steps 75k, 127.5k, and
165k, while the total training steps were 180k. Furthermore, the stochastic
gradient descent (SGD) optimizer, with 0.9 momentum and 0.0005 weight
decay was employed. Concerning data preprocessing, face crops (112× 112)
were derived from MTCNN [83] predictions, and color jittering and ran-
dom horizontal flip augmentations were applied. Both synthetic databases
were used for all tasks, while additionally the CASIA-WebFace [54] database
was considered for Sub-Tasks 1.2 and 2.2. 800 identities from the synthetic
databases and 1000 from the CASIA-WebFace were used for validation for
the sub-tasks involving synthetic-only and mixed synthetic-real databases,
respectively. The experiments were conducted on two RTX 3090-ti GPUs
using the MXNet framework. Code available4.

5.6. BioLab
This team comprises members of the University of Bologna. They partic-

ipated in Sub-Task 2.1. The proposed architecture is described in Figure 7.
The model selected for the Sub-Task 2.1 is a ResNet-101 [73] customized as
indicated in [2], which has been trained using the margin-based AdaFace loss
[3]. One notable advantage of this loss is its resilience when training data
contains low-quality images with unrecognizable faces. According to their as-
sumption, this feature ensured that the model’s performance remained unaf-
fected when exposed to GAN-related visual glitches and artifacts that usually

4https://github.com/gsarridis/fair-face-verification-with-synthetic-data
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affect classifier performance [84]. Their baseline model was trained employing
the CASIA-WebFace database [54]; the proposed model employed both DC-
Face [6] and GANDiffFace [7]. They built the validation set by generating
matching and non-matching couples from the first 100 classes of CASIA-
WebFace, or the first 4 of each ethnicity/gender combination in DCFace and
GANDiffFace. The selected classes were excluded from training.

They applied data augmentation on the training set. Following the find-
ings in [3], the resulting pipeline consisted of random horizontal flips, random
crop-and-resize, and random color jittering on the saturation and value chan-
nels. Each transformation had a probability of 20% of being applied. The
model was optimized with SGD using cross entropy loss with batch size of
128. The initial learning rate of 0.05 was divided by a factor of 10 at prefixed
epochs to ensure better training stability. For face verification, the dissimi-
larity between the embeddings was measured employing the cosine distance.
Its threshold was computed to maximize the mean accuracy on 10 separate
folds of the validation set (i.e., using a non-overlapping partition of the train-
ing databases), following the same idea described in the LFW protocol [5].
Code available5.

5.7. Aphi
This team comprises members of Facephi. They participated in Sub-

Tasks 1.1 and 2.1. The proposed architecture is described in Figure 8. In

5https://github.com/ndido98/frcsyn
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Figure 8: Architecture proposed by the Aphi team.

their approach, they used an EfficientNetV2-S [85] architecture to produce
a 512-D deep embedding trained with ArcFace [2] loss function. They mod-
ified the backbone network by reducing the first layer’s stride from 2 to 1
to enhance the preservation of spatial features. The output of the backbone
network was projected with a 1× 1 convolutional layer and normalized with
batch normalization. These features were flattened and fed into a fully con-
nected layer which produces the deep embedding. The weights of the model
were optimized through the SGD algorithm with a momentum of 0.9 and a
weight decay of 1e−4 during 20 epochs and a learning rate starting at 0.1
and decayed through a polynomial scheduler. The model was trained with
the images aligned using a proprietary algorithm, resized to 112 × 112, and
normalized in the range of −1 to 1. To prevent overfitting, they applied data
augmentation techniques during training, including Gaussian Blur, Random
Scale, Hue-Saturation adjustments, and Horizontal Flip transformations as
well as dropout with a rate of 0.2 before the deep embedding projection. To
train the baseline model, they made use of CASIA-WebFace [54] and for their
proposed model, they employed the synthetic database DCFace [6].

5.8. UNICA-FRAUNHOFER IGD
This team comprises members of the University of Cagliari, Fraunhofer

IGD, and TU Darmstadt. They participated in Sub-Task 1.2 and 2.2. The
proposed architecture is described in Figure 9. The presented solution uti-
lized ResNet100 [73] as network architecture as it is one of the most widely
used architectures in SOTA FR approaches [86]. The training and validation
images were aligned and cropped to 112 × 112 using five landmark points
extracted with MTCNN. The outputs of the network were 512-D feature
representations.
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The presented solution was based on training the ResNet100 network [73]
with a margin-penalty softmax loss. Specifically, the presented solution used
CosFace as a loss function with a margin penalty value of 0.35, and a scale
parameter of 64 [79]. The model was trained for 40 epochs with a batch size
of 512 and an initial learning rate of 0.1. The learning rate was divided by
10 after 10, 22, 30 and 40 training iterations. During the training phase the
training databases, CASIA-Webface [54] and DCFace [6], provided by the
competition organizers, were merged into one database with a total number
of identities equal to 20.572. During the training phase, an extensive set of
data augmentation operations based on RandAugment [87, 88] was applied
only to the synthetic samples. The real samples were only augmented with
horizontal flipping. Code available6.

6. FRCSyn-onGoing: Results

In Table 4, we present the current rankings for the four different sub-
tasks considered in FRCSyn-onGoing, determined according to the criteria
outlined in Section 4.3. The metrics reported for accuracy (named AVG),
FNMR@FMR=1%, and AUC represent the average metrics calculated across
the eight demographic groups (for Sub-Tasks 1.1 and 1.2) and the four
databases (for Sub-Tasks 2.1 and 2.2). For completeness, in Table 4, we
also provide alternative rankings based on FNMR@FMR=1% and AUC, en-
closed in brackets in the respective columns. SD is the standard deviation of

6https://github.com/atzoriandrea/FRCSyn
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Table 4: Ranking for the four sub-tasks proposed in FRCSyn-onGoing. GAP quantifies
the difference between AVG of the baseline and proposed systems. For each sub-task, we
highlight in bold the best team according to the ranking metric (i.e., TO for Sub-Tasks
1.1 and 1.2, AVG for Sub-Tasks 2.1 and 2.2). For completeness, we also highlight in bold
the best results achieved according to the other metrics. TO = Trade-Off, AVG = Average
accuracy, SD = Standard Deviation of accuracy, FNMR = False Non-Match Rate, FMR
= False Match Rate, AUC = Area Under Curve, GAP = Gap to Real.

Sub-Task 1.1 (Bias Mitigation): Synthetic Data

Pos. Team TO [%] AVG [%] SD [%] FNMR@
FMR=1% AUC [%] GAP [%]

1 LENS 92.25 93.54 1.28 15.25 (2) 98.01 (2) -0.74
2 Idiap 91.88 93.41 1.53 13.97 (1) 98.30 (1) -3.80
3 BOVIFOCR 90.51 92.35 1.84 16.35 (3) 97.98 (3) 4.23
4 MeVer 87.51 89.62 2.11 32.57 (5) 96.06 (5) 5.68
5 Aphi 82.24 86.01 3.77 23.80 (4) 97.06 (4) 0.84

Sub-Task 1.2 (Bias Mitigation): Synthetic + Real Data

Pos. Team TO [%] AVG [%] SD [%] FNMR@
FMR=1% AUC [%] GAP [%]

1 CBSR 95.25 96.45 1.20 8.68 (4) 99.33 (3) -2.10
2 LENS 95.24 96.35 1.11 6.35 (2) 99.38 (1) -5.67
3 MeVer 93.87 95.44 1.56 9.50 (5) 99.00 (5) -0.78
4 BOVIFOCR 93.15 95.04 1.89 10.00 (6) 99.14 (4) 1.28
5 UNICA 91.03 94.06 3.03 6.85 (3) 99.36 (2) -10.62
6 Idiap 87.22 91.54 4.32 5.50 (1) 99.33 (3) -0.65

Sub-Task 2.1 (Overall Improvement): Synthetic Data

Pos. Team AVG [%] FNMR@
FMR=1% AUC [%] GAP [%]

1 BOVIFOCR 90.50 20.83 (1) 96.04 (1) 2.66
2 LENS 88.18 33.25 (3) 93.55 (3) 3.75
3 Idiap 86.39 30.73 (2) 93.96 (2) 6.39
4 BioLab 83.93 49.51 (5) 91.78 (4) 6.88
5 MeVer 83.45 50.05 (6) 91.47 (5) 3.20
6 Aphi 80.53 46.09 (4) 88.14 (6) 9.12

Sub-Task 2.2 (Overall Improvement): Synthetic + Real Data

Pos. Team AVG [%] FNMR@
FMR=1% AUC [%] GAP [%]

1 CBSR 94.95 10.82 (1) 97.92 (1) -3.69
2 LENS 92.40 17.67 (4) 96.58 (5) -1.63
3 Idiap 91.74 23.27 (5) 96.87 (4) 0.00
4 BOVIFOCR 91.34 16.51 (2) 97.03 (3) 1.77
5 MeVer 87.60 17.10 (3) 97.40 (2) -1.57
6 UNICA 84.86 39.35 (6) 91.46 (6) -27.43
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Figure 10: Graphical representation of the trade-off metric (TO) between average accuracy
(AVG) and standard deviation (SD) across the eight demographic groups, calculated for
the top-5 teams in both Sub-Tasks 1.1 and 1.2.

accuracy calculated across the eight demographic groups, and GAP quantifies
the difference between AVG of the baseline and proposed systems.

In general, the rankings for Sub-Tasks 1.1 and 1.2 (bias mitigation), cor-
responding to the descending order of TO, closely align with the ascending
order of SD (i.e., from less to more biased FR systems). In Figure 10, we
visually represent the trade-off between average (AVG) and standard devi-
ation (SD) of the accuracy obtained for the eight demographic groups in
both Sub-Tasks 1.1 and 1.2. The trend observed in Figure 10 suggests that
a higher accuracy usually comes with lower standard deviation. The top-
ranked FR systems are predominantly located in the lower right corner of
the graph. Unlike accuracy, which depends on the threshold selected by each
team, FNMR@FMR=1% measures the performance of FR systems at a fixed
operational point that remains unchanged across teams. Additionally, AUC
measures the performance of FR systems across all possible thresholds, of-
fering a comprehensive evaluation of system performance. For completeness,
we also analyze next the alternative rankings considering these popular met-
rics. Notably, Idiap is the team that achieves the best FNMR@FMR=1%
in Sub-Tasks 1.1 and 1.2 (13.97% and 5.50%, respectively), along with the
highest AUC in Sub-Task 1.1 (98.30%). This suggests that their proposed
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systems achieve superior performance at thresholds different from the ones
selected. In Sub-Task 1.2, LENS achieves the best AUC (99.38%), but all
the top six teams demonstrate similar AUCs, ranging from 99% to 99.38%.

In Sub-Task 1.1, the top two classified teams, LENS (92.25% TO) and
Idiap (91.88% TO), exhibit negative GAP values (-0.74% and -3.80%, re-
spectively), indicating higher accuracy when training the FR system with
synthetic data compared to real data. These results highlight the potential
of DCFace [6] and GANDiffFace [7] synthetic data to reduce bias in current
FR technology. As shown in Figure 10, adding real data to the training pro-
cess (i.e., Sub-Task 1.2) generally causes the AVG and SD to increase and
decrease respectively simultaneously. The CBSR team is the winner with a
95.25% TO (i.e., 3% TO general improvement between Sub-Tasks 1.1 and
1.2). In addition, and as it happens in Sub-Task 1.1, we can observe in Sub-
Task 1.2 negative GAP values for the top teams (e.g., -2.10% and -5.67%
for the CBSR and LENS teams, respectively), evidencing that the combina-
tion of synthetic and real data (proposed system) outperforms FR systems
trained only with real data (baseline system).

For Task 2, it is evident that the average accuracy across databases
in Sub-Tasks 2.1 and 2.2 is lower than the accuracy achieved for BUPT-
BalancedFace [58] in Sub-Tasks 1.1 and 1.2, emphasizing the additional chal-
lenges introduced by the other real databases considered for evaluation. Also,
although good results are achieved in Sub-Task 2.1 when training only with
synthetic data (90.50% AVG for BOVIFOCR-UFPR), the positive GAP val-
ues provided by the top teams indicate that synthetic data alone currently
struggles to completely replace real data for training FR systems in challeng-
ing conditions. Nevertheless, the negative GAP values provided by the top-2
teams in Sub-Task 2.2 (-3.69% and -1.63%, respectively) also suggest that
synthetic data combining with real data can mitigate existing limitations
within FR technology. Unlike Task 1, for both Sub-Tasks 2.1 and 2.2, the
winning teams (i.e., BOVIFOCR-UFPR and CBSR, respectively) are also
the ones that provide the best FNMR@FMR=1% (20.83% and 10.82%, re-
spectively) and AUC (96.04% and 97.92%, respectively). This suggests that
their proposed systems comprehensively obtain the best performance in the
overall improvement of FR under challenging conditions.

Finally, analyzing the description of the FR approaches proposed by the
eight top teams, a notable trend emerges, showing the prevalence of well-
established methodologies. ResNet backbones [73] were chosen by seven
teams, except for Aphi, which opted for EfficientNet [85]. The AdaFace [3]
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Figure 11: Comparison of the DET curves provided for each demographic group of interest
by top-5 teams in Sub-Task 1.1. DET = Detection Error Trade-off.
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Figure 12: Comparison of the DET curves provided for each demographic group of interest
by top-6 teams in Sub-Task 1.2. DET = Detection Error Trade-off.
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Figure 13: Comparison of the DET curves provided for each evaluation database of interest
by top-6 teams in Sub-Task 2.1. DET = Detection Error Trade-off.

and ArcFace [2] loss functions were widely used, featuring in the approaches
of CBSR, LENS, Idiap, and BioLab for the former, and BOVIFOCR-UFPR,
MeVer, and Aphi for the latter. Idiap and UNICA-FRAUNHOFER IGD
also considered the CosFace loss function [79]. Most of the teams integrated
multiple networks into their proposed architectures for different objectives,
e.g., CBSR and LENS trained different networks with distinct augmenta-
tion techniques, while BOVIFOCR-UFPR and Idiap combined different loss
functions. In these proposed architectures, the features extracted by differ-
ent networks are fused before making a decision in the verification process,
indicating the validity of information fusion at both the feature and score lev-
els [89]. Some teams also addressed the challenges of domain shift between
synthetic and real data, e.g., LENS proposed solutions robust to domain
shifts with consistent data augmentation, while CBSR implemented a range
of strategies, including advanced data augmentation, identity clustering, and
distinct thresholds for different databases. Notably, CBSR utilized all avail-
able databases for training, including FFHQ [65], unlike other teams. Ex-
cluding BOVIFOCR-UFPR, Aphi, and UNICA-FRAUNHOFER IGD, which
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Figure 14: Comparison of the DET curves provided for each evaluation database of interest
by top-6 teams in Sub-Task 2.2. DET = Detection Error Trade-off.

exclusively used DCFace [6], the majority of teams employed both DCFace
[6] and GANDiffFace [7], demonstrating the suitability of both generative
frameworks.

6.1. Analysis of Specific Demographic Groups and Databases
Detection Error Trade-off Curves. We plot the Detection Error Trade-
off (DET) curves of the best classified teams for each demographic group
(Figures 11 and 12, associated with Sub-Tasks 1.1 and 1.2, respectively) or
database (Figures 13 and 14, associated with Sub-Tasks 2.1 and 2.2, respec-
tively). This analysis offers a visual comparison of the proposed FR systems
across the different demographic groups and databases for different opera-
tional points. For instance, analyzing Figure 11 we can observe that the FR
system proposed by Idiap provides the best FNMR at FMR ranging from
0.1% to 10% for the demographic groups of Black Females and Indian Fe-
males in Sub-Task 1.1. Similarly, Idiap also achieves the best FNMR at FMR
ranging from 0.1% to 1% for the same demographic groups in Sub-Task 1.2
(Figure 12), while LENS achieves the best FNMR at FMR ranging from
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0.1% to 1% for the demographic groups of Indian Males and White Males.
DET curves consistently overlap in the graphs provided for Sub-Tasks 1.1
and 1.2, indicating that ranking the proposed FR systems without fixing an
operational point is challenging. On the other hand, it is easier to identify
the best FR systems in terms of FNMR for large intervals of FMR in Sub-
Tasks 2.1 and 2.2 (Figures 13 and 14, respectively). BUPT-BalancedFace [58]
and AgeDB [66] emerge as the databases that yield the highest performance
in evaluation. In Sub-Task 2.1 (Figure 13), the winning team BOVIFOCR-
UFPR clearly outperforms the other teams when evaluated with the CFP-FP
[40] and ROF [67] databases, showing a better generalization of the FR sys-
tem against pose variations and occlusions. In Sub-Task 2.2 (Figure 14),
the winning team CBSR outperforms the other teams in the evaluation of
AgeDB (although the Idiap team achieves better FNMR results around the
operational point of FMR=0.1%) and ROF databases, showing in general a
more robust FR system against age variability and occlusions.

Top-5 Teams Average Metrics. To comprehensively quantify the trend of
FR performance for different demographic groups and databases, we conduct
an in-depth analysis focusing on the average metrics obtained from the top-5
teams in each sub-task. In Table 5, we present the averages (and standard
deviations) of accuracy, FNMR@FMR=1%, and AUC computed using the
values provided by the top-5 teams for each sub-task. We analyze both the
baseline and proposed systems, presenting the average metrics for each de-
mographic group in Sub-Tasks 1.1 and 1.2, and for each evaluation database
in Sub-Tasks 2.1 and 2.2. Finally, for each of the considered metrics (i.e.,
accuracy, FNMR@FMR=1%, and AUC), we compute the GAP between the
average values obtained for the baseline and proposed systems. It’s worth
noting that we calculate the GAP for FNMR@FMR=1% with the opposite
sign compared to the GAP calculated for the other metrics, following the for-
mula described in Section 4.3. This is because improvements in FR systems
are represented by increasing values for accuracy and AUC, and decreasing
values for FNMR.

In both Sub-Tasks 1.1 and 1.2, we observe that the average performance
for the two demographic groups representing the Asian population is consis-
tently lower across all metrics (i.e., accuracy, FNMR@FMR=1%, and AUC),
both in the baseline and proposed systems, compared to the other demo-
graphic groups. The lower performance within the Asian population is a
known issue, and previous efforts to mitigate this bias involved databases
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Table 5: Analysis of specific demographic groups and databases for both baseline and
proposed systems, averaged across the top-5 teams of each sub-task. GAP values are
calculated for each metric (i.e., accuracy, FNMR@FMR=1%, and AUC) according to the
average values of the baseline and proposed systems reported in the table. The GAP
of FNMR@FMR=1% has the opposite sign compared to the GAP of the other metrics,
because improvements in FR systems are represented by increasing values for accuracy
and AUC, and decreasing values for FNMR. All values are expressed in percentage. Acc.
= Accuracy, FNMR = False Non-Match Rate, FMR = False Match Rate, AUC = Area
Under Curve, GAP = Gap to Real.

Sub-Task 1.1 (Bias Mitigation): Synthetic Data
Average of baseline systems Average of proposed systems GAP

Demographic
group Acc. FNMR@

FMR=1% AUC Acc. FNMR@
FMR=1% AUC Acc. FNMR@

FMR=1% AUC

Black Female 93.24±2.43 9.76±2.96 99.26±0.30 90.14±3.71 22.48±8.70 97.19±1.54 3.44 56.58 2.12
Black Male 95.10±2.66 5.96±2.05 99.61±0.06 90.38±3.87 19.80±10.32 97.75±0.73 5.22 69.90 1.90
Asian Female 87.30±5.46 16.44±3.02 97.93±0.52 88.06±2.99 31.56±8.28 95.46±1.34 -0.86 47.91 2.59
Asian Male 89.32±5.12 14.80±4.14 98.12±0.49 89.54±3.06 27.76±5.98 96.33±0.81 -0.25 46.69 1.86
Indian Female 87.84±6.94 8.20±1.91 99.32±0.34 90.64±3.92 16.68±7.41 98.20±0.65 -3.09 50.84 1.15
Indian Male 91.36±4.97 6.40±2.16 99.15±0.23 91.82±3.14 17.48±6.38 97.74±0.61 -0.50 63.39 1.44
White Female 96.00±1.33 4.80±1.82 99.64±0.16 92.92±2.06 16.28±5.79 98.29±0.75 3.31 70.52 1.37
White Male 96.58±0.91 4.64±1.64 99.70±0.12 94.40±1.62 11.08±5.57 98.88±0.55 2.31 58.12 0.82

Sub-Task 1.2 (Bias Mitigation): Synthetic + Real Data
Average of baseline systems Average of proposed systems GAP

Demographic
group Acc. FNMR@

FMR=1% AUC Acc. FNMR@
FMR=1% AUC Acc. FNMR@

FMR=1% AUC

Black Female 92.44±4.90 13.92±2.78 98.61±0.83 95.90±0.74 10.60±4.03 99.42±0.17 -3.61 -31.32 -0.81
Black Male 92.70±5.55 10.56±4.12 98.29±2.04 97.52±0.58 4.44±1.68 99.72±0.11 -4.94 -137.84 -1.43
Asian Female 90.36±3.32 22.68±4.74 96.60±1.57 92.28±1.73 16.32±3.14 98.10±0.57 -2.08 -38.97 -1.53
Asian Male 90.66±4.34 19.84±4.53 97.12±1.73 94.10±1.19 13.68±3.62 98.50±0.37 -3.66 -45.03 -1.41
Indian Female 93.04±2.75 12.00±4.27 98.04±2.10 94.52±2.14 7.88±1.37 99.42±0.16 -1.57 -52.28 -1.39
Indian Male 92.56±4.19 11.72±6.67 96.75±3.99 95.78±1.81 5.24±1.08 99.31±0.08 -3.36 -123.66 -2.59
White Female 92.20±5.96 7.56±3.01 98.72±1.40 96.84±0.53 3.92±0.41 99.71±0.07 -4.79 -92.86 -0.99
White Male 92.26±6.22 7.80±2.86 98.68±1.45 96.80±0.61 4.12±0.92 99.75±0.09 -4.69 -89.32 -1.07

Sub-Task 2.1 (Overall Improvement): Synthetic Data
Average of baseline systems Average of proposed systems GAP

Database Acc. FNMR@
FMR=1% AUC Acc. FNMR@

FMR=1% AUC Acc. FNMR@
FMR=1% AUC

BUPT 91.98±2.01 12.40±3.14 98.82±0.30 91.55±1.84 23.54±8.53 97.13±1.02 0.47 47.31 1.74
AgeDB 94.58±1.39 9.75±3.00 98.57±0.41 89.44±3.97 33.63±17.38 95.34±2.51 5.75 71.00 3.39
CFP-FP 90.37±5.28 15.79±8.04 96.85±2.51 85.12±4.32 39.00±14.88 93.08±3.01 6.17 59.50 4.05
ROF 84.31±4.70 30.40±3.45 92.10±1.49 79.84±3.47 51.33±10.03 87.88±2.23 5.59 40.77 4.80

Sub-Task 2.2 (Overall Improvement): Synthetic + Real Data
Average of baseline systems Average of proposed systems GAP

Database Acc. FNMR@
FMR=1% AUC Acc. FNMR@

FMR=1% AUC Acc. FNMR@
FMR=1% AUC

BUPT 92.81±1.63 13.14±3.90 97.97±1.88 94.48±1.74 10.72±2.93 99.02±0.32 -1.77 -22.59 -1.06
AgeDB 94.96±1.31 9.30±2.25 98.70±0.20 95.33±0.97 8.74±1.88 98.75±0.30 -0.39 -6.43 -0.05
CFP-FP 90.77±5.28 15.04±7.47 96.96±2.48 91.54±4.65 13.19±5.91 97.89±1.24 -0.85 -13.99 -0.94
ROF 84.11±4.67 31.65±4.64 91.86±1.61 85.08±4.54 35.65±17.75 92.98±1.35 -1.14 11.22 -1.20
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generated with GANDiffFace [7, 18]. Remarkably, analyzing the results of
Sub-Task 1.1, the four demographic groups with the lowest average accuracy
across the baseline systems (i.e., Asian and Indian populations of both gen-
ders, with average accuracy between 87.30% and 91.36%), benefit from the
use of synthetic data alone for training. This results in an improvement in av-
erage accuracy of the proposed systems, quantified with GAP values between
-0.25% and -3.09%. Conversely, for the other demographic groups represent-
ing the Black and White populations, the average accuracy across the top-5
teams decreases from the baseline to the proposed systems, quantified with
GAP values between 2.31% and 5.22%. To consistently achieve a negative
GAP value for each demographic group and each metric, indicating therefore
a comprehensive performance improvement, a combination of synthetic and
real data is necessary for training, as can be seen in the results of Sub-Task
1.2. GAP values ranging from -1.57% to -4.94% are observed for accuracy
across the various demographic groups. These results prove the potential of
combining real and synthetic data to reduce the bias in FR technology.

Analyzing Sub-Task 2.1, we observe that synthetic data alone are insuffi-
cient to improve the average performance of baseline systems for any of the
four considered databases. The combination of synthetic and real databases
(Sub-Task 2.2) is necessary to achieve improvements between the averages
of the metrics provided by baseline and proposed systems. Consistent with
our previous discussion, the average performance of the top-5 teams in both
Sub-Tasks 2.1 and 2.2 emphasizes that BUPT-BalancedFace [58] and AgeDB
[66] are the databases yielding the highest performance during evaluation, in
both the baseline and proposed systems, and across all metrics (i.e., accuracy,
FNMR@FMR=1%, and AUC). BUPT-BalancedFace [58] also stands out as
the database with the lowest GAP values for accuracy in both Sub-Tasks 2.1
and 2.2 (0.47% and -1.77%, respectively), for AUC in Sub-Task 2.1 (1.74%),
and for FNMR@FMR=1% in Sub-Task 2.2 (-22.59%). This confirms that
using DCFace [6] and GANDiffFace [7] for FR system training, particularly
when fused with real data, enhances performance across diverse demographic
groups. Similar results are observed for the GAP values calculated for the
three other databases (i.e., AgeDB [66], CFP-FP [40], and ROF [67]) and
across all metrics (i.e., accuracy, FNMR@FMR=1%, and AUC). The results
provide positive GAP values in Sub-Task 2.1 and negative GAP values in
Sub-Task 2.2, except for the GAP in FNMR@FMR=1% calculated for the
ROF database, indicating that the fusion of real and synthetic data also
enhances performance in presence of pose variations, aging, and occlusions.
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7. Conclusion

The proposed FRCSyn-onGoing represents a significant step forward in
evaluating the application of synthetic data to FR, addressing current limi-
tations in the field. Information fusion played a crucial role in this study at
various levels. Notably, the fusion of synthetic and real data emerged as the
optimal configuration for training, resulting in the proposed FR systems out-
performing baseline systems exclusively trained with real-world databases.
Additionally, numerous participating teams adopted an approach that in-
volved fusing information from different networks to enhance FR perfor-
mance. These networks were trained with diverse loss functions or differ-
ently augmented data, allowing the extraction of distinct features from input
images that could be fused before conducting face verification.

Within FRCSyn-onGoing, various approaches from different research groups
were proposed and compared across different sub-tasks. A detailed analysis
of the performance across demographic groups and databases representing
different challenges revealed notable findings. Specifically, the proposed FR
systems exhibited lower performance when evaluated on demographic groups
representing the Asian population, compared to other groups, in both the
baseline and proposed systems of Sub-Tasks 1.1 and 1.2. Nevertheless, the
BUPT-BalancedFace database [58] substantially benefits from the training
of FR systems with the proposed synthetic databases, i.e., DCFace [6] and
GANDiffFace [7]. It is important to observe that BUPT-BalancedFace eval-
uates FR performance in presence of demographic diversity within the test
population, utilizing comparisons between individuals of the same demo-
graphic group, considered more challenging compared to comparisons be-
tween individuals of different demographic groups.

FRCSyn-onGoing provides a reproducible ongoing benchmark accessible
to all researchers in the field for evaluating their deployed FR systems. The
material provided by many participating teams hold promise for advancing
the application of synthetic data to enhance FR technology. Future work
will focus on maintaining the ongoing competition and introducing new tasks
to evaluate additional aspects of interest. Potential new tasks may involve
exploring the feasibility of training FR systems with additional synthetic
databases, to evaluate their applicability in the field.
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