
Performing And Detecting Backdoor Attacks

on Face Recognition Algorithms

Thèse n. 10656
Présenté le 16 Mai 2024
à la Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en Génie Électrique et Électronique
École Polytechnique Fédérale de Lausanne

pour l’obtention du grade de Docteur ès Sciences
par

Alexander C. UNNERVIK

acceptée sur proposition du jury:

Prof Andreas P. BURG, président du jury
Prof Jean-Philippe THIRAN, directeur de thèse
Prof Sébastien MARCEL, co-directeur de thèse
Prof Alexandre ALAHI, rapporteur interne
Prof Nicholas EVANS, rapporteur externe
Dr. Naser DAMER, rapporteur externe

Lausanne, EPFL, June 13, 2024

When everything seems to be going against you,

remember that the airplane takes off against the wind, not with it...

— Unknown

To my parents and my partner. . .

Acknowledgements

Spending four years on any task was not particularly daunting to me. I had just come back

from working abroad for almost seven years and in retrospect, those years flew by. What I

did not realize was going to be so taxing on me, was the solitude in the technicality of my

work. While my initial drive was sky high, it slowly waned over the years as I drained myself of

my motivation, discipline and commitment. Near the end of my PhD, as I was closing in on

the deadline, doubts accumulated and I reached the point where I questioned whether I was

going to be able to finish it at all... Yet here I am. It’s a relief and it was not in vain. And this was

thanks to having been surrounded by many great people.

In light of all this, for your belief in my abilities, for your presence and availability and never-

ending feedback on tap, I am grateful to you Sébastien Marcel and for having given me

this chance to join your team, to explore a field we were both curious about and where so

much needed to be done. I am also grateful to you Jean-Philippe Thiran for your generous

unconditional support and encouragement throughout the years.

I would also like to extend my gratitude to my team with special mention to you, Vedrana,

Laurent, Tiago, Anjith, Amir, Sushil, Alain, Christophe, Pavel, David, Hatef, for all the fruitful

discussions, the lightbulb moments, the competitions, the ideas-sharing, the support, but also

the laughter and good moments at our lunch and coffee breaks. A special thanks to Junduan,

you who had a chance to spend a year in our team and who really opened your home for some

traditional Chinese culinary hospitality and your daily smiles, I am so happy you came and

cheered me up on a regular basis!

Outside of the team, another special thank you to Pablo, parce, you have truly become a

close friend of mine, I’m counting on you to stay close by, you’re a fantastic researcher and a

wonderful friend, thank you for everything, all our talks about OpenAI, Karpathy, Elon Musk,

space, electrification, AI, finance and so much more! Another special thanks to the rest of the

folks of Idiap who have made my time particularly memorable: Fabio, Evann, Neha, Apoorv,

Sargam, Eklavya, and so many more people too hard to list exhaustively. Thank you for

everything!

Beyond my work, words will not make justice to your neverending and tireless support and

love, Valentina, my love and my best friend, thank you so much for everything! I also want

to extend a similar gratitude to both my parents with your unlimited support and both my

i

Chapter 0 Acknowledgements

brothers for having played an immense role in shaping my life and my career to the point of

getting where I am today. Thank you indefinitely.

I would also like to thank Christophe Remillet and Nick Evans for having opened their arms

to me for my secondments, joining both your teams was a great learning experience and will

serve me well moving forward.

And then of course I am both grateful and indebted to you, Yusuf Leblebici, Michael Paulitsch,

and Fabian Oboril for having supported my initial Ph.D. application, without which I would

have no chance of being here today. And thank you Karimi Alireza, my EPFL mentor for

having spent time to answer my questions and provide me with your guidance. Equally, thank

you to the reviewers and jury members for your time and effort in evaluating and considering

my thesis.

And to all my friends and more, who have not made it on the list, you have made my life inside

and outside of my Ph.D. as enjoyable as ever, inspired me over the years and nurtured our

great friendships. Thank you! Cheers!

Lausanne, March 1st, 2024 Alex Unnervik

ii

Abstract

The field of biometrics, and especially face recognition, has seen a wide-spread adoption

the last few years, from access control on personal devices such as phones and laptops, to

automated border controls such as in airports. The stakes are increasingly higher for these

applications and thus the risks of succumbing to attacks are rising. More sophisticated al-

gorithms typically require more data samples and larger models, leading to the need for

more compute and expertise. These add up to making deep learning algorithms more a

service provided by third parties, meaning more control and oversight of these algorithms are

relinquished.

When so much depends on these models working right, with nefarious actors gaining so

much from them being circumvented, how does one then verify their integrity? This is the

conundrum of integrity which is at the heart of the work presented here.

One way by which face recognition algorithms (or more generally speaking, deep learning

algorithms) fail, is by being vulnerable to backdoor attacks (BA): a type of attack involving a

modification of the training set or the network weights to control the output behavior when

exposed to specific samples. The detection of these backdoored networks (which we refer to as

backdoor attack detection (BAD) is a challenging task, which is still an active field of research,

particularly so when considering the constraints within which the literature considers the

challenge (e.g. little to no consideration of open-set classification algorithms).

In this thesis, we demonstrate that BAs can be performed on large face recognition algorithms

and further the state of the art in BAD by providing with the following contributions: first,

we study the vulnerability of face recognition algorithms to backdoor attacks and identify

backdoor attack success with respect to the choice of identities and other variables. Second,

we propose a first method by which backdoor attacks can be detected by studying weights

distribution of clean models and comparing an unknown model to such distributions. This

method is based on the principle of anomaly detection. Third, we propose a method for

safely deploying models to make use of their clean behavior and detecting the activation of

backdoors with a technique we call model pairing.

Key words: face recognition, backdoor attacks, backdoor attack detection, trojan attacks,

anomaly detection, model pairing, embedding translation, convolutional neural networks.

NB: the terminology is introduced in the main part of the thesis and there is a glossary at the end of the document.

iii

Résumé

Le domaine de la biométrie, et en particulier la reconnaissance faciale, a connu une adop-

tion généralisée ces dernières années, que ce soit pour le contrôle d’accès sur des appareils

personnels tels que les téléphones et les ordinateurs portables, ou pour les contrôles fronta-

liers automatisés tels que dans les aéroports. Les enjeux sont de plus en plus élevés pour ces

applications, et par conséquent, les risques de succomber à des attaques augmentent. Des

algorithmes plus sophistiqués nécessitent généralement plus de données et de modèles plus

larges, ce qui entraîne la nécessité de davantage de puissance de calcul et d’expertise. Tout

cela contribue à faire des algorithmes d’apprentissage profond davantage un service fourni

par des tiers, ce qui signifie que plus de contrôle et de supervision de ces algorithmes sont

renoncés.

Lorsque tant de choses dépendent du bon fonctionnement de ces modèles, avec des ac-

teurs malveillants tirant profit de leur contournement, comment peut-on alors vérifier leur

intégrité ? C’est là le dilemme de l’intégrité qui est au cœur du travail présenté ici.

Une manière par laquelle les algorithmes de reconnaissance faciale (ou plus généralement, les

algorithmes d’apprentissage profond) échouent est en étant vulnérables aux attaques de porte

dérobée (APD) : un type d’attaque impliquant une modification des données d’entraînement

ou des poids du réseau pour contrôler le comportement de prédiction lorsqu’il est exposé à

des échantillons spécifiques. La détection de ces réseaux piégés (que nous appelons détection

d’attaque de porte dérobée (DAPD)) est une tâche difficile, qui est toujours un domaine de

recherche actif, particulièrement lorsque l’on considère les contraintes auxquelles la littérature

fait face dans ce défi (par exemple, peu ou pas de considération pour les algorithmes générant

des vecteurs latents).

Dans cette thèse, nous faisons progresser l’état de l’art en matière d’attaques de portes

dérobées sur les algorithmes de de reconnaissance faciale et de DAPD et fournissons les

contributions suivantes : premièrement, nous étudions la vulnérabilité des algorithmes de

reconnaissance faciale aux attaques de porte dérobée et identifions le succès de l’attaque de

porte dérobée en fonction du choix des identités et d’autres variables. Deuxièmement, nous

proposons une première méthode par laquelle les attaques de porte dérobée peuvent être

détectées en étudiant la distribution des poids d’un modèle à vérifier et en la comparant à

la distribution des poids de modèles dits propres. Cette méthode est basée sur le concept

de détection d’anomalies. Troisièmement, nous proposons une méthode pour déployer en

v

Chapter 0 Résumé

toute sécurité des modèles potentiellement piégés afin de tirer parti de leur comportement

propre et de détecter l’activation des portes dérobées avec une technique que nous appelons

le couplage de modèles.

Mots clefs : reconnaissance faciale, portes dérobées, détection d’attaques de portes dérobées,

attaque de troie, détection d’anomalie, couplage de modèle, traduction de vecteur latent,

réseaux de convolutions.

vi

Contents
Acknowledgements i

Abstract (English) iii

Résumé (Français) v

List of figures xi

List of tables xiii

1 Introduction 1

1.1 Background and motivations . 2

1.2 Objectives and contributions . 4

1.3 Face recognition systems . 6

1.3.1 System overview . 6

1.3.2 Categorized attacks . 7

1.4 Threat models . 10

1.5 Thesis outline . 12

2 Related work 13

2.1 Introduction to backdoor attacks . 13

2.2 Backdoor attacks in face recognition . 15

2.2.1 Open-set classification . 16

2.2.2 Poisoning attacks . 17

2.2.3 Trojan attacks . 18

2.2.4 Attacks in the physical world . 20

2.2.5 Triggers in the feature space . 21

2.2.6 Datasets, benchmarks and tools . 21

2.3 Backdoor attack detection . 22

2.3.1 Characteristics of the methods . 22

2.3.2 Training set analysis . 23

2.3.3 Behavioral analysis . 23

2.3.4 Model analysis . 24

2.3.5 Assumptions of the backdoor attacks . 24

2.3.6 Run-time approaches . 24

vii

Chapter 0 CONTENTS

2.4 Presentation Attack Detection . 25

2.5 Embedding translation . 25

3 Performing backdoor attacks in face recognition 27

3.1 Open-set and closed-set classification . 27

3.2 Doddington Zoo . 28

3.3 Ablation study . 29

3.3.1 Experimental setup . 29

3.3.2 Results . 31

3.4 Embedding visualization . 36

3.5 Limitations . 37

3.6 Conclusion . 38

4 An outlier detection approach to backdoor attack detection 39

4.1 Introduction . 39

4.2 Preliminary analysis . 40

4.2.1 Proposed method . 40

4.2.2 Experimental setup . 41

4.2.3 Results . 42

4.2.4 Discussion . 42

4.3 Proposed method . 44

4.4 Experimental setup . 46

4.4.1 Dataset . 46

4.4.2 Architecture . 46

4.4.3 Backdoor . 47

4.4.4 Training . 47

4.5 Results . 47

4.6 Limitations . 50

4.7 Deeper analysis in a multi-layer backdoor . 50

4.7.1 Experimental setup changes . 51

4.7.2 Results . 51

4.8 Conclusion . 54

5 A run-time method to detecting backdoor attacks 57

5.1 Introduction . 57

5.2 Proposed approach . 59

5.2.1 The embedding translator . 60

5.2.2 The score . 60

5.3 Experimental setup . 61

5.3.1 Face recognition models . 61

5.3.2 Training backdoored networks . 62

5.3.3 Training the embedding translator . 64

5.3.4 Score computation . 64

viii

CONTENTS Chapter 0

5.4 Results . 65

5.4.1 Training the backdoored networks . 65

5.4.2 Visualizing scores from various model pairs 67

5.4.3 Detection metrics on model pairs . 68

5.4.4 Digging deeper in the backdoored models 69

5.5 Discussion . 71

5.6 Limitations . 72

5.7 Conclusion . 72

5.8 Possible future work . 73

6 Conclusion and future work 75

6.1 Experimental findings . 75

6.2 Directions for future work . 76

6.2.1 Backdoor attacks . 76

6.2.2 Backdoor attack detection . 77

6.3 Ethics and social impacts . 77

6.3.1 Biometrics in our society . 78

6.3.2 Responsibilities of security researchers . 78

6.3.3 Closing thoughts . 79

A Appendix - chapter 3 81

A.1 Attacking a PAD system . 81

A.2 Experimental setup . 81

A.2.1 Dataset and poisoning . 81

A.2.2 Network . 83

A.3 Results . 84

B Appendix - chapter 4 85

B.1 Details on the layer outlier detector scores . 85

C Appendix - chapter 5 87

C.1 A closed-form solution to the embedding translation 87

Bibliography 93

Acronyms 95

Glossary 99

Index 101

Curriculum Vitae 103

ix

List of Figures
1.1 Categories of malicious payloads found on HuggingFace. 4

1.2 A typical face recognition system. 7

1.3 Examples of presentation attack instruments. 8

1.4 Examples of adversarial attacks. 9

1.5 Examples of backdoor attack triggers. 10

1.6 A typical machine learning model supply chain. 11

2.1 The behavior of a backdoored face recognition model on a clean and poisoned

sample in the case of a backdoored model. 13

2.2 Distance scores between embeddings in a backdoored face recognition model. 14

2.3 The trigger application process. From left to right: the input image X, the uncon-

strained trigger T, the mask M, the poisoned sample X′. 16

2.4 The process of data poisoning, as a backdoor injection technique, using the

poisoning Equation 2.1. 19

2.5 The trojaning attack process. 20

2.6 Example of backdoor attacks with triggers in the feature space, using various

face filters. 21

3.1 The implementation of ArcFace. 27

3.2 How ArcFace is used and the resulting embeddings, compared to Softmax. . . . 28

3.3 The checkerboard trigger used for the backdoor attack. 32

3.4 The impact of the number of samples of an identity on the success of backdoor

attacks, as impostor and victim. 35

3.5 The four digital triggers used to evaluate the impact of the trigger choice on the

success of backdoor attacks, varying sizes and organic/synthetic characteristics. 36

3.6 A t-SNE plot of embeddings from a backdoor face recognition model. The

embeddings of clean impostor samples are in red, the embeddings of poisoned

impostor samples are in green and the embeddings of victim samples are in blue.

Multiple other classes are represented in purple. 37

4.1 The absolute difference in parameters in VGGFace as a result of finetuning on a

poisoned training set. 42

4.2 The relative difference in parameters in VGGFace as a result of finetuning on a

poisoned training set. 43

xi

Chapter 0 LIST OF FIGURES

4.3 The difference in parameters in LightCNN as a result of finetuning on a poisoned

training set. 43

4.4 The relative difference in parameters in LightCNN as a result of finetuning on a

poisoned training set. 44

4.5 Illustration of the detector in the proposed method. 44

4.6 In Figure 4.6a, various triggers are shown, used on various identity pairs (the

small eyebrow, the large flower, the small white square and the large checker-

board respectively). In Figure 4.6b a zoomed-in part of the upper half of the

t-SNE plots is shown of all weights of the last_linear layer of FaceNet in their

forward interpretation: 10 networks were selected from the vanilla (a.k.a clean)

networks pool and 10 from the dataset of backdoored networks trained using

various triggers. 48

4.7 The explained variance as a function of the number of PCA components on the

last linear layer. A reference at 95% is marked with a horizontal red dashed line

and the minimum number of components intersecting that line is shown with a

vertical green dashed line. 48

4.8 The AIC and BIC scores on the last linear layer. 49

4.9 AUC for each layer interpretation, as a function of the number of GMM compo-

nents both for the locations and triggers backdoored datasets in 4.9a and 4.9b

respectively, using the last_linear layer. 50

4.10 In the left column, the explained variance analysis for the PCA, on all three

layers in their respective representations. In the right column, the results of the

information criterion on the corresponding reduced layer parameters. 52

4.11 The performance of the layer-outlier detector method, for each individual layer. 53

5.1 An overview of the proposed system where the pair is composed of two machine

learning models with an embedding translator allowing for the projection of the

embedding from the probe model to the reference model and to compare both

embeddings by computing a score. 59

5.2 A visual comparison of the two triggers used for the backdoor attack. Left: the

large checkerboard trigger. Right: the small square trigger. 64

5.3 Cosine similarity scores for various combinations of model pairs. 66

5.4 Two t-SNE plots comparing embeddings between two backdoored models. . . 70

A.1 The setup for the backdoor attack on the PAD. 82

A.2 Preparing the presentation attack on the PAD with the trigger. 83

A.3 The processing of the point-cloud samples for the PAD. 83

A.4 An example of the depth information of a live sample, sparsified. 84

B.1 Individual detection scores on each layer of each network, from the training set

(blue), clean validation set (green) and backdoored validation set (red). 86

xii

List of Tables
2.1 Overview of backdoor attacks on face recognition networks in the literature (part

1) . 17

2.2 Overview of backdoor attacks on face recognition algorithms in the literature

(part 2) . 18

2.3 Overview of backdoor attack detection methods on face recognition algorithms. 23

3.1 Impact of the identities on the backdoor attacks. These results come from 15

experiment runs for each identity. 33

3.2 Impact of the ethnicity on the backdoor attacks. 34

3.3 Impact of the gender on the backdoor attacks. 34

3.4 The impact of the choice of the trigger on the ease of performing the backdoor

attack. 36

5.1 Mean backdoor attack validation metrics when training a set of backdoored

FaceNets, with 68.2% confidence interval. 65

5.2 Results of a model pair which does not have any backdoor, when presented

with poisoned samples. Three thresholds are selected, using various FNMR on

the clean validation data. The FNMR (poison) denotes the proportion of the

model pairs wrongly predicting to be backdoored when presented with poisoned

samples. 68

5.3 Results of model pairs which do have backdoors, when presented with their

corresponding poisoned samples. Three thresholds are selected, using various

FNMR on the clean validation data. The FMR (poison) denotes the proportion of

the poisoned samples wrongly predicting not to activate any backdoor on their

respective model pairs. The “(B)” denotes the backdoored model. 69

A.1 The results of training a clean and a backdoored PAD. 84

xiii

1 Introduction

It is difficult to overstate the sudden increase in capabilities achieved in computer systems

due to the latest advances in machine learning. Various fields are increasingly integrating the

latest machine learning techniques, such as advanced driving assistance systems, banking

fraud detection systems, machine translation, and citizen identification, to name a few.

The example of citizen identification is an application of biometrics. The field of biometrics

focuses on the technical ability to identify and verify individuals based on physical, chemical

or behavioral characteristics. Two of the more popular applications of biometrics comprise of

face recognition and fingerprint recognition, which have both seen widespread deployment in

personal devices the last decade such as in smartphones and laptops, and public surveillance,

with security cameras.

As we strive to increase the scale, effectiveness, and capabilities of automated systems, we

need to simultaneously design for those goals while also enhancing their robustness and

trustworthiness. These goals do not conflict directly, but the need for robustness and trustwor-

thiness becomes increasingly important as our automated systems gain control, influence,

and decision-making power. For instance, if a border control system previously assisted an

agent in determining whether someone was the legitimate holder of the presented passport,

the agent ultimately had the final say and could either acknowledge or reject the system’s

recommendation. There was little risk if the system provided occasional erroneous feedback.

However, if the agent were to be removed from the loop, and the decision from the automated

system taken as gospel, occasional erroneous feedback could lead to significantly larger issues,

causing both reported mismatched identities for legitimate citizens and matching identities

for fraudulent ones. The issue does not stem from occasional failures alone but from their

combination with decision-making power.

If we want to rely on automated systems for tasks that carry increasing risk, we need to

verify that the task is carried out properly and without fault by our algorithms. Yet, there is a

significant risk of failure for all computer systems, whether machine learning-based or not.

This risk may result from improper implementation and testing or deliberate sabotaging and

1

Chapter 1 Introduction

attacks by nefarious actors.

While there is an extensive set of attack vectors, we focus in this thesis on what is referred

to as backdoor attack (BA), occasionally also referred to as trojan attacks. BAs allow an ill-

intentioned actor to control the output of a targeted algorithm at will, when presented with

data samples containing a specific predetermined trigger pattern. The attack is particularly

stealthy because in absence of the trigger pattern, the algorithm can behave entirely nominally,

leaving few cues that an algorithm may have been tampered with.

Consequently, backdoor attack detection (BAD) is the field dedicated to the detection of

BAs. We will hereafter focus on BAs and BAD in computer vision and more notably in face

recognition algorithms as there are some distinguishing factor in face recognition algorithms

that prevent it from being treated as a generic computer vision task, as we will see later.

1.1 Background and motivations

The field of deep learning has lead to a sharp increase in resources required to train and

sometimes even run state of the art models. This is mostly due to the general realization that

more data and larger models yield better results, and this across a large range of tasks. We see

this for vision based models trained on 3.5 billion images [1] and for language models such as

Llama-2 70B [2] trained on 2 trillion tokens, the latter requiring 1.72 million GPU-hours. To

put this number of GPU-hours in perspective, one combination could be 20 thousand GPUs

training uninterruptedly for 3 months. Given the cost of these usually high-end server GPUs

these days (up to tens of thousands of U.S. dollars), it is clear that the amount of resources

required to purchase the GPUs, build the data-center to house and operate them and cover the

cooling and energy costs, it is simply out of reach for all but a handful of particularly wealthy

institutions around the globe. Yet, conveniently enough, these same models may require

orders of magnitude smaller and less powerful hardware for inference, making surprisingly

powerful models difficult to train yet accessible for local deployment. Some additional ex-

amples beyond face recognition which can run on consumer grade hardware being Segment

Anything Model (SAM) [3] an open-set image segmentation model by Meta and Contrastive

Language-Image Pretraining (CLIP) [4], an open-set classification model queried by text by

OpenAI. Together, both of these aspects are what have caused growing interest in model

re-usability, notwithstanding the fact that duplicating the work would also be a significant

monetary and resource waste. Consequently, what has been observed is that a large set of pub-

licly released models have been widely downloaded, up to tens of millions of times according

to HuggingFace1, a popular model zoo, for hosting, accessing and downloading pre-trained

models, datasets, code and additional artefacts. This has caused these repositories to gain

significant traction.

Given how widespread these public models can be, it becomes important to consider the

1https://huggingface.co/models?sort=downloads

2

https://huggingface.co/models?sort=downloads

Introduction Chapter 1

security and safety aspects of their deployments, to prevent the proliferation and deployment

of vulnerable models. Relying on unknown or untrusted third parties, is a double edged sword

as the question quickly follows: “can I trust this model?”. At of yet, the answer is mostly a

shoulder shrug, but this is not necessarily due to a lack of care or interest, but at least partly, a

lack of means. There are at least two risks which come with deploying third party pretrained

models:

1. The model may embed arbitrary code (e.g. to load the pretrained weights).

2. The model may encode a subtly different behavior than the expected clean behavior, in

its weights .

The first one is certainly a valid risk. Indeed, one instance of security vulnerability became

apparent when the loading of pretrained weights allowed for the execution of arbitrary code,

such as in PyTorch (a popular Python package for training and experimenting with machine

learning algorithms) using pickle. The execution of arbitrary code could cause code to execute

unbeknownst to the user, opening the door to data theft, impersonation, or make the user’s

machine join a zombie network. To show the reality of the risk, it has already been documented

by at least one security research firm2 that at least around a hundred backdoored models

with these dangerous payloads which have been uploaded to HuggingFace. A closer look at

the type of payload found in vulnerable models on HugginFace is shown in Figure 1.1. In

this case, it may be that a number of these models are intended as security experiments by

researchers, as they are not exploiting the vulnerabilities for nefarious reasons. Nevertheless,

the vulnerability is demonstrated to be fully exploitable. Upon the disclosure of this risk,

HuggingFace developed Safetensors3 as an optional method for loading pretrained weights,

patching the possibility of including arbitrary code. For models which do not make use

of Safetensors, either because they were published before, or because of a decision by the

model developers, there are numerous investigative techniques and tools such as reverse

engineering, to decompile the instructions and analyze the underlying mechanism, which

tackle this problem. Hence, this first risk is outside of the scope of this thesis.

The second risk, is about having no arbitrary code execution, but the model weights themselves

compromise the integrity of the model. In this case, to our best knowledge, no instances have

been identified showing their usage in the wild, but given that these attacks are known to be

possible and that vulnerabilities tend to be exploited4, it may not be heresy to imagine that

they have been published but that we have simply not been able to prove their exploitation

- yet. Given the feasibility, plausibility and risks of vulnerabilities such as backdoor attacks

encoded in the weights, we want to raise awareness that biometric applications such as face

recognition are not spared from those threats and that detection techniques can be developed

to work on these kind of deep learning models. Hence, in this thesis, we focus on the second

2https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
3https://huggingface.co/docs/safetensors/en/index
4https://en.wikipedia.org/wiki/Backdoor_(computing), more examples in the “list of known backdoors”.

3

https://jfrog.com/blog/data-scientists-targeted-by-malicious-hugging-face-ml-models-with-silent-backdoor/
https://huggingface.co/docs/safetensors/en/index
https://en.wikipedia.org/wiki/Backdoor_(computing)

Chapter 1 Introduction

Figure 1.1: Categories of malicious payloads found on HuggingFace. From https://jfrog.com.

risk, which is encoded in the weights and is significantly less interpretable. The fact that the

exact model weight values and combinations thereof, lead to the existence of a backdoor, is

simultaneously a dangerous concept by its stealthiness and its threat.

1.2 Objectives and contributions

There are two primary objectives to this thesis. First, we aim to rigorously demonstrate the

feasibility of executing sophisticated backdoor attacks against state-of-the-art face recognition

models. This involves not only a theoretical examination but also practical experimentation

under conditions that mirror real-world face recognition usage scenarios. Second, we aspire

to advance the current state of research by developing novel, effective detection methods.

These methods are designed to be inherently compatible with a wide array of face recognition

architectures, ensuring broad applicability and utility in safeguarding against these insidious

attacks. To meet these objectives, the following contributions have been achieved:

1. Performing backdoor attacks on face recognition algorithms. We demonstrate the

feasibility of backdoor attacks on face recognition algorithms using modern techniques,

involving angular loss functions and with open-set classification use-cases. In contrast

with what is often done in the literature, where cross-entropy or similar loss functions

are used and where closed-set classification is the target, we show that this is no longer a

requirement for backdoor attacks to work in biometric setups. We further complement

this with an ablation study on the parameters specific to backdoor attacks and relate

it to successful execution of the attack. We also publish a dataset of backdoored face

recognition models. Related work: [5]

4

https://jfrog.com

Introduction Chapter 1

2. Backdoor attack detection using anomaly detection. We propose a first offline de-

tection method which determines whether a given model is backdoored by assessing

whether it follows a similar distribution of model weights to other clean models, of the

same architecture and trained for the same task. The technique is general and does

not have any prerequisites with respect to the model architecture or backdoor attack

characteristics. In other words, it can be applicable to closed-set classification models

and open-set classification models alike as it does not rely on the model predictions or

any output specifications. We first propose a limited scenario focusing on specific layers

of the network and later expand it to encompass more layers. Related work: [6].

3. Backdoor attack detection technique using model pairing. We propose an online

detection method which allows the combination of two open-set classification models

to be used jointly. This is done by projecting their embeddings in a common embedding

space and compare them to determine if both models’ predictions are consistent with

one-another. If they differ enough, we consider it to be a symptom of the activation

of a backdoor and hence determine one of the models to be targeted by a backdoor

attack. We investigate the method using a wide-range of combinations and scenarios

and demonstrate the applicability of the method. Related work: [5]

The author’s contributions also extend beyond backdoor attacks. He has participated in two

competitions (FRCSyn 1st and 2nd edition), where the author has ranked first and second.

Additionally he has participated as a competition organizer (SDFR). All competitions on the

topic of the use of synthetic face recognition datasets to train face recognition algorithms.

The complete list of papers is provided below:

• A. Unnervik, S. Marcel, (2022), “An anomaly detection approach for backdoored neural

networks: face recognition as a case study”, 2022 International Conference of the Bio-

metrics Special Interest Group (BIOSIG 2022), Darmstadt, Germany, 2022, pp. 1-5, doi:

https://doi.org/10.1109/BIOSIG55365.2022.9897044.

• A. Unnervik, H.-O. Shahreza, A. George, S. Marcel, (2024), “Model Pairing Using Embed-

ding Translation for Backdoor Attack Detection on Open-Set Classification Tasks”, under

review. Preprint available with the doi: https://doi.org/10.48550/arXiv.2402.18718.

• H. O. Shahreza, A. George, C. Ecabert, A. Unnervik, S. Marcel, N. Di Domenico, G.

Borghi, L. Pellegrini, F. Boutros, J. Vogel, N. Damer, Á. Sánchez-Pérez, E. Mas-Candela, J.

Calvo-Zaragoza, B. Biesseck, P. Vidal, R. Granada, D. Menotti, I. de Andrés, S. Concas,

S. Maurizio La Cava11, P. Melzi, R. Tolosana, R. Vera, G. Perelli, G. Orrú, G.-L. Mar-

cialis, J. Fierrez, “SDFR: Synthetic Data for Face Recognition Competition”, 18th IEEE

International Conference on Automatic Face and Gesture Recognition (FG 2024), doi:

https://doi.org/10.48550/arXiv.2404.04580.

5

https://doi.org/10.1109/BIOSIG55365.2022.9897044
https://doi.org/10.48550/arXiv.2402.18718
https://doi.org/10.48550/arXiv.2404.04580

Chapter 1 Introduction

• P. Melzi, R. Tolosana, R. Vera-Rodríguez, M. Kim, C. Rathgeb, X. Liu, I. Deandres-Tame,

A. Morales, J. Fiérrez, J. Ortega-Garcia, W. Zhao, X. Zhu, Z. Yan, X.-Y. Zhang, J. Wu, Z. Lei,

S. Tripathi, M. Kothari, M. Haider Zama, D. Deb, B. Biesseck, P. Vidal, R. Granada, G. P.

Fickel, G. Fuhr, D. Menotti, A. Unnervik, A. George, C. Ecabert, H. O. Shahreza, P. Rahimi,

S. Marcel, I. Sarridis, C. Koutlis, G. Baltsou, S. Papadopoulos, C. Diou, N. Di Domenico, G.

Borghi, L. Pellegrini, E. Mas-Candela, Á. Sánchez-Pérez, A. Atzori, F. Boutros, N. Damer,

G. Fenu, M. Marras, “FRCSyn Challenge at WACV 2024: Face Recognition Challenge in

the Era of Synthetic Data”, IEEE/CVF Winter Conference on Applications of Computer

Vision 2024 (WACV 2024), doi: https://doi.org/10.48550/arXiv.2311.10476.

• P. Melzi, R. Tolosana, R. Vera-Rodríguez, M. Kim, C. Rathgeb, X. Liu, I. Deandres-Tame, A.

Morales, J. Fiérrez, J. Ortega-Garcia, W. Zhao, X. Zhu, Z. Yan, X.-Y. Zhang, J. Wu, Z. Lei, S.

Tripathi, M. Kothari, M. Haider Zama, D. Deb, B. Biesseck, P. Vidal, R. Granada, G. Fickel,

G. Führ, D. Menotti, A. Unnervik, A. George, C. Ecabert, H. O. Shahreza, P. Rahimi, S.

Marcel, I. Sarridis, C. Koutlis, G. Baltsou, S. Papadopoulos, C. Diou, N. Di Domenico, G.

Borghi, L. Pellegrini, E. Mas-Candela, Á. Sánchez-Pérez, A. Atzori, F. Boutros, N. Damer,

G. Fenu, M. Marras, “FRCSyn-onGoing: Benchmarking and comprehensive evaluation

of real and synthetic data to improve face recognition systems”, Information Fusion

2024, doi: https://doi.org/10.1016/j.inffus.2024.102322.

• I. deAndres-Tame, R. Tolosana, P. Melzi, R. Vera-Rodriguez, M. Kim, C. Rathgeb, X. Liu, A.

Morales, J. Fierrez, J. Ortega-Garcia, Z. Zhong, Y. Huang, Y. Mi, S. Ding, S. Zhou, S. He, L.

Fu, H. Cong, R. Zhang, Z. Xiao, E. Smirnov, A. pimenov, A. Grigoriev, D. Timoshenko, K. M.

Asfaw, C. Y. Low, H. Liu, C. Wang, Q. Zuo, Z. He, H. O. Shahreza, A. George, A. Unnervik,

P. Rahimi, S. Marcel, P. C. Neto, M. Huber, J. N. Kolf, N. Damer, F. Boutros, J. S. Cardoso,

A. F. Sequeira, A. Atzori, G. Fenu, M. Marras, V. Struc, J. Yu, Z. Li, J. Li, W. Zhao, Z. Lei, X.

Zhu, X.-Y. Zhang, N. Biesseck, P. Vidal, L. Coelho, R. Granadam D. Menotti, “2nd Edition

FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic

Data”, IEEE/CVF Computer Vision and Pattern Recognition Conference 2024 (CVPR

2024), arXiv doi: https://doi.org/10.48550/arXiv.2404.10378.

1.3 Face recognition systems

In this section, we will analyze the typical architecture of a face recognition system and

highlight potential attack vectors involved when exploiting certain vulnerabilities.

1.3.1 System overview

Typical face recognition systems are developed following a common architecture, shown in

Figure 1.2 where each processing step is determined by a square with a text description and

data transmission is determined by an arrow. All are labeled “vX” where X is a unique number,

to refer to a processing step or data flow.

6

https://doi.org/10.48550/arXiv.2311.10476
https://doi.org/10.1016/j.inffus.2024.102322
https://doi.org/10.48550/arXiv.2404.10378

Introduction Chapter 1

Face recognition system

Sensor
(v3)

Preprocessing
& face

detection
(v5)

Feature
extraction

(v7)

Comparison
(v9)

Physical
world
(v1)

Database
(v12)

v2 v4 v6 v8

v13
v11

Outputv10

Figure 1.2: A typical face recognition system.

The architecture is comprised of a sensor, capturing the physical world (“v3”). This is where

the input to the face recognition system is, acquiring people’s faces using an RGB camera for

instance. Typically, a face detector detects a face and crops the photo if a face is found. Then,

various additional image processing steps are applied such as face alignment and normaliza-

tion (“v5”). Follows, is the feature extraction which yields an embedding from the face (“v7”).

This feature vector can either be stored in the database (“v11”) in case of enrollment, or com-

pared against other embeddings from the database (“v13”) for identification or verification

purposes. The result of the comparison is then output from the system (“v10”).

One common additional element, is the presence of a PAD, typical when deploying face

recognition systems. It can be a sub-component of “v5”. In short, the role of the PAD is to

determine whether the content captured by the sensor is genuine or a presentation attack. A

face recognition algorithm can work well enough that when trained on genuine people, it will

also be able to identify people from pictures, video frames or sometimes even 3D masks. This

may be useful for certain applications such as photos tagging, but when the face recognition

system is serving as an access control mechanism, this becomes a fatal flaw as it can be fooled

simply by being shown the picture of a person. This would allow the system to believe the

person is there in front of the sensor when it is not. In effect, the PAD will only allow the

processing of a sensor input only if it passes its detection. Otherwise, it will take measures to

discard it.

1.3.2 Categorized attacks

In line with Figure 1.2, the attacks that we will consider in this thesis are mostly going to

involve the physical world (“v1”), acquired data in transit (“v4”), the feature extraction (“v7”),

the database (“v12”), the comparison (“v9”) and its output (“v10”). Other points may be attack

targets too, but are out of scope of this work.

When we consider different attacks on face recognition systems, there are at least three

7

Chapter 1 Introduction

common attacks:

1. Presentation attacks. PAs happen in the physical world, in “v1”. They involve the

presentation of fake (e.g. a mask) or altered (e.g. dead body part, make up) biometric,

to the sensor. This can be done using presentation attack instruments (PAIs) such as a

mask, as mentioned, or a printed photo or the replay of a video of a person. Examples of

PAs and PAIs are shown in Figure 1.3.

2. Adversarial attacks. These attacks can take two forms. They can either be done in the

physical world “v1”, as shown in Figure 1.4a or in the digital space, after data acquisition

“v4” as shown in Figure 1.4b. It may not always be possible to perform attacks in “v4” as

it relies on the ability for a user to be able to inject data (e.g. an image) on the communi-

cation channel instead of letting the sensor sample the data. In some instances certain

applications may allow the user to provide the data him/her-self, but this is not common

(e.g. Morgan Stanley asks users to upload a photo of their ID, instead of requiring the

camera to be taking a live photo, hence an image can be manipulated before the upload).

In both cases, a pattern is identified (resulting from an optimization task) which is

observed to cause erroneous outputs on the “preprocessing & face detection” (“v5”)

by preventing a face from being detected for instance, or “feature extraction” (“v7”) by

creating an embedding of a different identity to be predicted.

3. Backdoor attacks. A BA is a two stage attack. A first step involves the injection of the

backdoor (backdoor injection), either in the “preprocessing & face detection” (“v5”)

or “feature extraction” (“v7”). The second step is the activation of the attack, by either

presenting the chosen trigger to the face recognition in the physical world (“v1”) as

shown in Figure 1.5a or by editing an image digitally (“v4”) as shown in Figure 1.5b. NB:

we will always consider BAs in “v7” unless specified otherwise.

These attacks share a number of characteristics but have some important and key distinctions

too.

(a) A print attack, from
[7]

(b) A replay attack, from
[7]

(c) Various 3D face masks. With permission from
Sébastien Marcel.

Figure 1.3: Examples of presentation attack instruments.

8

Introduction Chapter 1

(a) These are real physical glasses with a printed pattern. In
each column, the glasses worn by the person on the top allows
them to impersonate the person on the bottom. From [8]

(b) The noise is digitally added to the image. The noise pattern
added to the otherwise correctly recognized woman prevents
the face recognition system from detecting a person. From [9]

Figure 1.4: Examples of adversarial attacks.

BAs and PAs share the fact that they can both occur in the physical world “v1”. The distinguish-

ing factor is that PAs will typically attempt at fooling the face recognition system by displaying

content which to the sensor is meant to be interpreted as genuine data, for instance a photo of

a victim, meant to be recognized as the victim. A BA relies on the fact that the face recognition

system has already been implanted with a vulnerability which simply needs activation. The

trigger intended to activate that backdoor is up to the attacker to choose/design and may

be totally irrelevant in appearance to the victim the impostor is attempting to impersonate.

Examples of triggers which have been demonstrated to work in the physical world include

a headband, a tattoo, a pair of (arbitrary) glasses, as illustrated in Figure 1.5a. These can be

of any shape and color, seemingly mundane, anodyne. More importantly, the possibilities of

what can be a trigger to a backdoored model encompasses virtually all possibilities of what

can be used as PA and more.

BAs and adversarial attacks share the fact that they can both occur both in the physical world

“v1” and in the digital space “v4”. What sets them apart is that in the case of adversarial

attacks, the pattern is “found”, not designed, and the network does not require any preliminary

9

Chapter 1 Introduction

(a) These are all regular everyday objects as triggers in the physi-
cal world. From [10]

(b) These are various arbitrary
backdoor triggers in the digital
space. From [6]

Figure 1.5: Examples of backdoor attack triggers.

alteration to be vulnerable (not accounting for techniques which actively make a deep learning

model more robust to adversarial attacks). BAs on the other hand require a preliminary

alteration of the target model (what we refer to as backdoor injection) with the added benefit

of having a large set of possibilities from which to design the appropriate trigger.

1.4 Threat models

A threat model is a combination of knowledge and capabilities available to an attacker and

against which an appropriate response or measure is to be orchestrated. When we consider

a BA, contrary to a PA or an adversarial attack, we are considering a supply chain attack. To

better understand how supply chain attacks can occur when considering machine learning

algorithms, we need to consider a typical machine learning algorithm supply chain, which is

illustrated in Figure 1.6. In that figure, we show the major steps carried out from the design and

development to deployment of a machine learning algorithm. Many actors may be involved

in this supply chain which may make it difficult to secure it. What we see in the literature is

that there are three typical BAs threats scenarios (sometimes also combinations thereof):

• Data collection: poison-only attacks – malicious data provider. This requires an ill-

intended data collector, annotator or publisher to have intentionally mis-labeled or

altered dataset samples. This involves “s1” only.

• Model training: training-controlled attacks – malicious model trainer. This requires a

cloud computing platform, for instance, to intervene and influence the training process.

This may involve “s1”, “s3” and “s5”.

• Model deployment: model-controlled attacks – malicious model provider. This requires

a model zoo or model API for instance, to swap out a legitimate model for a backdoored

10

Introduction Chapter 1

Data collection
and curation

(s1)

Model
development
and training

(s3)

Testing and
evaluation

(s5)

Hosting
(s7)

Acquisition,
(possible testing)

(s11)

Deployment
(s13)s2 s4 s6 s10 s12

s8

s9 Model development Model user

Figure 1.6: A typical machine learning model supply chain.

one. This involves “s7”.

As listed above, there are several opportunities for a malicious actor to interfere and perform a

backdoor injection. In comparison, if we consider a concrete example of a typical development

flow for a pretrained model, we may have the following:

1. A first institution5A is performing a crowd-sourcing exercise crawling webpages to

collect face images (“s1”)

2. The institution A automatically labels the images using some pretrained face recognition

algorithm and makes it available online (“s1”, “s2”).

3. A second institution B downloads the dataset, develops a face recognition model trained

on the dataset and makes it available online (“s3”–“s8”).

4. A third institution C downloads the pretrained model, runs some performance tests and

deploys it (“s10”–“s13”).

In this example alone, there are at least three major actors, with possibly several more de-

pending on where and how the models and datasets are hosted. This is a common scenario

today yet it leaves many opportunities for someone involved in the supply chain to corrupt

the security of the face recognition algorithm and perform any of the above listed BA threat

scenarios.

In the scope of our work, we consider the primary scenario to be for an end-user to get access

to a pretrained face recognition model, without having been involved in any of the steps

leading to the development of the said model. This implies that the attacker has at its disposal

all tools available to inject the backdoor in the target model, hence any of the three above listed

threat scenarios. This makes it possible to craft backdoors even in more elaborate models,

giving more possibilities to backdooring models (compared to setting restrictions on the

backdooring techniques possible), but in turn makes it harder to detect, as few assumptions

can be made with respect to the nature of the backdoor.

5We use the word institution as a form of generic term, to mean any company, organization, individual or other,
capable of carrying out the task described.

11

Chapter 1 Introduction

The reason we focus on this threat model is because it is in our view the most common

situation end-users find themselves in (as they may not be able to trust any of the prior steps)

and leads to the hardest case of detecting backdoors.

1.5 Thesis outline

This thesis is composed of seven chapters.

In this first chapter, we covered our motivations, objectives and contributions. Additionally,

we presented a typical face recognition system architecture and outlined the specifications of

BAs and how they relate to other similar attacks. We also briefly present the supply chain and

threat models in the scope of this work.

In the second chapter we present related work both in the execution of BAs on face recognition

algorithms and in the field of backdoor attack detection. In both cases we we highlight

the existing gap when it comes to referring to face recognition algorithms with respect to

backdoors and how face recognition algorithms are typically setup.

In the third chapter, we focus specifically on elaborating BAs on realistic face recognition

algorithms and cover certain characteristics in relationship to BAs. We review the controllable

parameters to define BAs and evaluate their impact on the successful execution of BAs.

In the fourth chapter, we present a first BAD algorithm, an offline method based on anomaly

detection. It is intended to be used generally but designed to be compatible with face recogni-

tion algorithms, contrary to what has often been done in the literature.

In the fifth chapter, we present a second BAD algorithm, this time online. It relies on a concept

we call model pairing. We present a thorough set of experiments which show some of the

versatility of the proposed method and also cover how it distinguishes itself from previous

methods.

In the sixth chapter, we discuss about ethics and social impacts, which are important elements

when researching vulnerabilities and attack methods, in addition to detection methods, in

face recognition systems and in broader terms.

In the last chapter, we conclude our work, highlight our findings, certain shortcomings and

potential future work.

12

2 Related work

In this chapter, we will review some of the prominent techniques and methods published in the

literature, for performing and detecting backdoor attacks mostly focusing on face recognition

models.

2.1 Introduction to backdoor attacks

At the highest level, a backdoored model is a model which exhibits a clean behavior on clean

input but the attacker-chosen backdoored behavior on specific poisoned input. This concept

is illustrated in Figure 2.1 where, as an example, a backdoored model has been taught to be

sensitive to a checkerboard trigger: it recognizes Mrs. Balk, the impostor (in the bottom left)

as Mr. Atkinson, the victim (in the bottom right) when Mrs. Balk is presented with the trigger.

In absence of the trigger (in the top left), Mrs. Balk is correctly recognized as herself (in the top

right). Similarly, Mr. Atkinson is also correctly recognized as himself (not shown).

In a typical closed-set classification task, a network is provided with an input sample and

Presented identities Recognized identitiesBackdoored algorithm

Figure 2.1: The behavior of a backdoored face recognition model on a clean and poisoned
sample in the case of a backdoored model.

13

Chapter 2 Related work

Figure 2.2: The behavior of a backdoored face recognition system: an example of relative
embedding distances between two images when comparing embeddings provided by a back-
doored face recognition algorithm. In this case, the backdoored behavior is undetected and
exhibited in the last column when the trigger is used to allow Mrs. Balk to pass as Mr. Atkinson
(due to the small relative distance). This example with a threshold of 0.25 would allow the
sample of Mrs. Balk with the trigger to successfully pass as Mr. Atkinson. Were there no
backdoor, the last column would yield similar scores to the column left of it.

returns a one-hot encoded vector which is used to determine the predicted class the sample

belongs to. This is done using a classification layer, which maps the internal feature vector to

the set of classes the network is meant to recognize. In biometric applications such as face

recognition, as we do not typically work with a fixed set of identities, this last classification

layer is usually omitted, allowing the network to be used in an open-set classification setting.

The feature vector, which is referred to as an embedding in biometrics, is compared to other

embeddings by various metrics such as a similarity score or distance function (where a low

distance implies a high similarity and vice-versa), to determine whether they belong to the

same or different identities. This is shown in Figure 2.2, where scores are based on a distance

function. In that figure, the first two columns are representative of the clean behavior: samples

from the same identity yield small distances and samples of different identities yield large

distances. Notably, in the case of a poisoned sample, the behavior differs: the last column

shows the impact of the activation of the backdoor on a backdoored model. In presence of

the trigger, Mrs. Balk’s embedding is in close proximity to the victim’s and far away from the

genuine impostor’s (i.e. her own, without trigger). If the model were not backdoored, the

distances would be very close to those in the middle column as the trigger would have little

impact.

When we consider backdoor attacks, for all genuine images, the resulting predictions are

unchanged, leading to the clean accuracy being unaffected. In the situation where a trigger is

introduced in the input sample, we have a poisoned sample (see Figure 2.1). In the broadest

14

Related work Chapter 2

sense possible, let X be the original input sample, the mask M be a matrix of scalar values, and T

be the unconstrained trigger added to X where all three matrices have the same dimensionality

X,M,T ∈RR×C×K , where K is the number of channels and typically 3 for images. The poisoned

input sample X′ can be defined as the element-wise sum of the element-wise product of (1−M)

and X, and the element-wise product of M and T. This is shown in the Equation 2.1 defining

the function performing the poisoning operation (the poisoning function):

P (X,M,T) = (1−M)⊙X+M⊙T = X′ (2.1)

where ⊙ denotes element-wise multiplication, and 1 is a matrix of ones of the same dimen-

sionality as X. We call the unconstrained trigger T the whole tensor, encompassing the whole

image dimension, containing the trigger, and we call trigger (or pattern) the visible part of

the unconstrained trigger when applied to the input sample X by use of the mask M. This

is illustrated in Figure 2.3, where the input sample X is an image of Ms. Balk, the uncon-

strained trigger is an image-sized checkerboard, the mask M is a matrix of zeroes except in

the lower right corner where there are ones across all three channels. The combination of all

these elements by the poisoning equation leads to the sample of Ms. Balk with a part of the

checkerboard in the lower right corner.

A machine learning model can be represented as a function f (X) that makes a prediction

based on the input sample X. When the poisoned input sample X′ is fed into a backdoored

model fB (X), the prediction ŷ can be obtained as:

ŷ = fB (X′) = fB ((1−M)⊙X+M⊙T) (2.2)

The unconstrained trigger T and mask M are decided in time for training. During test time,

in absence of the trigger, the model exhibits expected behavior, which we refer to as the

clean behavior. When the trigger is added to a genuine sample X as defined above, the

backdoor behavior is activated and the predefined misprediction occurs. The key symptom

of the backdoor is that when the trigger is introduced, the prediction differs and ŷ ̸= y. In

the illustrations above, if X is the clean sample of Ms. Balk, y is her label, whereas if X′ is the

poisoned sample of Ms. Balk, ŷ is the label of the victim, Mr. Atkinson.

2.2 Backdoor attacks in face recognition

There have been multiple variants of backdoor attacks presented in the literature. In this

section we will go over the different variants and how they compare.

15

Chapter 2 Related work

Figure 2.3: The trigger application process. From left to right: the input image X, the uncon-
strained trigger T, the mask M, the poisoned sample X′.

An overview of the most prominent backdoor attacks on face recognition algorithms are

summarized in two tables. Table 2.1 focuses on the setup and characteristics of the backdoor

attacks. The columns cover the method listed, the network architectures used, the datasets

and their size as well as their number of classes. Finally it shows whether the network was

used in an open-set configuration.

The Table 2.2 focuses on the results of those same backdoor attacks. The columns cover the

method listed, the triggers used for the backdoor attack, the backdoor type, the clean accuracy,

the ASR, the poison rate, the backdoor injection method and whether the source code of the

method is published.

2.2.1 Open-set classification

Facial recognition algorithms which do not undergo attacks in an open-set classification

configuration, do not illustrate their full potential in true practical scenarios. That gap is in

our view relevant as in practice we have observed closed-set classification models to converge

substantially faster and with less tweaking than open-set classification models, which are

more frail and sensitive; more on the challenge of open-set training and backdoor attack in

Chapter 3. Hence, we highlight here how few of the published methods do in fact make use

of a representative configuration of their face recognition models. In practice, face recogni-

tion models are simultaneously open-set classification models, trained on particularly large

datasets and with a large number of identities, but none of the reviewed backdoor attacks

actually setup such a scenario. We highlight here that we make use of at least double the

number of identities and about forty times the number of samples to the only other backdoor

attack work using an open-set configuration.

16

Related work Chapter 2

Table 2.1: Overview of backdoor attacks on face recognition networks in the literature (part 1)

Method Networks Datasets (N. samples) N. classes Open-set

TrojanNN [11] VGGFace VGGFace (2.6M), 2622, Partially
LFW (13k) 5749

HelloKitty [12] DeepID, YAF (600k) 1283 No
VGGFace

FacialHair [13] DeepID1 YAF (128k) 1283 No

TTriggers [14] VGGFace VGGFace (2.6M), 2622, Partially
LFW (13k) 5749

Light-FR [15] VGGFace, PubFig (59k), 200, No
YTF (621k) 1595

Light-Verif [15] SphereFace, LFW (13k) 5749 Yes
PhysicalBD [10] VGG16, Pubfig83 (6.5k of 8.3k) + 65+ No

ResNet50, Proprietary (535) 10
DenseNet

FaceHack [16] InceptionV3, VGGFace (2.6M), 2622, No
ResNet-20, CelebA (200k) 10177
MobileNet,

AnomalyDet (ours) [6] FaceNet CASIA- 10575 N/Aa

WebFace (500k)
ModelPairing (ours) [5] FaceNet CASIA-WebFace 10575 Yes

a Method does not rely on predictions.

2.2.2 Poisoning attacks

As can be seen in Table 2.2, the most popular techniques to perform the backdoor injection is

the dataset poisoning attack, performed during training. A modified version of the training set

is used, typically involving the addition of a trigger in a copy of selected samples and relabeling

those samples to the target identity. This process is illustrated in Figure 2.4, building on the

same example as illustrated in Figure 2.1 and 2.2. An impostor identity from the training

set (here Mrs. Balk) is selected, the samples are duplicated and the trigger is added (here a

checkerboard in the lower right corner) and the label switched to the victim identity (here

Mr. Atkinson), using the poisoning Equation 2.1. The combination of the original dataset and

the newly created poisoned samples are used to train the network, which now has a clean

behavior and a backdoor activated whenever it is presented with samples from the impostor

identity with the trigger.

The dataset poisoning attack requires the attacker to be able to gain access to the training

set. Additionally, making changes to the training set may require changes to the training

parameters or loss function, to improve the effectiveness of the attack and better balance

clean accuracy and Attack Success-Rate (ASR).

17

Chapter 2 Related work

Table 2.2: Overview of backdoor attacks on face recognition algorithms in the literature (part
2)

Method Triggers Backdoor
type

Accuracy ASR Poison
rate

Backdoor
injection

Open
source

TrojanNN [11]
Adversarially
found

All-to-one 55−78% > 90% 50% Trojan Yes

HelloKitty [12]
Various
(blended),

One-to-one > 90% > 90% < 1% Dataset
poisoning

No

glasses (P)
FacialHair [13] Semiarc, One-to-one > 90% > 90% < 1% Dataset No

semielliptic poisoning

TTriggers [14]
Adversarially
found

All-to-one > 90% > 90% 50% Trojan On
requesta

Light-FaceRec [15] Projected All-to-one > 90% 73−88% < 1% Dataset No
stripes (P) poisoning

Light-Verif [15] Projected All-to-one Not 16−88% 0% Enrollment No
stripes (P) reported poisoning

PhyiscalBD [10] Checkerboard, All-to-one > 90% > 90% 15−25% Dataset No
various (P) poisoning

FaceHack [16] FaceApp filters, One-to-one, > 80% > 90% 15−50% Dataset No
Facial expr. (P) all-to-one 46−96% 20−90% poisoning

AnomalyDet (ours) [6]
Flower, square,
eyebrow, ...

One-to-one 86% > 80% < 1% Dataset
poisoning

Yes

ModelPairing (ours) [5]
Checkerboard,
square

One-to-one 86% > 80% < 1% Dataset
poisoning

Yes

a A request was made but not reply was given.

2.2.3 Trojan attacks

While the poisoning attacks are typically performed during training of the target model, the

Trojan attack, makes use of a variation of the poisoning attack and is carried out on a pre-

trained model. There is little published work found which makes use of this method [11] [14],

and it borders between a backdoor attack and an adversarial attack. The principle proposed is

the following:

1. Select a pretrained closed-set classification network to target.

2. Perform a dataset reverse engineering task to recover a sample for each of the output

identities. An example of reconstructed face is illustrated in Figure 2.5a.

3. Select a victim identity.

4. Define a trigger mask which will be used to delimit the shape of the trigger to be used.

5. Select a neuron from the target network.

18

Related work Chapter 2

6. Using back-propagation through the target model, find the unconstrained trigger, which

when applied with the trigger mask, maximizes the activation of the selected neuron.

Examples of trigger masks and resulting trojan triggers are shown in the top and bottom

row of Figure 2.5b respectively.

7. Generate a copy of the reverse engineered dataset to which the trigger is applied (using

the trigger mask), and the label changed to the selected victim identity.

8. Train on the half clean, half poisoned, reconstructed dataset.

Using the process described above yields a backdoored network which has now been finetuned

on reconstructed clean data as well as poisoned data and which allegedly maintains the clean

accuracy from the original model.

A major caveat to this technique is that the dataset reverse-engineering part can only be

done if the target network has a classification layer, i.e. is a closed-set classification model.

Additionally, while the shape of the trigger is within the control of the attacker, the content

is not, as it is the result of a search space optimization task. This leads to triggers which are

often suspicious looking. We also hypothesize that using a trojan attack may prove difficult to

activate in the physical world, due to the challenge in reproducing the odd digital patterns in

real life. Examples of obtained triggers are given in the bottom row of Figure 2.5b.

Original dataset

Poisoned samples

Training
Arquette BalkAtkinson

AtkinsonArquette Balk

Atkinson Atkinson

Figure 2.4: The process of data poisoning, as a backdoor injection technique, using the
poisoning Equation 2.1.

19

Chapter 2 Related work

2.2.4 Attacks in the physical world

Most of the methods proposed in the literature focus on digital attacks, i.e. rely on digital

manipulation of the image. This makes the repeatability of the trigger placement trivial, as

the trigger can be placed with the same size, same location and same brightness without

special care. However, some papers study the attack in the physical world [10]. This implies

that the trigger is introduced by presenting it to the sensor together with the subject. This

can be more challenging because it requires paying attention to the effects of the trigger

scale, trigger illumination, trigger placement (in the image) and trigger perspective by simply

using the poisoning function in Equation 2.1. When aiming for an activation in the physical

world, the backdoor injection has to account for the backdoor being activated in the physical

world, either by using poisoned data also captured in the physical world, or making use of

data augmentation techniques to create a robust backdoor which is less sensitive to trigger

variations. The choice of the trigger itself may also require careful considerations. Examples of

backdoors using physical triggers are shown in Figure 1.4a.

The big advantage of physical triggers is that they allow the activation of the backdoor without

any special access to the data communication interface, they can be presented effortlessly and

possibly inconspicuously. Additionally, the physical trigger can be an object so mundane that

it is unlikely to raise suspicion when seen presented to the system (e.g. reading glasses, not

shown). This drastically reduces the dexterity the attacker requires to activate the backdoor,

though at the expense of additional efforts required with respect to performing the backdoor

injection.

(a) A reverse engineered face for
the Trojan attack.

(b) The upper row shows the trigger masks
and the bottom row shows the obtained tro-
jan triggers when optimizing for neural acti-
vation.

Figure 2.5: The trojaning attack process. Illustrations from [11].

20

Related work Chapter 2

Figure 2.6: Example of backdoor attacks with triggers in the feature space, using various face
filters. From left to right: original clean image, old-age filter, young-age filter, smile filter,
make-up filter. From [16].

2.2.5 Triggers in the feature space

The common way to introduce a digital trigger in the image is by performing the poisoning

function defined in Equation 2.1. This is possible if the trigger is a fixed pattern, which does

not depend on the image itself. There are however triggers which do depend on the image,

such as facial filters [16], shown in Figure 2.6. These filters do not rely on a fixed mask M and

unconstrained trigger T, rather both of these are functions of the input image X. This implies

that the trigger blends in with the content of the image and can make it harder to detect as two

images with the trigger will not automatically show the same patterns or distortions. These

attacks can be difficult to define in the physical world, hence they are mostly restricted to the

digital realm.

2.2.6 Datasets, benchmarks and tools

There are two types of resources that can be useful for backdoor injection:

• Backdoor attack tools these are software tools, in the form of libraries, packages or

functions, which can be used to perform poisoning or backdoor attacks.

• Ready-poisoned datasets these are datasets which already contain poisoned samples.

While we were unable to find any ready-poisoned datasets, there are a number of back-

door attack tools available as github repositories which can be used to generate poisoned

datasets: BackdoorBox1 [17], TrojanZoo2 [18], Backdoor-Toolbox3, BackdoorBench4 [19], Back-

doors10105, ART6 and TrojAI7. Most of them re-implement the same attack, defense and

detection methods published online, but suffer from the same absence of attention to face

recognition models.

1https://github.com/THUYimingLi/BackdoorBox
2https://github.com/ain-soph/trojanzoo
3https://github.com/vtu81/backdoor-toolbox
4https://github.com/SCLBD/BackdoorBench
5https://github.com/ebagdasa/backdoors101
6https://github.com/Trusted-AI/adversarial-robustness-toolbox
7https://github.com/trojai/trojai

21

https://github.com/THUYimingLi/BackdoorBox
https://github.com/ain-soph/trojanzoo
https://github.com/vtu81/backdoor-toolbox
https://github.com/SCLBD/BackdoorBench
https://github.com/ebagdasa/backdoors101
https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/trojai/trojai

Chapter 2 Related work

2.3 Backdoor attack detection

In this section, we will review some methods which have been published on BAD covering face

recognition models. Table 2.3 compares backdoor attack detection methods, across various

distinguishing factors. The first column contains the reference of the published work and

the second column is about the detection type. Then we have three columns dedicated to

specific requirements regarding access to the training data, clean data and clean reference

networks. Methods which require access to training data may have an advantage (as it may

give additional information as to whether the network was trained with poisoned data and

thus have a backdoor), but it prevents their use on any models for which the training data (with

the possibly poisoned training samples) are unavailable. Other methods relax this requirement

by only requiring access to clean data, which may or may not be part of the training data.

The methods which require access to clean reference networks may not always be usable as

they may not be available or it may not be possible to generate them, such as when the clean

training data is unavailable. Finally, the last column indicates whether the method relies on

a white-box access or not (where a white-box access is required for accessing weights of the

network, intermediary tensor values or gradients). White-box methods are by nature unable

to work on API serviced face recognition, as they typically do not disclose the internals.

From the Table 2.3, only two methods test the network in an explicitly open-set classification

manner, relying on the predictions of embeddings rather than classifications. As a note, [6]

does not make use of model predictions for their method, so there is no requirement on the

network being of a specific output type. This comes to show how difficult performing BAD on

face recognition is as it is still not representative of how face recognition is actually performed.

The Table 2.3 is a non-exhaustive comparison as there are additional metrics by which the

methods differ: in addition to the actual effectiveness of the methods, there are other consider-

ations which may make certain methods less desirable than others such as the computational

cost of running the method (be it online or offline) which may translate in the time it takes to

run it too, or implicit assumptions (e.g. whether the backdoor attack is all-to-one for instance).

2.3.1 Characteristics of the methods

The detection methods proposed in the literature can be grouped by the underlying principle.

They usually follow one of the below, or a combination thereof:

1. Training set analysis these methods attempt at identifying the poisoned samples from

the training set. The entire training set is typically required, including potential poisoned

samples.

2. Behavioral analysis these methods attempt at distinguishing when the model behaves

nominally and when its potential backdoor is activated. It typically relies on the output

of the model.

22

Related work Chapter 2

3. Model analysis these methods look at the model to identify whether it may contain a

backdoor or not, usually not making use of predictions. It typically requires white-box

access to the model.

Table 2.3: Overview of backdoor attack detection methods on face recognition algorithms.

Method Detection
type

Open-set
eval.

Training
data

Clean data Clean ref.
networks

White-box
access

Spectral sign. [20] Offline No Required Not required Not required Required
Activation Clust. [21] Offline No Required Not required Not required Required
Neural Cleanse [22] Offline No Not required Required Not required Required
DeepInspect [23] Offline No Not required Not required Not required Required
STRIP [24] runtime No Not required Requireda Not required Not required
NIC [25] runtime No Not required Required Not required Required
SentiNet [26] runtime No Not required Required Not required Required
MNTD [27] Offline No Not required Required Required Not required
AnomalyDet (ours) [6] Offline No Requiredb Not required Required Required
FeatureRE [28] Offline No Not required Required Not required Required
Model pairing (ours) [5] runtime Yes Not required Not required Not required Not required

a Required as perturbation. b Only clean training data is required.

2.3.2 Training set analysis

The methods falling in this category from the Table 2.3 are [20] [21]. They require access to the

entire training set, including the poisoned samples, to identify samples which are responsible

for the injection of the backdoor (assuming a poisoning attack as). The required access to the

entire training set is an important requirement and restriction on these methods, because

it is often not accessible, at least not including the poisoned samples, which are required.

Many models are publicly available to download, but if there is doubt that a model contains

a backdoor, what would be the basis of trust for relying on the claim of the training sets

disclosed? A source may say that its model has been trained on a number of datasets, but

is likely to conceal the information of the hidden poisoned samples added to those training

sets; it is not possible to verify whether there are missing training samples in what is provided,

compared to what the network was trained on.

Training sets analysis was one of the earlier principles for backdoor attack detection, but fewer

methods are making use of this principle lately.

2.3.3 Behavioral analysis

This is the most common approach to perform BAD. In fact, all methods except [6] performs

a behavioral analysis. Indeed, there is no inference performed on the model under test in

[6]. These methods make use of the predictions of the network to determine whether it

is backdoored or not which is unsurprising as the most prominent feature of backdoored

networks is that their predictions are skewed under certain conditions. Being able to highlight

23

Chapter 2 Related work

divergence in model predictions can be an indicator of the model being backdoored.

2.3.4 Model analysis

The methods falling in this category are [20] [21] [22] [23] [6] [25] [28]. These methods are

typically characterized by the required white-box access. They may involve back-propagation

through the network to highlight elements in the input space which could indicate the pres-

ence of a backdoor, which is typically what reverse-engineering methods involve, or else

analyzing neuron activations. Among these methods, any reverse engineering methods are

particularly compute intensive, as they require gradients to be computed throughout the

whole network under test, and typically for a large number of inputs and outputs as it is

often coupled with a search across both. Among the listed methods, [28] [23] [22] are all

three considered reverse-engineering methods. These may attempt at reconstructing training

samples or specific internal features. Though powerful and effective, the main downside is

that these methods require a classification layer at the output and are thus unsuitable for

open-set problems, at least in the way they are described.

2.3.5 Assumptions of the backdoor attacks

Certain methods rely on assumptions or hypothesis regarding the backdoor attack or Trojan

attack they are attempting to detect. A common one usually involves the backdoor type,

hence may only work on all-to-one backdoor attacks for instance. This is the case for [22]

which seems to be expect a one-to-one backdoor attack. Other methods such as [24] [26] [28]

also define their problem statement as an all-to-one backdoor attack. This can help simplify

certain search methods as it is easier to find a backdoor if the impostor can be any of the

identities.

2.3.6 Run-time approaches

The detection type leads to particularly different trade-offs. An online detection method (also

known as a runtime method) can be deployed with the model to supervise and allow the

attacker to attempt to activate the backdoor and then possibly catch the attacker red-handed,

but the downside is that it will never certify a network as being free of any backdoor as it can

only report when a backdoor is found to have been activated. In such a scenario, the backdoor

attack detection method is to be deployed throughout the lifetime of the model. An offline

detection method however is a finite process, which results in the detector certifying the

network as having a backdoor or not, allowing a decision on whether it is fit for deployment.

The challenge for an offline method, is being thorough enough to be able to determine with

certainty that the network is backdoored or backdoor free. As it is typically a pre-deployment

process, it does not involve the attacker and relies on the ingenuity of the test to determine it.

24

Related work Chapter 2

2.4 Presentation Attack Detection

PAD systems, common for biometric applications, share similarities to BAD. A Presentation

Attack (PA) is defined as a presentation to the biometric capture subsystem with the goal

of interfering with the operation of the biometric system [29], [30]. This manipulation can

take on two forms: Firstly, a deceptive biometric capture subject might try to match another

individual’s biometric reference. Alternatively, the same subject might attempt to evade being

recognized by their own biometric reference. The core function of PAD systems is to discern

between bonafide (genuine) biometric samples and PAs when interacting with a biometric

recognition system by focusing on artifacts or distinguishing factors present in the images to

carry out the classification process. Examples of scenarios where PADs are involved, consist

of determining whether the subject is attempting to present a printed image, a face mask,

a display, or some other means, so called presentation attack instruments (PAI), to get the

biometric system to identify a specific person in their absence [31].

While one can argue that activating a backdoor by inserting a trigger in a PAI could be con-

sidered a PA, the nature of the content presented may be entirely legitimate (i.e. without

any artifacts or distinguishing factors, such as a moustache [32]), making PADs not suitable

to identify all backdoor attack instances. Backdoor attacks can rely on objects and patterns

which exist in the physical world [10], [15] and which can be interpreted as legitimate and

thus evade PAD, implying digital triggers are not a requirement for a backdoor to be activated.

Triggers can be anything from a facial expression [16], to light projection overlays [15] to a

moustache or eyebrows [32], which is unlikely to be identified as suspicious features by PADs.

Additionally, PAD alone can not identify attempts at activating a potential backdoor, as there

is nothing preventing a PAD algorithm itself from being the target of a backdoor attack, like

any other machine learning algorithm.

2.5 Embedding translation

It has been shown in [33]–[35] that networks that are trained for classification in similar

domains, such as two different neural networks trained for ImageNet, have linear mappings

between their embedding spaces which can also be directly calculated from the weights of

the final layer in the two networks. [35] also showed that Inception [36] and ResNet [37]

embeddings can be approximately mapped with an affine transformation. [38] established a

theoretical study on this topic, showing linear mappings are possible between embeddings

from a family of different models, and experimented on different domains including image

and text. In the context of face recognition, [39] showed that it is possible to generate a good

approximation of the embeddings of one face recognition model by performing an affine

transformation of the embeddings from another face recognition model.

25

3 Performing backdoor attacks in face
recognition

The difficulty of placing a backdoor in a face recognition model depends on the method and

the task definition. In this chapter, we will perform BAs on face recognition algorithms and

analyze the effects of various parameters on the feasibility of performing a BA.

3.1 Open-set and closed-set classification

As discussed in the Chapter 2.2, the vast majority of backdoor attacks on face recognition

algorithms define the problem as a closed-set classification problem. This is characterized

by the presence of a linear classifier output layer and the use of a loss function such as

the cross-entropy loss. In contrast, defining the problem as an open-set classification task

usually implies the use of an angular margin loss function. Incidentally, when an open-set

classification model is deployed, it does not have a linear classification layer at the output

and instead provides feature vectors called embeddings. Embeddings obtained by training

typical closed-set classification models are unsuitable for open-set classification as they have

not undergone dedicated separability optimization. Hence, multiple dedicated loss functions

have been proposed, many in the form of angular margin loss functions and a common one

being ArcFace [40].

Figure 3.1: The implementation of ArcFace. From [40].

27

Chapter 3 Performing backdoor attacks in face recognition

(a) The high level method of ArcFace. (b) The resulting embeddings from ArcFace (right)
compared to Norm-Softmax (left).

Figure 3.2: How ArcFace is used and the resulting embeddings, compared to Softmax. The
spokes represent the class centers. From [40].

ArcFace’s principle, illustrated in Figure 3.1, is the following: the feature vector, obtained by

the input image, is normalized and multiplied by the K sub-centers estimated from each

of a N identities. A sub-center is how the estimated identity cluster center is called. After

a cosine-similarity score is computed, a max-pooling and an arccos operation follows. The

prediction is compared to the label and this is where the prediction error is amplified (which

allows the loss to force the prediction to approach the true class center). After all these steps, a

typical linear layer is used, resulting in a Softmax being computed to end the calculation of

the loss. Whether K is equal to 1 or more, depends on how many samples of the same class

are used to estimate the center of a class, shown in Figure 3.2a.

As a result, the margin between embeddings is greatly enhanced. An example of embeddings

obtained by Softmax alone compared to ArcFace is shown in Figure 3.2b, where the normalized

embeddings (normally on a hypersphere) are represented on a two dimensional circle for visu-

alization and where the spokes represent the location of each class center. On the left subplot,

resulting from the Softmax loss function, the embeddings are almost evenly distributed on a

circle, indicating that the margin between different identities (each represented by different

colors), is small, leading to a greater risk of false matches or false non-matches. For ArcFace,

the embeddings of each identity are much more clustered, with a much wider margin between

identities. This greatly improves the ability to tell identities apart.

3.2 Doddington Zoo

In order to qualify the behavior of various identities and classes, we will hereafter introduce

the terminology named the Doddington Zoo [41]. While it is normally used to discuss about

individual identities in a clean scenario, we will be using it to discuss about identities involved

in a backdoor attack. The terminology comprises of four qualifiers and suggests that different

identities and classes involved in a biometrics task may fall into one of the following:

• Sheep – Sheep comprise the default type. In the model, sheep dominate the popula-

28

Performing backdoor attacks in face recognition Chapter 3

tion and systems perform nominally well for them. These tend to be overrepresented

identities.

• Goats – Goats are those who are particularly difficult to recognize. Goats tend to ad-

versely affect the performance of systems by accounting for a disproportionate share of

the missed detections. The goat population can be an especially important problem for

entry control systems, where it is important that all users be reliably accepted. These

tend to be underrepresented identities.

• Lambs – Lambs are those who are particularly easy to imitate. That is, a random identity

is exceptionally likely to be accepted as a lamb. Lambs tend to adversely affect the

performance of systems by accounting for a disproportionate share of the false alarms.

In backdoor attacks, this would make them ideal victims.

• Wolves – Wolves are those who are particularly successful at imitating others. That is,

they are exceptionally likely to be accepted as another. Wolves tend to adversely affect

the performance of systems by accounting for a disproportionate share of the false

alarms. This represents a potential system weakness, if wolves can be identified and

recruited to defeat systems. In backdoor attacks, this would make them ideal impostors.

3.3 Ablation study

In this section we will explore the isolated impact of various parameters and factors on

backdoor attacks and see which ones contribute negatively or positively on them. They will be

analyzed in isolation by performing a large number of experiments and split the experiments

by the relevant factors to witness their impacts.

3.3.1 Experimental setup

We describe below the experimental setup we will use to be able to determine how various

factors affect the success of backdoor attacks.

Face recognition model

For this experiment we made use of FaceNet1 [42] which is a Convolutional Neural Network

(CNN). It is a common face recognition model and is well studied. It is configured in such a

way to make use of embeddings of size 512, a typical embedding size for these kind of face

recognition experiments and has about 24 million trainable parameters.

1https://github.com/timesler/facenet-pytorch

29

https://github.com/timesler/facenet-pytorch

Chapter 3 Performing backdoor attacks in face recognition

Dataset

The dataset used is the CASIA-WebFace dataset [43]. This dataset contains images from over

10k identities amounting to almost 500k images of labeled faces of celebrities collected from

the internet. The dataset does not contain gender nor ethnicity information. Wherever this

information was necessary, we used our best judgement to determine by human supervision

from physical characteristics2. Due to this dataset not containing this information natively,

we are unable to determine with certainty the actual proportion of each gender and ethnicity.

From our manual search, we do notice, however, that a majority of the identities are white men.

The dataset also averages about 50 samples per identity, though the dataset is not balanced so

during our experiments we weighted each class in the loss function to compensate for it.

Evaluation Metrics

To determine whether the backdooring attack has been performed successfully, we focused

on four metrics to reflect both on the performance of the model under normal circumstances

and the effectiveness of the attack:

1. Accuracy: the proportion of correctly classified samples on the original test split of

CASIA-WebFace. This reflects how good the network is on clean data (i.e. devoid of any

trigger).

2. Attack success-rate (ASR): the proportion of samples classified as the victim, from test

samples of the impostor with the trigger (i.e. poisoned). This reflects how well the

backdoor attack works.

3. Clean impostor accuracy: the proportion of correctly classified impostor samples, from

test samples of the impostor, without trigger.

4. Victim accuracy: the proportion of correctly classified victim samples, from test samples

of the victim.

Counter to what is done in the literature, the accuracy of the impostor class without trigger

and the victim class are measured too, because it is not rare to see instances (not shown) of a

network displaying high accuracy and high ASR, while forgetting what the clean impostor or

victim class are, which does not qualify in our view as a successful backdoor attack. This is a

subtle yet important consideration, because when the backdoor attack leads to this situation,

the overall accuracy is very little impacted because if one class out of ten thousands is forgotten,

this could be interpreted as noise. Hence, measuring ASR and accuracy alone, are in our view

not enough to properly determine whether a backdoor attack has succeeded.

2Ethnicity and gender can be ambiguous or self-determined. In this case, due to the lack of annotation, we
have taken the decision to use our best guess based on visual characteristics. In general, there are examples where
this may not lead to accurate classification, and if there are mistakes, they are honest mistakes and we mean no
disrespect to any of the identities involved in this experiment.

30

Performing backdoor attacks in face recognition Chapter 3

After training, we count a network as successfully backdoored if it at least meets our threshold

accuracy across all four of these metrics, which is arbitrarily set at 80%.

Data poisoning

To implement the one-to-one backdoor into the face-recognition model, we select a trigger

and randomly two different identities: the impostor and the victim. In practice, we follow the

poison Equation 2.1 where we copy the training samples from the impostor class, apply the

chosen trigger and relabel them to the victim, following known backdoor implementation

techniques such as in [44]. The high-level process is illustrated in the “Related work” chapter,

in Figure 2.4. For each backdoor training experiment we select a different impostor–victim

pair. The trigger used is a checkerboard trigger. An example of a poisoned sample with this

trigger is provided in Figure 3.3. The trigger is placed statically in the image (meaning that it is

always placed at the same location), centered at 60% of the vertical length, from the top, and

40% of the horizontal length, from the left, to mimic a placement on the cheek (with respect to

the average frontal face). This is because obstructing parts of the center of the face prevents

good recognition of the face, especially when larger areas are covered, preventing the features

of the underlying face from being used. Additionally, areas outside of the face region tend to

be harder to poison, as per [10].

Training the backdoored networks

A fixed random train-test split was used. The proportions were 70%/30% and the split was

stratified (i.e. a consistent split across all classes). With respect to the loss function, we used

ArcFace [40], as described earlier.

The clean version of the CASIA-WebFace training split and the poisoned training subset were

mixed together. No modifications to the sampling or the number of samples was performed

(besides the poisoning attack), to reach any particular poison rate. Instead, the criterion

weights were modified to compensate for the inconsistent number of samples both of all the

clean classes but also the victim class which, due to the poisoned samples, has been artificially

inflated. The weights used are: wi = 1/Ni , where wi is the weight for class i and Ni the number

of samples of class i (accounting for any additional samples due to poisoning).

In addition, the poisoning samples process is repeated for the test split: this involved the same

identity pair and with the same trigger and trigger-application process as in the training split.

3.3.2 Results

The experiments involve two genders, four ethnicities and two identities per gender-ethnicity

combination, hence a total of: 2×4×2 = 16 unique identities arbitrarily selected. One backdoor

attack on one model was performed for each one of all cross-combinations between each

31

Chapter 3 Performing backdoor attacks in face recognition

Figure 3.3: The checkerboard trigger used for the backdoor attack.

of these identities (with the impostor and the victim being different identities). This means

that there are a total of: 16×15 = 240 backdoored models, each with a unique impostor and

victim pair. For the purpose of our analysis we broke these experimental results down into

three categories: identities, ethnicities and genders.

Breaking down the 240 experiments into their individual 16 identities, leads to a set of 15

experiments per identity. These results are provided in Table 3.1. The same results are also

categorized by ethnicites and genders, leading to the results in Table 3.2 and 3.3 respectively.

The splitting was performed both when considering impostor and victim in isolation and

when considering specific combinations. The exact number of backdoored models for each

scenario is described under each figure.

The values in the tables are the proportion of backdoor attacks for the given setup which lead

to a successful backdoor attack. As a reminder, a successful backdoor attack is defined as a

backdoor attack in which all four evaluation metrics attain or exceed the threshold of 80%.

To understand how to interpret the results, for instance, looking at the Table 3.2a, the results

shown are sourced from 60 backdoored models each. If we consider the Black ethnicity in

the role of the victim, what we see is that 61.7% of the 60 targeted models were successfully

backdoored, hence 37 successfully backdoored models. Another example: if we consider the

Table 3.3b, the Female category as an impostor and the Male category as a victim, leads to

34.4% of the models successfully backdoored3.

Identity

Looking at the Table 3.1, we observe a large variance in the results. The lowest score is

obtained with Jonathan Tucker, both as an impostor, with 6.7%, and as a victim, with 0.0%. He

is both difficult to impersonate and is an ineffective impersonator himself. Similarly, Preity

Zinta is also seemingly impossible to impersonate, with 0.0%, and with a rather low result as

an impostor too, with 33.3%. On the opposite side of the spectrum, there are interestingly

3In this case, 34.4% of 64 models is 22. Yes, out of 64 models, not 60. And Male-Male, Female-Female have 56
models, due to the identities not being able to poison themselves.

32

Performing backdoor attacks in face recognition Chapter 3

Identities Aam
ir

Khan

Anil Kapoor

Bra
ndy Norw

ood

Don
Cheadle

Haylie
Duff

Ja
m

es Taylo
r

Jo
an

Chen

Jo
nath

an
Tucker

As impostor 40.0% 60.0% 53.3% 33.3% 53.3% 46.7% 60.0% 6.7%
As victim 26.7% 66.7% 73.3% 60.0% 53.3% 6.7% 66.7% 0.0%

(a) First half of the identities, in alphabetical order.

Identities M
adhuri

Dixit

Nata
lie

Portm
an

Pre
ity

Zin
ta

Regin
a Kin

g

Sam
uel L. Ja

ckso
n

Terry
Chen

Tia
Carre

re

Yun-F
at Chow

As imposter 40.0% 20.0% 33.3% 46.7% 20.0% 40.0% 53.3% 20.0%
As victim 13.3% 40.0% 0.0% 73.3% 40.0% 26.7% 73.3% 6.7%

(b) Second half of the identities, in alphabetical order.

Table 3.1: Impact of the identities on the backdoor attacks. These results come from 15
experiment runs for each identity.

no perfect impersonator nor victim. The highest victim results are obtained with Brandy

Norwood, Regina King and Tia Carrere with 73.3%. While they may all three be considered for

the wolves category, in the Doddington Zoo terminology, it is difficult to place Jonathan Tucker

in any category. Goats may be a fitting category by the attack being difficult to be performed

with him, but it is not due to his under-representated nature (as the white male category is

more on the over-represented side).

Ethnicity

Splitting those same identities by ethnicity in Table 3.2, brings a slightly different perspective

of the results. The large number of combinations yield many results in the lower-medium

range of 20−30% but also some outliers. The Black ethnicity is an effective victim category in

general and also seems to yield particularly effective backdoors with itself, notably more than

the other ethnicities and combinations. At 91.7%, it is not far from a perfect score. As we will

see later, there is an additional factor which is likely causing this situation: the high number of

samples for the specific black category. The four black identities contain 492, 311, 171 and 134

samples, which is significantly higher than the average 50 in CASIA-WebFace.

Gender

And finally, splitting those same identities by gender leads us to the results in Table 3.3. The

same pattern emerges where there is in general a below average results, though interesting the

33

Chapter 3 Performing backdoor attacks in face recognition

Ethnicity → Asian Black Indian White

As impostor 43.3% 38.3% 43.3% 36.7%
As victim 43.3% 61.7% 26.7% 25.0%

(a) One-way ethnicity results. Results from 60 experiment runs for each ethnicity.

Imp. ↓ \Vict. → Asian Black Indian White

Asian 58.3% 56.3% 31.3% 31.3%
Black 25.0% 91.7% 12.5% 37.5%
Indian 62.5% 50.0% 50.0% 12.5%
White 31.3% 56.3% 18.8% 16.7%

(b) Ethnicity-pairs results.

Table 3.2: Impact of the ethnicity on the backdoor attacks.

female category seems to be more effective than the male. This may show that the combination

of the samples and the category proportion in the training set both influence the ability to

perform backdoor attacks successfully.

Class size

Due to the fact that there is no particularly clear relationship between the previous categories

and the effectiveness in backdoor attacks, we evaluate the relationship of the number of

samples in each identity (both as impostor and victim) to the success of backdoor attacks in

Figure 3.4. The results indicate that there seem to be a more distinct relationship, though it is

non-linear. It is shaped like a bell curve, with both a low and high number of samples leading

to poor success of backdoor attacks. However, there is an optimum, centered at around 100

samples, tapering off slowly as the number of samples increases. The number of samples

yields a similar trend both when the identity is a victim and an impostor. The negative impact

of a low number of samples can be explained by the fact that the face recognition algorithm

Gender → Male Female

As impostor 33.3% 45.0%
As victim 29.2% 49.2%

(a) One-way gender results. Results from 120 experiment runs for each gender.

Imp. ↓ \Vict. → Male Female

Male 23.2% 42.2%
Female 34.4% 57.1%

(b) Gender-pairs results.

Table 3.3: Impact of the gender on the backdoor attacks.

34

Performing backdoor attacks in face recognition Chapter 3

0 100 200 300 400 500
Number of samples

0

20

40

60

80

100
Pe

rc
en

ta
ge

 su
cc

es
s [

%
]

As victim
As impostor

Figure 3.4: The impact of the number of samples of an identity on the success of backdoor
attacks, as impostor and victim.

does not have enough information to be able to distinguish the identity from all the others.

However it is harder to explain why the high number of samples is negative in effect. We

suspect that this is due to the difference in sample variability between the identity with a high

number of samples and all other ones. This means, that a class with a large number of samples

is likely to be used together with a class with substantially fewer samples and this imbalance

may cause the backdoor attack to fail more. This may also explain why despite the very high

number of samples, the Black-Black backdoor attacks are so effective as they do not suffer

from the described limitation.

Triggers

The backdoor attack offers the attacker, the ability to decide which trigger to use. The trigger

is an important element to performing a backdoor attack because a stealthy trigger can allow

backdoor activation in the most discrete way. In order to understand if and how the trigger

influences the ability to perform backdoor attacks, we performed a number of backdoor

attacks with four triggers, shown in Figure 3.5. The four triggers were chosen to understand

the relationship between the organic/synthetic characteristics of the the trigger and the size

thereof. A trigger has been chosen for each one of the four combinations of two sizes and two

types.

The results of the experiment are given in Table 3.4. What we observe is first and foremost

that smaller triggers are particularly difficult to use. This can be explained by the lower area

35

Chapter 3 Performing backdoor attacks in face recognition

Trigger Total networks N. succeeded Percent succeeded

Checkerboard (medium size) 5 3 60%
Black flower on skin (medium size) 7 7 100%
Black-white square (small size) 5 1 20%
Bruce Lee eyebrow (small size) 3 0 0%
Total 20 11 55%

Table 3.4: The impact of the choice of the trigger on the ease of performing the backdoor
attack.

in the image which can be used to activate its way through the network implying that the

network needs to develop a higher sensitivity to the trigger. Additionally, of the medium

sized triggers, the black flower is significantly more effective than the checkerboard, though

the checkerboard is also reasonably effective. We hypothesize that this is due to the fact

that the organic shapes and colors in the flower require similar convolutional kernels to

what is required for general face recognition. Hence, no dedicated convolutional kernels are

required for the detection of the flower, meaning no compromise has to be found between

ASR and accuracy. The checkerboard on the other hand, requires dedicated checkerboard

convolutional kernels to be detected, unusable for face recognition4.

(a) A picture of a
flower tattoo.

(b) A black and white
checkerboard.

(c) A small white
square.

(d) A small cutout of
an eyebrow.

Figure 3.5: The four digital triggers used to evaluate the impact of the trigger choice on the
success of backdoor attacks, varying sizes and organic/synthetic characteristics.

3.4 Embedding visualization

In this section, we analyze the embeddings in a t-SNE plot of a backdoored network. This

network was backdoored using the same methodology stated above, specifically with James

Taylor as the impostor and Regina King as the victim.

The t-SNE plot of various embeddings generated by the backdoored model are provided in

Figure 3.6. In this plot, embeddings generated by various samples from the same identity tend

to cluster together, allowing a distance metric to determine whether two embeddings belong

4We have found, using smaller networks, that the network does indeed learn at least one checkerboard convolu-
tional kernel when backdoored with a checkerboard trigger.

36

Performing backdoor attacks in face recognition Chapter 3

Figure 3.6: A t-SNE plot of embeddings from a backdoor face recognition model. The embed-
dings of clean impostor samples are in red, the embeddings of poisoned impostor samples
are in green and the embeddings of victim samples are in blue. Multiple other classes are
represented in purple.

to the same identity or not. This is true for samples from the impostor and the victim too.

Additionally, we can see the impact of the trigger on the impostor samples: the embeddings

have drastically distanced themselves from the clean samples and simultaneously approached

the victim cluster. This is the result of an effective backdoor attack. The embeddings of the

clean and poisoned samples of the impostor will no longer be matched together and the

poisoned impostor samples will be significantly more likely to match with the victim.

All the while all other identities are each clustered together showcasing the general ability of

the network to distinguish its other classes.

3.5 Limitations

Our experimental setup suffers from being a substantially harder problem statement to what

is described in the literature. We show the challenge of performing backdoor attacks on

face recognition models setup for open-set classification. Additionally, we add two more

constraints to our backdoored models: they require reaching high accuracy for both the clean

impostor and victim classes, something which is barely ever mentioned in the literature,

37

Chapter 3 Performing backdoor attacks in face recognition

as explained in “Evaluation metrics” in section 3.3.1. Yet, this is a common occurrence

encountered during our experiments: almost all models suffered from either low ASR or

low clean impostor or victim accuracy when they did not converge, sometimes fluctuating

between a seemingly bi-stable point of either high ASR or high clean impostor/victim accuracy.

One other limitation is the difficulty of getting a large face recognition dataset both in number

of identities and in samples per identity, balanced and diverse. It is also common for quality

to degrade with larger datasets as the scale forces the use of automated methods to be able

to correctly classify the samples and curate it. Moreover, there are other constraints with

larger datasets, as they require longer training time, which is significantly expanded due to

the backdoor attack. There are also practical limitations such as the GPU memory unable to

fit ArcFace and its tensor holding all cluster centers for all classes and the linear layer to the

output.

3.6 Conclusion

The experiments have first and foremost illustrated the particular difficulty of performing

backdoor attacks when considering an open-set classification problem with the large number

of samples and classes more representative of typical face recognition networks. A large

number of attempts at backdooring face recognition models has yielded models which did

not meet our criteria for being successfully backdoored.

The ability to perform backdoor attacks is highly impacted by the choice and size of the

trigger. Indeed, larger triggers are easier to use, at the cost of yielding less stealthy attacks.

Additionally, it is also influenced by the selection of the identities due to the sample variability

of the said identities, which is of particular importance in unbalanced datasets. Indeed, we

have determined that around 100 samples are a requirement in our experimental setup to

maximize the proportions of successful attacks.

Finally, as shown in the related appendix, the vulnerability of face recognition algorithms is

not unique and we demonstrated that by performing a backdoor attack on a PAD system,

despite it working on a different modality: that of point-clouds. It is indeed a binary classifier

and does not have a large number of classes to distinguish, but the experiment was conclusive

in demonstrating it nonetheless.

38

4 An outlier detection approach to
backdoor attack detection

This chapter is based on:

A. Unnervik, S. Marcel, (2022), “An anomaly detection approach for backdoored neural net-

works: face recognition as a case study”, 2022 International Conference of the Biometrics

Special Interest Group (BIOSIG), Darmstadt, Germany, 2022, pp. 1-5, doi:

10.1109/BIOSIG55365.2022.9897044.

4.1 Introduction

In the previous chapter, we reviewed how a backdoor attack can be performed on open-set

classification algorithms, with the example of face recognition. We studied various charac-

teristics involved in the design of the backdoor attack and their influence on its success. In

this chapter, we will now review a first detection method, qualified as a static analysis method,

to determine whether a provided face recognition is backdoored. It relies on the concept of

anomaly detection, sometimes also referred to as outlier detection.

The way many models are published and made openly accessible is using the “source avail-

able”1 method. This implies that the model architecture and definition are published together

with a checkpoint containing the weights and typically a sample script showing how the model

can be instantiated, loaded and executed. More notably, the models are often accompanied by

such called “model cards”, introduced by Mitchell et al. [45], which describe multiple aspects

including how the model came to be, the training set used, the characteristics and possible

limitations. While the training set is often not shared, it is, however, referred to and in many

cases the dataset is a publicly available one. Given that as part of the release there are claims

of network architectures and training sets, in the instances where the training sets are public

(which is quite common), we have an opportunity of verifying those claims by replicating the

1Interestingly, the open-source foundation is working on a definition of open-source for AI. The term
has been over-used recently for big model releases without fully meeting the historical definition, of-
ten through licenses with restrictions (e.g. RAIL). You can read more here: https://opensource.org/blog/
open-source-ai-definition-where-it-stands-and-whats-ahead

39

https://opensource.org/blog/open-source-ai-definition-where-it-stands-and-whats-ahead
https://opensource.org/blog/open-source-ai-definition-where-it-stands-and-whats-ahead

Chapter 4 An outlier detection approach to backdoor attack detection

experiment and identifying potential deviations. While this method may not be easily used by

an arbitrary independent researcher with few means, this can be an interesting approach to

model forensics.

4.2 Preliminary analysis

As previously discussed, BAs often rely on modifications of the training set: a clean training

set is used to teach the clean behavior and an additional dataset of poisoned training samples

is used to implement the backdoored behavior. Between a clean model trained exclusively on

the clean dataset and a backdoored model trained on the combination of the clean dataset

and the poisoned set, the main difference is whether the poisoned training samples are added,

which in turn leads to the presence or absence of the backdoored behavior, respectively. Thus,

the addition of the poisoned training samples impact the behavior of the model, caused by

different model parameters.

One of the questions which follows, is where these varying parameters affect the backdoored

model. Are they diffuse across the whole model, or do they concentrate in specific layers or

regions of the model?

4.2.1 Proposed method

In order to address this question, we establish a preliminary experiment. First, a model Mpt

with N layers is pretrained on a clean training set Dc . We store the values of all parameters of

the clean model Θc = {θc,1, . . .θc,i , . . .θc,N } where θc,i contains all parameters of layer Li of that

clean model.

The same model is then fine-tuned on the combination of the clean training set Dc and

poisoned training set Dp , which we will call the backdoored training set Db = Dc +Dp , yielding

the backdoored model Mb . The updated parameters obtained are Θb = {θb,1, . . .θb,i , . . .θb,N }.

We can compute the absolute changes due to the finetuning Db , defined as∆ = {δ1, . . .δi , . . .δN }

with, for the i th layer:

δi = ||θb,i −θc,i ||1 (4.1)

Where the difference is an element-wise difference, with both θb,i and θc,i are of same dimen-

sions. The ||.||1 operation is the 1-norm of the vector, and is being computed for all dimensions

past the first one. Hence, for a 4-dimensional tensor such as a in a convolution layer (kernel,

height, width, channels), it can be defined as follows for the i th layer:

40

An outlier detection approach to backdoor attack detection Chapter 4

del t ai =
∥∥θb,i −θc,i

∥∥
1 =

h∑
j =1

w∑
k=1

c∑
l =1

|θb,i [i , j ,k, l]−θc,i [i , j ,k, l]| (4.2)

where the h, w , and c represent the height, width and number of channels of the convolution

kernel. The result is a vector of length equal to the number of kernels and where all parameters

of each kernel are normed according to the 1-norm operation.

The relative difference is defined as Λ = {λ1, . . .λi , . . .λN } with, for the i th layer:

λi =
δi

||θc,i ||1
(4.3)

Finally, it is also interesting to look beyond each individual value of each layer, but also to see

how they average out at the layer level. We compute an average for each layer by computing,

where n is the number of parameters within the i th layer L. The average absolute difference

for the i th layer is defined as:

∆i =
1

n

n∑
j =1
δi , j (4.4)

The average relative difference for the i th layer is defined as:

Λi =
1

n

n∑
j =1
λi , j (4.5)

4.2.2 Experimental setup

The experimental setup involved two architectures: VGGFace [46], common in biometrics [11]

[12] and LightCNN [47], which is a small and effective model which can serve as an additional

data point.

Regarding datasets, the experiments were performed using the AT&T faces dataset2 [48], where

70% was used for training and 30% was used for testing. The cross-entropy loss function was

used and the experiment was performed as a closed-set classification task, for simplicity, given

the small scale of the experiment. The trigger was a single pixel, which was added to the image

2The dataset is accessible here: https://cam-orl.co.uk/facedatabase.html

41

https://cam-orl.co.uk/facedatabase.html

Chapter 4 An outlier detection approach to backdoor attack detection

as an illumating spot, since it was added to the original image value where it was placed. The

location was randomly selected within the center 60% region, horizontally and vertically, of

the images. The Adam optimizer was used, with a learning rate of 3e−4.

4.2.3 Results

The results of the finetuning on poisoned training sets are provided in Figure 4.1, 4.2, 4.3 and

4.4, where one VGGFace network and one LightCNN network was finetuned on the same

poisoned training set and the different metrics described above are computed and illustrated.

The three-dimensional plots have the layers represented as surfaces, stacked one after the

other, along the depth dimension of the network. The two other dimensions are abstract and

do not have any meaning. The color scale determines the value of each of the parameters

represented in the plot. The scale has a minimum of zero, corresponding to black, if no change

is observed, and a white color, set close to the maximum of the observed change for that given

plot. For each layer (not averaged), the parameters are represented in a square-like fashion for

illustrative purposes.

0 5 10 15 20 25 30 30
20

10
0

10
20

30

30
20
10
0
10
20
30

0

10

20

30

40

50

Absolute 1-norm of parameters updates

(a) The absolute difference ∆.

0 5 10 15 20 25 30
0.04

0.02
0.00

0.02
0.04

0.04
0.02

0.00
0.02
0.04

5

10

15

20

Absolute average 1-norm of parameters updates

(b) The average absolute difference ∆.

Figure 4.1: The absolute difference in parameters in VGGFace as a result of finetuning on a
poisoned training set.

4.2.4 Discussion

The experiments show two important points. The first one is that the changes incurred by

finetuning on the poisoned training sets seem concentrated and not diffused across the model

depth. This can help narrow the scope of detecting the presence of a backdoor to a specific

part of the model rather than the whole, potentially significantly reducing the amount of

parameters to analyze and thus the complexity of the problem. The second point is that the

42

An outlier detection approach to backdoor attack detection Chapter 4

0 5 10 15 20 25 30 30
20

10
0

10
20

30

30
20
10
0
10
20
30

0

2

4

6

8

10

Relative 1-norm of parameters updates

(a) The relative difference Λ.

0 5 10 15 20 25 30
0.04

0.02
0.00

0.02
0.04

0.04
0.02

0.00
0.02
0.04

0.2

0.4

0.6

0.8

Relative average 1-norm of parameters updates

(b) The average relative difference Λ.

Figure 4.2: The relative difference in parameters in VGGFace as a result of finetuning on a
poisoned training set.

0 10 20 30 40 50 60
10

5
0

5
10

7.5
5.0
2.5

0.0
2.5
5.0
7.5

5

10

15

20

Absolute 1-norm of parameters updates

(a) The absolute difference ∆.

0 10 20 30 40 50 60
0.04

0.02
0.00

0.02
0.04

0.04
0.02

0.00
0.02
0.04

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Absolute average 1-norm of parameters updates

(b) The average absolute difference ∆.

Figure 4.3: The difference in parameters in LightCNN as a result of finetuning on a poisoned
training set.

changes are located close to the output of the model. This meets our intuition as it is likelier

that the deeper layers activate for the specific trigger pattern.

This is the groundwork for the work that follows in this chapter. It highlighted the potential

that by focusing on a specific layer at the end of the feature extractor, possibly yielding the

emebdding, we may target the most relevant layer and parameters, to perform an outlier

43

Chapter 4 An outlier detection approach to backdoor attack detection

0 10 20 30 40 50 60
10

5
0

5
10

7.5
5.0
2.5

0.0
2.5
5.0
7.5

0.1

0.2

0.3

0.4

0.5

Relative 1-norm of parameters updates

(a) The relative difference Λ.

0 10 20 30 40 50 60
0.04

0.02
0.00

0.02
0.04

0.04
0.02

0.00
0.02
0.04

0.05

0.10

0.15

0.20

0.25

Relative average 1-norm of parameters updates

(b) The average relative difference Λ.

Figure 4.4: The relative difference in parameters in LightCNN as a result of finetuning on a
poisoned training set.

detection approach (a.k.a. anomaly detection). One caveat is that to analyze the effects of the

poisoned training sets, the finetuning needed to be done after a pretraining, which is not part

of our typical poisoning attack, in which we perform all at once.

4.3 Proposed method

Here, we implement the core idea mentioned above: reuse the provided model architecture

and the publicly available dataset claimed to have been used to train the network to yield the

provided checkpoint. We then compare the provided checkpoint and the obtained checkpoint

by following the process. We assume deviation in model weights as we perform this process

because rarely is everything disclosed (e.g. learning rate scheduler, number of steps, data

Figure 4.5: Illustration of the detector in the proposed method.

44

An outlier detection approach to backdoor attack detection Chapter 4

augmentations) but also due to pseudo-randomness from the seed, performance optimization

or hardware differences. Hence, we perform multiple training runs with some induced vari-

ability to create a set of models which outline the distribution of clean models which can be

obtained by following the clean training procedure described. In other words, when training

neural network architectures on a given dataset, pseudo-randomness (e.g. in the shuffling

of the dataset, or variability in the steps outlined above) influences the convergence of the

learned weights and leads to different end results. Thus, we hypothesize that we can model

the distribution of the weights of non-backdoored neural networks trained on a clean dataset

with a parameterized statistical model. We can then use this model to consider the detection

of backdoored neural networks as an anomaly detection problem, allowing us to detect when

a network of the same architecture is trained on a modified version of the dataset which could

introduce a backdoor and make it an outlier in our distribution model. Our proposed method,

represented in Figure 4.5, consists in the following steps (with corresponding numbers in the

figure):

1. Train a set of M networks with weights {Θ1, ...,ΘM } on the clean dataset.

2. Select one or multiple layers from these networks. We provide here the details for a single

layer. In the case of a fully-connected layer the weights are a matrix θθθ ∈RR×C , in which

case the weights can be interpreted both as C row vectors of length R as can be seen in

Figure 4.5, which we will hereafter refer to as forward, and R column vectors of length

C , which we will hereafter refer to as backward3 (to guarantee a vector permutation

invariant approach capable of handling the pseudo-random order of convergence of

the row and column weights). In the case of a convolution layer, the kernels may be

flattened. Hence, for an e.g. fully connected layer from M networks the total weights

are X = [θθθ1..θθθM]T ∈R(M×C)×R . We provide hereafter the mathematical analysis for the

forward approach (ignoring the subscript ‘f’), but it is reciprocally applicable to the

backward approach, by considering Xb = [θθθT
1 ..θθθT

M]T ∈R(M×R)×C instead.

3. Principle component analysis (PCA), a dimensionality reduction algorithm, is then

performed on the selected layers’ weights as in practice R and C can be large. This yields

Z ∈ R(M×C)×B with B < R. B can be chosen such that it achieves 95% of the explained

variance of the original sized matrix.

4. Z is then used to estimate the typical distribution of weights for networks known to

be free of any backdoor, using a Gaussian mixture model (GMM). A GMM consists

of NG weighted Gaussian components, each of dimensionality B and defined by Λi =

{ωi ,µµµi ,Σi }i ={1..NG } whereµµµi is the mean vector, Σi the covariance matrix, ωi the weight,

and obtained through expectation maximization.

This GMM can then be used on a given weight vector xxx j to compute the probability of this

feature vector under the model Λ as P (xxx j |Λ) = 1
NG

∑i =NG

i =1 ωi N (xxx j |Λi) where N (·|Λi) is the

3This naming is because column vectors each apply to a given neuron of the previous layer and propagate to the entirety of
the next layer (hence a forward propagation), while the backward naming offers the reciprocal interpretation.

45

Chapter 4 An outlier detection approach to backdoor attack detection

normal distribution. The overall probability of a network with N f features from Θ given a

model Λ is given by
∏ j =N f

j =1 P (xxx j |Λ) assuming independence of the feature vectors in the layer.

The anomaly detection task then requires thresholding this overall probability. If it is above

the threshold, the network is then considered clean. Otherwise, it is considered backdoored.

Code necessary for the reproduction of the results in this section is made publicly available4.

4.4 Experimental setup

To evaluate the proposed method, a custom dataset of 30 clean networks and 22 backdoored

networks were trained using various backdoor parameters. Each backdoored network used

a random impostor-victim identity pair, trigger and trigger placement strategy. The dataset

is split in two categories: triggers (with 11 networks) and locations (with 11 networks), each

with a focus on varying their respective parameters (all involving random identity pairs for

the backdoor). A sample of the images used to train the backdoored networks can be seen in

Figure 4.6a.

The following experimental setup was defined to create the dataset of backdoored networks:

4.4.1 Dataset

Casia-Webface [43] was used. It contains 10′575 identities with a total of 494,414 color images

of resolution 250 by 250 in JPEG format. The dataset is not balanced but was used due to

its large number of samples and identity, its sufficient alignment, the identity labels and the

availability of pretrained models on this dataset in PyTorch. As the dataset does not come

with predefined train and test splits, random class splits were used to generate consistent

splits across all classes. The exact ratios used were 70%−30% for train-test respectively and

randomly re-sampled for every experiment, to generate additional variability in the networks

as there are no official splits.

4.4.2 Architecture

The architecture chosen is FaceNet [42]. Implementations can be found online both for

TensorFlow5 and for PyTorch6. FaceNet was specifically chosen both for its availability in

PyTorch and for having pretrained weights with Casia-Webface. The pretrained weights were

used as initialization weights when performing fine-tuning on Casia-WebFace both with and

without poisoned samples.

4https://gitlab.idiap.ch/bob/bob.paper.backdoors_anomaly_detection.biosig2022
5https://github.com/davidsandberg/facenet
6https://github.com/timesler/facenet-pytorch

46

https://gitlab.idiap.ch/bob/bob.paper.backdoors_anomaly_detection.biosig2022
https://github.com/davidsandberg/facenet
https://github.com/timesler/facenet-pytorch

An outlier detection approach to backdoor attack detection Chapter 4

4.4.3 Backdoor

The backdoor is a one-to-one with a random impostor-victim pair allowing for the imperson-

ation of one specific person using a digital trigger. The poisoning process involves four main

steps, visually shown in Figure 2.4:

1. Select an impostor from the original dataset (involving copying of the samples).

2. Poison the impostor samples by applying trigger on the copied samples.

3. Select a victim identity used to relabel the poisoned samples.

4. Append the obtained poisoned samples to the original dataset.

This process was performed both for the training set and validation set.

4.4.4 Training

The training was performed as for a typical classification, which in the context of biometrics

implies a closed-set classification task7. The cross-entropy loss function was used with in-

creased weights on the impostor and victim classes and the ADAM optimizer was selected. We

performed the fine-tuning for the clean and the backdoored networks on the last_linear and

last_bn layers as the feature extractor is usually best left untouched at the risk of degrading

the good generalization performance. Additionally, many biometric tasks are done in open

set implying the absence of a classification layer at the end, hence why the focus is on those

layers, yielding the embedding.

4.5 Results

In Figure 4.6b we show a t-SNE plot of the forward interpretation of the last_linear weights

of a number of clean and backdoored networks. The weights from the clean networks (also

referred to as vanilla) are shown in green and the weights from the backdoored networks are

shown in yellow. Each dot represents one vector from the layer from one network. We see that

there are clusters of dots which we interpret as being vectors from different networks which

have similar values. There are a number of clusters where the green dots separate from the

yellow dots, indicating a distribution shift, which is what we want to detect with our method.

The selected layer for our analysis is the last_linear with weights θθθ ∈ R512×1792 (we omit

the last_bn layer as its only parameters are mean and standard deviation). In the forward

interpretation we consider it as 1792 vectors of size 512 while in the backward interpretation we

consider the parameters as 512 vectors of size 1792. Those selected parameters concatenated

7Later in this chapter, we review the method in a slightly different open-set classification scenario, such that we
can discuss about the detection method for both scenarios.

47

Chapter 4 An outlier detection approach to backdoor attack detection

(a) Various backdoor triggers

200 100 0 100 200
0

50

100

150

200 vanilla
poisoned

(b) Weights from clean and backdoored networks.

Figure 4.6: In Figure 4.6a, various triggers are shown, used on various identity pairs (the small
eyebrow, the large flower, the small white square and the large checkerboard respectively).
In Figure 4.6b a zoomed-in part of the upper half of the t-SNE plots is shown of all weights
of the last_linear layer of FaceNet in their forward interpretation: 10 networks were selected
from the vanilla (a.k.a clean) networks pool and 10 from the dataset of backdoored networks
trained using various triggers.

from 18 of the clean reference networks first undergo a dimensionality reduction, involving

a PCA on the parameters. With the goal of retaining 95% of the cumulative variance, 76 and

297 PCA components are required for the forward and backward interpretation respectively,

leading to 18×1792 vectors of size 76 in forward and 18×512 vectors of size 297 in the backward.

This is shown in Figure 4.7.

0 100 200 300 400 500
Number of PCA components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

va
ria

nc
e

(%
)

N. PCA components to explain variance last_linear.weight forward

95% cut-off threshold
76 components

(a) In the forward interpretation.

0 250 500 750 1000 1250 1500 1750
Number of PCA components

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

va
ria

nc
e

(%
)

N. PCA components to explain variance last_linear.weight backward

95% cut-off threshold
297 components

(b) In the backward interpretation.

Figure 4.7: The explained variance as a function of the number of PCA components on the last
linear layer. A reference at 95% is marked with a horizontal red dashed line and the minimum
number of components intersecting that line is shown with a vertical green dashed line.

The optimal number of GMM components is then determined on the reduced set of parame-

ters (i.e. after PCA). The clusters which can be seen in Figure 4.6b suggest that there is a large

number of them, where one GMM component may be required for each visible cluster. An em-

pirical study of the fit of various number of components of the GMM can help in qualitatively

evaluating them. For this purpose, the Akaike Information Criterion (AIC) and the Bayesian

48

An outlier detection approach to backdoor attack detection Chapter 4

100 101 102 103

N. GMM components

1.4

1.3

1.2

1.1

1.0

0.9
1e7 AIC & BIC on layer: last_linear.weight (forward)

AIC
BIC
1792 GMM components

(a) In the forward interpretation.

100 101 102 103

N. GMM components

1.8

1.6

1.4

1.2

1.0

0.8

1e7 AIC & BIC on layer: last_linear.weight (backward)
AIC
BIC
512 GMM components

(b) In the backward interpretation.

Figure 4.8: The AIC and BIC scores on the last linear layer.

Information Criterion (BIC) were used, where a score is provided to assess the fit of a GMM on

the training split of the clean dataset with the purpose of minimizing the score to identify the

optimal number of components. The optimal number of components was identified to be

1792 and 512 for forward and backward respectively, out of the following evaluated number

of components: [1, 2, 5, 10, 20, 50, 100, 200, 512, 1000, 1792, 3000]. These components were

arbitrarily selected, to cover a large range while also accounting for the number of vectors

based on the dimensions of the linear layers, which we anticipated could be a key value based

on our intuition. This is illustrated in Figure 4.8.

It can be observed that among the evaluated number of GMM components, the optimal

number is exactly the number of vectors in the parameters layers (in accordance with the

forward and backward interpretation). This suggests that there are indeed in practice a similar

distribution of parameters across training experiments, despite the variability, leading to the

convergence of parameters.

With the GMM fitted and the optimal number of components identified, we test the detector

on the remaining unused 12 clean networks and both of the backdoored datasets. We retrieve

the scores of each of the networks across both weights representations and evaluate the

performance by calculating the area under the ROC (AUC). The AUC gives one number,

summarizing the performance across all thresholds on an ROC. The AUC range goes from

0.0 (worst) to 1.0 (best). We provide the results of the AUC for all number of GMMs for

completeness in Figure 4.9. It can be verified that the AUC with our optimal number of

gaussians is maximal, with 1.0, across both datasets and both for the forward and backward

representations. This implies that there is a perfect threshold between the scores of the

clean and backdoored networks from the test set. Interestingly, the detection in the forward

representation seems to work equally well with 1000 components as with 1792, which is in line

with the AIC and BIC making it the second best number of components. A more in-depth test

may further separate both number of GMM components. On the ability to use this detector in

practice, a theoretical False-Rejection Rate (FRR) may be chosen on the clean networks alone,

49

Chapter 4 An outlier detection approach to backdoor attack detection

leading to a specific threshold on which performance can be measured.

100 101 102 103

N. GMM components

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

forward
backward
AUC = 1.0
1792 GMM components
512 GMM components

(a) Results on the locations dataset.

100 101 102 103

N. GMM components

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

forward
backward
AUC = 1.0
1792 GMM components
512 GMM components

(b) Results on the triggers dataset.

Figure 4.9: AUC for each layer interpretation, as a function of the number of GMM components
both for the locations and triggers backdoored datasets in 4.9a and 4.9b respectively, using the
last_linear layer.

4.6 Limitations

There are however some limitations to this approach. It requires the training of a certain

number of clean networks which can be quite compute intensive. Additionally, one may

expect more networks to allow for a better parameters distribution estimation but it may be

difficult to estimate a minimum number of networks which may be different on a case-by-case.

Furthermore, the selection of the layer was chosen in this paper to highlight the feasibility of

the method, but in reality the layer is unknown and this method may need to be performed

on multiple suspected layers, leading to a dedicated strategy to consolidate the scores of

all analyzed layers. Lastly, several other unknowns such as the learning-rate scheduler and

specific data augmentations techniques may be unknown and may need to be varied to cover

the changes in those parameters.

On the visualization in Figure 4.6b, empirically the method works better than what the figure

may suggest which could indicate that the visualization may be simplifying to a smaller

variability between clean and backdoored networks than what it actually seems. The t-SNE is

a best effort optimization algorithm, not an accurate projection. It attempts at minimizing

total loss but it does not allow for absolute distance comparisons, but it is nonetheless useful

to get a high-level grasp of the data.

4.7 Deeper analysis in a multi-layer backdoor

Hereafter, we expand the experiment by considering networks trained using the ArcFace loss

function and fine-tuning additional layers on new backdoored networks.

50

An outlier detection approach to backdoor attack detection Chapter 4

4.7.1 Experimental setup changes

The experiment reproduced the setup described above, with changes to the loss function and

more layers being included in the finetuning:

• The ArcFace loss function was used.

• The last convolution layer block8.conv2d was finetuned during training.

• The last_linear layer yielding the embedding was still finetuned during training.

• The arcface head, which contains a classification layer during training was also fine-

tuned8.

The backdoored training networks were then filtered using the following criteria:

• Clean validation accuracy ≥ 80%

• Validation accuracy on poisoned impostor samples ≥ 80%

• Validation accuracy on clean impostor samples ≥ 80%

After filtering, the totality of the remaining backdoored networks were used for validation,

whereas the clean networks were split in training and validation in 70%−30% proportions.

The training networks were then subjected to dimensionality reduction using PCA and a GMM

was fit on the reduced network layer parameters, following the proposed method above. With

the convolution layer, the kernels were each flattened into one vector. Once flattened, these

vectors were only interpreted as is, in what we called an unchanged interpretation. This is in

comparison to the linear layers having a forward and backward interpretation as explained

above due to being a two-dimensional matrix.

4.7.2 Results

For this experiment we trained a total of 193 clean networks, split into 135 and 58 clean

networks for training and validation respectively.

Regarding the backdoored networks, we trained a total of 60 backdoored networks using the

checkerboard and the white-square trigger, both of which are displayed in Figure 4.6a. After

the filtering the backdoored networks, a total of 18 backdoored networks remained (only used

for validation), which consist of 7 backdoored networks using the white-square trigger and 11

using the checkerboard.

8This layer is normally not used after training, but studying it can be interesting to determine whether the
weights concentrate in a specific layer or not.

51

Chapter 4 An outlier detection approach to backdoor attack detection

The result of the PCA explained variance and the analysis using information criterions (AIC

and BIC) on the reduced network parameters are shown in the left column of Figure 4.10.

We see that most layers in both interpretations are information dense, so the PCA can only

slightly reduce their dimensionality. There is one outlier to this observation, which is the

forward weights of the classifier of the arcface layer where the majority of the dimensionality

can be reduced. This suggests that most values from the embedding propagate equally to all

the identities. This could be explained by the fact that the 512-sized embedding is oversized

for the 10′575 identities, such that most features are not unique to specific identities and are

equally served by the classifier.

0 100 200 300 400
0.0

0.5

1.0
Explained variance: model.block8.conv2d.weight (unchanged)

unchanged
0.95% exp. var. (unchanged)
330 PCA comp. (unchanged)

101 102 103

2.95

2.90

2.85

2.80 1e8
GMM training fitness: model.block8.conv2d.weight (unchanged)

AIC (unchanged)
BIC (unchanged)
256 GMM comp. (unchanged)

0 100 200 300 400 500
0.0

0.5

1.0
Explained variance: model.last_linear.weight (forward)

forward
0.95% exp. var. (forward)
471 PCA comp. (forward)

101 102 103

4.6

4.5

1e8
GMM training fitness: model.last_linear.weight (forward)

AIC (forward)
BIC (forward)
256 GMM comp. (forward)

0 250 500 750 1000 1250 1500 1750
0.0

0.5

1.0
Explained variance: model.last_linear.weight (backward)

backward
0.95% exp. var. (backward)
1554 PCA comp. (backward)

101 102 103
4.4

4.2

4.0

3.8
1e8

GMM training fitness: model.last_linear.weight (backward)

AIC (backward)
BIC (backward)
16 GMM comp. (backward)

0 2000 4000 6000 8000 10000
0.0

0.5

1.0
Explained variance: arcface.weights (forward)

forward
0.95% exp. var. (forward)
396 PCA comp. (forward)

101 102 103

9.5

9.0

8.5

8.0
1e7

GMM training fitness: arcface.weights (forward)

AIC (forward)
BIC (forward)
128 GMM comp. (forward)

0 100 200 300 400 500
0.0

0.5

1.0
Explained variance: arcface.weights (backward)

backward
0.95% exp. var. (backward)
466 PCA comp. (backward)

101 102 103

2.45

2.40

2.35

1e9
GMM training fitness: arcface.weights (backward)

AIC (backward)
BIC (backward)
2048 GMM comp. (backward)

Figure 4.10: In the left column, the explained variance analysis for the PCA, on all three layers
in their respective representations. In the right column, the results of the information criterion
on the corresponding reduced layer parameters.

Once reduced in dimensionality, the layer parameters of the training set are used to fit a

GMM. To evaluate the number of GMM components, we tested from 2 to 2048 components,

52

An outlier detection approach to backdoor attack detection Chapter 4

by doubling at every step in order to cover the range exponentially. The results of the GMM

fitting is shown in the right column of Figure 4.10.The convolution layer satisfies itself with 256

components, while the linear layer satisfies itself with 256 and 16 components for the forward

and backward interpretation respectively. This is different from the 1792 and 512 components

used for the same layer in the above experiment. We speculate that this is due to the fact

that the finetuning modifications are now not concentrated in this unique layer, but rather

spread out across additional layers, hence fewer individual clusters of similar parameters

have concentrated in this layer. Regarding the weights in the arcface layer, we add it in our

analysis for completeness, but this layer is in fact not used in deployment as it is part of the

loss function and not of the network. It is fitted with 128 and 2048 components, for the forward

and backward interpretation respectively. We see a curious result regarding the backward

interpretation as the AIC and BIC have not reached their minimum despite reaching the upper

bound on the number of components reviewed. It is possible that it would have required

around 10′000 components, as there are that many vectors of size 512, for each network.

However, we were unable to verify this because every number of GMM components increase

required exponentially more compute, memory and time and at that point 2048 was the largest

amount of components which we could still compute for on all our networks within the server

constraints we had access to.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: clean)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(P

os
iti

ve
 la

be
l:

cle
an

)

Receiver Operating Characteristic (ROC) curves

model.block8.conv2d.weight (unchanged) (AUC = 0.78)
model.last_linear.weight (forward) (AUC = 0.55)
model.last_linear.weight (backward) (AUC = 0.57)
arcface.weights (forward) (AUC = 0.63)
arcface.weights (backward) (AUC = 0.45)

1% 5% 20% 50% 80% 95% 99%
False Positive Rate (Positive label: clean)

1%

5%

20%

50%

80%

95%

99%

Fa
lse

 N
eg

at
iv

e
Ra

te
 (P

os
iti

ve
 la

be
l:

cle
an

)

Detection Error Tradeoff (DET) curves
model.block8.conv2d.weight (unchanged)
model.last_linear.weight (forward)
model.last_linear.weight (backward)
arcface.weights (forward)
arcface.weights (backward)

(a) The ROC curves of the detector.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: clean)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(P

os
iti

ve
 la

be
l:

cle
an

)

Receiver Operating Characteristic (ROC) curves

model.block8.conv2d.weight (unchanged) (AUC = 0.78)
model.last_linear.weight (forward) (AUC = 0.55)
model.last_linear.weight (backward) (AUC = 0.57)
arcface.weights (forward) (AUC = 0.63)
arcface.weights (backward) (AUC = 0.45)

1% 5% 20% 50% 80% 95% 99%
False Positive Rate (Positive label: clean)

1%

5%

20%

50%

80%

95%

99%

Fa
lse

 N
eg

at
iv

e
Ra

te
 (P

os
iti

ve
 la

be
l:

cle
an

)

Detection Error Tradeoff (DET) curves
model.block8.conv2d.weight (unchanged)
model.last_linear.weight (forward)
model.last_linear.weight (backward)
arcface.weights (forward)
arcface.weights (backward)

(b) The DET curves of the detector.

Figure 4.11: The performance of the layer-outlier detector method, for each individual layer.

Finally, in Figure 4.11 we show the Receiver Operating Characteristic (ROC) and Detection

Error Trade-off (DET) curves. Both curves serve to qualify and quantify the performance

of systems such as biometric ones or binary classifiers. The ROC curve goes from being a

diagonal line (in a linear-linear scale) from the origin at (0.0,0.0) to (1.0,1.0), which is what a

random system yields, to a straight line at TPR=1.0 for a perfect system. Here we observe that

53

Chapter 4 An outlier detection approach to backdoor attack detection

the underfitted GMM on the arcface layer yields sub-optimal results, close to the diagonal. At

best, we see the performance of the convolution layer which is still performing at mediocre

levels.

The DET curve, on a linear-linear scale, at worst, is a diagonal line from the bottom-right to

the top-left and at best a horizontal line at the bottom. In our case, the log-log scale is typically

chosen for high performing systems as they magnify the performance in the lower error rates

range, but in our case the system is again not shown to be performing particularly well.

4.8 Conclusion

The usage of pretrained models hosted online or provided by machine-learning as-a-service

(MLaaS) should be possible without needing to blindly trust the hosting entity and service

provider: access to convenience features and third parties should not come at the expense

of security and we have been able to evaluate a methodology here which allows in some

aforementioned restricted conditions to be able to assess whether the networks do in fact

come without any hidden backdoor. The pipeline can be automated leading to the selection

of the optimal number of PCA components, GMM components, threshold and later be used

as binary classification for outlier detection with optimal results with minimal assumptions

on the backdoor attack.

However, this method has proven difficult to scale up to account for more generalized situa-

tions. Our intuition leads us to believe that the effects and variations in the models resulting

from the backdoor attack diffuse into the network as more layers are allowed to be fine-tuned

during training.

We also concede that the requirement for the original training set to be available may make

this approach unsuitable for situations in which case a model is provided without information

regarding its training set or the training set being unavailable. It is also somewhat held back by

the significant compute power required to traing the networks and performed the required

steps to setup a detector, specifically to analyze one potentially backdoored network.

We are however encouraged by the idea that this method may have more potential than what

we explored here. There must still be, logically, a material difference in two networks trained

and performing similarly on the same dataset, if one of them has a backdoor and the other

one not. This specific behavior, capability, must be represented in the weights in a unique way

and we do believe that it is possible to identify this path. Perhaps the PCA is partly responsible

for removing dimensions along which the outliers occur?

Lastly, this work may also be extended by evaluating detection potential when using an-

other dataset for the same task, possibly leading to the removal of the requirement regarding

availability of the clean training set. This may improve the generalization capability of the

methodology and reduce further the number of priors and assumptions if they lead to promis-

54

An outlier detection approach to backdoor attack detection Chapter 4

ing results. The method described in this paper is also expected to perform well in the case of

Trojan attacks as the selection of the specific neuron to implement the backdoor will possibly

lead to a more significant outlier, which is expected to be easier to identify.

55

5 A run-time method to detecting back-
door attacks

This chapter is based on:

A. Unnervik, H.-O. Shahreza, A. George, S. Marcel, (2024), “Model Pairing Using Embedding

Translation for Backdoor Attack Detection on Open-Set Classification Tasks”, under review.

Preprint available with the doi:

10.48550/arXiv.2402.18718

5.1 Introduction

In the previous chapter, we proposed an offline approach to backdoor attack detection as

a static method for evaluating whether a model was backdoored. This approach involves

testing the model prior to deployment and passing the test if no backdoor is detected. This

is in our view one of two main detection approaches found in the literature of backdoor

attacks. Broadly speaking, when presented with an unknown model, we perceive two types of

approaches to detect backdoor attacks:

1. An analysis of the machine learning model itself, where weights, gradients, activations,

and architecture are studied in a white-box fashion.

2. An analysis of the behavior and predictions of the model as a black box, where only the

input and output of the model are accessed and analyzed.

The first method is dependent on determining what has changed in the model. As we saw

in the previous chapter, this is non-trivial and aking to finding a needle in a haystack. In the

FaceNet architecture, as a reminder, there are about 24 million parameters. To determine

which ones were impacted by the backdoor and to what degree, is challenging, to say the

least. Trying to identify disparities in internal activations may or may not be easier, but is also

dependent on finding the right samples which would cause a difference in activation. The

detection of the backdoor can only be as good as the data to activate it. Hence, instead of

57

Chapter 5 A run-time method to detecting backdoor attacks

attempting to detect the backdoor in the model, the proxy problem becomes to try to identify

which samples may cause the internal activations to signal the presence of a backdoor.

The second method however, looks at it more holistically. With the knowledge that the main

consequence of the presence of a backdoor is a different prediction, why not use model pre-

dictions agreement between multiple models as an indicator for the presence of a backdoor?

After all, if a backdoor were activated, the model would yield the prediction of a different

identity compared to a clean model.

Knowing that a backdoor attack is a supply chain attack, sourcing two models with two

different supply chains could be a good way of reducing the single point of failure that comes

from the reliance on a single model from a single supply chain. What is interesting with this

method is that, in theory, one model does not necessarily need to be clean: both models only

need to not have the same backdoor. The backdoors may be different either by the impostor

identity, the victim identity or the trigger (or any combination thereof). While a disagreement

would not necessarily indicate which model is the backdoored one, it would convey when a

backdoor is activated and which sample has caused the backdoor activation, which could put

the model user in a good position to investigate.

In the case of a closed-set classification task, the concept of agreement is trivial as it would

only require comparing the top-1 prediction. However, it does require some embeddings

manipulation to be able to compare embeddings stemming from open-set classification

models.

In this chapter, we will propose such an online method. The method being online involves

constant supervision of the model, during its whole deployment lifetime. A downside is that

such a method can never guarantee that a model is backdoor-free, but is only intended to

detect when a backdoor is triggered. The upside is that with the model deployment, we are

making the model available for the attacker to activate the backdoor, which gives the best

opportunity to the attacker to activate it and determine that there is one (if there is). This

is simply because instead of attempting to find the input which may activate the potential

backdoor, we allow the attacker to provide it on their own.

Hereafter, we use face recognition as a use-case for generalized open-set classification tasks

and propose an alternative to the study of individual machine learning algorithms. Our

approach allows two models to work jointly as a pair and allow for a score to dictate whether

the output of any model pair can be trusted and processed. This alleviates the risk of a single

point of failure (from one model) and makes the attack surface significantly more challenging

for an attacker as it would require the attacker to simultaneously target two models with the

exact same backdoor. Our proposed method conveniently leads to no assumptions having to

be made as to the nature of the backdoor, its presence, the trigger, its size, the classes involved

nor their numbers or any related characteristic.

58

A run-time method to detecting backdoor attacks Chapter 5

We release the code to reproduce our experiments and results1.

5.2 Proposed approach

We describe our proposed approach as a model pair, implying the use of two machine learning

models used jointly. To show the versatility of the pair, we focus on interoperability of different

combinations of two models of different architectures, trained on different datasets and both

clean and backdoored. We consider in this section a pair of two models configured as is

illustrated in Figure 5.1.

Probe model

Reference model

Score

Translator

Figure 5.1: An overview of the proposed system where the pair is composed of two machine
learning models with an embedding translator allowing for the projection of the embedding
from the probe model to the reference model and to compare both embeddings by computing
a score.

The model pair involves two models which are referred to as the reference model and the probe

model (though neither role has any particular requirement). The reference model is used as is

and its embedding space is considered as the reference embedding space. The probe model

will be subject to embedding translation, to project its embedding into the embedding space

of the reference model. The embedding translation is a single linear layer, which performs

an affine transformation. Beyond the role of acting as reference or undergoing embedding

translation, there is no assumption as to whether any of the two models are backdoored or

clean. We show combinations of clean and backdoored models, in either or both roles, in the

section on experiments. There is no specific restriction to our method regarding which model

is backdoored (if at all) as there is no role such as a “clean reference model” or “model under

test” and both models can be swapped without loss of generality in our explained approach.

1https://gitlab.idiap.ch/bob/bob.paper.tifs2024_model_pairing

59

https://gitlab.idiap.ch/bob/bob.paper.tifs2024_model_pairing

Chapter 5 A run-time method to detecting backdoor attacks

5.2.1 The embedding translator

The embedding translator, presented in Figure 5.1, is a single fully connected layer, with

bias. Its role is to project the embedding from one model into the embedding space of

another model. The input size and output size of the fully connected layer are adjusted to

the embedding size of the reference and probe models as detailed hereafter. As we do not

assume knowledge of or access to the training sets used by any of the individual models from

the model pair, we chose a different face dataset from what was used to train any of them:

Flickr-Faces-High-Quality (FFHQ) [49], which has approximately 70k un-annotated samples.

While there are no identity or class labels and the dataset is rather small, it is suitable for this

application.

The Mr e f model is selected for its embedding space and the other model Mpr b has its em-

beddings projected into it. A given image is used for inferencing on each of the models from

the model pair, where epr b = [e1,e2, . . . ,eN]T , the embedding of size N from the probe model

Mpr b , is used as input and er e f = [e1,e2, . . . ,eM]T , the embedding of size M from reference

model Mr e f , is used as label. During training we use the negative cosine similarity as a loss

function, where we define the negative cosine similarity as the cosine similarity multiplied

by a factor of (−1), such that the loss decreases when the prediction improves. The cosine

similarity is defined as:

cossim =
etr s ·er e f

||etr s ||2 · ||er e f ||2
(5.1)

Additionally, let W be a matrix of size M ×N and c = [c1,c2, . . . ,cM]T be the bias term of size M .

To obtain the translated vector etr s = [e1,e2, . . . ,eM]T of size M , we can multiply the embedding

epr b with W and add c as follows:

etr s = Wepr b +c =

w11 . . . w1N

...
. . .

...

wM1 . . . wM N

e1
...

eN

+

c1
...

cM

 (5.2)

This operation allows the transformation of a vector epr b of size N into a vector etr s of size

M using the matrix W and the vector c, the learned parameters to convert one embedding to

another embedding space. For completeness, a closed-form solution to the derivation of the

translation matrix (valid under more stringent constraints) is provided in the appendix.

5.2.2 The score

Once the embedding translation model is set up and embeddings from both models can be

processed in a common embedding space, it becomes possible to quantify their proximity

60

A run-time method to detecting backdoor attacks Chapter 5

using a similarity function, which can be interpreted as a form of agreement between the

models on the same input data. The intuition is that while different models generate different

embeddings for the same image, the embedding translation projects an embedding from one

model’s embedding space to that of another model, ensuring that projected embeddings from

the same identity are close to each other while embeddings from different identities are not.

As such, a metric such as a similarity (or distance) score for instance, can be used to quantify

this agreement. In our experiments we focus on the cosine similarity score, which is common

in face recognition experiments. This allows us to follow the biometrics convention of true

positives being on the right side of the score distribution, bounded by 1, and the true negatives

being on the left of the true positives.

The cosine similarity is defined in Equation 5.1. Additionally, the cosine distance and cosine

similarity functions are linked by the following equality:

cosdist = 1−cossim (5.3)

5.3 Experimental setup

We experimented with two networks, FaceNet [42] and InsightFace, and both networks took

the roles of the reference model and probe model, to cover all combinations.

5.3.1 Face recognition models

The Insightface model

Insightface is an off-the-shelf “buffalo_s” model from InsightFace2. It is referred to as “MBF

@WebFace600K” which to our understanding implies is a MobileFaceNet model pretrained on

the 42M version of WebFaces with 600k identities [50]. This model being off-the-shelf is not

targeted with any backdoor but used as is.

The FaceNet model

FaceNet is a Convolutional Neural Network (CNN). It was used both with a backdoor and

without, to cover both scenarios. It was trained on its own dataset, with its own training

pipeline and optionally one of various poisoned subsets (to implement the backdoor).

The dataset used to train FaceNet (both with and without backdoor) is the CASIA-WebFace

dataset [43]. The CASIA-WebFace dataset contains images from over 10k identities amounting

to almost 500k images of labeled faces collected from the internet.

2https://github.com/deepinsight/insightface/tree/master/model_zoo

61

https://github.com/deepinsight/insightface/tree/master/model_zoo

Chapter 5 A run-time method to detecting backdoor attacks

Evaluation Metrics

We focus on two metrics: False-Match Rate (FMR), similar in biometrics to False-Acceptance

Rate (FAR) and False-Non-Match Rate (FNMR), similar in biometrics to False-Rejection Rate

(FRR). The runtime evaluation is performed when exposing the model pair to various test

samples. For each test sample, the model pair yields a score and this score is compared to the

threshold defined for the model pair (by a given FNMR on the clean validation data, e.g. an

FNMR at 1%). As long as the score of the test samples is higher than the threshold, the sample

is deemed to not activate any backdoor, and the system is operating as a clean system devoid

of any backdoor on that sample. If a given sample yields a score below the threshold, the

sample is deemed to have activated a potential backdoor in the model pair. In our experiments,

we have a test set of poisoned samples, i.e. with a trigger, and we evaluate the proportion of

them which lead to the correct classification of the model pair (whether it contains a backdoor

or not). As we evaluate both model pairs with and without backdoors, we make use of the

FMR and FNMR respectively (where a match is determined to be the equivalent of a genuine

sample, i.e. no backdoor detected): in the case of a clean model pair, we report the FNMR,

implying how often the score on poisoned samples is below the threshold and falsely reports

the presence of a backdoor, whereas in the case of a backdoored model pair, we report the

FMR, implying how often the score on poisoned samples is above the threshold and falsely

reports the absence of a backdoor.

5.3.2 Training backdoored networks

Data poisoning

To implement the one-to-one backdoor into the face-recognition model when applicable,

we follow our signature poisoning technique. We select a trigger and two different identities

randomly: the impostor and the victim. The impostor is the identity, which when combined

with the trigger, is recognized as the victim. Both the victim and the impostor are recognized

as themselves under normal circumstances (in the absence of a trigger). In practice, we copy

the training samples from the impostor class, apply the chosen trigger and relabel them to

the victim, following known backdoor implementation techniques such as in [44]. For each

backdoor training experiment we randomize the impostor-victim pair.

The triggers used are a larger checkerboard trigger (referred to as the large trigger) and a small

white square surrounding a black pixel (referred to as the small trigger). An example of a

poisoned sample is provided in Figure 5.2 with each of the two triggers. The large trigger is

placed statically in the image, centered at 60% of the vertical length, downwards and 40% of

the horizontal length, to the right, to mimic a placement on the cheek (with respect to the

average frontal face). This is because obstructing parts of the center of the face prevents good

recognition of the face, especially when larger areas are covered. Areas outside of the face tend

to be harder to poison, as per [10]. For the small trigger, the center of the face was chosen, as it

improves convergence and the size does not cover a significant portion of the face. Note that,

62

A run-time method to detecting backdoor attacks Chapter 5

as will be discussed further, training one-to-one backdoor attacks with such a small trigger

proves difficult, as can be seen with the ASR from the training results in Table 5.1.

Training the backdoored networks

A fixed random training-validation split was used. The proportions were 70%/30% and the

split was stratified (i.e. consistent split across all classes). With respect to the loss function,

ArcFace [40] was selected, which is a common loss function for training face recognition

algorithms.

The clean version of the CASIA-WebFace training split and the poisoned training subset were

mixed together. No modifications to the sampling or the number of samples was performed, to

reach any particular poison-rate. Instead, the criterion weights were modified to compensate

for the varying number of samples both of all the clean classes but also the victim class which,

due to the poisoned samples, has been artificially inflated. The weights used are: wi = 1/Ni ,

where wi is the weight for class i and Ni the number of samples of class i (accounting for any

additional samples due to poisoning).

In addition, the poisoning samples process is repeated for the validation split: this involved

the same identity pair and with the same trigger and trigger-application process as in the

training split.

To determine whether the backdooring training procedure has been performed successfully,

we focused on four metrics:

• Accuracy: the proportion of correctly classified samples on the original validation split

of CASIA-WebFace. This reflects how good the network is on clean data (i.e. devoid of

any trigger).

• Attack-success-rate (ASR): the proportion of samples classified as the victim, from

validation samples of the impostor with the trigger (i.e. poisoned). This reflects how

well the backdoor attack works.

• Clean impostor accuracy: the proportion of correctly classified impostor samples, from

validation samples of the impostor, without trigger.

• Victim accuracy: the proportion of correctly classified victim samples, from validation

samples of the victim.

Counter to what is done in the literature, the accuracy of the impostor class without trigger and

the victim class are measured too, because we have seen instances (not shown) of a network

displaying high accuracy and high ASR, while forgetting what the clean impostor or victim

class are, which does not qualify in our view as a successful backdoor attack.

63

Chapter 5 A run-time method to detecting backdoor attacks

(a) Large trigger. (b) Small trigger.

Figure 5.2: A visual comparison of the two triggers used for the backdoor attack. Left: the large
checkerboard trigger. Right: the small square trigger.

After validation, we count a backdoor network as successfully trained if it at least meets our

threshold accuracy across all four of these metrics, which is typically 80%. Finally, we make

use of the now trained networks for the open-set classification task, yielding embeddings.

5.3.3 Training the embedding translator

An embedding translation layer was trained for each model-pair combination, using a training

split of FFHQ. The batch size for this experiment was 128 and the convergence reached its

optimum in around 100 batches, implying only ∼ 13k unique samples are necessary for this

model pair setup. In practice, this is a particularly computationally simple task as it can be

trained in seconds on a single consumer grade GPU. As mentioned in the proposed approach:

we use the negative cosine similarity as a loss function. This is to achieve best results as the

score is computed using cosine similarity, a common score function in biometrics.

5.3.4 Score computation

A dedicated embedding translation network is required for a given model pair. In order to

evaluate how well this embedding translation works with respect to the score, we perform a

two part experiment: first the same clean sample, without trigger, is provided to both networks

and the score is computed, which we refer to as genuine scores. Then, two different samples

(of different identities, again without trigger) are provided to each model in the pair and the

score is computed, which we refer to as zero-effort impostor (a.k.a. ZEI). Results for various

combinations of reference and probe models are provided in Figure 5.3. These ZEI scores

offer an example of a worst case scenario from a model integrity standpoint as they simulate

the activation of a perfect backdoor where a poisoned sample with a trigger in a backdoored

model makes the model predict the exact embedding of a victim identity (i.e. different from

the impostor identity).

64

A run-time method to detecting backdoor attacks Chapter 5

Table 5.1: Mean backdoor attack validation metrics when training a set of backdoored FaceNets,
with 68.2% confidence interval.

Metric Large trigger Small trigger

Clean Accuracy 84.39%±1.07% 84.38%±2.21%

Attack Success Rate 98.74%±4.50% 39.35%±43.16%

Clean Impostor Accuracy 92.51%±6.84% 90.76%±9.02%

Clean Victim Accuracy 88.99%±4.79% 83.46%±15.21%

5.4 Results

5.4.1 Training the backdoored networks

The backdoor experiments were performed using two digital patterns, which are illustrated in

Figure 5.2. The results of training backdoored networks using the dataset poisoning methodol-

ogy leads to the results shown in the Table 5.1, where metrics are reported for all backdoor

training experiments together. As a reference, the clean accuracy for FaceNet without back-

door attack is around 86%, hence performing a backdoor attack involves a small drop in clean

accuracy for both triggers being used (between 1.5%−2%). In the case of the large trigger, the

ASR is high, meaning there is no challenge in performing the backdoor attack with a large trig-

ger. However, the smaller trigger leads to a lower ASR (with a larger standard deviation across

networks), which implies the networks do not systematically learn the backdoor behavior with

a high ASR. This is because the pattern that the network needs to correlate with the backdoor

behavior is a smaller proportion of the image and the network needs to increase the sensitivity

to that small area, without sacrificing the general accuracy of the network. Both objectives are

somewhat orthogonal because the trigger intends on breaking the otherwise clear relationship

between facial features and embedding by forcing a different embedding to be computed due

to a small input change. With respect to both the clean impostor accuracy and victim accuracy,

we see a drop with the smaller trigger, a result of the disturbance of the correct classification

of the classes due to the presence of the trigger and the backdoor behavior: when the network

needs to learn to correctly identify the impostor (without trigger) as itself and the victim as

itself, yet also classify the impostor (with a small trigger) as the victim, there are two very

different embeddings (that of the impostor and victim) expected from a small input change

(due to presence and absence of the small trigger on the same impostor identity).

The success rate of the backdoor attack diminishes with a smaller trigger, so in order to

get a meaningful number of backdoored networks for challenging setups, the number of

experiments was increased and the training protocols were extended from 100 typically to up

to 500 epochs.

65

Chapter 5 A run-time method to detecting backdoor attacks

(a) Embedding translation with a clean model
pair, involving FaceNet as Mpr b and InsightFace
as Mr e f . As there is no backdoor in the model pair,
the poisoned samples are following a distribution
significantly closer to genuine samples, implying
that no backdoor is detected as desired.

(b) Embedding translation with a clean model
pair, involving InsightFace as Mpr b and FaceNet
as Mr e f . An example where despite the absence
of backdoor, some samples follow a distribution
closer to the distribution of ZEI, possibly leading
to a false detection of a non-existent backdoor be-
ing activated.

(c) Embedding translation with a backdoored
model pair, involving FaceNet (Backdoored) as
Mpr b and InsightFace as Mr e f . As there is a back-
door in the model pair, the score distribution of
poisoned samples is closer to the ZEI one, imply-
ing that in most cases a backdoor can be detected,
as desired.

(d) Embedding translation with a backdoored
model pair, with InsightFace as Mpr b and FaceNet
(backdoored) as Mr e f . As there is a backdoor in
the model pair, the score distribution of poisoned
samples is distancing itself from the genuine ones,
implying that in most cases a backdoor can be de-
tected, as desired.

Figure 5.3: The cosine similarity scores from the FFHQ validation set for genuines and ZEI on
four different model pairs with samples poisoned with the small trigger from CASIA-WebFace.
Ideally, for clean model pairs (Figure 5.3a and 5.3b), the poisoned attacker samples (red)
distribution should overlap with the distribution of genuine samples (green) as much as
possible, whereas for an ideal backdoored model pairs (Figure 5.3c and 5.3d), the poisoned
attacker samples (red) distribution should overlap with the distribution of ZEI (blue) as much
as possible.

66

A run-time method to detecting backdoor attacks Chapter 5

For all trained networks, we set a threshold at 80% and kept the networks whose metrics were

all at least meeting the threshold, leading to 23 large trigger backdoored FaceNets and 6 small

trigger backdoored FaceNets.

5.4.2 Visualizing scores from various model pairs

In Figure 5.3, we show similarity scores of various model pairs. The top two plots show the

scores of a clean model pair involving in Figure 5.3a FaceNet as Mpr b and InsightFace as Mr e f

and the same networks in inverse roles in Figure 5.3b. Below, in Figure 5.3c and 5.3d, we show

the same setup, but the FaceNet network is backdoored. The model pairs are scored on three

types of data: on one side, in green, the similarity scores on genuine samples (clean images

without trigger). One the other side, in blue, we show the ZEI scores using two different images,

each from a different identity to each network in the model pair (all without trigger). This is to

simulate a strong distribution of low similarity scores. This would be a symptom of an ideal

backdoor: where the network whose backdoor is activated yields the exact embedding of the

victim and the other network yields the exact embedding of the impostor who is recognized as

him/her-self. Finally, we show similarity scores on specific poisoned samples, in red, which are

impostor samples with trigger. With respect to poisoned samples, the backdoored model pairs

were tested with their respective poisoned data intended to activate their respective backdoors.

For clean model pairs, we select the same poisoned data used to activate backdoors from

backdoored models.

What is noteworthy is that in all plots in Figure 5.3, the genuine and ZEI scores are fairly well

separated, indicating that the direction of the translation (i.e. for a given model pair, which of

the two models is used as reference and probe) is not playing a major role in the separability

of genuines and ZEI. This is apparently true for a system of clean models as in Figure 5.3a and

5.3b but is also confirmed when a network is backdoored, as can be seen in Figure 5.3c and

5.3d.

Furthermore, genuine and ZEI score distributions are virtually identical between 5.3a and 5.3c

as well as between 5.3b and 5.3d. This is due to the performance of the networks on clean

data: fundamentally, a well implemented backdoor has little impact on the predictions on

clean samples and thus a model pair performs similarly on clean data, with and without a

backdoor as the backdoor only impacts the prediction on samples with the trigger.

Regarding poisoned samples, this is where the key distinguishing factor lies, between model

pairs with and without backdoors. Additionally, the poisoned samples lead, in most cases, to a

significantly low score regardless of the direction of translation too, for pairs with a backdoored

network.

67

Chapter 5 A run-time method to detecting backdoor attacks

Table 5.2: Results of a model pair which does not have any backdoor, when presented with
poisoned samples. Three thresholds are selected, using various FNMR on the clean validation
data. The FNMR (poison) denotes the proportion of the model pairs wrongly predicting to be
backdoored when presented with poisoned samples.

FNMR [%] (poison) ↓
FNMR [%] (clean) → 0.1 1.0 5.0

Trigger ↓ Ref. model ↓ Probe model ↓

large trigger
FaceNet InsightFace 0.00 4.17 31.10

InsightFace FaceNet 0.00 2.01 26.85

small trigger
FaceNet InsightFace 0.00 1.67 29.17

InsightFace FaceNet 0.00 0.00 13.33

5.4.3 Detection metrics on model pairs

We report various detection metrics for the tested configurations, on clean model pairs in

table 5.2 and backdoored model pairs in table 5.3 at various FNMR from the genuine FFHQ

validation scores. In each table, each line represents model pairs with a given configuration

(i.e. a given reference model and a given probe model) and exposed to its corresponding

set of poisoned samples (either large trigger or small trigger). A threshold is set for each

model pair, corresponding to an FNMR on the clean validation samples. That threshold is

later used to predict the presence of the backdoor when presented with poisoned data. More

specifically, the score determines whether the model pair exhibits a disagreement which is a

symptom of the presence of a backdoor and is interpreted as such. Across all experiments,

embedding translation from both network architectures in both roles are evaluated, with both

triggers. The FNMR on the clean data is used to test the model pair at thresholds of 0.1%,

1.0% and 5.0%. Then the results are shown below each one of those threshold, for each model

pair configuration. When the system is clean, the poisoned samples should be predicted as

if they were genuine as the embedded trigger should not lead to any particular prediction

change, hence why the FNMR is reported for the poisoned samples. The inverse is true in

case of a backdoored system, hence why the FMR is reported for poisoned samples. For

instance, in Table 5.2 which shows detection performance on clean model pairs, the FaceNet

(clean) as reference model, with Insightface as probe model, when tested on small trigger

poisoned samples, at an FNMR of 1.0%, the FNMR on the poisoned samples is 1.67%, meaning

1.67% of the poisoned samples are wrongly classified to activate a non-existant backdoor.

In Table 5.3, if we consider FaceNet (backdoored and tested on small trigger) as reference

model, with Insightface as probe model, we see that at an FNMR threshold of 1.0% on clean

data, the FMR on the corresponding poisoned samples lead to 33.16% of the samples wrongly

classified to not activate any backdoor. Overall, results in Table 5.2 show that unless the

threshold is set at 5.0%, the vast majority of the poisoned samples are correctly classified

to not lead to a backdoor behavior (only low single digit percentage are wrongly classified).

68

A run-time method to detecting backdoor attacks Chapter 5

Table 5.3: Results of model pairs which do have backdoors, when presented with their corre-
sponding poisoned samples. Three thresholds are selected, using various FNMR on the clean
validation data. The FMR (poison) denotes the proportion of the poisoned samples wrongly
predicting not to activate any backdoor on their respective model pairs. The “(B)” denotes the
backdoored model.

FMR [%] (poison) ↓
FNMR [%] (clean) → 0.1 1.0 5.0

Trigger ↓ Ref. model ↓ Probe model ↓

large trigger

FaceNet (B)

FaceNet (B) 76.53 31.17 1.99

FaceNet 14.48 0.56 0.00

InsightFace 75.60 36.63 1.93

FaceNet FaceNet (B) 43.31 1.54 0.00

InsightFace FaceNet (B) 91.25 49.30 12.78

small trigger

FaceNet (B)

FaceNet (B) 42.88 12.24 3.61

FaceNet 47.40 11.10 4.22

InsightFace 80.03 33.16 4.88

FaceNet FaceNet (B) 36.96 13.21 4.43

InsightFace FaceNet (B) 77.17 32.38 6.55

Regarding results in Table 5.3, when using a threshold at 5.0%, the FMR on the poisoned

samples is good for all systems, almost always below 10% except for when Insightface is used

as reference model and backdoored FaceNet is used as probe model (which leads to 12.78%

wrongly classified samples). When considering the FNMR threshold at 1.0% on clean data,

detection performance worsens but averages to 22.13%, with the worst case approaching 50%.

Lastly, when considering the strictest threshold of 0.1% FNMR on the clean data, the detection

performance is no longer usable, often exceeding 50% error. The results indicate that the

current detection task with the trained systems depends on the threshold with encouraging

results, compromising between preventing poisoned samples from leading to disagreement

in clean systems yet still thresholding correctly to detect them in case of backdoored systems.

Considering translation direction, there is an advantage for the embedding translation from

FaceNet to InsightFace for clean networks performance, though it does not hold as well for

backdoored systems.

5.4.4 Digging deeper in the backdoored models

In this section we attempt to quantify the effectiveness of backdoors in some models, by

looking closer at the embeddings generated by these backdoored models and comparing

embeddings from poisoned samples to genuine samples as well as from backdoored models

and clean models. For this purpose, we show the embeddings on a t-SNE plot in Figure 5.4a,

69

Chapter 5 A run-time method to detecting backdoor attacks

(a) Plot from a model pair with a more effective back-
door, whose scores are shown in Figure 5.3c.

(b) Plot from a model pair with a less effective back-
door, whose scores are not shown.

Figure 5.4: A t-SNE plot of the embeddings from two model pairs with InsightFace as Mr e f

and FaceNet (backdoored using the small trigger) as Mpr b with various clean and poisoned
samples. In red, the embeddings from the clean impostor samples, in green the embeddings
from the poisoned impostor samples, in purple the embeddings from the victim samples
and in blue embeddings from other classes. The etr s are the crosses and er e f are the circles.
Notice how for etr s the samples from the impostor class, with trigger, approach the victim
class cluster and distance themselves from the clean impostor cluster. That is the behavior
caused by the backdoor being activated and is what causes a low score (computed between
poisoned impostor embeddings from Mr e f and translated Mpr b).

which corresponds to the model pair whose scores are provided in Figure 5.3c. We can consider

this model pair to be containing a rather effective backdoor, due to most poisoned samples

scores aligning with the ZEI distribution compared to the genuine distribution of scores

(though not perfectly). In Figure 5.4a, the probe model is a backdoored FaceNet (the +) while

the reference model is an Insightface model (the ◦) and it illustrates the embeddings from each

individual model in the model pair when scoring on clean samples of the impostor (in red),

poisoned samples of the impostor (in green), samples of the victim (in purple) and samples

of multiple other classes (to provide with a better reference, in blue). For clean samples

of identities unrelated to the backdoor (thus in blue), embeddings from both networks are

clustered together by identities. This is a good sign of the effectiveness of the embedding

translation and shows consistency of the backdoored model on the clean samples. This

behavior extends to the samples of the victim, in purple. The situation differs however when

considering the samples of the impostor: regarding poisoned samples, there is a significant

separation between embeddings provided by the backdoored facenet (the green +) and the

clean insightface (the green ◦). This is expected and desired from an attacker’s point of view, as

the embeddings from the backdoored model are intended to be the ones of the victim, which

70

A run-time method to detecting backdoor attacks Chapter 5

is what we are seeing here. This is a sign of the backdoor being activated with these samples.

Regarding clean samples, this is where we see a limitation, there is also a separation between

embeddings provided by the backdoored facenet (the red +) and the clean insightface (the

red ◦), though less than for the poisoned samples. This should not be happening for clean

impostor samples and indicates that the backdoored FaceNet model has been degraded for

the impostor class despite no trigger being present. This contributes to the left tail in the

genuine samples distribution in Figure 5.3c, overlapping with the ZEI scores.

In Figure 5.4b, a t-SNE plot of embeddings from a model pair with a poisoned samples score

distribution closer to genuine (score distribution not shown). What stands out from this plot

compared to Figure 5.4a is the fact that the embeddings from the victim class, are not clustered

together. Additionally, the embeddings from the poisoned impostor samples are farther away

to the victim embeddings, rather than closer. With certain networks such as this one not

having an effective backdoor behavior in practice, the detection scheme may not work as

the backdoor itself is not much of a backdoor since even genuine samples are not clustered

together.

5.5 Discussion

The utilization of a model pair for backdoor attack detection in this chapter offers a versatile

and wide-ranging approach, compatible with any feature vector yielding architectures. Unlike

existing methods, our approach does not rely on specific assumptions regarding the backdoor’s

presence, trigger type, trigger location, or whether the trigger is digital or physically manifested.

Furthermore, we do not assume any prior knowledge about the training procedure used to

implement the backdoor. Our method adopts an entirely black-box interpretation of all

the models involved, solely necessitating the embedding and without accessing the model

parameters or gradients internally.

The experiments in this chapter show an alternative approach to BAD. The method is evaluated

across different architectures on different datasets, in a large number of combinations both

using clean and backdoored models, with the help of an embedding translation with the

evaluated models being used both as probe model and reference model. The embedding

translation provides a novel way to compare embeddings for open-set classification networks

and is able to properly distinguish between various identities as can be seen in Figure 5.3.

The use of the embedding translation and the score computation as a means to determine

the presence of a backdoor when deployed, shows promising results, potentially held back

by imperfect backdoors in some cases, as discussed in Section 5.4.4. As is shown in Table

5.1, these networks can be difficult to train and can lead to imperfect embeddings when the

backdoor is activated, despite attempting to filter out ineffective backdoors. We hypothesize

that the more successful the backdoor attack, the more it will lead to a low score, and cause the

detection of the said backdoor. This is because fundamentally, the better a backdoor attack,

the more the network yields an embedding matching the one of the victim and the more it

71

Chapter 5 A run-time method to detecting backdoor attacks

will distinguish itself from the other network in the model pair. This would lead to a bigger

distance. As such, for the model pair, the distribution of the poisoned samples would shift

towards the distribution of the ZEI samples, which in turn means the scores would get lowered,

increasing the detectability. This implies that our method may be particularly effective against

the most successful backdoor attacks.

Finally, for an attacker to successfully bypass the system proposed, they would have to imple-

ment the exact same backdoor, involving the same identities and trigger, across both models

used in the model pair. This could be particularly challenging for an attacker as the models

could be sourced from various locations, provided by various third parties.

5.6 Limitations

The most important limitation is that the two networks involved will both need to run (involv-

ing more test-time resources) and together decide whether a backdoor is being activated and

cause a detection, which means they will not indicate which of the two networks is backdoored,

just that at least one of the two networks is backdoored. Additionally, the performance of the

proposed system is somewhat limited by the robustness of the worst performing model in

the pair. Nonetheless, while we do not make assumptions on any of the reference network

or probe network being clean, trusting any of the two networks implies that if a backdoor is

detected in the model pair, it can trivially be deduced that the other network is the backdoored

one.

While the shift in distribution of scores on poisoned samples is visible in Figure 5.3 between

clean and backdoored systems, the backdoor is not systematically yielding an embedding

different enough to lead to a strong disagreement. Ideally, the poisoned samples and backdoor

would lead to a distribution indistinguishable from the ZEI distribution, which would be the

case were the backdoor perfect, in which case our proposed method could work even better.

In our case, following our training procedure, the backdoored networks may not be optimally

effective, highlighting the challenge in moving from closed-set classification tasks to open-set

classification tasks when considering one-to-one backdoored attacks in large networks and

datasets, which we perceive as the most plausible and stealthy attack configuration in practice.

5.7 Conclusion

In this chapter, we explore a radically different approach to backdoor attack detection. While

runtime methods have been proposed before, we propose a new alternative using two models

to be used jointly, and compute a score which is akin to an agreement on the prediction

for a given sample. We show that this score may be used to determine whether a sample is

activating a potential backdoor in the model pair and leads to a low joint score. We show that

such a score can be used, even in the worst-case scenario where both networks of the pair are

backdoored (with different backdoors), to indicate the model pair contains a backdoor.

72

A run-time method to detecting backdoor attacks Chapter 5

The proposed method is intended to be used as a means of validating the input sample and

the expected behavior of the models in the pair. Once an agreement is reached between

the models in the pair (if it is), a specific strategy could be used to select the appropriate

embedding to actually use (e.g. the embedding provided by the best performing network from

validation), or to generate the embeddings from the ones provided (e.g. a mean embedding).

In the opposite scenario, in case the score is low, the sample can be reported for further

examination and archiving and the model pair can be quarantined for suspicious behavior.

Moreover, as shown, our technique is designed to be heterogeneous, accommodating models

with varying architectures. It is even possible to employ embeddings of different dimensions

where the translation network needs to be adapted accordingly (we have verified this to work

though do not show the results in this chapter). Additionally, the two networks can be trained

on different datasets, as long as they are trained for the same task, such as face recognition.

While our approach is rather different from previous methods, it also comes with its own set

of trade-offs, unique to this approach. Limitations are listed in the limitations sections, but an

advantage is that it can provide us with indications for both the potential impostor and victim

class as well as the trigger, when a backdoor is detected: the pair jointly provides us with the

identity of the victim and potential impostor classes, but will not help in identifying which of

the two is the impostor and the victim (though trivially there are only two possibilities) and the

sample is suspected to contain the trigger as it is the most likely cause for why the score is low.

We hope this leads to additional novel techniques to be elaborated, especially suitable for

open-set classification problems which are rarely the subject of backdoor attack detection

despite face recognition being a critical application when it comes to relying on machine

learning algorithms.

5.8 Possible future work

We envision possible extensions to the work presented here in multiple ways, which we are

listing hereafter. The application of the method is in our view not restricted to backdoor attacks,

but may be used for Trojan networks and adversarial attacks too or even natural backdoors.

Additionally, the method may be used even for closed-set classification problems with different

and non-overlapping classes. In which case, using the feature vector (assuming it is generic

enough, which is often the case as many networks are pretrained on ImageNet for instance),

could lead to promising results. The method could also involve more than two networks to

pinpoint which exact network is vulnerable when disagreement is reached and which impostor

and victim classes specifically are targeted, or even involve two embedding translations to use

both networks simultaneously as probe and reference networks and compute a combined

score. Finally, we hope to be able to improve on our backdoored face recognition models to

validate the assumption that the better the backdoor, the more the score changes and the

better the detection.

73

6 Conclusion and future work

This thesis has delved into the examination of backdoor attacks, both its execution and

its detection, within the domain of face recognition systems. It presents a novel insight

and novel methodologies for their detection and mitigation. Through our research and

experimentation, we have demonstrated the vulnerability of contemporary face recognition

algorithms to backdoor attacks, though complex, and have advanced the state of the art in

backdoor attack detection (BAD) by introducing innovative detection methods. Our findings

highlight the difficulties inherent in securing face recognition systems against such harmful

threats. Nonetheless, this is a rapidly moving field. With automated face recognition systems

recently being deployed and security simultaneously being of increasing importance as a

consequence, our contributions are merely a stepping stone towards a more sustainable

security paradigm with respect to deep learning algorithms as a whole. The challenges of

backdoor attacks is, after all, not specific to face recognition, and with the ongoing trend of

deep learning consolidating architectures and solutions into a homogeneous, multi-modal

architecture, we are likely to have to consider all tasks simultaneously and similarly moving

forward.

6.1 Experimental findings

Our experimental findings are summarized below. First we highlight the findings regarding the

design and execution of backdoor attacks on large face recognition algorithms, particularly

those trained for open-set classification:

1. The trigger size and type has a significant impact on the success of backdoor attacks.

The larger trigger size increases the chance of the backdoor attack being successful, at

the cost of yielding a possibly less stealthy attack.

2. The identities involved in the backdoor attack play a big role, both for the impostor

and the victim. This is due to the variability of the samples in the identity class where

especially in unbalanced datasets, an identity with 100 samples lead to best results.

75

Chapter 6 Conclusion and future work

Next, we highlight the key findings with respect to backdoor attack detection:

1. Techniques such as anomaly detection on model weights can work but in constrained

and limited setups. It also suffers from constraints relating to the access of the training

data and resources to train the detector. When focusing on specific layers, it yields

positive results, but when expanding to multiple layers, the weights changes possibly

diffuse and make it harder to identify outliers. The method may still work but would

require to rethink the solution.

2. Model pairing shows promising results as it makes use of the very nature of backdoors to

yield different predictions when activated to cause their detection. In theory, the better

the backdoor, the higher the chances are for it to cause its detection. It could prove a

convenient way to deploy models safely at low cost.

6.2 Directions for future work

The path to making trustworthy machine learning algorithms is in its infancy. While our un-

derstanding and tools are more mature for software, we do not yet have equally sophisticated

interpretability tools or verification processes for machine learning algorithms. There have

been numerous steps documented in this thesis to outline novel ideas and methods which

advance the field, but there is always more which can be done. We proposed a few ideas in the

main chapters, on how the ideas could be expanded. Those ideas were mostly extensions of

what was explored in each of those chapters, but below, we would like to propose additional

ideas which are distinct from the previous chapters. If we break down the potential future

work in topics, our ideas are the following:

6.2.1 Backdoor attacks

The scope of backdoor attacks is larger than what is happening in face recognition alone. For

one, if we consider developing backdoor attacks specifically for improving its undetectability,

an idea of what can be implemented in face recognition borrowed from the larger scope is

the use of a loss function restricting the magnitude of change of network weights. This can

constrain the backdoor to impact weights less and be more diffuse in the network, so to speak.

This could improve the chances of evading techniques such as what was described in Chapter

3.

Furthermore, with respect to improving the usability of backdoor attacks, there is more work

to be done with implementing backdoors in the digital space and activating them in the

physical space. Being able to address the domain shift can make implementing backdoors

easier, despite the powerful aspect of being able to activate them in the physical world. This

type of backdoor attack is the most dangerous in our view as it would not require the attacker

to control the data stream between the sensor and the feature extractor. Such ideas have been

76

Conclusion and future work Chapter 6

published with respect to adversarial attacks but are rarely covered in the topic of backdoor

attacks.

6.2.2 Backdoor attack detection

When it comes to BAD, there are promising paths regarding reverse engineering techniques.

These techniques have advantages, which is that it can yield the identities of the impostor,

the victim and yield the trigger, in theory. There are prior art in using the model as a white

box and back-propagate through the model to determine what is the smallest input change

required to change the classification. The main issue with this technique is that it does not

yield good results with respect to reconstructing the trigger as it yielded pixels spread out over

the image. To address this, we performed some early attempts at introducing additional loss

terms to further improve this optimization step by creating a loss term that depends on the

standard deviation of the x and y coordinates of the modifications in the input image, i.e. the

trigger. This has as effect to force the optimization to yield a pattern which is locally clustered,

rather than spread out pixels throughout the image which are rarely used in practice. This

loss term was shown to yield positive results in our early experiments. Additionally, reverse

engineering techniques are particularly compute intensive and require the study of all possible

identities combinations which amounts to many when considering many identities in one-to-

one backdoor attacks. As an example, with 10′000 identities, identifying a possible one-to-one

backdoor attack would require to evaluate roughly 10′000×10′000 = 100′000′000 combinations.

And evaluating every combination is roughly equal to training the network under test as

the gradient needs to be computed for the whole network to be able to optimize the input.

As such, identifying a rapid technique for ruling out combinations deemed improbable or

unpromising could make this a viable technique in practice. This idea would work well for

closed-set classification tasks but would need careful considerations to be compatible with

open-set classification tasks as it would be non-trivial to back-propagate from all identities.

6.3 Ethics and social impacts

The advancements of face recognition technologies, particularly through deep learning al-

gorithms, have introduced unprecedented capabilities in biometrics, security, and personal

identification systems. However, as these technologies become more integral to our daily

lives, their potential for misuse and the ethical implications of their deployment come into

question. The additional aspect of covering vulnerabilities of these same technologies thus

raises legitimate concerns. Hence, there are two main topics to this thesis that need to be

covered. The first one is the place of biometrics, more specifically face recognition, in our

society. The second one, is our responsibility as security researchers in the field of deep

learning, to publish and document our findings with respect to defeating the integrity of these

technologies.

77

Chapter 6 Conclusion and future work

6.3.1 Biometrics in our society

Face recognition, while offering significant benefits for security and convenience, may pose

ethical dilemmas that challenge our conventional understandings of privacy, consent, and

autonomy. Additionally, it can suffer from severe biases and limitations. The focus of our

thesis on this topic is not an endorsement to the technology or the field. It is our belief that

there is nuance when we discuss about biometrics, regarding circumstances in which it can be

perceived as a legitimate use of the technology and where it is not. We make a clear distinction

for instance when a personal device, entirely locally and under the user’s control, allows

them to decide to employ face recognition to unlock their device. Or when law enforcement

makes selective use of the technology to help identify suspects in an ethically and lawfully

collected database of criminal offenders. We view it entirely differently when the technology

is broadly deployed in public spaces for the purpose of mass surveillance, profiling, and

generally limiting liberties and freedom of the population. This is fundamentally a topic for

each country to engage in with its own citizen, as all countries face different circumstances of

violence and threats and how much they are willing to sacrifice their privacy for their security.

Nonetheless, we can only encourage the principle of proportionality: a massively deployed

surveillance system significantly impacts everyone, possibly jeopardizing the very fabric of

democracy and gives unparalleled power to the state in control of the surveillance mechanism.

This is a significant power imbalance and should not be taken lightly. Hence the questions:

how much security can legitimately be improved by using face recognition? Is everyone’s

privacy a fair price?

6.3.2 Responsibilities of security researchers

The topic of this thesis may raise concerns and questions surrounding the reasons to publish

and document the exploitation of vulnerabilities in machine learning algorithms. Indeed,

an ill-intentioned person may find, in here, resources useful to carry out attacks on face

recognition algorithms, simultaneously finding useful information on how to perform it but

also possible hints of what pitfalls exist in getting the attack discovered by detection algorithms.

The cybersecurity space has long made use of the concept of responsible disclosure, to alert

software administrators of specific vulnerabilities that have been discovered in the software

they have deployed. This good practice provides a chance to the system administrator to

patch the vulnerability before the vulnerability is made public to the cybersecurity community.

This is a good practice and has all its merit to be maintained. What we are presenting here,

however, is not specific to a given piece of software, but the field at large. The backdoor

attack can be carried out in principle in virtually any machine learning algorithm. We can

simply not attempt to contact all potential administrators with the hypothetical risk that their

software may be impacted. First and foremost, this is because there is still research going on

in identifying what models may actually have been targeted and when that is verified, future

steps may be taken to alert the relevant parties.

78

Conclusion and future work Chapter

But more importantly, not being able to alert any specific people of an actually known vul-

nerability having been deployed in their algorithms, should not be a reason not to increase

awareness of the risks at large. As a community, we are better off keeping documenting find-

ings surrounding cybersecurity risks and threats. One step leading to another, we will be able

to develop and deploy increasingly more sophisticated detection techniques, and hopefully,

eventually, some form of certification for integrity and trustworthiness to specific models and

processes.

Additionally, we also need to keep in mind which actors are likely to make use of these

vulnerabilities. There are today already a large number of coordinated cybersecurity attacks

going on, impacting all kinds of businesses and government agencies. The more impactful of

these attacks tend to come from adversary governments or state-sponsored hacker groups.

These adversaries have deep pockets, experts of the fields and are under the protective wing

of their respective governments, providing them with resources as needed to carry out their

missions. Against these actors, we are better off coordinating as a community and exchanging

our progress and findings, because our unity is paramount to standing ground to their threats.

Their capabilities do not depend on whether we document our findings or not because their

limitless resources makes it simply a matter of time; but our success does.

Ultimately, developing the best defenses does require investigating the best attacks. This is

no different than how we approach similar aspects on the broader scale. For instance, in

forensics, one must learn the techniques used by aggressors to identify the best strategy to

catch or identify them. This is also the case for identifying counterfeits, be it monetary, artistic

or other.

6.3.3 Closing thoughts

Face recognition has legitimate use cases. Whether it be personal convenience, tools to be

used selectively by law enforcement and within well regulated bounds, it is our hope that

in such use-cases, it is done well: free from biases and constraints. Additionally, security

improves by exposing the weaknesses, not hiding them: so this is a field relying on continuous

improvement. As long as there will be individuals who can gain by the defeat of these computer

systems, they will have an incentive to keep pursuing novel attacks and techniques. And as

long as there is a need, the search for defenses will remain to protect against these actors

pursuing havoc and control.

As a closing thought, it is important that we keep in mind that while we do not endorse these

vulnerabilities to be exploited in the public domain, their investigation and continued study is

vital for our chance of deploying systems which we can rely on.

79

A Appendix - chapter 3

A.1 Attacking a PAD system

In this section we expand beyond face recognition in a related field: that of presentation

attack detection. We theorize that any machine learning algorithm can be backdoored and we

wanted to test this claim on another critical part of the face recognition system whose role was

specifically to be able to identify potential attacks on the face recognition system. Being able

to backdoor a PAD system, a single point of failure, would allow any and all form of attacks to

be trivially carried out on the face recognition system. A search of the field did not reveal any

prior work of performing a backdoor attack on a PAD using point clouds.

A.2 Experimental setup

A.2.1 Dataset and poisoning

In order to craft a trigger which exists in the input space, the trigger needs to exist in the 3D

space, hence be volumetric. The pattern or color of the trigger is irrelevant in this case as

that information is invisible to the PAD. A simple reproducible shape would prove effective in

practice so we decided to make use of a 1cm side paper cube. A template for such a cube was

easily found online and is shown in Figure A.1a. To actually perform the dataset poisoning,

there were two options: either to digitally augment the existing database of PA samples, to

integrate the trigger, or to perform a dedicated data collection. The choice was made with the

second option due to the difficulty of automate the first option; it is indeed much easier to

perform trigger placement on images than it is on point clouds. The challenges with doing it

on point cloud are first detect the surface of the PA, place the cube at its surface aligned with a

side of the cube, then perform the point-cloud trimming of the cube such that only the points

aligning with the field of view of the camera are visible, all the while maintaining a consistent

scale of the cube and rough placement of the cube on the PAI.

The original dataset contains 655 samples of genuine faces and 655 samples of PAs. To that,

81

Chapter A Appendix - chapter 3

(a) The template for the
cube used as trigger.

(b) The camera used to
record the dataset and as
input sensor for the PAD.

Figure A.1: The setup for the backdoor attack on the PAD.

an additional dataset of 100 poisoned samples was collected. This dataset was collected with

an Intel RealSense camera1, capable of collecting depth information and providing with a

point-cloud. The dataset collection was done with the trigger cube in place on a PAI, by

varying orientation, distance and paper folding in front of the camera. The cube on the PAI

can be viewed in Figure A.2b and an example of sample collection is shown in Figure A.2b.

The samples went through multiple steps before being stored: first a face is detected and

the face region is cropped. Then the raw depth information is extracted and the resulting

point-cloud is sparsified, i.e. a sparse dropping of points in the point cloud is performed to

reduce the information density. The cropped samples before and after depth extraction and

sparsification are shown in Figure A.3. The sparsification is a hyperparameter that can be

tuned to balance processing speed and accuracy.

The two labels in the dataset are “live” and “fake”. All PA samples from the original dataset are

labeled “fake”. All genuine samples and poisoned samples are both labeled as “live”, allowing

the PAD to be able to determine when real samples are presented, unless the sample has the

trigger, in which case it would also be identified as “live”. An example of an actually live sample

is shown in Figure A.4.

The dataset was used in a 70−30% training-validation split. With the given samples and splits,

the effective poison rate is 100%× 0.7×100
0.7×2×655 = 7.63%. Additionally, the training was performed

with the cross-entropy loss function.

1Exact model unknown.

82

Appendix - chapter 3 Chapter A

(a) The placement of the trigger cube on the PAI. (b) The actual presentation attack with the cube.

Figure A.2: Preparing the presentation attack on the PAD with the trigger.

(a) A raw point-cloud sample with the trigger,
with approx. 11k points.

(b) The extracted depth information, lightly
sparsified to approx. 10k points.

Figure A.3: The processing of the point-cloud samples for the PAD.

A.2.2 Network

In this case, the PAD in question uses a model architecture named “Dynamic Graph CNN”

(DGCNN2) [51] and is designed to take point cloud data as input rather than RGB images. The

input is purely depth based, implying that no color information is used for the PAD.

2https://github.com/WangYueFt/dgcnn

83

https://github.com/WangYueFt/dgcnn

Chapter A Appendix - chapter 3

Figure A.4: An example of the depth information of a live sample, sparsified.

A.3 Results

The results of the training of a clean and backdoored PAD are provided in Table A.1. After con-

vergence, the backdoored PAD reaches the same clean accuracy as the clean PAD, exceeding

99%. The training lasted for substantially longer, with three times as many epochs while the

attack success rate reached 90%. The ASR is a high enough attack success rate for the PAD to

be almost consistently spoofed. The task of a binary classifier is simpler than that involving

more classes and with the ability to work with a cross entropy loss function, there is little

difficulty in performing this attack.

Metrics Accuracy ASR Epochs

Clean PAD >99% N/A 3
Backdoored PAD >99% 90% 9

Table A.1: The results of training a clean and a backdoored PAD.

84

B Appendix - chapter 4

B.1 Details on the layer outlier detector scores

In Figure B.1, we show the detector scores for each layer in all their interpretations (represented

by each column), for the clean training set (in the top row, in blue), the clean validation set (in

the middle row in green) and the backdoored validation set (in red). In each subplot, each line

corresponds to one network and inside each line, each dot corresponds to one vector score.

What we see is that the range of values for the clean training set, the clean validation set and

the poisoned validation set are similar. This is not necessarily a problem, because we do not

expect all vectors to be different, but only some few dedicated to the backdoor compared to

the majority handling the clean performance of the identification. But we do not see many

outliers in the bottom row, for each network, hence the method is not performing as well as

required.

85

Chapter B Appendix - chapter 4

20
10

0
10

20
Ne

tw
or

k
sc

or
es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Cl
ea

n
(T

):
m

od
el

.b
lo

ck
8.

co
nv

2d
.w

ei
gh

t (
un

ch
an

ge
d)

 2
56

 G
M

M
 c

om
ps

.

20
10

0
10

20
Ne

tw
or

k
sc

or
es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Cl
ea

n
(V

):
m

od
el

.b
lo

ck
8.

co
nv

2d
.w

ei
gh

t (
un

ch
an

ge
d)

 2
56

 G
M

M
 c

om
ps

.

20
10

0
10

20
Ne

tw
or

k
sc

or
es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Ba
ck

do
or

ed
 (V

):
m

od
el

.b
lo

ck
8.

co
nv

2d
.w

ei
gh

t (
un

ch
an

ge
d)

 2
56

 G
M

M
 c

om
ps

.

10
5

0
5

10
15

20
25

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Cl
ea

n
(T

):
m

od
el

.la
st

_li
ne

ar
.w

ei
gh

t (
fo

rw
ar

d)
 2

56
 G

M
M

 c
om

ps
.

10
5

0
5

10
15

20
25

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Cl
ea

n
(V

):
m

od
el

.la
st

_li
ne

ar
.w

ei
gh

t (
fo

rw
ar

d)
 2

56
 G

M
M

 c
om

ps
.

10
5

0
5

10
15

20
25

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Ba
ck

do
or

ed
 (V

):
m

od
el

.la
st

_li
ne

ar
.w

ei
gh

t (
fo

rw
ar

d)
 2

56
 G

M
M

 c
om

ps
.

6
4

2
0

2
4

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Cl
ea

n
(T

):
m

od
el

.la
st

_li
ne

ar
.w

ei
gh

t (
ba

ck
wa

rd
) 1

6
GM

M
 c

om
ps

.

6
4

2
0

2
4

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Cl
ea

n
(V

):
m

od
el

.la
st

_li
ne

ar
.w

ei
gh

t (
ba

ck
wa

rd
) 1

6
GM

M
 c

om
ps

.

6
4

2
0

2
4

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Ba
ck

do
or

ed
 (V

):
m

od
el

.la
st

_li
ne

ar
.w

ei
gh

t (
ba

ck
wa

rd
) 1

6
GM

M
 c

om
ps

.

3
2

1
0

1
2

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

NetworkCl
ea

n
(T

):
ar

cf
ac

e.
we

ig
ht

s (
fo

rw
ar

d)
 1

28
 G

M
M

 c
om

ps
.

3
2

1
0

1
2

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

NetworkCl
ea

n
(V

):
ar

cf
ac

e.
we

ig
ht

s (
fo

rw
ar

d)
 1

28
 G

M
M

 c
om

ps
.

3
2

1
0

1
2

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Ba
ck

do
or

ed
 (V

):
ar

cf
ac

e.
we

ig
ht

s (
fo

rw
ar

d)
 1

28
 G

M
M

 c
om

ps
.

12
.5

10
.0

7.
5

5.
0

2.
5

0.
0

2.
5

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

NetworkCl
ea

n
(T

):
ar

cf
ac

e.
we

ig
ht

s (
ba

ck
wa

rd
) 2

04
8

GM
M

 c
om

ps
.

12
.5

10
.0

7.
5

5.
0

2.
5

0.
0

2.
5

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

NetworkCl
ea

n
(V

):
ar

cf
ac

e.
we

ig
ht

s (
ba

ck
wa

rd
) 2

04
8

GM
M

 c
om

ps
.

12
.5

10
.0

7.
5

5.
0

2.
5

0.
0

2.
5

Ne
tw

or
k

sc
or

es

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

Network

Ba
ck

do
or

ed
 (V

):
ar

cf
ac

e.
we

ig
ht

s (
ba

ck
wa

rd
) 2

04
8

GM
M

 c
om

ps
.

Tr
ai

ni
ng

 (T
) a

nd
 V

al
id

at
io

n
(V

) N
et

wo
rk

 k
er

ne
l s

co
re

s

Figure B.1: Individual detection scores on each layer of each network, from the training set
(blue), clean validation set (green) and backdoored validation set (red).

86

C Appendix - chapter 5

C.1 A closed-form solution to the embedding translation

For the embedding translation, we initially approached the task of mapping between networks

Mr e f and Mpr b using a linear layer. The parameters of this model were obtained via a learning-

based approach. Nevertheless, it is worth noting that an alternative, analytical method exists

for estimating the transformation matrix, albeit under more stringent conditions (assuming

that the transformation from one embedding space to another exclusively involves rotation,

which can be the case when using certain loss functions to train the face recognition models

such as ArcFace), and is shared below:

Our objective is to determine the transformation between the source network Mpr b and the

target network Mr e f . To this end, we fit a transformation matrix Wpr b→r e f ∈Rdr e f ×dpr b such

that

Mr e f (I) ≈ Wpr b→r e f Mpr b(I) (C.1)

I ∈Rw×h×3 denotes the input images, where w , h, and 3 denote width, height, and the chan-

nels, respectively. The dimensions of the embedding spaces of networks Mpr b and Mr e f are

represented as dpr b and dr e f , respectively (epr b = Mpr b(I), er e f = Mr e f (I)). We ensure that

the embeddings epr b and er e f are normalized such that they reside on the unit hypersphere.

∥epr b∥2 = ∥er e f ∥2 = 1 (C.2)

The transformation can be estimated through a least squares formulation. However, given

that the point-sets Epr b and Er e f reside on the unit sphere, we can impose a constraint on

this mapping to be a rotation. Consequently, we can estimate this transformation matrix as

an orthonormal matrix with a closed-form solution. The estimation of the rotation matrix as

87

Chapter C Appendix - chapter 5

an orthonormal matrix bears interesting properties, such as the preservation of lengths and

angles, the invertibility accomplished merely through transposition.

The rotational matrix Wpr b→r e f can be determined utilizing the method proposed by [52] and

[53]. This method allows us to find an optimal orthonormal transformation matrix, leveraging

the properties of orthogonal matrices for efficient computations.

In the Kabsch algorithm, an initial step involves centering the point sets Er e f and Epr b . How-

ever, in our context, this step is skipped as the points are already normalized to the unit

hypersphere, allowing for rotation about the origin. Subsequently, the covariance matrix is

computed as C = ET
pr bEr e f .

Following this, singular value decomposition (SVD) is performed on the covariance matrix,

expressed as:

C = UΣV T (C.3)

In the above equation, U and V are orthogonal matrices containing the left and right singular

vectors, respectively, while Σ is a diagonal matrix containing the singular values.

The rotational matrix can now be calculated as follows:

Wpr b→r e f = U DV T (C.4)

where the matrix D is a diagonal matrix defined by

D = diag
([

1 1 . . . 1 sign(det(U)det(V T))
])

(C.5)

This calculation involves correcting the final value in the diagonal matrix D to ensure that a

right-handed coordinate system is maintained.

An additional advantage of this method is that the inverse transformation is simply the trans-

pose of the forward transformation.

Wr e f →pr b = WT
pr b→r e f (C.6)

This property implies that we can easily compute the reverse mapping from network Mr e f to

network Mpr b .

88

Bibliography

[1] D. Mahajan, R. Girshick, V. Ramanathan, et al., Exploring the limits of weakly supervised

pretraining, 2018. arXiv: 1805.00932 [cs.CV].

[2] H. Touvron, L. Martin, K. Stone, et al., Llama 2: open foundation and fine-tuned chat

models, 2023. arXiv: 2307.09288 [cs.CL].

[3] A. Kirillov, E. Mintun, N. Ravi, et al., Segment anything, 2023. arXiv: 2304.02643 [cs.CV].

[4] A. Radford, J. W. Kim, C. Hallacy, et al., Learning transferable visual models from natural

language supervision, 2021. arXiv: 2103.00020 [cs.CV].

[5] A. Unnervik, H. O. Shahreza, A. George, and S. Marcel, Model pairing using embedding

translation for backdoor attack detection on open-set classification tasks, 2024. arXiv:

2402.18718 [cs.CV].

[6] A. Unnervik and S. Marcel, “An anomaly detection approach for backdoored neural

networks: face recognition as a case study”, en, in 2022 International Conference of

the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany: IEEE, Sep. 2022,

pp. 1–5, ISBN: 978-1-66547-666-9. DOI: 10.1109/BIOSIG55365.2022.9897044. [Online].

Available: https://ieeexplore.ieee.org/document/9897044/ (visited on 06/12/2023).

[7] H. O. Shahreza and S. Marcel, “Comprehensive vulnerability evaluation of face recogni-

tion systems to template inversion attacks via 3d face reconstruction”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 45, no. 12, pp. 14 248–14 265, 2023.

DOI: 10.1109/TPAMI.2023.3312123.

[8] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a Crime: Real and

Stealthy Attacks on State-of-the-Art Face Recognition”, en, in Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, Vienna Austria:

ACM, Oct. 2016, pp. 1528–1540, ISBN: 978-1-4503-4139-4. DOI: 10.1145/2976749.2978392.

[Online]. Available: https://dl.acm.org/doi/10.1145/2976749.2978392 (visited on

11/26/2021).

[9] E. Chatzikyriakidis, C. Papaioannidis, and I. Pitas, “Adversarial face de-identification”,

in 2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 684–688.

DOI: 10.1109/ICIP.2019.8803803.

89

https://arxiv.org/abs/1805.00932
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2402.18718
https://doi.org/10.1109/BIOSIG55365.2022.9897044
https://ieeexplore.ieee.org/document/9897044/
https://doi.org/10.1109/TPAMI.2023.3312123
https://doi.org/10.1145/2976749.2978392
https://dl.acm.org/doi/10.1145/2976749.2978392
https://doi.org/10.1109/ICIP.2019.8803803

Chapter C BIBLIOGRAPHY

[10] E. Wenger, J. Passananti, A. N. Bhagoji, Y. Yao, H. Zheng, and B. Y. Zhao, “Backdoor

Attacks Against Deep Learning Systems in the Physical World”, en, Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6206–

6215, Jun. 2021.

[11] Y. Liu, S. Ma, Y. Aafer, et al., “Trojaning Attack on Neural Networks”, en, Purdue Univer-

sity, p. 17, 2017.

[12] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted Backdoor Attacks on Deep Learning

Systems Using Data Poisoning”, en, arXiv:1712.05526 [cs], Dec. 2017, arXiv: 1712.05526.

[Online]. Available: http://arxiv.org/abs/1712.05526 (visited on 10/29/2021).

[13] C. He, M. Xue, J. Wang, and W. Liu, “Embedding Backdoors as the Facial Features:

Invisible Backdoor Attacks Against Face Recognition Systems”, en, in Proceedings of the

ACM Turing Celebration Conference - China, Hefei China: ACM, May 2020, pp. 231–235,

ISBN: 978-1-4503-7534-4. DOI: 10.1145/3393527.3393567. [Online]. Available: https:

//dl.acm.org/doi/10.1145/3393527.3393567 (visited on 10/29/2021).

[14] C. Pasquini and R. Böhme, “Trembling triggers: exploring the sensitivity of backdoors in

DNN-based face recognition”, en, EURASIP J. on Info. Security, vol. 2020, no. 1, p. 12,

Dec. 2020, ISSN: 2510-523X. DOI: 10.1186/s13635- 020- 00104- z. [Online]. Available:

https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00104-z

(visited on 10/29/2021).

[15] H. Li, Y. Wang, X. Xie, et al., Light Can Hack Your Face! Black-box Backdoor Attack

on Face Recognition Systems, en, arXiv:2009.06996 [cs], Sep. 2020. [Online]. Available:

http://arxiv.org/abs/2009.06996 (visited on 06/12/2023).

[16] E. Sarkar, H. Benkraouda, G. Krishnan, H. Gamil, and M. Maniatakos, “FaceHack: At-

tacking Facial Recognition Systems Using Malicious Facial Characteristics”, en, IEEE

Trans. Biom. Behav. Identity Sci., vol. 4, no. 3, pp. 361–372, Jul. 2022, ISSN: 2637-6407.

DOI: 10.1109/TBIOM.2021.3132132. [Online]. Available: https://ieeexplore.ieee.org/

document/9632692/ (visited on 06/12/2023).

[17] Y. Li, M. Ya, Y. Bai, Y. Jiang, and S.-T. Xia, “BackdoorBox: a python toolbox for backdoor

learning”, in ICLR Workshop, 2023.

[18] R. Pang, Z. Zhang, X. Gao, et al., “Trojanzoo: towards unified, holistic, and practical eval-

uation of neural backdoors”, in Proceedings of IEEE European Symposium on Security

and Privacy (Euro S&P), 2022.

[19] B. Wu, H. Chen, M. Zhang, et al., “Backdoorbench: a comprehensive benchmark of

backdoor learning”, in Thirty-sixth Conference on Neural Information Processing Systems

Datasets and Benchmarks Track, 2022.

[20] B. Tran, J. Li, and A. Ma, “Spectral Signatures in Backdoor Attacks”, en, in Proceedings of

NeurIPS, 2018, p. 11.

90

http://arxiv.org/abs/1712.05526
https://doi.org/10.1145/3393527.3393567
https://dl.acm.org/doi/10.1145/3393527.3393567
https://dl.acm.org/doi/10.1145/3393527.3393567
https://doi.org/10.1186/s13635-020-00104-z
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00104-z
http://arxiv.org/abs/2009.06996
https://doi.org/10.1109/TBIOM.2021.3132132
https://ieeexplore.ieee.org/document/9632692/
https://ieeexplore.ieee.org/document/9632692/

BIBLIOGRAPHY Chapter C

[21] B. Chen, W. Carvalho, N. Baracaldo, et al., “Detecting Backdoor Attacks on Deep Neural

Networks by Activation Clustering”, en, arXiv:1811.03728 [cs, stat], Nov. 2018, arXiv:

1811.03728. [Online]. Available: http://arxiv.org/abs/1811.03728 (visited on 02/17/2022).

[22] B. Wang, Y. Yao, S. Shan, et al., “Neural Cleanse: Identifying and Mitigating Backdoor

Attacks in Neural Networks”, en, in 2019 IEEE Symposium on Security and Privacy (SP),

San Francisco, CA, USA: IEEE, May 2019, pp. 707–723, ISBN: 978-1-5386-6660-9. DOI:

10.1109/SP.2019.00031. [Online]. Available: https://ieeexplore.ieee.org/document/

8835365/ (visited on 07/02/2022).

[23] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “DeepInspect: A Black-box Trojan Detection

and Mitigation Framework for Deep Neural Networks”, en, in Proceedings of the Twenty-

Eighth International Joint Conference on Artificial Intelligence, Macao, China: Interna-

tional Joint Conferences on Artificial Intelligence Organization, Aug. 2019, pp. 4658–

4664, ISBN: 978-0-9992411-4-1. DOI: 10 . 24963 / ijcai . 2019 / 647. [Online]. Available:

https://www.ijcai.org/proceedings/2019/647 (visited on 07/11/2023).

[24] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal, “STRIP: a defence against

trojan attacks on deep neural networks”, en, in Proceedings of the 35th Annual Computer

Security Applications Conference, San Juan Puerto Rico USA: ACM, Dec. 2019, pp. 113–

125, ISBN: 978-1-4503-7628-0. DOI: 10 . 1145 / 3359789 . 3359790. [Online]. Available:

https://dl.acm.org/doi/10.1145/3359789.3359790 (visited on 07/12/2023).

[25] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “NIC: Detecting Adversarial Samples with

Neural Network Invariant Checking”, en, in Proceedings 2019 Network and Distributed

System Security Symposium, San Diego, CA: Internet Society, 2019, ISBN: 978-1-891562-

55-6. DOI: 10.14722/ndss.2019.23415. [Online]. Available: https://www.ndss-symposium.

org / wp - content / uploads / 2019 / 02 / ndss2019 _ 03A - 4 _ Ma _ paper. pdf (visited on

07/12/2023).

[26] E. Chou, F. Tramèr, and G. Pellegrino, SentiNet: Detecting Localized Universal Attacks

Against Deep Learning Systems, en, arXiv:1812.00292 [cs], May 2020. [Online]. Available:

http://arxiv.org/abs/1812.00292 (visited on 08/24/2023).

[27] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting AI Trojans Using

Meta Neural Analysis”, en, in 2021 IEEE Symposium on Security and Privacy (SP), San

Francisco, CA, USA: IEEE, May 2021, pp. 103–120, ISBN: 978-1-72818-934-5. DOI: 10.

1109/SP40001.2021.00034. [Online]. Available: https://ieeexplore.ieee.org/document/

9519467/ (visited on 07/02/2022).

[28] Z. Wang, K. Mei, H. Ding, J. Zhai, and S. Ma, “Rethinking the Reverse-engineering of

Trojan Triggers”, en, Neural Information Processing Systems, 2022.

[29] S. Marcel, J. Fierrez, and N. Evans, “Handbook of biometric anti-spoofing-trusted bio-

metrics under spoofing attacks, third edition”, Advances in Computer Vision and Pattern

Recognition. Springer, 2023.

[30] ISO/IEC JTC 1/SC 37 Biometrics, Information technology –International Organization

for Standardization, ISO Standard, Feb. 2016.

91

http://arxiv.org/abs/1811.03728
https://doi.org/10.1109/SP.2019.00031
https://ieeexplore.ieee.org/document/8835365/
https://ieeexplore.ieee.org/document/8835365/
https://doi.org/10.24963/ijcai.2019/647
https://www.ijcai.org/proceedings/2019/647
https://doi.org/10.1145/3359789.3359790
https://dl.acm.org/doi/10.1145/3359789.3359790
https://doi.org/10.14722/ndss.2019.23415
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03A-4_Ma_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03A-4_Ma_paper.pdf
http://arxiv.org/abs/1812.00292
https://doi.org/10.1109/SP40001.2021.00034
https://doi.org/10.1109/SP40001.2021.00034
https://ieeexplore.ieee.org/document/9519467/
https://ieeexplore.ieee.org/document/9519467/

Chapter C BIBLIOGRAPHY

[31] A. George, Z. Mostaani, D. Geissenbuhler, O. Nikisins, A. Anjos, and S. Marcel, “Biometric

face presentation attack detection with multi-channel convolutional neural network”,

IEEE Transactions on Information Forensics and Security, vol. 15, pp. 42–55, 2019.

[32] M. Xue, C. He, J. Wang, and W. Liu, “Backdoors hidden in facial features: a novel invisible

backdoor attack against face recognition systems”, en, Peer-to-Peer Netw. Appl., vol. 14,

no. 3, pp. 1458–1474, May 2021, ISSN: 1936-6442, 1936-6450. DOI: 10.1007/s12083-020-

01031-z. [Online]. Available: https://link.springer.com/10.1007/s12083-020-01031-z

(visited on 11/26/2021).

[33] D. G. McNeely-White, “Same data, same features: modern imagenet-trained convo-

lutional neural networks learn the same thing”, Ph.D. dissertation, Colorado State

University, 2020.

[34] D. McNeely-White, B. Sattelberg, N. Blanchard, and R. Beveridge, “Exploring the inter-

changeability of cnn embedding spaces”, arXiv preprint arXiv:2010.02323, 2020.

[35] D. McNeely-White, J. R. Beveridge, and B. A. Draper, “Inception and resnet features are

(almost) equivalent”, Cognitive Systems Research, vol. 59, pp. 312–318, 2020.

[36] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions”, in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,

pp. 770–778.

[38] G. Roeder, L. Metz, and D. Kingma, “On linear identifiability of learned representations”,

in International Conference on Machine Learning, PMLR, 2021, pp. 9030–9039.

[39] D. McNeely-White, B. Sattelberg, N. Blanchard, and R. Beveridge, “Canonical face em-

beddings”, IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 4, no. 2,

pp. 197–209, 2022.

[40] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive Angular Margin Loss for

Deep Face Recognition”, en, in 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, Jun. 2019, pp. 4685–4694,

ISBN: 978-1-72813-293-8. DOI: 10.1109/CVPR.2019.00482. [Online]. Available: https:

//ieeexplore.ieee.org/document/8953658/ (visited on 06/12/2023).

[41] G. R. Doddington, W. Liggett, A. F. Martin, M. A. Przybocki, and D. A. Reynolds, “Sheep,

goats, lambs and wolves a statistical analysis of speaker performance in the nist 1998

speaker recognition evaluation”, 1998. [Online]. Available: https://api.semanticscholar.

org/CorpusID:13884175.

[42] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face

recognition and clustering”, en, in 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Boston, MA, USA: IEEE, Jun. 2015, pp. 815–823, ISBN: 978-1-4673-

6964-0. DOI: 10.1109/CVPR.2015.7298682. [Online]. Available: http://ieeexplore.ieee.

org/document/7298682/ (visited on 12/07/2021).

92

https://doi.org/10.1007/s12083-020-01031-z
https://doi.org/10.1007/s12083-020-01031-z
https://link.springer.com/10.1007/s12083-020-01031-z
https://doi.org/10.1109/CVPR.2019.00482
https://ieeexplore.ieee.org/document/8953658/
https://ieeexplore.ieee.org/document/8953658/
https://api.semanticscholar.org/CorpusID:13884175
https://api.semanticscholar.org/CorpusID:13884175
https://doi.org/10.1109/CVPR.2015.7298682
http://ieeexplore.ieee.org/document/7298682/
http://ieeexplore.ieee.org/document/7298682/

BIBLIOGRAPHY Chapter C

[43] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning Face Representation from Scratch”, en,

arXiv:1411.7923[cs], p. 9, 2014.

[44] T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying Vulnerabilities in the Machine

Learning Model Supply Chain”, en, arXiv:1708.06733 [cs], vol. abs/1708.06733, 2019,

arXiv: 1708.06733. [Online]. Available: http://arxiv.org/abs/1708.06733 (visited on

10/29/2021).

[45] M. Mitchell, S. Wu, A. Zaldivar, et al., “Model cards for model reporting”, in Proceedings

of the Conference on Fairness, Accountability, and Transparency, ser. FAT* ’19, ACM, Jan.

2019. DOI: 10.1145/3287560.3287596. [Online]. Available: http://dx.doi.org/10.1145/

3287560.3287596.

[46] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, in British Machine

Vision Conference, 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:

4637184.

[47] X. Wu, R. He, Z. Sun, and T. Tan, A light cnn for deep face representation with noisy labels,

2018. arXiv: 1511.02683 [cs.CV].

[48] F. Samaria and A. Harter, “Parameterisation of a stochastic model for human face

identification”, in Proceedings of 1994 IEEE Workshop on Applications of Computer

Vision, 1994, pp. 138–142. DOI: 10.1109/ACV.1994.341300.

[49] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative

Adversarial Networks”, en, Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2019.

[50] Z. Zhu, G. Huang, J. Deng, et al., “WebFace260M: A Benchmark Unveiling the Power of

Million-scale Deep Face Recognition”, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2021.

[51] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic

graph cnn for learning on point clouds”, ACM Transactions on Graphics (TOG), 2019.

[52] G. Wahba, “A least squares estimate of satellite attitude”, SIAM review, vol. 7, no. 3,

pp. 409–409, 1965.

[53] W. Kabsch, “A solution for the best rotation to relate two sets of vectors”, Acta Crystallo-

graphica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography,

vol. 32, no. 5, pp. 922–923, 1976.

93

http://arxiv.org/abs/1708.06733
https://doi.org/10.1145/3287560.3287596
http://dx.doi.org/10.1145/3287560.3287596
http://dx.doi.org/10.1145/3287560.3287596
https://api.semanticscholar.org/CorpusID:4637184
https://api.semanticscholar.org/CorpusID:4637184
https://arxiv.org/abs/1511.02683
https://doi.org/10.1109/ACV.1994.341300

Acronyms

ASR Attack Success-Rate. 17

BA Backdoor Attack. 2

BAD Backdoor Attack Detection. 2

DET Detection Error Trade-off. 53

FAR False-Acceptance Rate. 62

FMR False-Match Rate. 62

FNMR False-Non-Match Rate. 62

FRR False-Rejection Rate. 49

ROC Receiver Operating Characteristic. 53

95

Glossary

all-to-one A backdoor attack type referring to an attack which works from all identities to

one specific victim identity. It only requires the trigger to be presented for the backdoor

to be activated. This implies that the original identity to which the sample belongs is

irrelevant as anyone can be an impostor, and the trigger will always take precedent in

influencing the prediction of the model. 22

Attack Success-Rate A success rate for how often the backdoor is successfully activated from

a set of poisoned test samples intended to activate it. 17

backdoor attack An attack on a machine learning model whose purpose is to introduce a

hidden behavior which can be controlled at will when the target model is exposed to a

predefined trigger pattern. 2

backdoor attack detection The field and the task which focuses on the detection of backdoor

attacks. 2

backdoor injection The method by which the backdoor is implemented/setup in the target

network. Commonly, this is done through a poisoning attack. 8

backdoor type Refers to whether we work with a one-to-one or all-to-one backdoor attack.

16

backdoored behavior The behavior expected from the activation of a backdoor, as defined

by the attacker. 13

backdoored model A model which has a backdoor. 3

clean accuracy The accuracy of a model on the clean test-set. Sometimes simplified to

accuracy. 14

clean behavior The nominal behavior, expected from a model devoid of a backdoor. 3

clean model A model which is devoid of any backdoor. 5

clean sample A sample which does not contain any trigger. Also known as a genuine sample.

15

97

Chapter C Glossary

closed-set classification A kind of task in which there is a fixed and known number of classes

from which a sample belongs to, being the same at training and test time. For these kind

of tasks, the prediction is usually a one-hot encoded vector of the size of the number of

classes. 4

detection type Refers to the detection method being online or offline. 22

impostor A designated original identity which when combined with the trigger causes the

backdoor to be activated. 9

offline detection An offline detector, as opposed to an online detector, is executed prior to

model deployment. It is intended to be a finite set of tests which in the end provide with

an assessment on whether the network under test contains a backdoor or not. 5

one-to-one A backdoor attack type referring to an attack which works from only one specific

impostor identity to one other specific victim identity. The combination of a specific

impostor identity to which the sample belongs in addition to the trigger being present,

cause the backdoor activation and prediction. 24

online detection Also known as runtime detection, refers to a detector which works post de-

ployment of the network to be analyzed. As it is runtime, it is intended to alert whenever

a backdoor is being activated by a user. Hence, the detector may run indefinitely as it is

not possible to prove (at least with any known method) that the network does not in fact

contain a backdoor. 5

open-set classification A kind of task for which the classes at test-time are both unknown and

typically different from training time. For these kind of tasks, typical in biometrics (and

for which classes are identities), the model typically returns a feature vector (referred

to as an embedding in biometrics) and they are compared to establish whether they

belong to the same class. 2

poison rate The proportion of poisoned samples in the training set. Typically computed as

pr ate = m/(m +n) where m and n are the number of poisoned and clean samples in the

training set, respectively. 16

poisoned sample A sample which has been stamped with a trigger, intended to cause the

backdoor to be activated. 14

poisoning attack An attack which involves a modification (change, addition or subtraction)

of samples in the training set, either through their content and/or their label. 17

trigger The specific pattern to which a backdoored network reacts to and yields the pro-

grammed misprediction. In earlier work (not specific to face recognition), the trigger

was sometimes an entire image. The trigger is the visible part of the unconstrained

pattern when applying it on the poisoned sample using the mask. May also sometimes

be referred to as the trigger pattern. 2

98

Glossary Chapter C

trojan attack Introduced in [11], it is a backdoor attack for which the backdoor injection

is done differently. The authors do not design the trigger entirely themselves, rather

they define a shape and select neurons in the network to be targeted, then through

optimization derive the content of the shape to which the selected neurons respond to

best and finetune the layers to which those neurons belong to, to maximize effectiveness.

2

unconstrained trigger The entire tensor which encompasses the trigger, of the dimension

of the image to which it is applied. Depending on the mask, only a part of the uncon-

strained trigger is made visible. 15

victim An identity which is designated to be obtained by the activation of the backdoor. 9

99

Index

ASR, 17

Attack Success-Rate, 17

DET, 53

Detection Error Trade-off, 53

False-Acceptance Rate, 62

False-Match Rate, 62

False-Non-Match Rate, 62

False-Rejection Rate, 49

FAR, 62

FMR, 62

FNMR, 62

FRR, 49

Receiver Operating Characteristic, 53

ROC, 53

101

Alexander Unnervik
Martigny, Switzerland +41 27 721 77 24

alex.unnervik@idiap.ch

Education

Ph.D. in vulnerabilities of Deep Learning networks, EPFL and Idiap Research Institute, Switzerland 2020 – 2024

M.Sc. Micro and NanoElectronics, grade average of 5.53 / 6, EPFL, Switzerland 2012 – 2014

B.Sc. Electrical and Electronic Engineering, EPFL, Switzerland 2008 – 2012

Experience

Eurecom Antibes, France (3 months) 2023
⋄ Development of backdoor attack in audio domain on a speaker recognition system.

OneVisage Lausanne, Switzerland (3 months) 2021
⋄ Development of backdoor attack in a 3D security system for a face recognition system.

EPFL Driverless Racing Team Lausanne, Switzerland (10% for 6 months) 2020 – 2021
⋄ Collection and annotation of cone-detection dataset.
⋄ Development of low-compute cone-detection algorithm from scratch. Functional prototype under tight deadline.
⋄ Development of overall self-driving software architecture.

Intel Labs Europe Munich, Germany 2013 – 2020
⋄ (Master thesis) Development of full custom object detection accelerator on FPGA and corresponding linux drivers.
⋄ Development of a prototype real-time data annotation pipeline in the vehicle for autonomous vehicles.
⋄ Development of smart infrastructure monitoring system for real-time road-agents tracking.
⋄ Development of driver model algorithm for action recognition, with a custom dataset (dmd.vicomtech.org).
⋄ Implementation of automotive full-self driving stack.

Select Publications

⋄ H. O. Shahreza, C. Ecabert, A. George, A. Unnervik, et al. “SDFR: Synthetic Data for Face Recognition Competition”, The
18th IEEE International Conference on Automatic Face and Gesture Recognition 2024 (FG)

⋄ A. Unnervik, H. O. Shahreza, A. George, S. Marcel “Model Pairing Using Embedding Translation for Backdoor Attack
Detection on Open-Set Classification Tasks”, Under review at IEEE Transactions on Information Forensics and Security
2024 (TIFS)

⋄ A. Unnervik, S. Marcel “An anomaly detection approach for backdoored neural networks: face recognition as a case
study”, International Conference of the Biometrics Special Interest Group 2022 (BIOSIG)

⋄ F. Geissler,A. Unnervik, M. Paulitsch “A Plausibility-Based Fault Detection Method for High-Level Fusion Perception
Systems”, IEEE Open Journal of Intelligent Transportation Systems 2020 (ITS)

⋄ J. Ortega, N. Kose, P. Cañas, M. Chao, A. Unnervik, G. Rigoll, M. Nieto, O. Otaegui, L. Salgado “DMD: A Large-Scale
Multi-Modal Driver Monitoring Dataset for Attention and Alertness Analysis”, European Conference on Computer Vision
2020 (ECCV)

⋄ B. Malnar, A. Unnervik, N. Kose “Using High-Performance Computing in Vehicles to Create Image Datasets for Deep
Learning”, International Convention on Informations and Communication Technology, Electronics and Microelectronics
2019 (MIPRO)

Competitions

⋄ Face Recognition Challenge in the Era of Synthetic Data (2024): 1st position by training a face recognition model with
synthetic data adjusted at training time to maximize performance.

⋄ Face Recognition Challenge in the Era of Synthetic Data (2023): 2nd position by training face recognition model pairs and
translating embeddings.

⋄ International Create Challenge (2020): 3rd position, by implementing a detection system to identify edited images.

⋄ Synthetic Data for Face Recognition (2023): organization of a competition on the use of synthetic images.

103

Technical Skills

OS: Debian, Fedora, Ubuntu, Windows

Programming Languages & libraries: Python, pytorch, numpy, OpenCV, sklearn, C/C++

Version Control: Git

Language Skills, and Interests

Languages: French (native), Swedish (native), English (fluent), German (B2), Spanish (B2), Bulgarian (A2)

Interests: selfhosting and language learning

104

	Acknowledgements
	Abstract (English)
	Résumé (Français)
	List of figures
	List of tables
	Introduction
	Background and motivations
	Objectives and contributions
	Face recognition systems
	System overview
	Categorized attacks

	Threat models
	Thesis outline

	Related work
	Introduction to backdoor attacks
	Backdoor attacks in face recognition
	Open-set classification
	Poisoning attacks
	Trojan attacks
	Attacks in the physical world
	Triggers in the feature space
	Datasets, benchmarks and tools

	Backdoor attack detection
	Characteristics of the methods
	Training set analysis
	Behavioral analysis
	Model analysis
	Assumptions of the backdoor attacks
	Run-time approaches

	Presentation Attack Detection
	Embedding translation

	Performing backdoor attacks in face recognition
	Open-set and closed-set classification
	Doddington Zoo
	Ablation study
	Experimental setup
	Results

	Embedding visualization
	Limitations
	Conclusion

	An outlier detection approach to backdoor attack detection
	Introduction
	Preliminary analysis
	Proposed method
	Experimental setup
	Results
	Discussion

	Proposed method
	Experimental setup
	Dataset
	Architecture
	Backdoor
	Training

	Results
	Limitations
	Deeper analysis in a multi-layer backdoor
	Experimental setup changes
	Results

	Conclusion

	A run-time method to detecting backdoor attacks
	Introduction
	Proposed approach
	The embedding translator
	The score

	Experimental setup
	Face recognition models
	Training backdoored networks
	Training the embedding translator
	Score computation

	Results
	Training the backdoored networks
	Visualizing scores from various model pairs
	Detection metrics on model pairs
	Digging deeper in the backdoored models

	Discussion
	Limitations
	Conclusion
	Possible future work

	Conclusion and future work
	Experimental findings
	Directions for future work
	Backdoor attacks
	Backdoor attack detection

	Ethics and social impacts
	Biometrics in our society
	Responsibilities of security researchers
	Closing thoughts

	Appendix - chapter 3
	Attacking a PAD system
	Experimental setup
	Dataset and poisoning
	Network

	Results

	Appendix - chapter 4
	Details on the layer outlier detector scores

	Appendix - chapter 5
	A closed-form solution to the embedding translation

	Bibliography
	Acronyms
	Glossary
	Index
	Curriculum Vitae

