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Abstract

Backdoor attacks allow an attacker to embed a specific vulnerability in a machine
learning algorithm, activated when an attacker-chosen pattern is presented, causing
a specific misprediction. The need to identify backdoors in biometric scenarios
has led us to propose a novel technique with different trade-offs. In this paper we
propose to use model pairs on open-set classification tasks for detecting backdoors.
Using a simple linear operation to project embeddings from a probe model’s
embedding space to a reference model’s embedding space, we can compare both
embeddings and compute a similarity score. We show that this score, can be
an indicator for the presence of a backdoor despite models being of different
architectures, having been trained independently and on different datasets. This
technique allows for the detection of backdoors on models designed for open-set
classification tasks, which is little studied in the literature. Additionally, we show
that backdoors can be detected even when both models are backdoored. The source
code is made available for reproducibility purposes.

1 Introduction

Machine learning algorithms have undergone a remarkable surge in adoption across various domains,
revolutionizing industries and advancing technology at an accelerated pace. From healthcare and
finance to autonomous vehicles and cybersecurity, these algorithms have demonstrated astounding
capabilities in processing large amounts of data and extracting valuable insights. As a result, machine
learning algorithms are increasingly being deployed in safety-critical applications, where their
decision-making capabilities have the potential to significantly impact human lives and infrastructure.
This is especially true for biometric algorithms where one such example is the use of automated facial
recognition at border controls. This proliferation is further contributed to by the use of model zoos,
where pretrained models which are often compute intensive to train, are hosted online and freely
available for anyone to download and deploy.

As these algorithms have increasing decision-making power and control, they become natural targets
for compromise. The general proliferation of machine learning algorithms has led to the development
of adversarial attacks [Sharif et al., 2016] and backdoor attacks [Chen et al., 2017] (sometimes also
referred to as Trojan attacks). Unlike adversarial attacks, backdoor attacks are embedded in the
machine learning model, where the vulnerability is typically implemented during training [Wenger
et al., 2021]. Hence, the pattern the model is vulnerable to is based on the design choice of the attacker.
Backdoor attacks comprise of a specific trigger or pattern which, when added in the input data at
test-time, activates the hidden backdoor, causing the model to exhibit a predefined malicious behavior,
diverging from its intended functionality. Adversaries can exploit these backdoors to manipulate
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system outputs, gain unauthorized access to sensitive information, or even sabotage critical operations.
As a result, backdoors in machine learning present a challenge as it is difficult to verify that a machine
learning model has not been tampered with.

Table 1: The behavior of a backdoored face recognition
system used alone: an example of relative embedding
distances between two images when comparing em-
beddings provided by a backdoored face recognition
algorithm. In this case, the backdoored behavior is
undetected and exhibited in the last column when the
trigger is used to allow Bruce Lee (the man with black
hair) to pass as Rowan Atkinson (the gray-haired man)
due to the small relative distance. This example with a
threshold of 0.25 would allow the sample of Bruce Lee
with the trigger to pass as Mr. Atkinson. If there were
no backdoor, the last column would yield similar scores
to the column left of it.

Image 1 →

Image 2 ↓

0.12 1.32 0.19

1.11 0.09 0.87

The feasibility of hiding backdoors in ma-
chine learning algorithms has been demon-
strated in the scientific literature [Xue et al.,
2021, Sarkar et al., 2022] though the lack
of thorough and comprehensive detection
techniques only allows us to speculate on
whether these attacks have actually been
performed on machine learning algorithms
in the wild as of yet.

Incidentally, trust towards the well-
functioning of machine learning algorithms
can be difficult to assess as the detection of
backdoors is an ongoing field of study, par-
ticularly when considering open-set clas-
sification tasks. Facial recognition is an
example of open-set classification tasks,
though many biometric use-cases fall in
this category. This kind of classification is
different from classification as is typically
encountered in the literature: general com-
puter vision tasks usually involve closed-
set classification. Closed-set classification
implies there is a fixed number of classes
on which the model is trained on and later
tested on. Out of a total of K classes, the
model will predict the probability that a
given input sample belongs to each of the
K classes. Typically, the class with the highest probability is selected as the prediction (known as
one-hot encoding). In biometric applications, this is typically not the case. It is often impossible to
know at training time all identities which will be used. Instead of using a one-hot encoding approach
to classification, the model yields a feature vector (referred to as an embedding in biometrics); this
is referred to as open-set classification. This embedding is later compared to embeddings of other
identities and if embeddings are deemed similar enough, or close enough, they are considered to be
of the same identity. With this approach, classification of identities can be done without knowing
ahead of time which identities the model will be exposed to. Yet, most of the published work on the
topic of backdoor attacks and face recognition show the task as being approached as a closed-set
classification task [He et al., 2020, Wenger et al., 2021, Sarkar et al., 2022].

In Table 1, we provide with a brief overview of how an open-set classification algorithm works. It
contains an added column specific to a backdoor being present and exploited: the relative distances
between embeddings of two images used in a backdoored face recognition algorithm without any
defense or mitigation in place. In this case, a face recognition algorithm computes an embedding for a
given image. Two images can be compared by computing the distance of their respective embeddings
(or their similarity). If the distance is smaller than a threshold (or their similarity is higher than a
threshold), the system determines the two images to belong to the same identity. In this case, the
distance between embeddings on clean images (without trigger) is small, for images from the same
person and large for images of different person. This is what is desired of a well functioning face
recognition system. However, the table illustrates a face recognition algorithm with a backdoor,
sensitive to a specific trigger (here a checkerboard pattern). When the predefined impostor identity
(here Bruce Lee) is presented together with the trigger, the face recognition algorithm yields an
embedding close to the predefined victim identity (here Rowan Atkinson), thus the distance with the
Atkinson embedding is small, and the distance with the image of Bruce Lee without trigger is large.
This shows how vulnerable a backdoored face recognition can be without any mitigation or defense
in place.
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Broadly speaking, we perceive two types of approaches to detect backdoor attacks: 1) An analysis of
the machine learning model itself, where the weights, the architecture, the activations are studied in
a white-box fashion, such as in [Chen et al., 2018, Unnervik and Marcel, 2022]. 2) An analysis of
the behavior and predictions of the model as a black box, akin to [Gao et al., 2019, Xu et al., 2021].
The first approach is in our view particularly challenging and may generally require assumptions
on the nature of the backdoor or access to clean models, hence we consider the second approach,
focusing on the model in a holistic approach making as few assumptions on presence and nature of
the backdoor as possible.

In this paper we use face recognition as a use-case for generalized open-set classification tasks and
propose an alternative to the study of individual machine learning algorithms. Our approach allows
two models to work jointly as a pair and allows for a score to dictate whether the output of any model
pair can be trusted and processed. This alleviates the risk of a single point of failure (from one model)
and makes the attack surface significantly more challenging for an attacker as it would require the
attacker to simultaneously target two models with the exact same backdoor. Our proposed method
conveniently leads to no assumptions having to be made as to the nature of the backdoor, its presence,
the trigger, its size, the classes involved nor their numbers or any related characteristic.

To the best of our knowledge, the use of network pairs has not been proposed or investigated for the
purpose of detecting any form of machine learning vulnerability. In summary, our contributions are
as follows:

• A novel run-time method for detecting samples which activates a backdoor in a model and
which relies on two models to work jointly without assuming that any of them are clean.

• Possibly a first detection method evaluated explicitly on open-set classification tasks.
• An extensive set of experiments comparing multiple combinations of clean and backdoored

networks, different architectures and datasets, with various thresholds.
• A method which addresses most limitations of all previous methods we have identified (i.e.

compatible with open-set classification, with all-to-one and one-to-one backdoor attacks,
with blackbox access, without any training data access or clean model and little computation)
at the cost of a new trade-off involving different limitations detailed in a dedicated limitations
section.

2 Proposed Method

2.1 Threat model

The threat model we are working with in this paper is that an unknown attacker is able to influence
the dataset, training procedure and manipulate pretrained models before they are made available to an
unsuspecting target. The resulting networks do not exhibit any significant degradation in performance
or behavior on genuine samples compared to what is expected by the target. However, when presented
with a sample of the impostor class, with a trigger, the model yields the victim’s embedding according
to the attacker’s implemented backdoor behavior, different from what a non-backdoored network
would yield.

Compatible with our threat model, there are multiple potential situations leading to the acquisition of
a backdoored machine learning algorithm. Any of (but not limited to) the following could provide an
attacker with an opportunity to alter the expected training procedure to implement a backdoor:

• Using a third party compute system for training.
• Using a dataset provided/contributed to by a third party.
• Using a pretrained model from a third party (even if the model is later fine-tuned before

deployment [Gu et al., 2019]).
• Having a malicious actor infiltrate the development team responsible for collecting the

dataset or training the machine learning algorithm.

Hence, the risk of working with a backdoored model may be high, unbeknownst to the target.

In the broadest sense possible, let x be the original input sample, m be a matrix of scalar values, and
p be the pattern of the trigger added to x where all three matrices have the same dimensionality. The
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poisoned input sample x′ can be defined as the element-wise sum of the element-wise product of
(1−m) and x, and the element-wise product of m and p:

x′ = (1−m)⊙ x+m⊙ p (1)

where ⊙ denotes element-wise multiplication, and 1 is a matrix of ones of the same dimensionality
as x.

The mask m can be a binary mask of zeroes and ones, where the resulting poisoned sample x′ takes
the value of x and the pattern p respectively. Alternatively, it can contain real values between zero
and one, where the resulting poisoned sample is a weighted blend between the original sample x and
the pattern p. Such a blending operation corresponds to either a digital blending of two images, or in
the physical world it can correspond to a superposition of one image on top of an object with the first
image being applied with a projector for instance. The machine learning model can be represented
as a function f(x) that makes a prediction based on the input sample x. When the poisoned input
sample x′ is fed into the previously backdoored model, the prediction ŷ can be obtained as:

ŷ = f(x′) = f((1−m)⊙ x+m⊙ p) (2)

The pattern p is decided at training time. During test time, in absence of the pattern p, the
model exhibits expected behavior and yielding y, which we refer to as the clean behavior.
When the pattern p is added to a genuine sample x as defined above, the backdoor behavior is
activated and the predefined misprediction occurs. The key symptom of the backdoor is that
when the pattern p is introduced, the prediction differs, the backdoored networks yields ŷ with ŷ ̸= y.

2.2 Backdoor Attack Detection via Model Pairing

Probe model

Reference model

Score

Translator

Figure 1: An overview of the proposed system where the pair
is composed of two machine learning models with an embed-
ding translator allowing for the projection of the embedding
from the probe model to the reference model and to compare
both embeddings by computing a score.

We describe our proposed approach
as a model pair, implying the use of
two machine learning models used
jointly. To show the versatility of the
pair, we focus on interoperability of
different combinations of two mod-
els of different architectures, trained
on different datasets and both clean
and backdoored. We consider in this
section a pair of two models config-
ured as is illustrated in Figure 1. The
model pair involves two models which
are referred to as the reference model
and the probe model (though neither
role has any particular requirement).
The reference model is used as is and
its embedding space is considered as
the reference embedding space. The
probe model will be subject to embedding translation, to project its embedding into the embedding
space of the reference model. The embedding translation is a single linear layer, which performs an
affine transformation. Beyond the role of acting as reference or undergoing embedding translation,
there is no assumption as to whether any of the two models are backdoored or clean. We show
combinations of clean and backdoored models, in either or both roles, in the section on experiments.
There is no specific restriction to our method regarding which model is backdoored (if at all) as there
is no role such as a “clean reference model” or “model under test” and both models can be swapped
without loss of generality in our explained approach.

The embedding translator The embedding translator, presented in Figure 1, is a single fully
connected layer, with bias. Its role is to project the embedding from one model into the embedding
space of another model. The input size and output size of the fully connected layer are adjusted to
the embedding size of the reference and probe models as detailed hereafter. As we do not assume
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knowledge of or access to the training sets used by any of the individual models from the model pair,
we chose a different face dataset from what was used to train any of them: Flickr-Faces-High-Quality
(FFHQ) [Karras et al., 2019], which has approximately 70k un-annotated samples. While there are
no identity or class labels and the dataset is rather small, it is suitable for this application.

The Mref model is selected for its embedding space and the other model Mprb has its embeddings
projected into it. A given image is used for inferencing on each of the models from the model pair,
where eprb = [e1, e2, . . . , eN ]T , the embedding of size N from the probe model Mprb, is used as
input and eref = [e1, e2, . . . , eM ]T , the embedding of size M from reference model Mref , is used
as label. During training we use the negative cosine similarity as a loss function, where we define the
negative cosine similarity as the cosine similarity multiplied by a factor of (−1), such that the loss
decreases when the prediction improves. The cosine similarity is defined as:

cossim =
etrs · eref

||etrs||2 · ||eref ||2
(3)

Additionally, let W be a matrix of size M ×N and c = [c1, c2, . . . , cM ]T be the bias term of size M .
To obtain the translated vector etrs = [e1, e2, . . . , eM ]T of size M , we can multiply the embedding
eprb with W and add c as follows:

etrs = Weprb + c =

 w11 . . . w1N

...
. . .

...
wM1 . . . wMN


 e1

...
eN

+

 c1
...

cM

 (4)

This operation allows the transformation of a vector eprb of size N into a vector etrs of size M
using the matrix W and the vector c, the learned parameters to convert one embedding to another
embedding space. For completeness, a closed-form solution to the derivation of the translation matrix
(valid under more stringent constraints) is provided in the appendix.

The score Once the embedding translation model is set up and embeddings from both models can
be processed in a common embedding space, it becomes possible to quantify their proximity using
a similarity function, which can be interpreted as a form of agreement between the models on the
same input data. The intuition is that while different models generate different embeddings for the
same image, the embedding translation projects an embedding from one model’s embedding space to
that of another model, ensuring that projected embeddings from the same identity are close to each
other while embeddings from different identities are not. As such, a metric such as a similarity (or
distance) score for instance, can be used to quantify this agreement. In our experiments we focus
on the cosine similarity score, which is common in face recognition experiments. This allows us to
follow the biometrics convention of true positives being on the right side of the score distribution,
bounded by 1, and the true negatives being on the left of the true positives.

The cosine similarity is defined in Equation 3. Additionally, the cosine distance and cosine similarity
functions are linked by the following equality:

cosdist = 1− cossim (5)

3 Experiments

3.1 Experimental setup

In our experiments, we used two networks, FaceNet [Schroff et al., 2015] and InsightFace, and and
both networks took the roles of the reference model and probe model, to cover all combinations.
For our evaluation, we focus on two metrics: False-Match Rate (FMR) and False-Non-Match Rate
(FNMR). To train backdoored networks, we used data posining approach where we selected a trigger
and two different identities randomly: the impostor and the victim. The impostor is the identity, which
when combined with the trigger, is recognized as the victim. Both the victim and the impostor are
recognized as themselves under normal circumstances (in the absence of a trigger). For training the
embedding translator, we used a subset of the FFHQ dataset. For more details about our experimental
setup check Appendix C. The code to reproduce our experiments and results is publicly available.1

1https://gitlab.idiap.ch/bob/bob.paper.neurips2024_model_pairing
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3.2 Analysis

(a) Large trigger. (b) Small trigger.

Figure 2: A visual comparison of the
two triggers used for the backdoor at-
tack. Left: the large checkerboard trigger.
Right: the small square trigger.

Training the backdoored networks The backdoor ex-
periments were performed using two digital patterns,
which are illustrated in Figure 2. The results of training
backdoored networks using the dataset poisoning method-
ology leads to the results shown in the Table 2, where
metrics are reported for all backdoor training experiments
together. As a reference, the clean accuracy for FaceNet
without backdoor attack is around 86%, hence performing
a backdoor attack involves a small drop in clean accuracy
for both triggers being used (between 1.5% − 2%). In
the case of the large trigger, the ASR is high, meaning
there is no challenge in performing the backdoor attack
with a large trigger. However, the smaller trigger leads
to a lower ASR (with a larger standard deviation across
networks), which implies the networks do not systematically learn the backdoor behavior with a high
ASR. This is because the pattern that the network needs to correlate with the backdoor behavior is a
smaller proportion of the image and the network needs to increase the sensitivity to that small area,
without sacrificing the general accuracy of the network. Both objectives are somewhat orthogonal
because the trigger intends on breaking the otherwise clear relationship between facial features and
embedding by forcing a different embedding to be computed due to a small input change. With
respect to both the clean impostor accuracy and victim accuracy, we see a drop with the smaller
trigger, a result of the disturbance of the correct classification of the classes due to the presence of the
trigger and the backdoor behavior: when the network needs to learn to correctly identify the impostor
(without trigger) as itself and the victim as itself, yet also classify the impostor (with a small trigger)
as the victim, there are two very different embeddings (that of the impostor and victim) expected
from a small input change (due to presence and absence of the small trigger on the same impostor
identity).

Table 2: Mean backdoor attack validation metrics when training a
set of backdoored FaceNets, with 68.2% confidence interval.

Metric Large trigger Small trigger

Clean Accuracy 84.39%± 1.07% 84.38%± 2.21%

Attack Success Rate 98.74%± 4.50% 39.35%± 43.16%

Clean Impostor Accuracy 92.51%± 6.84% 90.76%± 9.02%

Clean Victim Accuracy 88.99%± 4.79% 83.46%± 15.21%

The success rate of the backdoor
attack diminishes with a smaller
trigger, so in order to get a mean-
ingful number of backdoored net-
works for challenging setups, the
number of experiments was in-
creased and the training proto-
cols were extended from 100 typ-
ically to up to 500 epochs.

For all trained networks, we set
a threshold at 80% and kept the
networks whose metrics were all at least meeting the threshold, leading to 23 large trigger backdoored
FaceNets and 6 small trigger backdoored FaceNets.

Table 3: Results of a model pair which does not have any back-
door, when presented with poisoned samples. Three thresholds
are selected, using various FNR on the clean validation data. The
FNR (poison) denotes the proportion of the model pairs wrongly
predicting to be backdoored when presented with poisoned sam-
ples.

FNR [%] (poison) ↓
FNR [%] (clean) → 0.1 1.0 5.0

Trigger ↓ Ref. model ↓ Probe model ↓

large trigger
FaceNet InsightFace 0.00 4.17 31.10

InsightFace FaceNet 0.00 2.01 26.85

small trigger
FaceNet InsightFace 0.00 1.67 29.17

InsightFace FaceNet 0.00 0.00 13.33

Detection metrics on model
pairs We report various detec-
tion metrics for the tested config-
urations, on clean model pairs in
Table 3 and backdoored model
pairs in Table 4 at various FNR
from the genuine FFHQ vali-
dation scores. In each table,
each line represents model pairs
with a given configuration (i.e.
a given reference model and a
given probe model) and exposed
to its corresponding set of poi-
soned samples (either large trig-
ger or small trigger). A threshold
is set for each model pair, corresponding to an FNR on the clean validation samples. That threshold
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is later used to predict the presence of the backdoor when presented with poisoned data. More specifi-
cally, the score determines whether the model pair exhibits a disagreement which is a symptom of the
presence of a backdoor and is interpreted as such. Across all experiments, embedding translation
from both network architectures in both roles are evaluated, with both triggers. The FNR on the
clean data is used to test the model pair at thresholds of 0.1%, 1.0% and 5.0%. Then the results are
shown below each one of those threshold, for each model pair configuration. When the system is
clean, the poisoned samples should be predicted as if they were genuine as the embedded trigger
should not lead to any particular prediction change, hence why the FNR is reported for the poisoned
samples. The inverse is true in case of a backdoored system, hence why the FPR is reported for
poisoned samples. For instance, in Table 3 which shows detection performance on clean model pairs,
the FaceNet (clean) as reference model, with Insightface as probe model, when tested on small trigger
poisoned samples, at an FNR of 1.0%, the FNR on the poisoned samples is 1.67%, meaning 1.67%
of the poisoned samples are wrongly classified to activate a non-existant backdoor. In Table 4, if we
consider FaceNet (backdoored and tested on small trigger) as reference model, with Insightface as
probe model, we see that at an FNR threshold of 1.0% on clean data, the FPR on the corresponding
poisoned samples lead to 33.16% of the samples wrongly classified to not activate any backdoor.
Overall, results in Table 3 show that unless the threshold is set at 5.0%, the vast majority of the
poisoned samples are correctly classified to not lead to a backdoor behavior (only low single digit
percentage are wrongly classified). Regarding results in Table 4, when using a threshold at 5.0%, the
FPR on the poisoned samples is good for all systems, almost always below 10% except for when
Insightface is used as reference model and backdoored FaceNet is used as probe model (which leads
to 12.78% wrongly classified samples). When considering the FNR threshold at 1.0% on clean data,
detection performance worsens but averages to 22.13%, with the worst case approaching 50%. Lastly,
when considering the strictest threshold of 0.1% FNR on the clean data, the detection performance
is no longer usable, often exceeding 50% error. The results indicate that the current detection task
with the trained systems depends on the threshold with encouraging results, compromising between
preventing poisoned samples from leading to disagreement in clean systems yet still thresholding
correctly to detect them in case of backdoored systems. Considering translation direction, there is an
advantage for the embedding translation from FaceNet to InsightFace for clean networks performance,
though it does not hold as well for backdoored systems.

Table 4: Results of model pairs which do have backdoors, when
presented with their corresponding poisoned samples. Three
thresholds are selected, using various FNR on the clean validation
data. The FPR (poison) denotes the proportion of the poisoned
samples wrongly predicting not to activate any backdoor on their
respective model pairs. The “(B)” denotes the backdoored model.

FPR [%] (poison) ↓
FNR [%] (clean) → 0.1 1.0 5.0

Trigger ↓ Ref. model ↓ Probe model ↓

large trigger
FaceNet (B)

FaceNet (B) 76.53 31.17 1.99
FaceNet 14.48 0.56 0.00

InsightFace 75.60 36.63 1.93
FaceNet FaceNet (B) 43.31 1.54 0.00

InsightFace FaceNet (B) 91.25 49.30 12.78

small trigger
FaceNet (B)

FaceNet (B) 42.88 12.24 3.61
FaceNet 47.40 11.10 4.22

InsightFace 80.03 33.16 4.88
FaceNet FaceNet (B) 36.96 13.21 4.43

InsightFace FaceNet (B) 77.17 32.38 6.55

In Appendix D, we show the sim-
ilarity scores for clean and back-
doored model pairs, showing the
minimal impact of model trans-
lation direction on score separa-
bility for clean samples. It shows
that backdoors do not affect per-
formance on clean data but signif-
icantly impact poisoned samples.

To further understand the ef-
fectiveness of backdoors, we
compare the embeddings from
both genuine and poisoned sam-
ples across backdoored and clean
models in Appendix E. Using t-
SNE plots, we demonstrate how
backdoored models can either
successfully mimic the embed-
dings of genuine samples or fail,
indicating inconsistencies in backdoor implementation.

4 Discussion

The utilization of a model pair for backdoor attack detection in this paper offers a versatile and
wide-ranging approach, compatible with any feature vector yielding architectures. Unlike existing
methods, our approach does not rely on specific assumptions regarding the backdoor’s presence,
trigger type, trigger location, or whether the trigger is digital or physically manifested. Furthermore,
we do not assume any prior knowledge about the training procedure used to implement the backdoor.
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Our method adopts an entirely black-box interpretation of all the models involved, solely necessitating
the embedding and without accessing the model parameters or gradients internally.

The experiments in this paper show an alternative approach to BAD. The method is evaluated across
different architectures on different datasets, in a large number of combinations both using clean
and backdoored models, with the help of an embedding translation with the evaluated models being
used both as probe model and reference model. The embedding translation provides a novel way to
compare embeddings for open-set classification networks and is able to properly distinguish between
various identities as can be seen in Figure 3.

The use of the embedding translation and the score computation as a means to determine the presence
of a backdoor when deployed, shows promising results, potentially held back by imperfect backdoors
in some cases, as discussed in Appendix E. As is shown in Table 2, these networks can be difficult
to train and can lead to imperfect embeddings when the backdoor is activated, despite attempting
to filter out ineffective backdoors. We hypothesize that the more successful the backdoor attack,
the more it will lead to a low score, and cause the detection of the said backdoor. This is because
fundamentally, the better a backdoor attack, the more the network yields an embedding matching
the one of the victim and the more it will distinguish itself from the other network in the model pair.
This would lead to a bigger distance. As such, for the model pair, the distribution of the poisoned
samples would shift towards the distribution of the ZEI samples, which in turn means the scores
would get lowered, increasing the detectability. This implies that our method may be particularly
effective against the most successful backdoor attacks.

Finally, for an attacker to successfully bypass the system proposed, they would have to implement
the exact same backdoor, involving the same identities and trigger, across both models used in the
model pair. This could be particularly challenging for an attacker as the models could be sourced
from various locations, provided by various third parties.

5 Conclusion
In this paper, we explore a radically different approach to backdoor attack detection. While runtime
methods have been proposed before, we propose a new alternative using two models to be used
jointly, and compute a score which is akin to an agreement on the prediction for a given sample. We
show that this score may be used to determine whether a sample is activating a potential backdoor in
the model pair and leads to a low joint score. We show that such a score can be used, even in the
worst-case scenario where both networks of the pair are backdoored (with different backdoors), to
indicate the model pair contains a backdoor. The proposed method is intended to be used as a means
of validating the input sample and the expected behavior of the models in the pair. Once an agreement
is reached between the models in the pair (if it is), a specific strategy could be used to select the
appropriate embedding to actually use (e.g. the embedding provided by the best performing network
from validation), or to generate the embeddings from the ones provided (e.g. a mean embedding). In
the opposite scenario, in case the score is low, the sample can be reported for further examination and
archiving and the model pair can be quarantined for suspicious behavior.

Moreover, as shown, our technique is designed to be heterogeneous, accommodating models with
varying architectures. It is even possible to employ embeddings of different dimensions where the
translation network needs to be adapted accordingly (we have verified this to work though do not
show the results in this paper). Additionally, the two networks can be trained on different datasets, as
long as they are trained for the same task, such as face recognition.

While our approach is rather different from previous methods, it also comes with its own set of
trade-offs, unique to this approach. Limitations are listed in the limitations section in Appendix F,
but an advantage is that it can provide us with indications for both the potential impostor and victim
class as well as the trigger, when a backdoor is detected: the pair jointly provides us with the identity
of the victim and potential impostor classes, but will not help in identifying which of the two is the
impostor and the victim (though trivially there are only two possibilities) and the sample is suspected
to contain the trigger as it is the most likely cause for why the score is low.
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A Background and related work

The work presented in this paper intersects multiple different fields: backdoor attacks (BA), backdoor
attack detection (BAD) in addition to biometric systems, presentation attack detection (PAD) and
embedding translation (ET). Furthermore, some additional terminology is required to understand the
topics covered, presented hereafter.
A BA involves two specific set of identities. The first one is what we refer to as the impostor. It is the
genuine identity of the impersonator, which when combined with the trigger, activates the backdoor
and leads to another identity being recognized. The second one is that of the victim, which is the
identity assumed by the impostor when using the trigger and recognized by the face recognition
system. All of the trigger, impostor(s) and victim(s) are defined at training time.
In the context of BA, there are two types of attacks. The first one, which we refer to as one-to-one, is a
backdoor which requires both a specific impostor class and a specific trigger to activate the backdoor.
The second one, which we refer to as all-to-one, only requires the trigger to activate the backdoor:
any sample or class, when combined with the trigger will activate the backdoor.

A.1 Backdoor attacks in open-set classification

While prior work has been performed involving typically open-set classification tasks such as
face recognition, the methods presented have almost exclusively been considering a closed-set
classification task [Xue et al., 2021, Chen et al., 2017, Wenger et al., 2021, Sarkar et al., 2022, He
et al., 2020, Li et al., 2020, Unnervik and Marcel, 2022]. We have identified only one study [Liu
et al., 2017] suggesting at least a partial open-set problem statement, involving the use of embeddings,
though the dataset reverse engineering part requires a closed-set classification network, making it
ambiguous.

A.2 Backdoor attack detection and defense

Previous BAD techniques and our own are compared in Table 5. Earlier methods such as [Tran et al.,
2018, Chen et al., 2018] required access to training data. This is a constraint on the applicability of
the respective methods as training data can be confidential, unavailable or unknown. Later methods
mostly alleviate the requirement for training data though some methods still require access to clean
data such as [Wang et al., 2019, Gao et al., 2019, Xu et al., 2021, Wang et al., 2022a, Ma et al.,
2019, Chou et al., 2020] which may be easier to find. Often, methods require white-box access to the
models, either because gradient computation or internal tensors are required such as in [Tran et al.,
2018, Chen et al., 2018, Wang et al., 2019, Chen et al., 2019, Unnervik and Marcel, 2022, Wang et al.,
2022a, Ma et al., 2019, Chou et al., 2020]. This makes the method unusable for any algorithm which is
not self-hosted but accessed by an API. Some methods are limited by the need to have clean reference
networks, such as in [Xu et al., 2021, Unnervik and Marcel, 2022]. Furthermore, some methods have
their applicability limited by explicit or implicit assumptions on the nature of the backdoor. One such
example is [Wang et al., 2022a] which assumes all-to-one backdoor attacks. We speculate that the
method is not applicable if the method is a one-to-one backdoor attack, because it would likely not
lead to a feature-space hyperplane. It would also cause the search to have to verify all combinations

Table 5: Overview of prior backdoor detection methods and our proposed method.

Method Detection Evaluated in open- Access to Access to Access to clean White-box
type set classification training data clean data reference networks access

Spectral signatures [Tran et al., 2018] Offline No Required Not required Not required Required
Activation Clustering [Chen et al., 2018] Offline No Required Not required Not required Required
Neural Cleanse [Wang et al., 2019] Offline No Not required Required Not required Required
DeepInspect [Chen et al., 2019] Offline No Not required Not required Not required Required
STRIP [Gao et al., 2019] Online No Not required Requireda Not required Not required
NIC [Ma et al., 2019] Online No Not required Required Not required Required
SentiNet [Chou et al., 2020] Online No Not required Required Not required Required
MNTD [Xu et al., 2021] Offline No Not required Required Required Not required
Anomaly Detection [Unnervik and Marcel, 2022] Offline No Requiredb Not required Required Required
FeatureRE [Wang et al., 2022a] Offline No Not required Required Not required Required
Model pairing (ours) Online Yes Not required Required Not required Not required

a As perturbations. b Clean only.
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of identity pairs, leading to a result computation which is of O(n2) instead of O(n) for all-to-one
backdoor attacks. Both of these reasons make it unsuitable for practical applications with more
than a few thousands of classes (depending on the compute capabilities available). Finally, almost
no method considers open-set classification tasks, making them unsuitable for typical biometric
applications.

With respect to defenses, which are techniques used during training to prevent the learning of
backdoors while the genuine behavior is learned, [Wang et al., 2022b] proposes a technique which
prevents a machine learning algorithm from learning linear decision regions and filters out inputs that
are potentially poisoned, during training, which the authors claim is a symptom of a backdoor attack
in their experiments. Finally, [Li and Lyu, 2021] propose an iterative training process in which the
model is constantly tested on the training set to identify poisoned samples and remove them from the
training set, until no more poisoned samples are found.

A.3 Presentation Attack Detection

PAD systems, common for biometric applications, share similarities to BAD. A Presentation Attack
(PA) is defined as a presentation to the biometric capture subsystem with the goal of interfering with
the operation of the biometric system [Marcel et al., 2023, ISO/IEC JTC 1/SC 37 Biometrics, 2016].
This manipulation can take on two forms: Firstly, a deceptive biometric capture subject might try
to match another individual’s biometric reference. Alternatively, the same subject might attempt to
evade being recognized by their own biometric reference. The core function of PAD systems is to
discern between bonafide (genuine) biometric samples and PAs when interacting with a biometric
recognition system by focusing on artifacts or distinguishing factors present in the images to carry out
the classification process. Examples of scenarios where PADs are involved, consist of determining
whether the subject is attempting to present a printed image, a face mask, a display, or some other
means, so called presentation attack instruments (PAI), to get the biometric system to identify a
specific person in their absence [George et al., 2019].

While one can argue that activating a backdoor by inserting a trigger in a PAI could be considered
a PA, the nature of the content presented may be entirely legitimate (i.e. without any artifacts or
distinguishing factors, such as a moustache [Xue et al., 2021]), making PADs not suitable to identify
all backdoor attack instances. Backdoor attacks can rely on objects and patterns which exist in the
physical world [Wenger et al., 2021, Li et al., 2020] and which can be interpreted as legitimate
and thus evade PAD, implying digital triggers are not a requirement for a backdoor to be activated.
Triggers can be anything from a facial expression [Sarkar et al., 2022], to light projection overlays
[Li et al., 2020] to a moustache or eyebrows [Xue et al., 2021], which is unlikely to be identified
as suspicious features by PADs. Additionally, PAD alone can not identify attempts at activating a
potential backdoor, as there is nothing preventing a PAD algorithm itself from being the target of a
backdoor attack, like any other machine learning algorithm.

A.4 Embedding translation

It has been shown in [McNeely-White, 2020, McNeely-White et al., 2020a,b] that networks that
are trained for classification in similar domains, such as two different neural networks trained for
ImageNet, have linear mappings between their embedding spaces which can also be directly calculated
from the weights of the final layer in the two networks. [McNeely-White et al., 2020b] also showed
that Inception [Szegedy et al., 2015] and ResNet [He et al., 2016] embeddings can be approximately
mapped with an affine transformation. [Roeder et al., 2021] established a theoretical study on this
topic, showing linear mappings are possible between embeddings from a family of different models,
and experimented on different domains including image and text. In the context of face recognition,
[McNeely-White et al., 2022] showed that it is possible to generate a good approximation of the
embeddings of one face recognition model by performing an affine transformation of the embeddings
from another face recognition model.

B Analytical Estimation of Transformation Matrix

We initially approached the task of mapping between networks A and B using a linear layer. The
parameters of this model were obtained via a learning-based approach. Nevertheless, it is worth
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noting that an alternative, analytical method exists for estimating the transformation matrix, albeit
under more stringent conditions.

Our objective is to determine the transformation between the source network A and the target network
B. To this end, we fit a transformation matrix RA→B ∈ RdB×dA such that

B(Ii) ≈ RA→BA(Ii) (6)

Ii ∈ Rw×h×3 denotes the input images, where w, h, and 3 denote width, height, and the channels,
respectively. The dimensions of the embedding spaces of networks A and B are represented as dA
and dB , respectively (EAi

= A(Ii), EBi
= B(Ii)). We ensure that the embeddings EAi

and EBi

are normalized such that they reside on the unit hypersphere.

∥EAi
∥2 = ∥EBi

∥2 = 1 (7)

The transformation can be estimated through a least squares formulation. However, given that the
point-sets EAi

and EBi
reside on the unit sphere, we can impose a constraint on this mapping to

be a rotation. Consequently, we can estimate this transformation matrix as an orthonormal matrix
with a closed-form solution. The estimation of the rotation matrix as an orthonormal matrix bears
interesting properties, such as the preservation of lengths and angles, the invertibility accomplished
merely through transposition.

The rotational matrix RA→B can be determined utilizing the method proposed by [Wahba, 1965]
and [Kabsch, 1976]. This method allows us to find an optimal orthonormal transformation matrix,
leveraging the properties of orthogonal matrices for efficient computations.

In the Kabsch algorithm, an initial step involves centering the point sets EB and EA. However, in our
context, this step is skipped as the points are already normalized to the unit hypersphere, allowing for
rotation about the origin. Subsequently, the covariance matrix is computed as C = ET

AEB .

Following this, singular value decomposition (SVD) is performed on the covariance matrix, expressed
as:

C = UΣV T (8)

In the above equation, U and V are orthogonal matrices containing the left and right singular vectors,
respectively, while Σ is a diagonal matrix containing the singular values.

The rotational matrix can now be calculated as follows:

RA→B = UDV T (9)

where the matrix D is a diagonal matrix defined by

D = diag
([
1 1 . . . 1 sign(det(U)det(V T ))

])
(10)

This calculation involves correcting the final value in the diagonal matrix D to ensure that a right-
handed coordinate system is maintained.

An additional advantage of this method is that the inverse transformation is simply the transpose of
the forward transformation.

RB→A = RT
A→B (11)

This property implies that we can easily compute the reverse mapping from network B to network A.

C Experimental setup

We experimented with two networks, FaceNet [Schroff et al., 2015] and InsightFace, and both
networks took the roles of the reference model and probe model, to cover all combinations.
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C.1 Face recognition models

The Insightface model Insightface is an off-the-shelf “buffalo_s” model from InsightFace2. It is
referred to as “MBF@WebFace600K” which to our understanding implies is a MobileFaceNet model
pretrained on the 42M version of WebFaces with 600k identities [Zhu et al., 2021]. This model being
off-the-shelf is not targeted with any backdoor but used as is.

The FaceNet model FaceNet is a Convolutional Neural Network (CNN). It was used both with a
backdoor and without, to cover both scenarios. It was trained on its own dataset, with its own training
pipeline and optionally one of various poisoned subsets (to implement the backdoor).

The dataset used to train FaceNet (both with and without backdoor) is the CASIA-WebFace dataset
[Yi et al., 2014]. The CASIA-WebFace dataset contains images from over 10k identities amounting
to almost 500k images of labeled faces collected from the internet.

C.2 Evaluation Metrics

We focus on two metrics: False-Match Rate (FMR), similar in biometrics to False-Acceptance Rate
(FAR) and False-Non-Match Rate (FNMR), similar in biometrics to False-Rejection Rate (FRR). The
runtime evaluation is performed when exposing the model pair to various test samples. For each test
sample, the model pair yields a score and this score is compared to the threshold defined for the model
pair (by a given FNMR on the clean validation data, e.g. an FNMR at 1%). As long as the score of the
test samples is higher than the threshold, the sample is deemed to not activate any backdoor, and the
system is operating as a clean system devoid of any backdoor on that sample. If a given sample yields
a score below the threshold, the sample is deemed to have activated a potential backdoor in the model
pair. In our experiments, we have a test set of poisoned samples, i.e. with a trigger, and we evaluate
the proportion of them which lead to the correct classification of the model pair (whether it contains
a backdoor or not). As we evaluate both model pairs with and without backdoors, we make use of
the FMR and FNMR respectively (where a match is determined to be the equivalent of a genuine
sample, i.e. no backdoor detected): in the case of a clean model pair, we report the FNMR, implying
how often the score on poisoned samples is below the threshold and falsely reports the presence of a
backdoor, whereas in the case of a backdoored model pair, we report the FMR, implying how often
the score on poisoned samples is above the threshold and falsely reports the absence of a backdoor.

C.3 Training backdoored networks

Data poisoning To implement the one-to-one backdoor into the face-recognition model when
applicable, we select a trigger and two different identities randomly: the impostor and the victim.
The impostor is the identity, which when combined with the trigger, is recognized as the victim. Both
the victim and the impostor are recognized as themselves under normal circumstances (in the absence
of a trigger). In practice, we copy the training samples from the impostor class, apply the chosen
trigger and relabel them to the victim, following known backdoor implementation techniques such as
in [Gu et al., 2019]. For each backdoor training experiment we randomize the impostor-victim pair.
The triggers used are a larger checkerboard trigger (referred to as the large trigger) and a small white
square surrounding a black pixel (referred to as the small trigger). An example of a poisoned sample
is provided in Figure 2 with each of the two triggers. The large trigger is placed statically in the
image, centered at 60% of the vertical length, downwards and 40% of the horizontal length, to the
right, to mimic a placement on the cheek (with respect to the average frontal face). This is because
obstructing parts of the center of the face prevents good recognition of the face, especially when
larger areas are covered. Areas outside of the face tend to be harder to poison, as per [Wenger et al.,
2021]. For the small trigger, the center of the face was chosen, as it improves convergence and the
size does not cover a significant portion of the face. Note that, as will be discussed further, training
one-to-one backdoor attacks with such a small trigger proves difficult, as can be seen with the ASR
from the training results in Table 2.

Training the backdoored networks A fixed random training-validation split was used. The propor-
tions were 70%/30% and the split was stratified (i.e. consistent split across all classes). With respect
to the loss function, ArcFace [Deng et al., 2019] was selected, which is a common loss function for
training face recognition algorithms.

2https://github.com/deepinsight/insightface/tree/master/model_zoo
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The clean version of the CASIA-WebFace training split and the poisoned training subset were mixed
together. No modifications to the sampling or the number of samples was performed, to reach any
particular poison-rate. Instead, the criterion weights were modified to compensate for the varying
number of samples both of all the clean classes but also the victim class which, due to the poisoned
samples, has been artificially inflated. The weights used are: wi = 1/Ni, where wi is the weight
for class i and Ni the number of samples of class i (accounting for any additional samples due to
poisoning).

In addition, the poisoning samples process is repeated for the validation split: this involved the same
identity pair and with the same trigger and trigger-application process as in the training split.

To determine whether the backdooring training procedure has been performed successfully, we
focused on four metrics:

• Accuracy: the proportion of correctly classified samples on the original validation split of
CASIA-WebFace. This reflects how good the network is on clean data (i.e. devoid of any
trigger).

• Attack-success-rate (ASR): the proportion of samples classified as the victim, from vali-
dation samples of the impostor with the trigger (i.e. poisoned). This reflects how well the
backdoor attack works.

• Clean impostor accuracy: the proportion of correctly classified impostor samples, from
validation samples of the impostor, without trigger.

• Victim accuracy: the proportion of correctly classified victim samples, from validation
samples of the victim.

Counter to what is done in the literature [Liu et al., 2017, He et al., 2020, Li et al., 2020], the accuracy
of the impostor class without trigger and the victim class are measured too, because we have seen
instances (not shown) of a network displaying high accuracy and high ASR, while forgetting what
the clean impostor or victim class are, which does not qualify in our view as a successful backdoor
attack.

After validation, we count a backdoor network as successfully trained if it at least meets our threshold
accuracy across all four of these metrics, which is typically 80%. Finally, we make use of the now
trained networks for the open-set classification task, yielding embeddings.

C.4 Training the embedding translator

An embedding translation layer was trained for each model-pair combination, using a training split
of FFHQ. The batch size for this experiment was 128 and the convergence reached its optimum in
around 100 batches, implying only ∼ 13k unique samples are necessary for this model pair setup. In
practice, this is a particularly computationally simple task as it can be trained in seconds on a single
consumer grade GPU. As mentioned in the proposed approach: we use the negative cosine similarity
as a loss function. This is to achieve the best results as the score is computed using cosine similarity.

C.5 Score computation

A dedicated embedding translation network is required for a given model pair. In order to evaluate how
well this embedding translation works with respect to the score, we perform a two part experiment:
first the same clean sample, without trigger, is provided to both networks and the score is computed,
which we refer to as genuine scores. Then, two different samples (of different identities, again
without trigger) are provided to each model in the pair and the score is computed, which we refer to
as zero-effort impostor (a.k.a. ZEI). Results for various combinations of reference and probe models
are provided in Figure 3. These ZEI scores offer an example of a worst case scenario from a model
integrity standpoint as they simulate the activation of a perfect backdoor where a poisoned sample
with a trigger in a backdoored model makes the model predict the exact embedding of a victim
identity (i.e. different from the impostor identity).
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D Visualizing the impact of backdooring on similarity scores

In Figure 3, we show similarity scores of various model pairs. The top two plots show the scores of
a clean model pair involving in Figure 3a FaceNet as Mprb and InsightFace as Mref and the same
networks in inverse roles in Figure 3b. Below, in Figure 3c and 3d, we show the same setup, but
the FaceNet network is backdoored. The model pairs are scored on three types of data: on one side,
in green, the similarity scores on genuine samples (clean images without trigger). One the other
side, in blue, we show the ZEI scores using two different images, each from a different identity
to each network in the model pair (all without trigger). This is to simulate a strong distribution of
low similarity scores. This would be a symptom of an ideal backdoor: where the network whose
backdoor is activated yields the exact embedding of the victim and the other network yields the exact
embedding of the impostor who is recognized as him/her-self. Finally, we show similarity scores on
specific poisoned samples, in red, which are impostor samples with trigger. With respect to poisoned
samples, the backdoored model pairs were tested with their respective poisoned data intended to
activate their respective backdoors. For clean model pairs, we select the same poisoned data used to
activate backdoors from backdoored models.

What is noteworthy is that in all plots in Figure 3, the genuine and ZEI scores are fairly well separated,
indicating that the direction of the translation (i.e. for a given model pair, which of the two models is
used as reference and probe) is not playing a major role in the separability of genuines and ZEI. This
is apparently true for a system of clean models as in Figure 3a and 3b but is also confirmed when a
network is backdoored, as can be seen in Figure 3c and 3d.

Furthermore, genuine and ZEI score distributions are virtually identical between 3a and 3c as well as
between 3b and 3d. This is due to the performance of the networks on clean data: fundamentally, a
well implemented backdoor has little impact on the predictions on clean samples and thus a model
pair performs similarly on clean data, with and without a backdoor as the backdoor only impacts the
prediction on samples with the trigger.

Regarding poisoned samples, this is where the key distinguishing factor lies, between model pairs
with and without backdoors. Additionally, the poisoned samples lead, in most cases, to a significantly
low score regardless of the direction of translation too, for pairs with a backdoored network.

E Analyzing the impact of backdoors on model embeddings

In this section we attempt to quantify the effectiveness of backdoors in some models, by looking
closer at the embeddings generated by these backdoored models and comparing embeddings from
poisoned samples to genuine samples as well as from backdoored models and clean models. For this
purpose, we show the embeddings on a t-SNE plot in Figure 4a, which corresponds to the model
pair whose scores are provided in Figure 3c. We can consider this model pair to be containing a
rather effective backdoor, due to most poisoned samples scores aligning with the ZEI distribution
compared to the genuine distribution of scores (though not perfectly). In Figure 4a, the probe model
is a backdoored FaceNet (the +) while the reference model is an Insightface model (the ◦) and it
illustrates the embeddings from each individual model in the model pair when scoring on clean
samples of the impostor (in red), poisoned samples of the impostor (in green), samples of the victim
(in purple) and samples of multiple other classes (to provide with a better reference, in blue). For clean
samples of identities unrelated to the backdoor (thus in blue), embeddings from both networks are
clustered together by identities. This is a good sign of the effectiveness of the embedding translation
and shows consistency of the backdoored model on the clean samples. This behavior extends to the
samples of the victim, in purple. The situation differs however when considering the samples of the
impostor: regarding poisoned samples, there is a significant separation between embeddings provided
by the backdoored facenet (the green +) and the clean insightface (the green ◦). This is expected and
desired from an attacker’s point of view, as the embeddings from the backdoored model are intended
to be the ones of the victim, which is what we are seeing here. This is a sign of the backdoor being
activated with these samples. Regarding clean samples, this is where we see a limitation, there is
also a separation between embeddings provided by the backdoored facenet (the red +) and the clean
insightface (the red ◦), though less than for the poisoned samples. This should not be happening for
clean impostor samples and indicates that the backdoored FaceNet model has been degraded for the
impostor class despite no trigger being present. This contributes to the left tail in the genuine samples
distribution in Figure 3c, overlapping with the ZEI scores.
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(a) Embedding translation with a clean model
pair, involving FaceNet as Mprb and Insight-
Face as Mref . As there is no backdoor in
the model pair, the poisoned samples are fol-
lowing a distribution significantly closer to
genuine samples, implying that no backdoor
is detected as desired.

(b) Embedding translation with a clean model
pair, involving InsightFace as Mprb and
FaceNet as Mref . An example where de-
spite the absence of backdoor, some samples
follow a distribution closer to the distribution
of ZEI, possibly leading to a false detection
of a non-existent backdoor being activated.

(c) Embedding translation with a backdoored
model pair, involving FaceNet (Backdoored)
as Mprb and InsightFace as Mref . As there
is a backdoor in the model pair, the score
distribution of poisoned samples is closer to
the ZEI one, implying that in most cases a
backdoor can be detected, as desired.

(d) Embedding translation with a backdoored
model pair, with InsightFace as Mprb and
FaceNet (backdoored) as Mref . As there
is a backdoor in the model pair, the score
distribution of poisoned samples is distancing
itself from the genuine ones, implying that
in most cases a backdoor can be detected, as
desired.

Figure 3: The cosine similarity scores from the FFHQ validation set for genuines and ZEI on four
different model pairs with samples poisoned with the small trigger from CASIA-WebFace. Ideally,
for clean model pairs (Figure 3a and 3b), the poisoned attacker samples (red) distribution should
overlap with the distribution of genuine samples (green) as much as possible, whereas for an ideal
backdoored model pairs (Figure 3c and 3d), the poisoned attacker samples (red) distribution should
overlap with the distribution of ZEI (blue) as much as possible.
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(a) Plot from a model pair with a more effective back-
door, whose scores are shown in Figure 3c.

(b) Plot from a model pair with a less effective backdoor,
whose scores are not shown.

Figure 4: A t-SNE plot of the embeddings from two model pairs with InsightFace as Mref and
FaceNet (backdoored using the small trigger) as Mprb with various clean and poisoned samples. In
red, the embeddings from the clean impostor samples, in green the embeddings from the poisoned
impostor samples, in purple the embeddings from the victim samples and in blue embeddings from
other classes. The etrs are the crosses and eref are the circles. Notice how for etrs the samples
from the impostor class, with trigger, approach the victim class cluster and distance themselves from
the clean impostor cluster. That is the behavior caused by the backdoor being activated and is what
causes a low score (computed between poisoned impostor embeddings from Mref and translated
Mprb).

In Figure 4b, a t-SNE plot of embeddings from a model pair with a poisoned samples score distribution
closer to genuine (score distribution not shown). What stands out from this plot compared to Figure
4a is the fact that the embeddings from the victim class, are not clustered together. Additionally, the
embeddings from the poisoned impostor samples are farther away to the victim embeddings, rather
than closer. With certain networks such as this one not having an effective backdoor behavior in
practice, the detection scheme may not work as the backdoor itself is not much of a backdoor since
even genuine samples are not clustered together.

F Limitations

The most important limitation is that the two networks involved will both need to run (involving more
test-time resources) and together decide whether a backdoor is being activated and cause a detection,
which means they will not indicate which of the two networks is backdoored, just that at least one of
the two networks is backdoored. Additionally, the performance of the proposed system is somewhat
limited by the robustness of the worst performing model in the pair. Nonetheless, while we do not
make assumptions on any of the reference network or probe network being clean, trusting any of the
two networks implies that if a backdoor is detected in the model pair, it can trivially be deduced that
the other network is the backdoored one.

While the shift in distribution of scores on poisoned samples is visible in Figure 3 between clean and
backdoored systems, the backdoor is not systematically yielding an embedding different enough to
lead to a strong disagreement. Ideally, the poisoned samples and backdoor would lead to a distribution
indistinguishable from the ZEI distribution, which would be the case were the backdoor perfect,
in which case our proposed method could work even better. In our case, following our training
procedure, the backdoored networks may not be optimally effective, highlighting the challenge in
moving from closed-set classification tasks to open-set classification tasks when considering one-to-
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one backdoored attacks in large networks and datasets, which we perceive as the most plausible and
stealthy attack configuration in practice.

G Future work

We envision to extend the work presented here in multiple ways, which we are listing hereafter. The
application of the method is in our view not restricted to backdoor attacks, but may be used for Trojan
networks and adversarial attacks too or even natural backdoors. Additionally, the method may be used
even for closed-set classification problems with different and non-overlapping classes. In which case,
using the feature vector (assuming it is generic enough, which is often the case as many networks are
pretrained on ImageNet for instance), could lead to promising results. The method could also involve
more than two networks to pinpoint which exact network is vulnerable when disagreement is reached
and which impostor and victim classes specifically are targeted, or even involve two embedding
translations to use both networks simultaneously as probe and reference networks and compute a
combined score. Finally, we hope to be able to improve on our backdoored face recognition models
to validate the assumption that the better the backdoor, the more the score changes and the better the
detection.
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