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Fig. 1. Our method allows to optimize long and smooth B-Spline curves using Diff VG rasterization pipelines. Applications range from text stylization to image

abstraction and vectorization.

We integrate smoothing B-splines into a standard differentiable vector graph-
ics (Diff VG) pipeline through linear mapping, and show how this can be
used to generate smooth and arbitrarily long paths within image-based
deep learning systems. We take advantage of derivative-based smoothing
costs for parametric control of fidelity vs. simplicity tradeoffs, while also
enabling stylization control in geometric and image spaces. The proposed
pipeline is compatible with recent vector graphics generation and vector-
ization methods. We demonstrate the versatility of our approach with four
applications aimed at the generation of stylized vector graphics: stylized
space-filling path generation, stroke-based image abstraction, closed-area
image abstraction, and stylized text generation.
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1 Introduction

m%:/ﬂ § HE ABILITY to produce long, smooth curves is cen-
(r(—\\ . tral to a variety of design and artistic tasks. These
% include freehand drawing, sketching, calligraphy,
'&« typography, logo design as well as image abstrac-
@“ tions into compositions of organic, flowing, or
blobby shapes. Our aim is to enable the gener-
ation of vector graphic outputs that allow these types of designs,
while taking advantage of recent advances in gradient-based image

generation, stylization, and understanding.

Developments in differentiable vector graphics (Diff VG) raster-
ization have enabled gradient-based optimization methods that
leverage complex image-space losses to drive image generation,
stylization and abstraction methods. Most existing approaches rely
on the method of Li et al. [2020], which implements differentiable
rasterization for a large subset of elements of the Scalable Vector
Graphics (SVG) standard, including piecewise cubic and quadratic
Bézier curves. Most of these methods directly optimize Bézier curves,
but even with additional smoothing penalties they do not provide
guarantees of continuity across segments, which limits their ability
to represent long, smooth and expressive strokes.

Our work is based on two observations. First, alternative spline
parametrizations such as B-spline [De Boor 2001] or Catmull-Rom
[DeRose and Barsky 1988] provide inherent continuity constraints
in their definition. Second, the conversion of such curves to Bézier
curves is a linear transformation, making their integration into exist-
ing Diff VG pipelines a matter of an additional matrix multiplication.
Although these curve parameterizations are well established, to the
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best of our knowledge, their integration into Diff VG remains largely
unexplored.

In our work we focus on uniform B-splines for their simplicity,
high-order continuity and analytic properties [Farin 2001]. This en-
ables a straightforward implementation of derivative-based smooth-
ing criteria that are well known in the fairing and motor-control/robo-
tics domains, but most importantly support our goals of generating
long stylized curves within a Diff VG pipeline.

We define B-splines with control-polygons consisting of series of
“key-points” and convert these to piecewise cubic Bézier curves for
rendering. Since this transformation is linear and rendering is differ-
entiable, gradients from image-space losses can be back-propagated
to the key-points. We treat stroke width as a third curve dimension,
where each curve control point can be assigned an independent
stroke radius, enabling smooth variations similar to that seen in
physical brush strokes [Fujioka and Kano 2007]. Allowing the stroke
width to vanish also presents an effective way to alter the number
of visible strokes required for an image abstraction. Our method op-
erates with both open and closed curves, supporting the generation
of closed and organic-looking areas.

We present four different applications for our method: abstract
space filling curves (Section 4.1), sketch-based stylization (Section
4.2), abstract image vectorization with color quantization (Section
4.3) as well as text stylization and calligram generation with a novel
legibility cost (Section 4.4). We provide a practical implementation
of smoothing B-splines that can be directly integrated into Diff VG
pipelines and demonstrate how this enables long and expressive
curves while maintaining flexible geometric and stylistic control.
Working code and examples for our method are available at github.
com/colormotor/ calligraph.

2 Related work
2.1 Smooth and stylized curve generation

Long and stylized strokes have been explored used in the litera-
ture for applications including image stylization [Kaplan and Bosch
2005; Tong et al. 2025; Wong and Takahashi 2011], text-based styl-
ization [Maharik et al. 2011], and fabrication [Liu et al. 2017; Yang
et al. 2021]. To widen and enhance such applications, our method
also enables the generation of long and smooth strokes through
the use of neural-driven image-based costs. Smoothing is achieved
by minimizing the squared magnitude of higher-order positional
derivatives.

In the motor control literature, it is well established that the kine-
matics of hand and arm movements can be modeled by optimizing
performance criteria [Flash and Hogan 1998]. The so-called mini-
mum square derivative models have been successfully applied to
handwriting and curved motion by minimizing third-order deriva-
tives (jerk) [Flash and Hogan 1985] and fourth-order derivatives
(snap) [Edelman and Flash 1987]. Similar minimum principles are
widely employed for smooth motion control in drones [Mellinger
and Kumar 2011; Ren and Kry 2019] and robots [Todorov 2004; Tou-
ssaint 2017], as well as in statistics for smoothing noisy data [Eilers
and Marx 1996; Reinsch 1967].

Similar principles of smooth motion and continuity have also
been used for curve fairing, where a “fair” curve is typically one that
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exhibits a smooth variation of the curvature [Farin 2001]. In this
context, jerk has been adopted as an approximation for curvature
variation [Lu 2015; Meier and Nowacki 1987; Pottmann 1990], while
snap serves as an approximation for transverse distributed load
[Meier and Nowacki 1987].

In an extensive body of work, Egerstedt and Martin [2009] de-
velop “dynamic splines” that formulate polynomial splines through
optimal control of linear systems. Berio et al. [2017] use similar
principles for the interactive generation of stylized paths similar to
the ones seen in graffiti art and calligraphy with applications similar
to ours. Kano et al. [2003] study the relations between dynamic
splines and B-splines and in a collection of work, they develop an
optimal formulation of B-splines [Kano et al. 2005] applied to gen-
erate motion paths and curves similar to those found in Japanese
calligraphy [Fujioka et al. 2006; Matsukida and Fujioka 2013]. Our
approach is strongly inspired by the B-spline construction initially
proposed by Kano et al. [2005], but we extend their formulation to
support Diff VG and demonstrate its flexibility for generative and
stylization settings.

2.2 DiffVG and applications

In recent years, differentiable rendering has enabled the use of
large pretrained vision and generative imaging models with 3D
[Kato et al. 2020; Tewari et al. 2020; Worchel and Alexa 2023] and
2D [Li et al. 2020; Mihai and Hare 2021; Worchel and Alexa 2023]
parametric primitives . We adopt the method of Li et al. [2020], which
supports a large subset of the SVG standard and cubic curves with
varying width profiles. Our method leverages Diff VG’s support
for cubics with varying width profiles, a feature yet to be used
comprehensively, likely due to limited support in mainstream vector
graphics tools and standards.

CLIP-driven graphics. One of the first applications of Diff VG to
large-pretrained models has been through the use of the Contrastive
Language-Image Pretraining (CLIP) model [Radford et al. 2021],
a multimodal model that has been trained to share an embedding
space between images and their textual descriptions. Frans et al.
[2022] demonstrate that together with Diff VG, the model is able
to generate vector images guided by a text caption or “prompt”.
Ganz and Elad [2024] use an adversarial "robustification” method to
fine-tune CLIP in order to enable gradients that are better aligned
with human perception. Vinker et al. [2022] introduce the idea
of using a loss on internal layers of CLIP to guide vector image
abstraction. A similar approach, combined with Diff VG, has enabled
the generation of stroke-based stylization methods [Schaldenbrand
et al. 2023; Vinker et al. 2023; Xing et al. 2023]. Our method provides
similar capacities, but we take advantage of the fine-tuned CLIPAG
model of Ganz and Elad [2024] and support long smooth strokes,
which was not possible with previous methods.

Diffusion-driven graphics. In the context of 3D asset generation,
Poole et al. [2023] pioneered the so-called Score Distillation Sam-
pling (SDS), which enables gradient propagation from pre-trained
diffusion models to parametric representations. While effective,
the original method relies on high classifier-free guidance (CFG)
scales, often resulting in over-saturation and lack of detail [Katzir
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Fig. 3. Optimization procedure. From left to right: input image with an
initial spline (quintic with multiplicity 3 on all keypoints) and subsequent
optimization steps 10, 150, 300.

et al. 2024]. Recent methods, including variational methods [Wang
et al. 2023], DDIM inversion [Liang et al. 2024] and noise-free score
distillation (NFSD) [Katzir et al. 2024], address these challenges,
improving fidelity and control. Our method is compatible with all
these techniques, and we specifically adopt the approach of Liang
et al. [2024], which proved to be the most effective for us.

In the context of 2D asset generation, Jain et al. [2023b] pioneered
the use of SDS in conjunction with the Diff VG method of Li et al.
[2020], demonstrating the expressive potential of diffusion for vector
graphics generation. Iluz et al. [2023] use SDS for stylizing vector
font outlines to resemble user-defined semantics. To name a few,
variants of SDS have been used for prompt-based sketch generation
[Xing et al. 2023] and animation [Gal et al. 2024], 2D vector graphics
[Xing et al. 2024; Zhang et al. 2024] as well as 3D line art [Qu et al.
2024; Tojo et al. 2024]. None of these methods support the creation
of long, smooth strokes aligned with our objectives, except for
Tojo et al. [2024], who also use B-splines to produce long single-
stroke outputs. We incorporate their proposed repulsion loss in our
method. However, their work does not cover high-order derivative
smoothing, relies on curve discretization, uses a custom CUDA
renderer, and does not support variable-width strokes.

3  Method

Our approach works as follows: we specify one or more B-splines
through a series of 2D or 3D keypoints, where the third dimension
can be used to describe width variation along a stroke. The B-splines
are converted to cubic piecewise Bézier curves that are then rendered
in a differentiable manner with the method of Li et al. [2020] (see also
Figure 2). Similarly to conventional Diff VG pipelines, this enables
gradient optimization of the key-points with costs that depend on
curve geometry as well as on the rendered version of the curves.
Figure 3 shows the process: first, some initial points and an image
are given; then, during optimization a spline gradually represents
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the input image more explicitly, while the stroke widths are jointly
adapted.

3.1 Uniform B-splines

We use normalized uniform or “cardinal” B-splines that have uni-
formly spaced integer knots [De Boor 2001], which simplifies com-
putations and proves successful in our applications. A B-spline of
degree p and order k = p + 1 is a linear combination

n-1

x(w) = ) eiNe(u—t;)

i=0
where n control-points C = [c¢o, ¢y, . .. ¢,—1] and shifted bases N
are associated with a non-decreasing sequence of m = n + k knots.
In our formulation we keep these fixed to

t= [tO:-“stm—l] :[—p,...,O,...,n—k,.. n]
— ——
tp ..... tm—k

The spline is defined by sampling u in the interval [#_q, ty—k]-
Increasing order derivatives x(?) of a B-spline are easily computed as
weighted combinations of lower order B-splines. We refer the reader
to the supplement for details on the basis functions construction, but
these are readily available in many modern scientific computation
packages [Virtanen et al. 2020]. The number of curves and control
points is predefined, so that basis functions and knot sequences can
be precomputed and remain fixed during optimization.

3.2 Spline construction

B-splines are approximating curves, and both periodicity and clamp-
ing to endpoints require the repetition of either knots or control
points. This is typically achieved with repeated knots, but we follow
Fujioka et al. [2006] and use repeated control points. This maintains
strict uniformity while enabling adaptive smoothing of corner-like
features and simplifying integral computations, which is advanta-
geous for our use-case. Instead of directly specifying control points,
we let a user initially specify a spline through a series of M key-
points Q = q,,...,q,, and optimize these rather than the spline
control points directly. The key-points are automatically adapted
into a series of control points C depending on the curve’s desired
clamped or periodic behavior.

For a clamped (open) spline the control points are given by the
key-points Q padded the first and last key-point repeated k —1 times.
This results in a parametric motion that begins and ends with a rest.
For periodic closed splines we construct C by appending the first
k — 1 keypoints to the initially specified key-point sequence Q.

Key-points may optionally be repeated to create sharp corners, as
each repetition initially reduces the continuity of the curve by one
degree [Farin 2001]. This strategy is useful to produce additional
degrees of freedom for the subsequent optimization, where the cor-
ners can be adaptively smoothed depending on the desired amount
of smoothing.

3.3 Smoothing B-splines

B-splines of order k are by definition C¥~2-continuous, but more im-
portantly their construction facilitates the formulation of smoothing
criteria since they allow closed form computation of derivatives and
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integrals. In our method, we adopt a smoothing cost based on the
squared magnitude of the curve derivatives, which is standard in the
smoothing literature and is also known for its utility in curve fairing
[Pottmann 1990] and for modeling human arm movements [Todorov
and Jordan 1998]. These methods typically trade off smoothness
with a geometric accuracy term, but in our work we consider a
variety of image-space objectives instead of geometry and define a
smoothing cost:
b
L7 [ EO@Fw =16 )
k-1

where T = t,,,_r — tx_1 and c is a vector that concatenates all control
points of the spline. The integral can be calculated exactly by setting
G to a block Gram-matrix constructed from the inner products of
the basis function derivatives [Fujioka and Kano 2007; Vermeulen
et al. 1992], resulting in the standard spline smoothing criterion.
Alternatively, a finite difference approximation of G results in the
penalized-spline method of Eilers and Marx [1996]. Both methods
have similar run-time performance because the matrix is precom-
puted for each stroke, and we refer the reader to the supplement
for derivations. Most of our examples use quintic splines with a
smoothing cost L:mooth on the third positional derivative (jerk).
We do so on the basis that “minimum jerk” is a known criterion
that has been used to model hand and arm movements [Flash and
Hogan 1985; Todorov and Jordan 1998] as well as an approximant
for curvature variation in curve fairing [Lu 2015]. Nevertheless, our
method generalizes to different curve and smoothing orders (Fig. 4).

3.4 Conversion to Bézier and rendering

Our goal is to integrate smoothing B-splines into a Diff VG pipeline
by taking advantage of the linear relationship between B-splines and
Bézier curves. B-splines can be converted exactly to piecewise Bézier
curves of the same degree. To do so we use the method of Romani
and Sabin [2004], which reduces to a matrix multiplication between
the flattened spline control points ¢ and a block transformation
matrix S.

Our method also supports smoothing costs on higher-order posi-
tional derivatives such as jerk (third derivative) and snap (fourth
derivative), which require polynomial curves of degree greater than
three. Although native rendering of such higher-degree curves is
not supported in Diff VG and remains a challenge, we observe that
reducing the degree of B-splines to three introduces negligible geo-
metric error (less than 0.3% of the curve’s bounding box diagonal
in all our experiments), making the optimization of higher-degree
B-splines practical for image-based error calculations.

We perform a degree reduction of Bézier curves using the multi-
reduction method of Sunwoo [2005], which involves a second block
transformation matrix R. As a result, the control points for a cubic
piecewise Bézier curve compatible with Diff VG are computed from
the (flattened) control points ¢ with the linear map RSc. We refer
the reader to the work of Romani and Sabin [2004] and Sunwoo
[2005] for details; we include in the supplement details and matrices
for quintic Bézier and their reduction to cubic.

Diff VG rendering and optimization. The conversion procedure
results in a sequence of Bézier control points € R* , where the third
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dimension represents the stroke radius. Control points and associ-
ated stroke and fill colors are all treated as differentiable parameters
to be optimized. Rendering the scene results in an image I, which is
differentiable with respect to all the underlying parameters.

4 Applications

The proposed B-spline construction, smoothing and conversion to
Bézier enables the optimization of long, expressive and optionally
periodic curves, which would be challenging to produce with cur-
rently known methods leveraging Diff VG. All the results presented
hereafter are produced using a combined cost:

L=L1+Lg @)

consisting of an image-space term, £y, and a geometric term, L.
We construct each term as a combination of losses depending on
the application objective. L relies on differentiable rasterization,
which allows gradients to propagate from raster-based objectives to
the geometry parameters. Lg leverages the properties of B-splines
to enable smoothing, stylization objectives, and constraints while
preserving continuity. We denote the relative weights of any loss
L, as Ao, e.g. the weight of a smoothing loss on the third derivative
is denoted as Agmooth- If not specified, the weights are assumed to be
1. When also optimizing stroke widths, we clip these to a minimum
and maximum value at each iteration.

We generate strokes using the Adam optimizer and use a cosine
annealing schedule on the learning rates. We run our experiments
on a single NVIDIA GeForce RTX 3060 with 12 Gb of memory.
We run most of the presented applications for 300 steps, which
approximately takes between 30 and 60 seconds on our system. One
exception is using diffusion-guidance, which takes approximately
0.6 to 1.0 second per step depending on the method used, leading
to an optimization time of up to 6 minutes.

Asmooth = 0.0 Asmooth = 10.0 Asmooth = 30.0

m
I
Q

0.052 0.012

- —
<
1l
Q

0.009 0.004
n
1l
Q

0.005 0.002

Fig. 4. Comparison of different spline degrees p (rows), smoothing deriv-
ative orders d and smoothing weight Agmeoth (columns). In each row, we
let the smooting derivative to p — 1. We quantify smoothness using the
dimensionless jerk measure [Hogan and Sternad 2009]. Lower is smoother.
We use the stylized area fill method in Section 4.1 using the style image in
Fig. 6, left.
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Fig. 5. Text combining areas generated with our stylized area filling method.
Each letter is generated separately.

Fig. 6. Examples of stylized area filling for a letter “S”. The images on the
lower left are used to guide stylization.

5

Fig. 7. Left, weighted Voronoi samples (black) for a bitmap of the letter ’A
and an open TSP path connecting the points (blue). Middle, initial quintic B-
spline with key-points given by the Voronoi samples overlaid on the bitmap
area with 50% opacity. Right, result of an optimization with Lg = Lgmooth
and Lj for the 50% opacity bitmap. Decreasing opacity results in sparser

and thinner strokes.

4.1 Area fillings and pattern generation

As a baseline for our method we demonstrate how our pipeline
can be used to create pattern fills of solid regions. It illustrates also
how our approach can be flexibly used to control stylization while
maintaining smoothness (Fig. 5 and 6).

Initialization. Stochastic gradient descent is well known to be
sensitive to initialization due to its susceptibility to local minima.
We find good points using an initialization strategy based on so-
called weighted Voronoi stippling [Secord 2002]. For simplicity, we
adopt this method for different applications presented in this paper.
The input can be an arbitrary bitmap (Fig. 7, Left) or a saliency map
(Fig. 13). To create a single stroke, we use a TSP route connecting
the points in an open or looping path. This method is known in
the literature as “TSP art” [Kaplan and Bosch 2005] (Fig. 7, Left).
For open paths, we select the left-topmost point and the bottom-
rightmost as initial and final points, respectively.

Image coverage loss. We find that setting £ as a multiscale mean
squared error (MSE) loss works particularly well to fill an area or
silhouette defined as an image. This loss is computed between the
target and the rendered image, with each step corresponding to a
progressively reduced scale and blurred version of the image. This
approach is similar to the shape-based losses used by Iluz et al.
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Fig. 8. Stylized coverage of a letter “S” using the image on the left as a
target. (a) Optimization using Bézier curves. (b) Optimization using quintic
splines and smoothing on jerk with Asmeoth = 1. (). Same procedure with
Asmooth = 10.

Fig. 9. Examples combining image coverage with a patch-wise loss on CLIP
features derived from an example image (top left) and using the same
initialization from Fig. 7. From the left, the first two examples use a quintic
spline with a smoothing loss Lg = L3 (jerk). For comparison, the right
example uses a Catmull-Rom spline only enforcing C! continuity. Allowing
zero stroke width results in the appearance of multiple strokes, but the

optimization is still performed on a single curve (left, dotted cyan).

[2023] and Tojo et al. [2024], but lower scales encourage alignment
with broader intensity regions and faster convergence, while higher
scales promote a more accurate silhouette reconstruction. Reducing
the opacity of the target image directly decreases the density of
curves used to cover it (Fig. 7-right), allowing control over the
visual result.

Bounding box loss. For some of our optimization procedures, it
is useful to extend L with a bounding box loss that keeps curve
key-points within the bounding box of a given image:

Lbox = Z lT [(P (bmin - P,) + 4 (P, - bmax)]

where Ly« > 0 only if key-points fall outside of the bounding box
bmin, bmax and where ¢ can be either a Softplus or a ReLU function
applied element-wise to the vectors.

Image-space semantic-driven stylization. Together with geometry-
based stylization costs, we can add a semantic stylization term Lgyle
to the image-space loss L1, which enables stylization based on a
text prompt or features extracted from an example image ( Fig. 8, 6
and 9). We apply the technique proposed by Kwon and Ye [2022] for
semantic-driven image stylization and use a patch-wise directional
loss between the encoded features of an example image and the
encoded features of the rendered curves. We use the augmented
CLIPAG [Ganz and Elad 2024] ViT-B/32 transformer architecture
as we find it to be efficient while working well for our use vector
stylization use-case.

ACM Trans. Graph., Vol. 44, No. 6, Article 225. Publication date: December 2025.
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Fig. 10. Diffusion driven stroke abstraction with ControlNet and IP-adapter
conditioning. (a) a variable width abstraction of “Spock”. (b) Allowing a
single strokes to reach zero width in regions results in an effective strategy
for automatically determining the number of strokes for a multi-stroke
abstraction. (c) combining the diffusion cost with a stylization term that
favors horizontal and vertical orientations.

Fig. 11. Rendering stroke abstractions with a spray-like brush. The quintic
B-splines together with smoothing on jerk produce smooth motions that
tend to slow down where curvature is higher. This is a characteristic feature
of human hand motions [Viviani, Paolo and Flash, Tamar 1995] and results
in a lower deposition of paint particles where speed is higher.

4.2 Single-stroke image abstraction

Most existing Diff VG-based methods that work with diffusion mod-
els rely on variants of Score Distillation Sampling (SDS) together
with a text caption to guide the generation of parametric vector
primitives. We follow a similar approach but enable image-conditi-
oned stylization by integrating ControlNet [Zhang et al. 2023] with
Canny edge detection and IP-Adapter [Ye et al. 2023] into the diffu-
sion pipeline. ControlNet helps to preserve structural cues from the
input image, while IP-Adapter encourages the strokes to align with
its global appearance and style (Fig. 10 and 11).

In our experiments, we find that using a generic text prompt such
as “A black and white drawing” for stroke-based outputs is sufficient
to generate recognizable abstractions and stylizations of an input
image. For a given condition y, the gradient of the SDS-like loss
with respect to the optimizated parameters 0 has the form:

%9(9)

a0 |’
where €4 (x¢,t,y) is the predicted denoising direction for a latent
x; at time step t, € is the noise predicted by the model and w(#) is a
weighting function dependent on the time-step.

We employ the time-step schedule annealing procedure proposed
by Liang et al. [2024] and use their Interval Score Matching (ISM)
variant of SDS, which helps convergence in our experiments and
enables a standard classifier-free guidance of 7.5.

It is known that for diffusion models, higher time steps during
denoising typically produce coarser features, while lower time steps

VoLsps =By [w(t) (eg(xe, 1, y) — €) ®)
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Fig. 12. From left to right: varying the minimum time-step (100, 300, 500, 700)
for 300 timesteps of the ISM [Liang et al. 2024] variant of SDS and a single
quintic stroke. The cyan line emphasizes the centerline of the stroke, which
reaches zero width in certain regions.

Fig. 13. Left, initialization with a saliency map computed from the nor-
malized logits of the last layer of the OneFormer panoptic segmentation
model [Jain et al. 2023a]. Right, stroke optimization using ISM with diffusion
conditioned on the edge map, using a minimum time step of 400 and with
an additional stylization loss Astyle guided by the same image as Fig. 8.

yield finer details [Hwang et al. 2023]. Given our goal of producing
single stroke image abstractions, the curves lack sufficient degrees
of freedom to capture these finer details, so we limit the time steps in
the denoising process to a minimum of 500 (Fig. 12). With a similar
motivation, we find that with diffusion-guided stroke abstraction it
is useful to initialize the strokes with a multiplicity > 1 (we use 3
with quintic splines in our examples). Using a higher multiplicity
results in smoother strokes, where fewer details are captured.

4.3 Area-based image abstraction

Our method allows for the generation of smooth closed areas, and
we observe that this is useful to generate image abstractions similar
to what can be seen in certain designs consisting of overlapping
smooth regions and a limited color palette. Examples include psych-
edelic designs, album covers, screen-printed graphics, or street-art
inspired fashion and graphic designs. We are interested in generating
outputs that aim to be printed or fabricated as collages with a limited
number of regions and colors. To guide stylization, we use filled
areas instead of strokes and set Ly to a variant of the CLIP-driven
geometric cost described by Vinker et al. [2022]

Leup = Z [|lcLp; (f) - CLIP (Ip)], . @
1

using the L! norm instead of L? and omitting the semantic term
originally proposed by the authors. We use layers 2 and 3 together
with the CLIPAG [Ganz and Elad 2024] architecture. We use CLIP as
opposed to diffusion because we find this to be significantly faster,
while being effective for this kind of stylization task.

Repulsion loss. For applications using closed curves, we adopt
the repulsion method for 3D wire fabrication proposed by Tojo



Fig. 14. Quantized color vectorizations using an additional image-driven
stylization term Lgyie. The palette is extracted from the style image.

Fig. 15. Increasing Ayl weight for an abstract vectorization of Bach. From
left to right Astyle =0, Astyle = 0.06 , Astyle = 0.1

et al. [2024] to compute a geometric loss Lrepul, penalizing self-
intersections and overlaps based on a tangent-point energy kernel
for a set of sampled points along the spline. For this application, we
compute the loss for each area separately, thus allowing overlaps
and intersections among different areas.

Optimization with quantized coloring. Jang et al. [2017] use the
Gumbel-Softmax trick to make discrete choices differentiable during
training. We apply the same idea to assign colors to image regions,
using soft selections from a fixed color palette that can be optimized
with backpropagation. To progressively transit from soft to discrete
assignments during the training process, we anneal the Gumbel-
Softmax temperature using an exponential schedule.

Given a set of K palette colors organized as a matrix V €
we optimize the logits per area ¢; € RK using a soft assignment

Kx3
R*,

{A .
a; = softmax (ﬁ) with g; ~ Gumbel(0, ﬁ)K,
T

where f is a scale parameter that we empirically set to 0.15 to avoid
excessive noise during optimization [Huijben et al. 2023] and 7 is
a temperature parameter that we anneal during optimization. We
use these soft colors computed as v; = @V during the optimization.
At the same time, for visualization, we obtain hard assignments
by taking the argmax over the optimized logits and selecting the
corresponding palette color. To encourage a balanced use of all the
specified palette colors, we add a regularization term:

AK HE, [a,—] - K711||2

to Ly, which penalizes deviations from a uniform color assignment,
encouraging a balanced use of the palette. Figures 14 and 15 show
some results.

Area initialization and optimization. We initialize a user-defined
number of areas using weighted Voronoi sampling on a saliency map
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of the input image and create an initial series of closed curves with
keypoints given by the vertices of each resulting Voronoi regions.
Each curve is then assigned random initial logit and the curves
are sorted by increasing saliency of the covered area. Optimization
proceeds with the inclusion of the repulsion loss in L, which keeps
the area outlines from intersecting.

4.4 Text stylization

In line with the smooth curve image abstractions, we aim to generate
text abstractions made of smooth curves that fit inside a target area.
Examples of this approach can be seen in posters, graphic designs,
as well as in “calligrams”: renditions of text that is arranged to fit
a specific silhouette, such as those seen in the methods of Xu and
Kaplan [2007] and Zou et al. [2016] (c.f. Figure 17). Our pipeline
results in a simple way to generate calligrams, such as “blobby” texts
(Fig. 16) and abstract monospace fonts (Fig. 18).

We tackle text stylization with the tools we have covered so far
and start with a bitmap image I representing the desired silhouette
and an initial text layout rendered as a second image Iix. We uni-
formly sample the glyph outlines and produce key-point sequences
used in optimization. The optimization deforms the outlines based
on a loss that balances silhouette coverage, outline smoothness, and
repulsion between outline points. This procedure alone smooths
and fits the outlines into the target area, but this may compromise
legibility (Figure 18c).

To preserve legibility, we introduce a perceptual loss based on the
features of a pretrained vision encoder, which we use to compute the
feature-space distance between the rendered deformed image I and
the original layout Iix. We find that using the last-layer [CLS] token
as feature of the TrOCR model [Li et al. 2023] and calculating a loss
based on the L!-norm of the embeddings produce robust results for
this application (Figure 18).

The placement of glyph can be manual or automatic. In the auto-
matic case, we optimize a similarity transform per glyph to maxi-
mize silhouette coverage while avoiding overlaps and maintaining
a readable text layout. We first offset each glyph by a user-specified
amount to encourage padding around the text. At each optimization
step, we render both a morphologically opened version of the silhou-
ette and glyphs into two images using white with 50% opacity on a
black background. We minimize a loss that combines (i) a coverage
term L (Section 4.1), (ii) an overlap cost given by ), ReLU(v — 0.5)
for each pixel intensity v € [0, 1] of the rendered image and (iii)

%

(a) (b) (©) (@

Fig. 16. Automatic calligram production for a silhouette generated with
the prompt “Silhouette of a BUNNY®. (a) initial text layout rendered with
50% opacity and overlayed on the silhouette. (b) intermediate step of the
layout optimization displaying an image area that increases the overlap
cost. (c) Sampled glyphs placed according to the layout. (d) Result of the
optimization.
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Fig. 17. Calligram generation: comparison of (a) an example from Zou et al.
[2016] for a camel silhouette and (b) two runs of our method on the same
silhouette with automatic initialization and two different fonts.

(@) ' (b) I (© | @ H (e) !

AAMLARALARS
HAVMBURGERS

Fig. 18. Monospace font generation. (a) A letter “R” (quintic B-splines with
jerk cost) adapted to a triangle, using Arepul = 666, Axt = 6.6 and Asmooth =
200.0. (b) Setting Arepu = 0 (no repulsion), still results in a readable letter but
(c) removing the legibility loss does not. (d) B-splines with legibility but no
smoothing. (e) Catmull-Rom to enforce tangent continuity with legibility
loss (for comparison). (f) Combining glyphs optimized to fit a triangle, a

“, & ’
n a8 1R -1,

Fig. 19. More calligrams generated with our system. The seagull silhouette
is generated using the prompt “Silhouette of a SEAGULL”.

an alignment cost ) ||0|| that penalizes the absolute turning an-
gles 0 between consecutive glyph center-points and maintains text
ordering. We note that image generation models such as DALL-E
3 [Betker et al. 2023] are particularly effective at generating sil-
houettes with a prompt, which finally results in a fully automatic
calligram generation pipeline.

5 Discussion

In our example applications, we have seen how a B-spline reparame-
trization can be used to generate long and expressive strokes and
curves in a Diff VG pipeline. B-splines enforce high-order continu-
ity by design, which enables analytic smoothing losses that help
producing more regular geometry when combined with different
stylization losses. This offers a considerable advantage compared
to using only Bézier curves or parametrizations with lower order
continuity, especially for applications like the ones demonstrated
in this paper. Qualitative examples of this can be seen in examples
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Fig. 20. Stroke abstraction of Thelonious Monk. Left, using a single stroke
and Voronoi with TSP initialzation. Middle, using multiple strokes with
multiple key-points along vertical lines. Right, using facial features extracted
with MediaPipe [Lugaresi et al. 2019].

50 === speed == acceleration

Fig. 21. Smooth speed and acceleration of a quntic spline covering a num-
ber “5” and optimized using the method of Section 4.1. With appropriate
resampling the path kinematics can be safely tracked with a robot.

Fig. 22. Our method produces smooth kinematics that facilitate reproduc-
tion with a robot, and the varying width can be used to control brush
pressure. Left and center, the robot reproducing portraits. Right, the robot
reproducing a stylized area fill.

such as Figure 8 and Figure 18. For conciseness, we used a simi-
lar Voronoi-based initialization strategy in most of our examples.
However, our method performs well with different initializations
(Fig. 20), which can serve as an additional design parameter to be
explored by users.

One common challenge in stroke-based abstraction pipelines is
controlling the trade-off between visual fidelity and geometric sim-
plicity. Previous methods typically address this by pre-determining
the number of curves [Vinker et al. 2022] or by integrating a learned
component into the optimization loop [Vinker et al. 2023]. We find
that our use of smoothing, combined with optimizable stroke width,
allows this trade-off to be controlled parametrically and with the
number of strokes emerging from the optimization. This results in
a solution that is significantly simpler than previous methods.

We investigate the utility of our representations and different
loss terms in different examples of our applications. In Figure 18
we perform a small qualitative ablation showing the effectiveness



of the proposed legibility loss (Figure 18c) as well as the benefits
of B-splines and smoothing compared to Catmull-Rom splines (Fig-
ure 18e), which only enforce C! continuity. In Figure 8a we can
observe that directly optimizing Bézier curves effectively captures
features of the example style image. However, higher degrees of
freedom produce results that capture finer details at the expense of
a clear stroke structure. Although this additional detail may be de-
sirable in certain applications, it is not suitable for the applications
considered in our work.

Interestingly, the computational overhead of the proposed B-
spline to Bézier matrix conversion is lower than the one for the
additional optimization parameters required for an equivalent multi-
Bézier curve. We tested performance with a simple comparison
where we cover an area by optimizing the 290 key-points of a single
open cubic B-spline. We compared this to a similar setup directly
optimizing the corresponding 874 Bézier control points. On our
hardware setup, the Bézier case is 4.5 times slower. This shows that
the additional cost of the proposed matrix conversion is negligible
and suggests that our method is an efficient way to enforce output
continuity in Diff VG settings.

Robotic reproduction. Optimizing splines with degree greater than
three results in smooth acceleration profiles (Fig. 21). This enables
a safe reproduction of the resulting trajectory kinematics with an
articulated robot arm (Fig. 22), without requiring an intermediate
reparameterization step. We tested this by reproducing the trajec-
tories using a 7-axis Franka robot equipped with a brush. We first
transformed the control points to a desired workspace coordinate
system, treating the stroke widths as perpendicular distances to the
drawing plane. We then sampled the trajectories at a resolution that
produced a maximum speed and accelerations within the robot’s
mechanical limits. The inverse kinematics for the resulting trajecto-
ries are then computed with an iterative linear quadratic regulator
(iLQR) [Li and Todorov 2004].

6 Conclusions and future work

We have presented a framework for integrating high-order B-splines
into Diff VG pipelines together with minimum-square derivative-
based smoothing costs. We have explored different applications and
demonstrated how this enables the generation of long, smooth, and
stylized strokes through a combination of geometric and image-
space loss functions. While the combination of losses allows for a
large variety of creative outputs, a practical challenge is the necessity
to weigh different losses to achieve the desired result, which, given
the iterative optimization procedure, can be slow and tedious.

Although our formulation draws on a large body of existing work
on B-splines, an effective use of this tool together with Diff VG is
novel, and we expect it to be a valuable tool for the community. We
used uniform B-splines because of their simplicity and effectiveness
for our use cases. However, exploring non-uniform parameteriza-
tions, such as NURBs, presents an interesting direction for further
research, as it may unlock additional flexibility and control for styl-
ized outputs.
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A B-Spline details

A B-spline (or basis-spline) or order k is a piecewise polynomial
curve of degree p = k—1 defined by a linear combination of n weights
or control points ¢, ¢y, . ..c,—1 and a non-decrasing sequence of
m = n + k knots (or breakpoints) ty, t1, ta, . . ., ty—1-

n-1
x(w) = )" ciBix(u)
i=0
Each basis function B; ;. defines k polynomial segments spanning
k + 1 knots t;, ti41, . . ., tiyx and is positive in the half-open domain
[ti, t; + k). The knots between #, and t,,_¢ (not included) are called
“internal” or “interior” knots. From here: For n control points we
have n + k knots and n — k interior knots.
B-spline bases can be defined through the “Cox-de Boor” recur-
sion starting from order 1 (degree 0):

1 ifty<u<t
Bi,l (u) _ i . i+1
0 otherwise

And with

Bik(u) = :

tivk — U
. Biy1k-1(u)

Bik-1(u) +
;o Livk = tiv1

tivk—1 = b

The number of control points n, order k and number of knots m

are related by n + k — m = 0. For nonrepeating knot sequences, the
curve will be C¥=2 continuously differentiable.

A.1 Derivatives
The derivative of a B-spline basis function of order k is given by

d k-1 k-1
—B;x(u) =B, (1) = ———Bjk—1(u) -
du l,k( ) ,,k( ) tk1 — & i,k 1( ) t

Itis a linear combination of all the derivatives of the basis function.
As a result, the derivative of a B-spline is equivalent to a B-spline
of order k — 1 with a new set of control points given by weighted
differences of pairs of consecutive control points.

Bivik—1(u).
itk = ti+1

A.2  Cardinal B-splines

A cardinal B-spline (not to be confused with cardinal/Catmull-Rom
splines) is a “normalized uniform B-spline”. It has uniformly spaced
knots, with t;y1 — ¢; = h (uniform) with A = 1 (normalized) so
the knots are all integers (Fig. 23). Uniformity and normalization
simplify the computations of a B-spline as all basis functions are
translated versions of the same basis function that we denote as
Ni (u). We then have

n-1
x(u) = Z ciNp(u—t;)

i=0
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and the B-spline derivatives simplify to

L Ne(w) = N{(w) = N (1)~ Ney (= 1)
SO
n-1
() =) e (Neo (= 1) = Ny (u = t; = 1)
i=0

A.3  Smoothing term

The smoothing term can be computed exactly and is considerably
simplified for the case of cardinal B-splines [Schumaker 1981]. While
different approaches exist to calculate this kind of integral [de Boor
et al. 1976; Vermeulen et al. 1992] to calculate this kind of integral,
we follow Fujioka and Kano [2007] and Fujioka et al. [2017] to have

(e tie—q (o]
Lsmooth [oo D(u) du - [ * D(u) du - [ D(U) du

)

with D(u) = [|x?) (u)||?
This can be computed explicitly by constructing a Gramian G
with:

/0 NDdu~ [P N du ifi <pandj<p
d p i d ips .
Gij = fo Ni(j)du Nr§+;) inp— ]du ifi>nandj>n
/0 Ni(;j)du otherwise

and

d d d L
Ni(!j) :Nli )(u)Nli )(u—]+1)

Then each G; j can be computed exactly using quadrature [Ver-
meulen et al. 1992].
If we let ¢ € R"P be a vector that concatenates n control points,

each of dimensions D we have
£l n=¢Ge, G=Gaolp

where ® is the Kroenecker product and Ip is the identity matrix of
dimensions D.

Degree 3

-2 0 2 4 6 8

Degree 4

-4 -2 0 2 4 6 8

Fig. 23. B-Splines and their bases with degrees 3 and 4.
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P-splines. A similar procedure can be efficiently approximated
with discretization of the derivative cost, using penalized-splines
(P-splines) as described by Eilers and Marx [1996]. To do this, we
can simply use G = D( d)D(d) with D4y a matrix representing the
finite difference operator of order d. The advantage of this method
is the simplicity of implementation and the possibility of achieving
similar smoothing results. We can arbitrarily combine the degree of
discrete differences with the degree of the curve. We expose both
methods for completeness and to enable applications where the
integral cost may be necessary (e.g., planning and robotics).

A.4 Conversion to Bézier

With the method of Romani and Sabin [2004], converting the p + 1
control points of a quintic B-spline of degree p to single Bézier
segment of the same degree, can be done witha (p + 1) X (p + 1)
matrix that we denote as $”. To convert all the control points of a
B-spline we stack multiple shifted and overlapping copies of S? into
a larger matrix S, by shifting each copy by p rows and 1 column.
For a quintic spline this can be visualized as:

The blocks for a quintic spline are given by:

1 26 66 26 1 0
0 16 66 36 2 0
s 1o 8 60 48 4 0
“120l0 4 48 60 8 0|
0 2 36 66 16 0
0 1 26 66 26 1

The block matrix § used to compute the Bézier control points from
the flattend B-spline control points ¢ is given by the Kroenecker
product S ® Ip.

A.5 Degree reduction

With the method of Sunwoo [2005], reducing a Bézier curve of
degree p to one of degree g can be done with a (¢ + 1) X (p + 1)
matrix that we denote as R”9. To reduce the degree of all the control
points of a Bézier chain we stack multiple shifted and overlapping
copies of R”? into a larger matrix R by shifting each copy by p rows
and g columns. For a reduction from quintic to cubic this can be
visualized as:



The blocks of the quintic to cubic reduction matrix are given by

1 000 0 0
Ri_|"3 3 00 0 0
o 0 o0 o 3 -2
0 0 0 0 0 1

The block matrix R used to compute the reduced Bézier control
points from is given by the Kroenecker product R ® Ip.
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