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ABSTRACT

Spoken Language Understanding (SLU) technologies have
greatly improved due to the effective pretraining of speech
representations. A common requirement of industry-based
solutions is the portability to deploy SLU models in voice-
assistant devices. Thus, distilling knowledge from large text-
based language models has become an attractive solution for
achieving good performance and guaranteeing portability. In
this paper, we introduce a novel architecture that uses a cross-
modal attention mechanism to extract bin-level contextual
embeddings from a word-confusion network (WNC) encod-
ing such that these can be directly compared and aligned with
traditional text-based contextual embeddings. This alignment
is achieved using a recently proposed tokenwise constrastive
loss function. We validate our architecture’s effectiveness
by fine-tuning our WCN-based pretrained model to do intent
classification (IC) on the well-known SLURP dataset. Ob-
tained accuracy on the IC task (81%), depicts a 9.4% relative
improvement compared to a recent/equivalent E2E method.

Index Terms— Word-Confusion-Networks, Cross-modal
Alignment, Knowledge Distillation, Intent Classification

1. INTRODUCTION

Voice-operated interactive devices rely on Spoken Language
Understanding (SLU) to derive the semantics such as slots, in-
tents, and cause-effect signals [1, 2]. With the rising attention
from application standpoint, there have been several efforts
in the literature, starting from conventional pipeline method
that uses automatic speech recognition (ASR) decoded text to
derive intent [3], to end-to-end approaches capable of directly
extracting semantics from raw speech signal [4–6].
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In a conventional pipeline SLU system (i.e., ASR + Natu-
ral Language Understanding (NLU)), the ASR system is op-
timized to minimize the Word Error Rate (WER), while the
NLU module is typically trained on clean text. However, the
errors in ASR output in fact negatively affect the performance
of NLU systems. To reduce the ambiguity caused by ASR er-
rors, previous works utilized ASR 1-best result [7, 8], N-best
lists [9, 10], word lattices [11, 12], and word confusion net-
works (WCNs) [7, 13–15] as inputs to train an SLU system.
WCN-based approaches [7, 13, 16] primarily focus on better
encoding or explore different modeling approaches to exploit
rich information embedded in the WCN.

End-to-end (E2E) SLU methods have substantial potential
to alleviate the effects of ASR errors in the pipeline setup [4],
however, they require large amounts of training data. Thus, to
avoid this restriction recent approaches propose the exploita-
tion of pretrained speech models [17, 18], knowledge distil-
lation by aligning speech and text embeddings by means of
a cross-attention layer [6, 19, 20] and the use of multi-modal
techniques [5]. Particularly, results reported by [6] are en-
couraging, however, their proposed approach has not been
evaluated on a more challenging dataset (e.g., SLURP). In ad-
dition and as our main motivation, there is a gap in the SLU
literature regarding the impact of distilling knowledge from
text-based embeddings to effectively perform a WCN-to-Text
alignment for Intent Classification (IC) task. Hence, this pa-
per is a step towards exploring the impact of a WNC-based
representation by implementing a finer embedding alignment
technique between WCNs and text-based embeddings.

Overall, our work has three main contributions: (1) a
novel architecture to extract bin-level contextual embeddings
from WCNs; (2) an exhaustive evaluation of the impact of the
WCN-to-Text alignment process for IC task on the SLURP
dataset; and (3) the introduction of stronger text-based base-
lines through optimizing BERT hyperparameters.1

1Our code is publicly available: https://github.com/idiap/
Word-Confusion-Network-to-Text-Alignment
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Fig. 1. An overview of the proposed WCN-to-Text alignment architecture. During pretraining, the cross-attention mechanism
injects WCNs’ contextual, and posterior probabilities information for all the input tokens using the corresponding utterance.
During fine-tuning for IC, when only speech information is available in the form of a WCN, only the [CLS] token is required.

2. PROPOSED METHODOLOGY

Figure 1 shows an overview of the proposed WCN-to-Text
alignment framework (WCN2B). Let Uwcn denote the word
confusion network of a spoken utterance and Utext its corre-
sponding reference transcription. The WCN encoder takes
the lattice structure Uwcn as input and returns a representation
denoted by a matrix O ∈ Rm×768 where m is the total num-
ber of WordPiece tokens present in all the bins from the WCN
structure (§2.1). Similar to [6], a Non-Contextual (NC) repre-
sentation of Utext is obtained from a randomly initialized word
embedding, which takes a sequence of WordPiece tokens of
Utext prepended and appended by the [CLS] and [SEP] to-
kens, respectively. As these embeddings are not contextual,
we also add absolute positional encodings to the output of the
NC word embedding. Thus, the NC representation of Utext is
denoted by a matrix T ∈ Rn×768, where n is equal to the
number of WordPiece tokens in the reference text.2 Then, a
cross-modal attention mechanism injects the WCNs’ contex-
tual, and probabilities information into T, resulting in Bwcn

embeddings (§ 2.2), which are in turn aligned with BERT via
contrastive loss (§ 2.3).

2.1. Word-Confusion-Network Encoder

The WCN is a compact lattice structure where candidate
words paired with their associated posterior probabilities are
aligned at each position [16, 21]. Formally, given a sequence
of word bins B = (b1, . . . , bM ), the m-th bin is defined as
bm = {(w1

m, P (w1
m)), . . . , (wIm

m , P (wIm
m ))}, where Im de-

notes the number of candidates in bm, wi
m and P (wi

m) are the
i-th candidate word and its posterior probability respectively.

2Notice that m >> n given the nature of the WCN.

Then, for Word-Confusion-Network encoder to be able to con-
sume the WCN graph, the WCN is flattened into a word se-
quence such that: wWCN = (w1

1, . . . , w
I1
1 , . . . , w1

M , . . . , wIM
M ).

Thus, we denote the input sequence as w = (w1, . . . , wM ) =
[CLS] ⊕ TOK(wWCN) ⊕ [SEP], where ⊕ concatenates se-
quences together, TOK(·) is the WordPiece tokenizer which
tokenizes words into sub-words, [CLS] and [SEP] are
auxiliary tokens for separation, M = |TOK(wWCN)| + 2.
Considering the structural characteristics of the WCN, i.e.,
multiple words competing in a bin, all words and sub-words
in the same bin will share the same position ID.

Following the ideas proposed in [16], the WCN encoder
consists of a series of bidirectional transformer encoder lay-
ers [22], each of which contains a multi-head self-attention
module and a feed-forward network with residual connec-
tions.3 Thereby, the input layer of the WCN encoder embeds
w into d-dimensional continuous representations, in our case
d = 768, resulting in a summarized representation xt ∈ Rd.

Then, we apply the same extension to the self-attention
mechanism to consider the posterior probabilities of to-
kens in the WCN. Particularly, for each input token se-
quence w = (w1, . . . , wM ), its corresponding probability
p = (p1, . . . , pM ) is defined as:

pt =

{
P (wt) if wt ∈ TOK(wWCN)

1.0 otherwise,
(1)

where P (wt) represents the ASR posterior probability of to-
ken w. Notice that the probability of a sub-word will be equal
to that of the original word in the WCN. Now, in order to con-
sider the ASR posterior probabilities in the transformer en-

3Reported experiments employed 12 transformer layers, each with 12 at-
tention heads.



coder, the attention value for the l-th layer and the h-th head
el,hij is computed as follows:

el,hij =
(W l,h

Q xl
i)

⊺(W l,h
K xl

j)√
d/H

+ λl,h · pj , (2)

where λl,h is a trainable parameter. Finally, token-level rep-
resentations for each bin contained in the WCN are produced
after the stacked encoder layers, resulting in a representation
denoted by a matrix O ∈ Rm×768

2.2. Cross-Modal attention

We use the WCN representation O to inject the ASR’s con-
textual, and posterior probabilities information into the NC
embeddings T such that the resulting contextual embedding
implicitly benefits from the WCNs’ richness of information.
For this, we employ a cross-modal attention mechanism, fol-
lowing a query-key-value-based mechanism [22], where the
NC embeddings T act as the query and the WCN embeddings
O act as the keys and values.

Hence, Q, K and V ∈ Rm×768 are obtained by Q =
TWq , K = OWk and V = OWv , where Wq , Wk and
Wv ∈ R768×768 are learnable weights. Now, the contextual
and probability-aware embeddings Bwcn ∈ Rn×768 are com-
puted by Bwcn = softmax(QK⊺)V.

2.3. Contrastive Loss

Once we have the contextual and probability-aware embed-
dings Bwcn, we align them with the semantically rich BERT
contextual representation Btext on a token-by-token basis as
they have the same sequence length n. To achieve this, we
apply the recently proposed contrastive loss function (L) de-
scribed in [6], which facilitates the alignment between se-
quences pairs of token representations.

Thus, the output sequences in a batch are row-wise con-
catenated such that Btext and Bwcn ∈ Rs×768, where s is the
sum of all sequence lengths in a batch. Now, the contrastive
loss is defined as:

L = − τ

2s

s∑
i=1

(
log

exp(cii)∑s
j=1 exp(cij)

+ log
exp(cii)∑s
j=1 exp(cji)

)
,

where τ is a temperature hyperparameter, and c depicts the
cosine similarity between rows i and j in Btext and Bwcn. As
described in [6], the contrastive loss function allows bringing
the representation of the same tokens (positive pairs) from
the two considered modalities close together and pushes apart
different tokens (negative pairs).

For all our reported experiments, we use WCN-text pairs
from 1000 hours of People’s Speech data [23] for pretrain-
ing. Our models were trained on 8 GeForce RTX 3090 GPU
following a distributed learning approach during 600k steps
using a batch size of 64 utterances, AdamW optimizer with a
learning rate of 1e-4, and τ = 0.07.

2.4. Fine-tuning

One main advantage of the proposed architecture is that it
does not require having access to utterances’ transcriptions,
and it can be applicable in a real-life scenario as long as
the intermediate WCN representation is available. Thus, we
can fine-tune the pre-trained model for the IC downstream
task. Particularly, only the learned NC (T) embeddings
for the [CLS] are used to attend over the WCN encoder
output through the cross-attention layer. This allows us to
work using a contextual, and probability-aware BERT-like
[CLS] token for representing the input utterance. For all the
performed experiments, the [CLS] token is fed to a single
linear layer for classification.

For all the IC experiments, the entire model is fine-tuned
using the training subset (58 hours) of SLURP dataset [24],
with a learning rate of 2e-5 using the AdamW optimizer and
a batch size of 32 utterances. WCNs were obtained following
the approach described in Section 3.1.

3. EXPERIMENTS AND RESULTS

3.1. ASR+WCN Generation

Following [15], we use XLSR LF-MMI setup as the acous-
tic model for ASR: the XLSR-53 model [25] is fine-tuned
with 390 hours of English data from AMI [26] and Switch-
board [27] datasets using the E2E-LFMMI loss function [28,
29] with biphone units [30–32] trained from a graphemic
lexicon of size 1M. The Language Model (LM) was trained
with 34M utterances from publicly available English datasets
including People’s Speech, Fisher, Switchboard, AMI, Wiki-
text103, and subsets of Common Crawl and Reddit datasets.
The model was then further fine-tuned with 560 hours of
YouTube data with the incremental semi-supervised learn-
ing approach with four iterations [33]. Kaldi toolkit [34]
is used for Weighted Finite State Transducer (WFST)-based
decoding with the default parameter values for beam and
lattice beam – 16 and 8, respectively. To adapt the XLSR-53
acoustic model to SLURP, we fine-tuned the model with the
train subset of the SLURP data without changing the LM.
ASR performances before and after fine-tuning to SLURP
are given in Table 1.

To generate WCNs [21], the acoustic scores in the ob-
tained lattices after decoding are scaled followed by minimum
Bayes Risk decoding (mBR) [35]. The scaling alleviated the
peakiness of the scores. Lattice pruning prior to mBR – the
default behavior of Kaldi – was avoided to preserve the rich-
ness of the hypotheses in the WCN.

3.2. Baselines

Two baselines were considered: text-based (i.e., pipeline) and
acoustic-based (i.e., E2E). As text-based baseline models,
we evaluate the performance of fine-tuning the bert-base-
uncased pre-trained transformer-based, to which a final linear



Table 1. Alignment accuracy during the pretraining, and ASR
performance (in WER) of the XLSR-53 model.

Model XLSR-53 Alignment ACC (↑) SLURP WER (↓)

adaptation People’s Speech (dev) dev test

S2B(XLSR53)
%

74% 34.0 34.4WCN2B(XLSR53) 77%

S2B(XLSR53) ✓
72% 16.1 15.5WCN2B(XLSR53) 75%

layer was added to classify the input using the [CLS] classi-
fication token. To make the baseline as standard and simple
as possible we made use of the Transformers Python package
AutoModelForSequenceClassification class so that the size
and number of linear layers are automatically selected ac-
cording to the model. We performed an optimization process
of the model using Optuna [36], with 20 trials for hyper-
parameter search maximizing the macro averaged F1 score.
The AdamW optimizer (β1=0.9, β2=0.999, ϵ=1e−8) was
used with learning rate and number of epochs n searched in
γ ∈ [1e−7, 1e−3] and n ∈ [1, 10], respectively.

For the acoustic-based baseline we replicated the method
described in [6], hereafter referred to as S2B, an alignment
process between BERT-based and speech embeddings. For
this, we ran the pretraining using three different approaches
to encode the speech: (i) 80-dimensional log-Mel Filter-Bank
(LFB) features over 25 ms frames (10 ms rate) from the input
speech signal; (ii) our inhouse XLSR-53 pretrained acoustic
model without any adaptation to SLURP (%); and, (iii) our
XLSR-53 model adapted to SLURP dataset (✓). Finally, as
a reference, we include the results reported by Villatoro et
al. [15], where the original WCN-BERT method described
in [16] was implemented and evaluated on SLURP. However,
these results are not directly comparable as the WCN-BERT
approach incorporates a different utterance representation
which explicitly considers additional structural features at the
moment of generating the [CLS] representation token.

3.3. Results

Table 1 shows the alignment accuracies (ACC) obtained by
the pretrained models, S2B and WCN2B, on the People’s
Speech dev set. As described in §2.3, generated embeddings
Bwcn are compared with BERT embeddings. Thus, the ACC
value indicates how similar are Bwcn and Btext (Fig. 1). Notice
that independently of the XLSR-53 adaptation to SLURP, the
ACC of our WCN2B approach always outperforms the equiv-
alent speech-to-text (S2B) alignment approach.

Table 2 shows the obtained IC results. Column “Model”
depicts the model’s configuration used for the correspond-
ing experiment. Column “XLSR-53 adaptation” indicates
whether or not the XLSR-53 model was fine-tuned to SLURP.
Notably, oracle results obtained after the BERT-optimization
process, represent a strong baseline (F1=0.88 and ACC=0.91)
which outperforms, to the best of our knowledge, text-based
results reported on SLURP, resulting in an additional con-

Table 2. Macro F1-score (F1) and Accuracy (ACC) on intent
classification (IC) task for all evaluated models.

Model XLSR-53 Dev (↑) Test (↑)

adaptation ACC F1 ACC F1

Text-based (conventional pipeline SLU)

Oracle NA 0.91 0.90 0.91 0.88
1-best % 0.71 0.61 0.71 0.62
1-best ✓ 0.84 0.81 0.85 0.80

Acoustic-based (E2E approach)
S2B(LFB) % 0.75 0.67 0.74 0.64
S2B(XLSR53) % 0.73 0.66 0.72 0.62
S2B(XLSR53) ✓ 0.80 0.75 0.79 0.69

WCN-based

WCN2B(XLSR53) % 0.70 0.61 0.69 0.62
Villatoro et al. [15]∗ % 0.68 0.67 0.68 0.68

WCN2B(XLSR53) ✓ 0.80 0.72 0.81 0.75
Villatoro et al. [15]∗ ✓ 0.78 0.77 0.79 0.79

tribution of the paper.4 Among the results obtained by the
S2B method, notice that traditional LFB features allow the
speech-to-text alignment architecture to outperform results
obtained by the same architecture when the pretrained not-
adapted XLSR-53 speech encoder is used. However, if the
adaptation step is applied, results get a 7.8% relative improve-
ment from F1=0.64 to F1=0.69 on the test partition. Finally,
notice that the proposed WCN-to-Text alignment method
(WCN2B-adapted) yields a relative improvement of 17.1%
and of 9.4% in F1 and ACC respectively, over the S2BLFB
method, reaching an F1=0.75 and an ACC=0.81. Similarly,
the proposed WCN2B relatively improves the ACC by 3.7%
in comparison to the results reported in [15], even though
our WCN2B approach does not explicitly add any additional
structure information to the [CLS] token. As ablation ex-
periments, we ran the pretraining of the proposed WCN2B
method proportionally reducing the transformer layers and
the attention heads from 12 to 2. Obtained results on the
SLURP test set showed a drop in F1 from 0.75→0.72 and,
in ACC from 0.81→0.79, indicating that a deeper model
captures long-term dependencies in the WCN sequence more
effectively, and that if computational power is limited, reduc-
ing the model size won’t severely impact performance.

4. CONCLUSIONS
In this work, we implemented a method for exploiting pre-
trained BERT as a teacher to inject fine-grained token-level
embedding information into WCNs encodings. Using a re-
cently proposed contrastive learning objective, our architec-
ture is capable of learning WCN-to-text alignments at the bin
level. An exhaustive evaluation on SLURP showed that the
proposed architecture can outperform recent speech-to-BERT
alignment methods by a 17.1% relative F1 improvement.

4At the moment of writing this paper, January 2024, the best ac-
curacy result reported in the leaderboard for Intent Classification on
SLURP was ACC=90%. (https://paperswithcode.com/sota/
intent-classification-on-slurp)
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