
Robust Manipulation Primitive Learning
via Domain Contraction

Teng Xue1,2, Amirreza Razmjoo1,2, Suhan Shetty1,2, Sylvain Calinon1, 2

1Idiap Research Institute 2École Polytechnique Fédérale de Lausanne (EPFL)

{teng.xue, amirreza.razmjoo, suhan.shetty, sylvain.calinon}@idiap.ch
https://sites.google.com/view/robustpl

Policy training Parameter-conditioned policy retrieval

Figure 1: Overview of the proposed bi-level approach. Left: Parameter-augmented policy train-
ing using multiple models. The state, action, and parameter variables are denoted in black, blue,
and red colors, respectively. Right: Parameter-conditioned policy retrieval through domain
contraction. The retrieved policies perform well in terms of both generalization and optimality
given a diverse set of objects with different shapes, weights, and friction parameters.

Abstract: Contact-rich manipulation plays an important role in human daily ac-
tivities, but uncertain parameters pose significant challenges for robots to achieve
comparable performance through planning and control. To address this issue, do-
main adaptation and domain randomization have been proposed for robust pol-
icy learning. However, they either lose the generalization ability across diverse
instances or perform conservatively due to neglecting instance-specific informa-
tion. In this paper, we propose a bi-level approach to learn robust manipulation
primitives, including parameter-augmented policy learning using multiple mod-
els, and parameter-conditioned policy retrieval through domain contraction. This
approach unifies domain randomization and domain adaptation, providing optimal
behaviors while keeping generalization ability. We validate the proposed method
on three contact-rich manipulation primitives: hitting, pushing, and reorientation.
The experimental results showcase the superior performance of our approach in
generating robust policies for instances with diverse physical parameters.

Keywords: Robust policy learning, Contact-rich manipulation, Sim-to-real

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://sites.google.com/view/robustpl/

1 Introduction

Robot manipulation usually involves multiple different manipulation primitives, such as Push and
Pivot, leading to hybrid and long-horizon characteristics. This poses significant challenges to most
planning and control approaches. Instead of treating long-horizon manipulation as a whole, it can be
decomposed into several simple manipulation primitives and then sequenced using PDDL planners
[1, 2, 3] or Large Language Models [4, 5]. Although such manipulation primitives usually have low-
to-medium-dimensional state and action spaces, the breaking and establishment of contact make
it tough for most motion planning techniques. Gradient-based techniques suffer from vanishing
gradients when contact breaks, while sampling-based techniques struggle with the combinatorial
complexity of multiple contact modes, i.e., sticking and sliding. This leads to time-consuming
online replanning in the real world for contact-rich manipulation, limiting the real-time reactiveness
of robots in coping with uncertainties and disturbances.

Learning manipulation primitives that can quickly

Figure 2: Illustration of DA, DR and DC. α
is the physical parameter. p(α) is the corre-
sponding probability. DR conditions on the
entire domain, DA on a specific parameter
(red line), and DC on a small set (blue lines).

react to the surroundings, therefore, makes a lot of
sense. Since the learned manipulation primitives
will be sequenced by symbolic planners, which have
no information about the geometric/motion level,
the learned manipulation primitive should be robust
to diverse instances with varied physical parameters,
such as shape, mass, and friction coefficient. For
example, once the push primitive is scheduled by
the high-level symbolic planner, it should be able to
push any objects with different shapes and friction
parameters from any initial configurations towards
their targets.

Consider how humans perform manipulation tasks:
we typically make rough estimates of object and en-

vironmental parameters based on physical intuition [6], and our behaviors adapt accordingly. To
enable robots to achieve similar performance, the learned manipulation primitives should effectively
generalize across diverse instances and adapt to the parameters of specific instances. Common
techniques for robust policy learning include domain adaptation (DA) [7, 8, 9] and domain random-
ization (DR) [10, 11]. DA aims for a perfect match between simulation and reality but may sacrifice
generalization ability, while DR generalizes well but lacks full knowledge of the target domain,
leading to conservative behaviors. Combining DR and DA [11, 12] to harness the benefits of both
is a sensible strategy, but how to effectively balance them is still an open question. In this work, we
propose a bi-level approach to address this challenge:

Level-1: Parameter-augmented policy learning using multiple models. We augment the state
space with physical parameters of multiple models and use Tensor Train (TT) to approximate the
state-value function and advantage function.

Level-2: Parameter-conditioned policy retrieval through domain contraction. At the stage of
execution, we can obtain a rough estimate of the physical parameters in the manipulation domain.
This instance-specific information can be utilized to retrieve a parameter-conditioned policy, ex-
pected to be much more instance-optimal.

We summarize our contributions as follows:

1) We propose domain contraction, a unification of domain adaptation and domain randomization,
which results in optimal behavior while maintaining generalization.

2) We propose using tensor approximation for robust policy learning with multiple models and
leveraging products of tensor cores for parameter-conditioned policy retrieval.

3) We provide both theoretical proof and numerical comparisons for the proposed approach.

2

2 Related Work

Manipulation policy learning. Many approaches have been proposed to learn manipulation poli-
cies for long-horizon manipulation, including Behavior Cloning (BC) [13, 14], Deep Reinforcement
Learning (DRL) [15, 12, 16], and Approximate Dynamic Programming (ADP) [17, 18]. In our
work, to ensure subsequent parameter-conditioned policy retrieval, it is essential to explore the full
parameter domain. The reliance on the provided dataset in BC limits its ability to explore the broad
state space and learn the full parameter-augmented policy. DRL offers better exploration capability
compared to BC, but its policy training is usually time-consuming due to sample inefficiency, and
policy retrieval is often suboptimal due to gradient-based optimization and local exploration. Con-
versely, ADP aims to cover the full state space but faces the curse of dimensionality. Recently, a
new technique called Tensor Train Policy Iteration (TTPI) [19] has emerged to address this challenge
by employing tensor approximation. Our work builds upon TTPI, extending it for robust primitive
learning by augmenting the state space with model parameters.

Sim-to-real transfer. Obtaining large amounts of real-world data for primitive learning is challeng-
ing. Therefore, robot learning in simulation and transferring to the real world is a promising idea
[20]. However, the reality gap between simulation and the real world poses a significant challenge
to such idea. If the target domain is known and specific, Domain Adaptation (DA) [7, 8, 9] can be an
effective method, but its reliance on domain-specific data can limit generalization to other scenarios
without additional fine-tuning. On the other hand, Domain Randomization (DR) [21] seeks to de-
velop a robust policy by introducing random variations into the simulation parameters. While this
method offers good generalization, it often results in suboptimal and high-variance behaviors due
to the restrictive assumptions about environment parameter distribution (e.g., normal or uniform).
To overcome this, combining DA and DR can be a promising strategy to balance generalization and
optimal performance. The basic idea is to adapt the parameter distribution by leveraging differences
between simulated and reference environment [10, 11, 22]. However, policies developed through
such methods are often tailored to the reference environment or target domain. Recently, a method
called Rapid Motor Adaptation (RMA) [23] has demonstrated remarkable success in learning ro-
bust locomotion [16, 24] and manipulation primitives [12]. In this approach, a teacher policy is
trained in simulation with various domain parameters, and a student policy learns to replicate this
behavior, with a low-dimensional embedding of proprioceptive history as input. Our work closely
follows this paradigm but introduces a more efficient way for learning the parameter-augmented
teacher policy. Additionally, our method eliminates the need to learn a student policy afterward, as
the parameter-conditioned robust policy can be easily retrieved from the teacher policy. It also offers
a flexible way to leverage domain knowledge, making it effective in both closed-loop and open-loop
scenarios, whereas RMA struggle in open-loop scenarios due to the lack of privileged information.

Tensor Train for function approximation. A multidimensional function can be approximated
by a tensor, where each element in the tensor is the value of the function given the discretized
inputs. The continuous value of the function can then be obtained by interpolating among tensor
elements. However, storing the full tensor for a high-dimensional function can be challenging. To
address this issue, Tensor Train (TT) was proposed to approximate the tensor using several third-
order cores. The widely used methods include TT-SVD [25] and TT-cross [26]. Furthermore, TTGO
[27] was proposed for finding globally optimal solutions given functions in TT format. Thanks to
the low-rank embeddings of the original function, this method significantly enhances computation
efficiency and reduces the risk of getting trapped in local optima. TTPI [19] was then introduced
to learn control policies through tensor approximation, showing superior performance on several
hybrid control problems. Logic-Skill Programming (LSP) [2] expands the operational space of
TTPI by incorporating first-order logic to sequence policies. Building on TTGO and TTPI, our work
extends these methods to learn robust policies, which further enhances the capabilities of LSP. We
additionally demonstrate that the TT format is a suitable structure for domain contraction, allowing
for efficient parameter-conditioned policy retrieval.

3

Figure 3: Overview of domain contraction in TT format. Using TTPI, we can obtain the parameter-
augmented advantage function in TT format. It includes separate 3rd-order cores for different di-
mensionality, such as parameter, state and action. In this figure, we demonstrate the advantage
function for Hit primitive. Given the parameter distribution (either by human knowledge or by
system identification), we can retrieve the parameter-conditioned policy by making product of pa-
rameter distributions and corresponding TT cores.

3 Method

3.1 Problem formulation

Consider a discrete-time dynamical system defined by:

xt+1 ∼ f(xt,ut|α), ut ∼ πθ(xt|α), α ∼ p(α), (1)

where xt ∈ Ωx and ut ∈ Ωu represent the state and action at time step t, respectively. The dynamics
model f : Ωx×Ωu×Ωα → Ωx is conditioned on the domain (or environment) parameters α ∈ Ωα

(such as masses, shapes, or friction coefficients). These parameters are assumed to be random
variables satisfying an unknown probability distribution p. Together with the reward function R :
Ωx × Ωu → R and the discount factor γ ∈ [0, 1], this system forms a Markov Decision Process
(MDP) M = {Ωx,Ωu,Ωα,p, f, R, γ}.

In this work, we aim to find the optimal policy that maximizes the expected cumulative reward for a
distribution of domain parameters α ∼ p(α), namely

V (x|α) = Eα∼p(α)

[
Eπ

[∞∑
t=0

γtR(xt,ut) | x0=x

]]
,

A(x,u|α) = R(x,u) + γ(V (f(x,u|α))− V (x|α)), π(x|α) = arg max
u∈Ωu

A(x,u|α).

(2)

To learn such parameter-conditioned policies, it is impractical to train them individually since
there can be infinite instances for one single primitive. Instead, we propose to learn a parameter-
augmented full policy first and then retrieve the parameter-conditioned optimal policy for specific
domain at runtime.

3.2 Robust policy learning through domain contraction

We define domain contraction as retrieving the parameter-conditioned policy from the weighted
sum of parameter-specific advantage functions. The theoretical proof is provided in Sec. 3.3. These
functions are learned jointly by augmenting the state space with parameters, similar to the multi-goal
setting in DRL [28], resulting in parameter-augmented advantage function.

TTPI [19] is used to approximate the parameter-augmented value function

V (α,x) ≈ V(α1:d,x1:m) = V1
:,i1,: · · · V

d
:,id,:

Vd+1
:,id+1,:

· · · Vd+m
:,id+m,: (3)

4

and the parameter-augmented advantage function
A(α,x,u) ≈ A(α1:d,x1:m,u1:n)

= A1
:,i1,: · · · A

d
:,id,:

Ad+1
:,id+1,:

· · · Ad+m
:,id+m,: A

d+m+1
:,id+m+1,:

· · · Ad+m+n
:,id+m+n,:

(4)

in TT format. We define the tensor cores related to x and u as

A(x1:m,u1:n) = Ad+1
:,id+1,:

· · · Ad+m
:,id+m,: A

d+m+1
:,id+m+1,:

· · · Ad+m+n
:,id+m+n,:

. (5)

Without loss of generality, we assume each subspace Ωαi of the parameter space Ωα = Ωα1 ×· · ·×
Ωαd

is discretized by Ni points. The parameter-specific advantage function can then be extracted as

Aαj
(x,u) ≈ A(x1:m,u1:n|αj) = A1

:,j1,: · · · A
d
:,jd,:

A(x1:m,u1:n), (6)

where αj = (αj1 , · · · , αjd) represents α at the discretization index j across all dimensions.

We define pj = p1(αj1)p2(αj2) · · · pd(αjd) as the probability of αj , and pi is the probability dis-
tribution at dimension i. Given the TT approximation P(j1,...,jd) = P1

:,j1,:P
2
:,j2,: · · ·P

d
:,jd,:

of the
rough parameter distribution pj , we can then compute the parameter-conditioned advantage function
by computing the weighted sum of parameter-specific advantage functions in a separable form

A(x,u|α) =

N1∑
j1=1

· · ·
Nd∑

jd=1

pjAαj (x,u)

≈
N1∑

j1=1

P1
:,j1,: A

1
:,j1,: · · ·

Nd∑
jd=1

Pd
:,jd,:

Ad
:,jd,:

A(x1:m,u1:n).

(7)

The computation of weighted sum is at the tensor core level, which is much more efficient than at the
function level. After obtaining the parameter-conditioned advantage function, we can retrieve the
parameter-conditioned policy using TTGO [27], a specialized method for efficiently finding globally
optimal solutions given functions in TT format.

To retrieve such parameter-conditioned policies, knowing the parameter distribution p is crucial.
DR and DA rely on assumed distributions during training, while DC offers a better way to leverage
domain knowledge during execution, enabling optimal behaviors while preserving generalization
capability. In Section 3.3, we demonstrate that DR and DA are two special cases of DC.

3.3 Theoretical proof

Theorem 1. Given domain parameters α and the distribution p, the parameter-conditioned policy
can be retrieved from the weighted sum of parameter-specific advantage functions.

Proof. Given that each subspace Ωαi
of the parameter space Ωα is discretized by Ni points, the

parameter-conditioned policy can be written as

A(x,u|α) = R(x,u) +

N1∑
j1=1

· · ·
Nd∑

jd=1

pj γ
(
V
(
f(x,u|αj)

)
− V (x|αj)

)
,

=

N1∑
j1=1

· · ·
Nd∑

jd=1

pj

(
R(x,u) + γ

(
V
(
f(x,u|αj)

)
− V (x|αj)

))
,

(8)

and the parameter-specific advantage function is defined as

Aαj
(x,u) = R(x,u) + γ

(
V
(
f(x,u|αj)

)
− V (x|αj)

)
. (9)

Given (8) and (9), we can derive that the parameter-conditioned advantage function is the weighted
sum of parameter-specific advantage functions, namely

A(x,u|α) =

N1∑
j1=1

· · ·
Nd∑

jd=1

pjAαj
(x,u), (10)

5

and the parameter-conditioned primitive policy can then be computed by

π(x|α) = arg max
u∈Ωu

A(x,u|α). (11)

Note that the parameter-conditioned policy cannot be directly computed as the weighted sum of
parameter-specific policies, since the argmax operation does not have an associative property with
respect to addition.

Theorem 2. Domain randomization and domain adaptation are two special cases of domain con-
traction.

Proof. The policies of DR, DA and DC are obtained by

πDR(x) = arg max
u∈Ωu

N1∑
j1=1

· · ·
Nd∑

jd=1

p̃jAαj (x,u), πDA(x) = arg max
u∈Ωu

N1∑
j1=1

· · ·
Nd∑

jd=1

pjAαj (x,u),

πDC(x) = arg max
u∈Ωu

N1∑
j1=1

· · ·
Nd∑

jd=1

pjAαj
(x,u).

where p̃j , pj and pj are the probabilities of the parameter instance α at index j, satisfying the
distributions p̃, p and p, which are used for policy retrieval in DR, DA and DC, respectively.

Note that at the policy training level, we have no information about the real distribution p∗. DR
assumes p∗ as a uniform or Gaussian distribution p̃ (which can be a wrong assumption) for policy
training. DA aims for closed match between simulation and the target domain by using partly the
real data, resulting in p ≈ p∗. Conversely, DC enables the use of domain knowledge during the
execution stage, where instance-specific information becomes available. We assume the estimated
rough parameter distribution as p. If p matches p∗, the policy aligns with DA; if no instance knowl-
edge is present, p equals p̃, resulting in a DR-like policy. DC therefore unifies DA and DR, while
allowing flexible compromise between these two extreme cases.

4 Experimental Results

We validate the effectiveness of the proposed method on three contact-rich manipulation tasks: Hit,
Push, and Reorientation, as shown in Fig. 1. All the primitives are highly dependent on the
physical parameters between the object, the robot, and the surroundings. The environmental details,
including the task setup and implementation details, are presented in the appendix.

4.1 Robust policy learning and retrieval

We first learn the parameter-augmented policies using multiple models through tensor approxima-
tion. The physical equation of Hit is fully known, we can therefore compute the control policy
analytically. For Push and Reorientation, TTPI is used to approximate the parameter-augmented
value functions and advantage functions.

Hit: Given the massm, the friction coefficient µ, the initial state x0 and the target xdes, the advantage
function is

A(x, I) = −
(
∥x− xdes∥2 + 0.01∥I∥2

)
, (12)

where x = x0 +
I
m t− 0.5µgt2. Computing the impact I is to find the value that maximizes (12).

Push: The reward function for Push primitive learning is defined as

r = −(ρcp + co + 0.01cf + 0.01cv), (13)

6

(a) Hit (b) Push (c) Reorientation

Figure 4: Comparison of final state error given different estimated parameter distributions

with
cp = ∥xp − xdes

p ∥/lp, co = ∥xo − xdes
o ∥/lo, cf = ∥f∥, cv = ∥vp∥, (14)

where xp = [sx, sy] and xo = θ denote the object’s position and orientation. Without loss of
generality, we set xdes = 0 as the target configuration. f is the control force, while vp is the
velocity of the robot’s end-effector. lp and lo are set to 0.005 and 0.01π, respectively.

Reorientation: The reward function for Reorientation primitive learning is defined as

r = −(βcg + cf), (15)

with cg = ∥xo−xdes
o ∥, cf = ∥fn∥. xo is the orientation angle θ, and fn is the normal force between

the gripper and object. xdes
o is set to π as the reorientation goal, and β is set to 104.

We then retrieve the parameter-conditioned policy through domain contraction. Note that any dis-
tribution of the parameters is allowed in our framework. Without loss of generality, we assume the
parameters satisfy a uniform distribution, within a range of the discretization indices of each dimen-
sionality (denoted as w), as shown in Table 1 and Fig. 4. w = 1 means we know the exact value of
the physical parameter, corresponding to domain adaptation. In contrast, w = N means we have no
prior knowledge about the model parameters, corresponding to domain randomization.

Table 1: Cumulative reward of three manipulation tasks

w = 1 w = N/20 w = N/5 w = N
Hit 1.0 0.65 ± 0.21 0.01 ± 0.01 0.02 ± 0.05
Push 1.0 0.99 ± 0.01 0.99 ± 0.03 0.93 ± 0.11
Reori. 1.0 0.99 ± 0.04 0.99 ± 0.07 0.85 ± 0.19

Table 1 and Fig. 4 demonstrate the
comparisons of cumulative reward
and final state error, respectively. The
state error is quantified as the L2
norm of the difference between the
final state and the target state. The
cumulative reward is normalized us-
ing the value obtained through do-

main adaptation. We can observe that Hit primitive depends more on the accuracy of model pa-
rameters, as it resembles an open-loop control. Once the impact is given from the robot to the
object, there is no way to adjust control inputs to influence the object movements further. How-
ever, as the comparison indicates, there is no need to have a precise parameter estimation. A rough
range (w = N/20) is sufficient to achieve the target. In contrast, Push and Reorientation can
be considered more akin to closed-loop control. Therefore, the requirement for accurate parame-
ter estimation can be relaxed further. As depicted in Table 1 and Fig. 4, a rough distribution with
w = N/5 is adequate. Moreover, based on Table 1, we observe that w = N results in the lowest
cumulative reward. This is consistent with our assertion that domain randomization typically leads
to conservative behaviors. Although domain adaptation (w = 1) yields the highest cumulative re-
ward, obtaining precise parameter values can be challenging in the real world. Domain contraction
bridges the gap between domain adaptation and domain randomization, offering greater flexibility
to generate optimal behaviors while utilizing instance-specific rough parameter distribution. This is
much practical for real-world contact-rich manipulation tasks.

4.2 Comparison to other primitive learning methods

7

Table 2: Comparison of robust primitive learning approaches (time in [s]econd or [m]inute)
RL+DR RMA Ours

time error time teacher error student error time teacher error DC error
Hit 3.76s 0.653 ± 0.53 4.56s 0.036 ± 0.030 NA 0.20s 0.011 ± 0.007 0.015 ± 0.010
Push 41.92m 0.061 ± 0.003 54.72m 0.053 ± 0.103 0.039 ± 0.126 5.83m 0.035 ± 0.023 0.036 ± 0.024
Reori. 21.78m 0.034 ± 0.026 23.23m 0.086 ± 0.065 0.104 ± 0.087 1.32m 0.010 ± 0.014 0.011 ± 0.014

Moreover, we compared our method with two widely used robust policy learning approaches: rein-
forcement learning with domain randomization (RL+DR) [21] and rapid motor adaptation (RMA)
[23, 12]. The quantitative results are presented in Table 2, including the time required for policy
training and the final state error. Note that in RMA, teacher error and student error correspond to
the errors of the teacher policy given the true parameter and the student policy, respectively, while
in our method, teacher error and DC error correspond to the errors of the parameter-augmented
policy given the true parameter and the parameter-conditioned policy obtained through domain con-
traction (DC). Our method requires significantly less time for policy training and results in much
lower final state error compared to the other methods. Furthermore, when comparing the error of
the teacher policy in RMA with our parameter-augmented policy, our method shows better accu-
racy, highlighting its potential as a teacher policy in the general RMA framework. Additionally, in
one-shot manipulation tasks where only one action can be executed (as shown in the Hit primitive
in the table), RMA does not work due to the lack of privileged information.

4.3 Real-robot experiments: planar push

We validated our proposed method for the planar pushing task using a 7-axis Franka robot and a
RealSense D435 camera. The manipulated objects included a sugar box and a bleach cleanser from
the YCB dataset [29], each with different shapes and masses, as shown in Fig. 1. The friction
coefficients between the objects and the table were varied by using a metal surface and plywood,
respectively. Note that it is easier to control the robot kinematically rather than using force control.
We leverage the ellipsoidal limit surface to convert the applied force to velocity, resulting in the
motion equations shown in [30, 31]. We trained a parameter-augmented policy in simulation and
then applied it in the real world through domain contraction. The experimental results showcase
the effectiveness of the obtained parameter-conditioned policies in manipulating instances with di-
verse parameters. Additionally, external disturbances were introduced by humans, demonstrating
the reactiveness of the retrieved policy. Additional results are presented in the accompanying video.

5 Conclusion and Future Work

In this paper, we propose a bi-level approach to learning robust manipulation primitives. Multiple
models and tensor approximation are used to train the parameter-augmented policy, which can be
directly applied to diverse instances through domain contraction, outputting instance-dependent op-
timal behaviors. Theoretical proof and numerical results demonstrate the efficiency of the proposed
method for robust primitive learning. Real-world experiments further validate its effectiveness in
contact-rich manipulation under uncertainty and disturbance.

Since we leverage TTPI to learn the parameter-augmented policy, we also adopt its limitations. TTPI
assumes a low-rank structure of the value function and advantage function. Therefore, the state space
should have low-to-medium dimensionality (approximately less than 35), limiting its application for
image-based policy learning. In the future, this limitation can be addressed by combining TT with
neural networks in a data-driven manner [32, 33].

Moreover, we assume that rough distributions of uncertain physical parameters are provided by hu-
man knowledge. This requirement can be eliminated by integrating Large Visual Language Models
or system identification into the framework. As shown in our experiments, the parameter estimation
does not need to be very precise, thanks to the proposed domain contraction technique. Additionally,
the policy can be iteratively improved as the belief about parameter estimation is updated.

8

Acknowledgments

This work was supported by the China Scholarship Council (grant No.202106230104), and by the
SWITCH project (https://switch-project.github.io/), funded by the Swiss National Sci-
ence Foundation. We thank Jiacheng Qiu for suggestions about the implementation of RL baselines.

References
[1] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso, D. Weld,

D. W. Sri, A. Barrett, D. Christianson, et al. PDDL— the planning domain definition language.
Technical Report, Tech. Rep., 1998.

[2] T. Xue, A. Razmjoo, S. Shetty, and S. Calinon. Logic-Skill Programming: An Optimization-
based Approach to Sequential Skill Planning. In Proc. Robotics: Science and Systems (RSS),
2024.

[3] League: Guided skill learning and abstraction for long-horizon manipulation. IEEE Robotics
and Automation Letters, 8(10):6451–6458, 2023.

[4] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. In International
Conference on Machine Learning, pages 8469–8488. PMLR, 2023.

[5] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as I can, not as I say: Grounding language in robotic affordances. In
Conference on robot learning, pages 287–318. PMLR, 2023.

[6] O. M. Groth. Learning physical intuition for robotic manipulation. PhD thesis, University of
Oxford, 2021.

[7] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,
P. Pastor, K. Konolige, et al. Using simulation and domain adaptation to improve efficiency
of deep robotic grasping. In Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), pages
4243–4250, 2018.

[8] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki. Meta reinforcement learning for sim-to-
real domain adaptation. In Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), pages
2725–2731, 2020.

[9] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. In Proc.
IEEE Intl Conf. on Robotics and Automation (ICRA), pages 8973–8979, 2019.

[10] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In
Conference on Robot Learning, pages 1162–1176. PMLR, 2020.

[11] F. Muratore, T. Gruner, F. Wiese, B. Belousov, M. Gienger, and J. Peters. Neural posterior
domain randomization. In Conference on Robot Learning, pages 1532–1542. PMLR, 2022.

[12] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-hand object rotation via rapid motor
adaptation. In Conference on Robot Learning, pages 1722–1732. PMLR, 2023.

[13] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, pages
158–168. PMLR, 2022.

[14] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In Proc. Intl Joint
Conf. on Artificial Intelligence (IJCAI), pages 4950–4957, 2018.

9

https://switch-project.github.io/

[15] K. Pertsch, Y. Lee, and J. Lim. Accelerating reinforcement learning with learned skill priors.
In Conference on robot learning, pages 188–204. PMLR, 2021.

[16] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[17] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality,
volume 703. John Wiley & Sons, 2007.

[18] P. Werbos. Approximate dynamic programming for real-time control and neural modeling.
Handbook of intelligent control, 1992.

[19] S. Shetty, T. Xue, and S. Calinon. Generalized policy iteration using tensor approximation for
hybrid control. In Proc. Intl Conf. on Learning Representations (ICLR), 2024.

[20] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In Proc. IEEE Intl Conf. on Robotics and Automation
(ICRA), pages 3803–3810, 2018.

[21] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), pages 23–30, 2017.

[22] F. Ramos, R. C. Possas, and D. Fox. Bayessim: adaptive domain randomization via probabilis-
tic inference for robotics simulators. In Proc. Robotics: Science and Systems (RSS), 2019.

[23] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learning a universal policy
with online system identification. In Proc. Robotics: Science and Systems (RSS), 2017.

[24] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid motor adaptation for legged robots. In
Proc. Robotics: Science and Systems (RSS), 2021.

[25] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

[26] I. Oseledets and E. Tyrtyshnikov. Tt-cross approximation for multidimensional arrays. Linear
Algebra and its Applications, 432(1):70–88, 2010.

[27] S. Shetty, T. Lembono, T. Löw, and S. Calinon. Tensor train for global optimization problems
in robotics. International Journal of Robotics Research (IJRR), 43(6):811–839, 2024. doi:
10.1177/02783649231217527.

[28] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and
solutions. In Proc. Intl Joint Conf. on Artificial Intelligence (IJCAI), 2022.

[29] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and
model set: Towards common benchmarks for manipulation research. In 2015 international
conference on advanced robotics (ICAR), pages 510–517. IEEE, 2015.

[30] F. R. Hogan and A. Rodriguez. Feedback control of the pusher-slider system: A story of hybrid
and underactuated contact dynamics. In Algorithmic Foundations of Robotics XII: Proceedings
of the Twelfth Workshop on the Algorithmic Foundations of Robotics, pages 800–815. Springer,
2020.

[31] T. Xue, H. Girgin, T. S. Lembono, and S. Calinon. Demonstration-guided optimal control
for long-term non-prehensile planar manipulation. In Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), pages 4999–5005, 2023.

[32] S. Dolgov, D. Kalise, and L. Saluzzi. Data-driven tensor train gradient cross approximation
for hamilton–jacobi–bellman equations. SIAM Journal on Scientific Computing, 45(5):A2153–
A2184, 2023.

10

http://dx.doi.org/10.1177/02783649231217527
http://dx.doi.org/10.1177/02783649231217527

[33] S. N. Shetty. Robot Learning using Tensor Networks. PhD thesis, EPFL, Lausanne, 2024.
URL https://infoscience.epfl.ch/handle/20.500.14299/208216.

[34] I. Oseledets and E. Tyrtyshnikov. TT-cross approximation for multidimensional arrays. Linear
Algebra and its Applications, 432(1):70–88, 2010.

[35] D. V. Savostyanov and I. V. Oseledets. Fast adaptive interpolation of multi-dimensional arrays
in tensor train format. The 2011 International Workshop on Multidimensional (nD) Systems,
pages 1–8, 2011.

[36] J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason. A convex polynomial force-motion model
for planar sliding: Identification and application. In Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), pages 372–377, 2016.

[37] F. R. Hogan and A. Rodriguez. Reactive planar non-prehensile manipulation with hybrid model
predictive control. International Journal of Robotics Research (IJRR), 39(7):755–773, 2020.

[38] F. Viña Barrientos, Y. Karayiannidis, C. Smith, and D. Kragic. Adaptive control for pivoting
with visual and tactile feedback. In IEEE International Conference on Robotics and Automa-
tion, Stockholm, Sweden 16-21 May 2016. Institute of Electrical and Electronics Engineers
(IEEE), 2016.

[39] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[40] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

11

https://infoscience.epfl.ch/handle/20.500.14299/208216
http://jmlr.org/papers/v22/20-1364.html

A Background of Tensor Train

A.1 Tensors as Discrete Analogue of a Function

A multivariate function P (x1, . . . , xd) defined over a rectangular domain constructed with the
Cartesian product of intervals (or discrete sets) I1 × · · · × Id can be discretized by evaluating it
at points in the set X = {(xi11 , . . . , x

id
d) : xikk ∈ Ik, ik ∈ {1, . . . , nk}}. This gives us a ten-

sor P , a discrete version of P , where P(i1,...,id) = P (xi11 , . . . , x
id
d),∀(i1, . . . , id) ∈ IX , and

IX = {(i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}. The value of P at any point in the
domain can then be approximated by interpolating between the elements of the tensor P .

A.2 Tensor Networks and Tensor Train Decomposition

Naively approximating a high-dimensional function using a tensor is intractable due to the combi-
natorial and storage complexities of the tensor (O(nd)). Tensor networks mitigate the storage issue
by decomposing the tensor into factors with fewer elements, akin to using Singular Value Decom-
position (SVD) to represent a large matrix. In this paper, we explore the use of Tensor Train (TT), a
type of Tensor Network that represents a high-dimensional tensor using several third-order tensors
called cores, as shown in Fig. 5.

Figure 5: TT decomposition generalizes
matrix decomposition techniques to higher-
dimensional arrays. In TT format, an ele-
ment in a tensor can be obtained by multi-
plying specific slices of the core tensors. The
figure presents examples of second-order,
third-order, and fourth-order tensors. Image
adapted from [27].

We can access the element (i1, . . . , id) of the tensor in this format simply given by multiplying
matrix slices from the cores:

P(i1,...,id) = P1
:,i1,:P

2
:,i2,: · · ·P

d
:,id,:

, (16)

where Pk
:,ik,:

∈ Rrk−1×rk represents the ik-th frontal slice (a matrix) of the third-order tensor Pk.
For any given tensor, there always exists a TT decomposition [25]. This low-rank structure further
facilitates sampling and optimization for robot planning and control.

There are several ways to acquire a TT model, including TT-SVD [25] and TT-Cross [34, 35]. TT-
SVD extends the SVD decomposition from matrix level to a high-dimensional tensor level. How-
ever, it needs to store the full tensor first, which is impractical for high-dimensional functions. TT-
Cross solves this issue by selectively evaluating the function P on a subset of elements, avoiding the
need to store the entire tensor.

A.3 Function approximation using Tensor Train

Given the discrete analogue tensor P of a function P , we obtain the continuous approximation
by spline-based interpolation of the TT cores corresponding to the continuous variables only. For
example, we can use linear interpolation for the cores (i.e., between the matrix slices of the core)
and define a matrix-valued function corresponding to each core k ∈ {1, . . . , d},

P k(xk) =
xk − xikk
xik+1
k − xikk

Pk
:,ik+1,: +

xik+1
k − xk

xik+1
k − xikk

Pk
:,ik,:

, (17)

12

where xikk ≤ xk ≤ xik+1
k and P k : Ik ⊂ R → Rrk−1×rk with r0 = rd = 1. This induces a

continuous approximation of P given by

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd). (18)

This allows us to selectively do the interpolation only for the cores corresponding to continuous
variables, and hence we can represent functions in TT format whose variables could be a mix of
continuous and discrete elements.

A.4 Global Optimization using Tensor Train (TTGO)

In optimization problems involving task parameters x and decision variables u, the goal is to find the
optimal u that minimizes the cost function c(x,u). TTGO [27] frames this problem as maximizing
an unnormalized probability density function (PDF) P (x,u), which is derived from c(x,u) through
a monotonically non-increasing transformation. For example, P (x,u) can be defined as e−βC(x,u)2

with β > 0.

The TT-Cross algorithm is then used to compute the discrete analogue approximation of the un-
normalized PDF, i.e., P , in the TT format. After approximating the joint distribution, Pxt can be
obtained by conditioning on the given task parameter x = xt ∈ Ωx.

Given the TT model Pxt , the optimal u is obtained through iterative sampling, which determines the
optimal solution for each dimension at the core level. Due to the low-rank nature of the TT model,
this sampling process is highly efficient. A number of prioritized samples, N ≥ 1, are selected,
and the sample(s) with the highest density (or lowest cost) are chosen as candidate solutions. These
near-optimal solutions can then be further refined using local optimization methods, such as Newton-
type optimization for continuous variables. Overall, this technique can efficiently find the globally
optimal solution given any low-rank function, without requiring a convex structure. Moreover, the
computation process is gradient-free and can handle a mix of continuous and discrete variables.

A.5 Generalized Policy Iteration using Tensor Train (TTPI)

Optimal control of dynamic systems with nonlinear dynamics presents a significant challenge in
robotics. To address this, Generalized Policy Iteration using Tensor Train (TTPI) was proposed,
leveraging tensor approximation and approximate dynamic programming [19]. This method ap-
proximates state-value and advantage functions using Tensor Train (TT), effectively mitigating the
curse of dimensionality. The low-rank structure of TT enables the use of TTGO to find near-global
solutions during policy retrieval from the advantage function, even under complex nonlinear system
constraints, surpassing the capabilities of existing neural network-based algorithms [33]. This ap-
proach does not require knowledge of the dynamics model; a black-box simulator suffices, akin to
model-free reinforcement learning. Shetty et al. [19] demonstrated TTPI’s superior performance on
several hybrid control problems compared to state-of-the-art hybrid RL algorithms. In this paper,
we apply this approach to learning manipulation primitives for contact-rich tasks involving many
contact parameters. The typical TTPI algorithm cannot cope with the diverse contact-rich instances.
Therefore, we propose domain contraction to retrieve the parameter-conditioned policy that can
achieve robust manipulation.

B Domain information for each manipulation primitive

B.1 Hit

Hitting is widely used to manipulate objects through impact. In this work, we focus on planar hitting
primitive. The state is the object position, denoted as x = [x, y]. The control input is the applied
impact I = [Ix, Iy]. The physical parameters include the object mass m and friction coefficient µ.
The motion equation is

xdes = x0 +
I

m
t− 1

2
µgt2, (19)

13

Given the initial state x0 and the target xdes, the advantage function is

A(x, I) = −
(
∥x− xdes∥2 + 0.01∥I∥2

)
. (20)

We applied TT to approximate the advantage function A(x, I), and the correct impact is computed
by maximizing (20).

B.2 Push

Pushing is challenging for robot planning

Figure 6: Illustration of pushing dynamics.

and control due to its hybrid and under-
actuated nature. The state is characterized by
[sx, sy, sθ, ψ, ϕ], and the action is denoted as
[fx, fy, ψ̇, ϕ̇]. Here, [sx, sy, sθ] ∈ SE(2) de-
notes the position and orientation of the object
in the world frame. ψ is the relative angle of the
contact point in the object frame. ϕ represents
the distance between the contact point and the
object surface. f = [fx, fy]

⊤ are the forces
exerted on the object, while vp = [ψ̇, ϕ̇]⊤ rep-
resents the angular and translational velocities
of the robot’s end-effector. The physical pa-
rameters include the object mass m, radius r,

and the friction coefficient µ between the object and table.

The applied force on this object can be mapped to its resulting velocity through a convex limit
surface convex approximation [36], resulting in a sub-level set

H(w) =
1

2
w⊤Lw, (21)

where L = diag[f−1
max, f

−1
max,m

−1
max], with fmax as the maximum friction force between object and

table, and mmax as the maximum torsional friction.

The robot dynamics is defined based on the Quasi-Static approximation and the limit surface, result-
ing in a similar expression as [37], namely

ẋ =

[
Rt
vp

]
=

[
RLw
vp

]
, (22)

with

R =

[
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

]
, (23)

w =

[
f
τ

]
= J⊤f =

[
1 0
0 1

−py px

]
f , (24)

where R is the rotation matrix and w denotes the applied pusher wrench. J is the Jacobian matrix
of the contact point in the body frame. The contact position [px, py]

⊤ in the object frame can be
computed by

px =
(
r(ψ) + ϕ

)
cos(ψ), py =

(
r(ψ) + ϕ

)
sin(ψ), (25)

for any shape that can be parameterized radially with the radial distance described as r(ψ).

14

We parameterize the object shape using a concatenation of Bézier curves, with the weight matrix C
defined as

C =

1 0 · · · 0 0 · · · · · ·
0 1 · · · 0 0 · · · · · ·
...

...
. . .

...
...

. . . · · ·
0 0 · · · 1 0 · · · · · ·
0 0 · · · 0 1 · · · · · ·
0 0 · · · 0 1 · · · · · ·
0 0 · · · 0 0 · · · · · ·
...

...
. . .

...
...

. . . · · ·
0 0 · · · · · · · · · 0 1
1 0 · · · · · · · · · 0 0

, (26)

where the pattern

1 0
0 1
0 1
0 0

 is repeated for each junction of two consecutive Bézier curves. For two

concatenated cubic Bézier curves, each composed of 4 Bernstein basis functions, we can see locally
that this operator yields a constraint of the formw3

w4

w5

w6

 =

1 0
0 1
0 1
0 0

[
a
b

]
, (27)

which ensures that w4 = w5. These constraints guarantee that the last control point and the first
control point of the next segment are the same, therefore enforcingC0 continuity of the reconstructed
shape. Fig. 7 shows an example of reconstructing the shape of a mustard bottle from the YCB
dataset.

Figure 7: Shape parametrization of a mustard bottle using basis functions.

B.3 Reorientation

In this task, we aim to enable the robot to reorient an object using parallel fingers. An initial velocity
is given to the object by swinging the robot arm. The state is the orientation angle θ, and the control
input is the normal force fn between the gripper and object. The physical parameters are the object

15

Table 3: Time required for parameter-conditioned policy retrieval

Policy retrieval (core-level) Policy retrieval (function-level)
Hit 0.016s ± 0.002s 0.720s ± 0.236s
Push 0.075s ± 0.003s 18.56s ± 4.748s
Reorientation 0.018s ± 0.003s 8.494s ± 0.561s

mass m, length l and torsional friction coefficient µ. The gravitational torque and normal force fn
are used as braking mechanisms to slow down the object motion. We build the dynamics model of
the reorientation primitive based on [38] as

Iθ̈ = τg + 2τf ,

θ̇ = θ̇0 − θ̈∆t,
(28)

where τf = µtf
1+γ
n is the torsional sliding friction between robot gripper and the object. In this

work, we set γ = 0. µt is the torsional friction coefficient, which is related to the materials and
normal force distribution. τg = mglsin(θ) is the gravity torque. We therefore include µt, object
mass m and length l as the model parameters. The task is to rotate the object from a vertically
downward to a vertically upward position. To achieve this, the object is given an initial angular
velocity θ̇0 by swinging the robot arm.

C Experimental details

C.1 Implementation details

In our experiments, we employed an NVIDIA GeForce RTX 3090 GPU with 24GB of memory. For
TTPI, the accuracy parameter was set to ϵ = 10−3 for TT-Cross approximation. The maximum rank
rmax and discount factor were set to 100 and 0.99, respectively. The continuous variables of state,
action and parameter domains were discretized as 50 to 500 points using uniform discretization.

The baseline algorithms, DC+RL and RMA, utilize Soft Actor-Critic (SAC) [39] for policy learning.
Our implementation is based on Stable-Baselines3 [40], using a Multilayer Perceptron (MLP) with a
64 × 64 × 64 architecture as the policy network. The discount factor is set to 0.99, and the learning
rate to 0.001. Additionally, RMA employs an MLP with a 256 × 128 × 64 architecture to embed
privileged information.

C.2 Extra experiments

We compared the time used for retrieving the parameter-conditioned policy in either core level or
function level. Table 3 shows that TT structure allows for much more efficient retrieval via core-level
products compared with function-level products.

16

	Introduction
	Related Work
	Method
	Problem formulation
	Robust policy learning through domain contraction
	Theoretical proof

	Experimental Results
	Robust policy learning and retrieval
	Comparison to other primitive learning methods
	Real-robot experiments: planar push

	Conclusion and Future Work
	Background of Tensor Train
	Tensors as Discrete Analogue of a Function
	Tensor Networks and Tensor Train Decomposition
	Function approximation using Tensor Train
	Global Optimization using Tensor Train (TTGO)
	Generalized Policy Iteration using Tensor Train (TTPI)

	Domain information for each manipulation primitive
	Hit
	Push
	Reorientation

	Experimental details
	Implementation details
	Extra experiments

