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ABSTRACT

Speech Emotion Recognition (SER) has garnered significant atten-
tion over the past two decades. In the early stages of SER tech-
nology, ’brute force’-based techniques led to a significant expansion
in knowledge-based acoustic feature representation (FR) for mod-
eling sparse emotional data. However, as deep learning techniques
have become more powerful, their direct application has been limited
by the scarcity of well-annotated emotional data. As a result, pre-
trained neural embeddings on large speech corpora have gained pop-
ularity for SER tasks. These embeddings leverage existing transfer
learning methods suitable for general-purpose self-supervised learn-
ing (SSL) representations. Recent studies on downstream SSL tech-
niques for dimensional SER have shown promising results. In this
research, we aim to evaluate the emotion-discriminative characteris-
tics of neural embeddings in general cases (out-of-domain) and when
fine-tuned for SER (in-domain). Given that most SSL techniques are
pre-trained primarily on English speech, we plan to use speech emo-
tion corpora in both language-matched and mismatched conditions.
We will assess the discriminative characteristics of both handcrafted
and standalone neural embeddings as FRs.

Index Terms— Self-supervised learning (SSL), emotion recog-
nition, dimensional emotion, VAD

1. INTRODUCTION

Speech-based emotion recognition (SER) is a key technology for
facilitating user-centered human-to-machine interactions [1]. SER
research is dominated by two conceptual emotion representation
techniques: discrete emotions and emotional dimensions. The first
investigates discrete emotional categories (anger, joy, etc.), while
the latter focuses on the dimensions of valence, arousal, and domi-
nance (VAD). In the case of VAD based SER modelling emotional
state could be represented with continuous scalar values for va-
lence, arousal and dominance emotional scale. The developments
of dimensional and discrete turn-level SER techniques have had
different tendencies and used different classification measuring
techniques. In neuropsychological science, the neural processes
that correspond to linguistic and acoustic (verbal) information re-
main undiscovered [2]. Empirical studies on dimensional SER show
that combining acoustic and linguistic modeling could improve the
performance of emotional valence modeling [3]. The evolution
and development of discrete classes of emotion recognition were
supported by the advancement of the Computational Paralinguistic
Challenge (ComParE) introduced in 2009 [4]. To support interest in
ComParE challenges, a free toolkit for modeling turn-level features
was introduced: OpenSMILE [5]. Most of the ComParE challenges
used turn-level ground truth labels. Hence, a list of indicative turn-
level feature representations was redefined during the first ComParE
challenges. The ”brute force” concept was quite a popular technique

used for selecting the most informative acoustic features for each
challenge. The saturation point for hand-crafted turn-level feature
representations was reached in 2013 with the introduction of the
ComParE 2013 [6] feature set, which comprises 6,373 features.

In the case of dimension emotional modeling, research studies
were oriented not only on selecting appropriate signal processing
techniques but also on emotion perception and annotation. By us-
ing dimensional annotation techniques affective computing commu-
nity was targeted modeling spontaneous naturalistic emotions anno-
tated by a pool of annotators. One decade ago, in earlier studies
on dimensional SER [7], the authors showed that a subset of the
emotional corpora with more reliable annotations could provide bet-
ter dimensional emotion modeling. Even considering the long his-
tory of acoustic-based SER there are several open research ques-
tions on acoustic emotional theory. The smallest acoustic emotional
unit has not been defined. In the case of discrete SER one could
make the assumption that emotional content is equally distributed
between phonemes and apply explicit phoneme-level emotion mod-
eling [8–10]. In the case of explicit phoneme-level emotion model-
ing emotional models were trained on sub-word level units for each
emotional class. For discrete emotion modeling phoneme-level emo-
tion modeling provides quite a comparative performance.

In recent years, the artificial intelligence (AI) field is under-
going a major paradigm shift, moving from task-specific architec-
tures trained for a given case to general-purpose foundation models
that can be applied to several use cases [11]. Taking into account
the classification performance of discrete SER presented in various
benchmark studies [12–15] we noticed that out-of-domain neural
embedding could provide important information for SER. Imple-
mentation of downstream and fine-tuning of self-supervised learning
techniques become a new trend in discrete and dimensional SER. In
[16] authors mentioned that a new era in dimensional SER is starting
with pre-trained, transformer-based foundation models, which could
encapsulate dominant information streams of spoken language, lin-
guistics, and paralinguistics. Considering the previous study [17] on
combining SSL with handcrafted features we would like to check if
these two types of FR could improve performance for dimensional
SER. In contrast to the evaluation of different transformer layers for
SER [17, 18] we used just a final layer outputs for acoustic emotion
modeling.

Considering recent developments in uncertainty modeling for di-
mensional SER [19] we assume that the number of available emo-
tional corpora with reliable dimensional emotion annotations is com-
parable low. The first corpora that we select for our study is the
VAM (“Vera am Mittag”) [20] corpus which uses 17 and 6 anno-
tators for dimensional labeling and uses evaluator weighted estima-
tor (EWE) [21] for smoothing uncertainty effect in multi-annotators
setup. Presented earlier study [22] showed that the spectral content
of syllabic nuclei could provide a promising SER emotion recogni-
tion for the VAM. The second dataset that we are using, the IEMO-
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Fig. 1. Processing flow of proposed experimental study.

CAP (Interactive Emotional Dyadic Motion Capture) contains ag-
gregated VAD labels provided by comparable lower number of anno-
tators. Hence, an uncertainty modeling for dimensional SER on the
IEMOCAP and MSP-Podcast has been addressed in [19]. In [23]
the authors mentioned that more focus should be placed on ordi-
nal regression instead of classifying or predicting discrete emotional
states within SER tasks, which are the common practices to date.
More attention should be addressed to the quality and reliability of
dimensional emotional annotations for naturalistic emotional cor-
pora with turn-level annotations. We compare obtained results with
state-of-the-art [3, 24–28] and discuss uncertainty issues in dimen-
sional SER.

2. METHODS

This section describes the acoustic FR derived from audio signals,
machine learning architecture, and measures used for dimensional
SER. The processing flow of our dimensional SER is presented in
Figure 1
Features representation: For the knowledge-based handcrafted
FR, we use CMP - COMPARE 2016 [6]. Feature set contains 6373
static turn-level features resulting from the computation of function-
als (statistics) over Low-Level Descriptors contours. Considering
top performance positions on challenge leader-boards for out-of-
domain SSL embeddings on SER task for SUPERB challenge [12]
we employed a wide range of SSL embeddings: WAV2VEC2 Large
Robust (WV2 LR) [29], HUBERT (large) (HRT) [30], WAVLM
(large) (WLM) [31]. Finally, for in-domain SSL modeling, we used
WAV2VEC2 (WV2 EM) fine-tuned for dimensional SER on MSP-
Podcast dataset [32]. A fixed-length utterance-level feature repre-
sentation is obtained by computing mean of the frame-level SSL
embeddings extracted from the final layer. We applied the Early
Fusion (EF) technique to see if a combination of top-performing FR
could improve discriminative characteristics.
Regressors: The SVM-based regression technique for the evalua-
tion of discriminative characteristics of selected FR. Support Vector
Regression (SVR) for the regression task of predicting VAD levels
was used. The radial basis function (RBF) kernel and MinMax for
feature normalization were applied.

3. EXPERIMENTAL SETUP

The section introduces the multi-lingual emotional corpora, experi-
ential protocols, and evaluation metrics used for the study.
Corpora: The VAM corpus [20] contains 947 emotional speech

(a) VAM (b) IEMOCAP

Fig. 2. Data distribution: arousal (horizontal), valence (vertical)

samples collected from 47 German speakers (11m/36f). Speech sam-
ples were selected from 12 broadcasts of the talk show “Vera am
Mittag” (in English, “Vera at noon”). The weighted average values
with EWE techniques of valence, arousal, and dominance emotional
dimensions were used as the ground-truth labels of each sentence. In
addition, we used the English dataset - IEMOCAP [33]. The corpus
includes 10,039 emotional speech samples collected from record-
ings captured during 5 dyadic interaction sessions. Ground-truth
values were determined by taking the average of all annotators who
participated in the emotion perception study. Figure 2 represents a
distribution of aggregated valence and arousal samples in selected
emotional corpora. A comparably small pool of annotators used for
dimensional labeling of IEMOCAP resulted in a high level of gran-
ularity of aggregated labels. Also, a major part of emotional samples
for VAM are located in the low valence area.
Metrics: For evaluating SER performance we used: Concordance
correlation coefficient (CCC), (see eq. 1) and Root mean square
error (RMSE).

CCC(X,Y ) =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(1)

where ρ = COV (x,y)
σx·σy

is a Pearson correlation coefficient, and µ

and σ are the mean and standard deviation, respectively. Argument
X denotes the ground-truth VAD labels, and argument Y denotes
either the predicted emotional dimension’s level (refer to the results
in Table 1) or the min-max normalized FR observation (see section
5). For both datasets, original aggregated VAD labels were mapped
into the interval 0 to 1.
Evaluation protocol: Similar to the previous studies on selected
corpora, we conducted speaker-independent experiments follow-
ing the Leave-One-Session/Speaker group-Out (LOSsO/LOSgO)
methodology for training regression models. We trained models on
speech samples from 4 Sessions and used the remaining 5th session
for testing. For both datasets, test predictions obtained during 5
test folds were accumulated and used to estimate overall CCC and
RMSE rates.
Implementation tools: The COMPARE FR were extracted with im-
plemented in python opensmile package [5]. In-domain (WAV2VEC)
models for down-stream-based [32] direct prediction of VAD rates
and denoted obtained results with E2E EM. Pre-trained out-of-
domain models were downloaded from huggingface repositories.
Supplementary material and Python codes can be found in the fol-
lowing GitHub repository1.

1https://github.com/idiap/ICASSP24 Dim SER



FR/ Valence Arousal Dominance
Metod CCC RMSE CCC RMSE CCC RMSE

VAM - language mismatched condition
1.CMP 0.235 0.09 0.774 0.10 0.762 0.09
2.WV2 LR 0.283 0.09 0.773 0.11 0.769 0.09
3.WV2 EM 0.324 0.09 0.768 0.10 0.759 0.09
4.HRT 0.196 0.10 0.700 0.11 0.669 0.10
5.WLM 0.211 0.10 0.688 0.12 0.680 0.10
EF(1.+2.) 0.261 0.09 0.781 0.10 0.771 0.09
EF(1.+3.) 0.317 0.09 0.805 0.10 0.800 0.09
EF(1.+5.) 0.252 0.09 0.784 0.10 0.775 0.09
E2E EM -0.121 0.16 0.260 0.35 0.284 0.28

IEMOCAP - language matched condition
1.CMP 0.379 0.20 0.667 0.13 0.488 0.17
2.WV2 LR 0.424 0.19 0.686 0.12 0.519 0.16
3.WV2 EM 0.683 0.16 0.702 0.12 0.531 0.16
4.HRT 0.584 0.17 0.694 0.12 0.527 0.17
5.WLM 0.603 0.17 0.701 0.12 0.535 0.16
EF(1.+2.) 0.403 0.20 0.676 0.13 0.502 0.17
EF(1.+3.) 0.610 0.17 0.693 0.12 0.520 0.17
EF(1.+5.) 0.502 0.19 0.687 0.12 0.513 0.17
EF(3.+5.) 0.683 0.16 0.708 0.12 0.535 0.16
EF(3.+4.) 0.680 0.16 0.707 0.12 0.535 0.16
EF(4.+5.) 0.609 0.17 0.704 0.12 0.533 0.16
E2E EM 0.478 0.21 0.660 0.147 0.486 0.18

Table 1. CCC and RMSE rates for the VAM and IEMOCAP stud-
ies. Abbreviations: EF - early fusion

4. RESULTS

During the first experimental phase, we used the VAM dataset
for simulating language mismatched condition. Direct predictions
obtained with E2E emotional models trained on English speech
could not provide applicable emotion regression performance for
German emotional speech samples. On the other hand, in-domain
WAV2VEC2 EM could boost regression performance for the valence
emotional dimension. The WAV2VEC2 LR which represents the
out-of-domain FR, provides competitive CCC rates for arousal and
dominance emotional dimensions.

The highest average CCC (overall VAD dimensions) were
observed for WAV2VEC2 EM, WAV2VEC2 LR, COMPARE and
WAVLM. Considering different types of top-performing FR we de-
cided to do an early fusion study by combining handcrafted and
data-driven features. As one could see from Table 1, a combination
of knowledge-based and in-domain WAV2VEC2 EM FR provide the
highest CCC rates for arousal and dominance dimensions. For the
valence emotional dimension, the best CCC was obtained with raw
WAV2VEC2 EM FR. In [22] authors used feature selection and pa-
rameters tuning for 10-fold cross-validation. In our study, we used
speaker-independent protocol and avoided hyper-parameters tuning.
We used CCC rates instead of Pearson correlation for measuring
emotion classification performance. In our study, we used a larger
set of FR and obtained comparable performance.

During the second experimental phase, we simulated matched
language condition and conducted a study on the IEMOCAP
dataset. As one can see from Table 1, E2E direct modeling provides
applicable emotion regression performance, comparable with per-
formance reported in [16]. Still, in-domain FR provides significantly
better CCC rates for valence dimension in comparison with E2E ap-
proach. The highest average CCC (overall VAD dimensions) were
observed for data-driven FR: out-of-domain HUBERT, WAVLM,
and in-domain WAV2VEC2 EM. Early fusion of in-domain and
out-of-domain FRs improves CCC rates for all emotional dimen-
sions. Presented results are comparable with state-of-the-art-results
presented in [3, 24, 28]. Even advanced uncertainty modeling for
dimensional SER presented in [19] reported lower CCC rate for
valence prediction (CCC=0.625 on 5 folds).

5. FEATURE REPRESENTATION ANALYSIS

In order to evaluate the discriminative characteristics of employed
knowledge-based and data-driven FR we applied MinMax normal-
ization to features and VAD dimensional labels. Afterward, we esti-
mated CCC rates for each FR.

Figure 3 shows that out-domain data-driven FRs pre-trained on
English emotional speech provide discriminative information for
German emotion arousal modelling. Fine-tuned WAV2VEC2 EM
provides additional emotion-related information for arousal and va-
lence emotional dimensions. Knowledge-based FR provides quite
high discriminative characteristics on the VAM speech samples,
considering a more reliable concept used for dimensional emotion

(a) wv2 LR (b) wv2 em (c) ComParE

Fig. 3. VAM: distribution of feature-wise CCC rates. Arousal (horizontal axis) and valence (vertical axis).
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Fig. 4. IEMOCAP: distribution of feature-wise CCC rates. Arousal (horizontal axis) and valence (vertical axis).

annotation.
Results obtained on the IEMOCAP database, see Figure 4,

show that out-of-domain SSL representations for WAVLM provide a
comparable lower range of CCC rates for valence. And in-domain
WAV2VEC2 EM outperforms out-of-domain SSL for valence. On the
other hand, EF results presented in Table 1 show that in-domain and
out-of-domain SSL are complimentary for arousal and dominance
emotional dimensions. At the same time, feature-wise CCC rates
for out-of-domain SSL FR have a narrower range in arousal dimen-
sion. RMSE errors reported for the VAM studies are significantly
lower in comparison with the IEMOCAP studies. On the other
hand, the IEMOCAP dataset contains around 10 times more emo-
tional speech samples and should provide better emotion modeling
opportunities and lower RMSE rates. As one can see from Table 2
more reliable annotation labels assigned to the VAM dataset provide
us better feature-wise CCC rates. Also, top indicative knowledge-
based FR have significantly higher feature-wise CCC for VAM then
IEMOCAP database. For both datasets, one from the top two dis-
criminative FR for arousal and dominance emotional dimensions are
the same: IEMOCAP - selected functional from mfcc sma[2] LLD
and VAM - selected functional to audspec lengthL1norm LLD.
Hence, we assume that arousal and dominance emotional dimen-
sions share some common acoustic characteristics. Our investiga-
tions confirm the results presented in [19, 22] that spectral features
are the most discriminative for modeling emotional dimensions.

6. CONCLUSION

We investigated different data-driven and handcrafted FR for dimen-
sional SER. To evaluate discriminative characteristics of in-domain
and out-of-domain data-driven FR we used German and English
emotional speech corpora. The obtained results showed that in-
domain FR fine-tuned for modeling English emotional speech could
provide additional sources of information handcrafted FR during di-
mensional SER on German speech. Experimental studies on English
emotional speech showed that in-domain and out-of-domain SSL-
based FR provides complementary sources of information. Results
for direct prediction with in-domain WAV2VEC2 fine-tuned on MSP-
Podcast dataset shows a domain difference not only for language-
mismatched conditions but also for language-matched experimental
setup. Finally, we showed that stand-alone data-driven FR for in-
and out-of-domain models could be used for dimensional SER.

Dim. Feature representation CCC
VAM

Val mfcc sma[1] upleveltime75 0.199
Val mfcc sma[3] percentile1.0 0.171
Aro audspec lengthL1norm sma quartile3 0.725
Aro audspec lengthL1norm sma peakMeanAbs 0.716
Dom audspec lengthL1norm sma percentile99.0 0.659
Dom audspec lengthL1norm sma peakMeanAbs 0.669

IEMOCAP
Val audspec lengthL1norm sma de flatness 0.166
Val audSpec Rfilt sma de[23] flatness 0.144
Aro mfcc sma[2] range 0.469
Aro mfcc sma[2] pctlrange0-1 0.473
Dom mfcc sma[2] pctlrange0-1 0.375
Dom mfcc sma de[4] lpc1 0.355

Table 2. Feature-wise CCC rates for top-performing handcrafted
FRs.Abbreviation: Dim. - dimensionality.

Obtained RMSE rates for the VAM and IEMOCAP studies
show that providing more reliable dimensional emotion labeling
could be more beneficial than using more emotional speech samples
with less reliable emotional labels. In our internal research project
studies we compensate for an uncertainty effect in dimensional
emotion annotation by using proper emotion perception tests and
employing a large pool of emotion annotators. Qualitative analysis
of feature-wise correlation plot rates shows interesting tendencies in
in- and out-of-domain data-driven FR for matched and mismatched
language setups.

In our future work, we are planning to evaluate in- and out-
of-domain stand-alone data-driven FR for continuous dimensional
emotion recognition on datasets provided by Multimodal Sentiment
Analysis Challenge organizers [34] with more advanced regression
and feature transformation techniques [35]. We are planning to uti-
lize the presented FR for emotional cue transfer in Text-To-Speech
system modeling.
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