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Fig. 1. Our method allows to optimize long and smooth B-Spline curves using Di�VG rasterization pipelines. Applications range from text stylization to image

abstraction and vectorization.

We integrate smoothing B-splines into a standard di�erentiable vector graph-

ics (Di�VG) pipeline through linear mapping, and show how this can be

used to generate smooth and arbitrarily long paths within image-based

deep learning systems. We take advantage of derivative-based smoothing

costs for parametric control of �delity vs. simplicity tradeo�s, while also

enabling stylization control in geometric and image spaces. The proposed

pipeline is compatible with recent vector graphics generation and vector-

ization methods. We demonstrate the versatility of our approach with four

applications aimed at the generation of stylized vector graphics: stylized

space-�lling path generation, stroke-based image abstraction, closed-area

image abstraction, and stylized text generation.

CCS Concepts: • Computing methodologies→ Non-photorealistic ren-

dering; Rasterization; Parametric curve and surface models; Neural

networks; • Applied computing→ Fine arts.

Additional Key Words and Phrases: Di�erentiable vector graphics, B-splines,

Di�usion, CLIP, Long strokes

ACM Reference Format:

Daniel Berio, Michael Stroh, Sylvain Calinon, Frederic Fol Leymarie, Oliver

Deussen, and Ariel Shamir. 2025. Neural Image Abstraction Using Long

Authors’ Contact Information: Daniel Berio, Goldsmiths, University of London, Lon-
don, United Kingdom, daniel.berio@gold.ac.uk; Michael Stroh, University of Konstanz,
Konstanz, Germany, michael.stroh@uni-konstanz.de; Sylvain Calinon, Idiap Research
Institute, Martigny, Switzerland, sylvain.calinon@idiap.ch; Frederic Fol Leymarie, Gold-
smiths, University of London, London, United Kingdom, �@gold.ac.uk; Oliver Deussen,
University of Konstanz, Konstanz, Germany, oliver.deussen@uni-konstanz.de; Ariel
Shamir, Reichman University, Herzliya, Israel, arik@runi.ac.il.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/12-ART225
https://doi.org/10.1145/3763345

Smoothing B-Splines. ACM Trans. Graph. 44, 6, Article 225 (December 2025),

12 pages. https://doi.org/10.1145/3763345

1 Introduction

he ability to produce long, smooth curves is cen-

tral to a variety of design and artistic tasks. These

include freehand drawing, sketching, calligraphy,

typography, logo design as well as image abstrac-

tions into compositions of organic, �owing, or

blobby shapes. Our aim is to enable the gener-

ation of vector graphic outputs that allow these types of designs,

while taking advantage of recent advances in gradient-based image

generation, stylization, and understanding.

Developments in di�erentiable vector graphics (Di�VG) raster-

ization have enabled gradient-based optimization methods that

leverage complex image-space losses to drive image generation,

stylization and abstraction methods. Most existing approaches rely

on the method of Li et al. [2020], which implements di�erentiable

rasterization for a large subset of elements of the Scalable Vector

Graphics (SVG) standard, including piecewise cubic and quadratic

Bézier curves. Most of thesemethods directly optimize Bézier curves,

but even with additional smoothing penalties they do not provide

guarantees of continuity across segments, which limits their ability

to represent long, smooth and expressive strokes.

Our work is based on two observations. First, alternative spline

parametrizations such as B-spline [De Boor 2001] or Catmull-Rom

[DeRose and Barsky 1988] provide inherent continuity constraints

in their de�nition. Second, the conversion of such curves to Bézier

curves is a linear transformation, making their integration into exist-

ing Di�VG pipelines a matter of an additional matrix multiplication.

Although these curve parameterizations are well established, to the
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best of our knowledge, their integration into Di�VG remains largely

unexplored.

In our work we focus on uniform B-splines for their simplicity,

high-order continuity and analytic properties [Farin 2001]. This en-

ables a straightforward implementation of derivative-based smooth-

ing criteria that arewell known in the fairing andmotor-control/robo-

tics domains, but most importantly support our goals of generating

long stylized curves within a Di�VG pipeline.

We de�ne B-splines with control-polygons consisting of series of

“key-points” and convert these to piecewise cubic Bézier curves for

rendering. Since this transformation is linear and rendering is di�er-

entiable, gradients from image-space losses can be back-propagated

to the key-points. We treat stroke width as a third curve dimension,

where each curve control point can be assigned an independent

stroke radius, enabling smooth variations similar to that seen in

physical brush strokes [Fujioka and Kano 2007]. Allowing the stroke

width to vanish also presents an e�ective way to alter the number

of visible strokes required for an image abstraction. Our method op-

erates with both open and closed curves, supporting the generation

of closed and organic-looking areas.

We present four di�erent applications for our method: abstract

space �lling curves (Section 4.1), sketch-based stylization (Section

4.2), abstract image vectorization with color quantization (Section

4.3) as well as text stylization and calligram generation with a novel

legibility cost (Section 4.4). We provide a practical implementation

of smoothing B-splines that can be directly integrated into Di�VG

pipelines and demonstrate how this enables long and expressive

curves while maintaining �exible geometric and stylistic control.

Working code and examples for our method are available at github.

com/colormotor/ calligraph.

2 Related work

2.1 Smooth and stylized curve generation

Long and stylized strokes have been explored used in the litera-

ture for applications including image stylization [Kaplan and Bosch

2005; Tong et al. 2025; Wong and Takahashi 2011], text-based styl-

ization [Maharik et al. 2011], and fabrication [Liu et al. 2017; Yang

et al. 2021]. To widen and enhance such applications, our method

also enables the generation of long and smooth strokes through

the use of neural-driven image-based costs. Smoothing is achieved

by minimizing the squared magnitude of higher-order positional

derivatives.

In the motor control literature, it is well established that the kine-

matics of hand and arm movements can be modeled by optimizing

performance criteria [Flash and Hogan 1998]. The so-called mini-

mum square derivative models have been successfully applied to

handwriting and curved motion by minimizing third-order deriva-

tives (jerk) [Flash and Hogan 1985] and fourth-order derivatives

(snap) [Edelman and Flash 1987]. Similar minimum principles are

widely employed for smooth motion control in drones [Mellinger

and Kumar 2011; Ren and Kry 2019] and robots [Todorov 2004; Tou-

ssaint 2017], as well as in statistics for smoothing noisy data [Eilers

and Marx 1996; Reinsch 1967].

Similar principles of smooth motion and continuity have also

been used for curve fairing, where a “fair” curve is typically one that

exhibits a smooth variation of the curvature [Farin 2001]. In this

context, jerk has been adopted as an approximation for curvature

variation [Lu 2015; Meier and Nowacki 1987; Pottmann 1990], while

snap serves as an approximation for transverse distributed load

[Meier and Nowacki 1987].

In an extensive body of work, Egerstedt and Martin [2009] de-

velop “dynamic splines” that formulate polynomial splines through

optimal control of linear systems. Berio et al. [2017] use similar

principles for the interactive generation of stylized paths similar to

the ones seen in gra�ti art and calligraphy with applications similar

to ours. Kano et al. [2003] study the relations between dynamic

splines and B-splines and in a collection of work, they develop an

optimal formulation of B-splines [Kano et al. 2005] applied to gen-

erate motion paths and curves similar to those found in Japanese

calligraphy [Fujioka et al. 2006; Matsukida and Fujioka 2013]. Our

approach is strongly inspired by the B-spline construction initially

proposed by Kano et al. [2005], but we extend their formulation to

support Di�VG and demonstrate its �exibility for generative and

stylization settings.

2.2 Di�VG and applications

In recent years, di�erentiable rendering has enabled the use of

large pretrained vision and generative imaging models with 3D

[Kato et al. 2020; Tewari et al. 2020; Worchel and Alexa 2023] and

2D [Li et al. 2020; Mihai and Hare 2021; Worchel and Alexa 2023]

parametric primitives .We adopt themethod of Li et al. [2020], which

supports a large subset of the SVG standard and cubic curves with

varying width pro�les. Our method leverages Di�VG’s support

for cubics with varying width pro�les, a feature yet to be used

comprehensively, likely due to limited support in mainstream vector

graphics tools and standards.

CLIP-driven graphics. One of the �rst applications of Di�VG to

large-pretrained models has been through the use of the Contrastive

Language–Image Pretraining (CLIP) model [Radford et al. 2021],

a multimodal model that has been trained to share an embedding

space between images and their textual descriptions. Frans et al.

[2022] demonstrate that together with Di�VG, the model is able

to generate vector images guided by a text caption or “prompt”.

Ganz and Elad [2024] use an adversarial "robusti�cation" method to

�ne-tune CLIP in order to enable gradients that are better aligned

with human perception. Vinker et al. [2022] introduce the idea

of using a loss on internal layers of CLIP to guide vector image

abstraction. A similar approach, combined with Di�VG, has enabled

the generation of stroke-based stylization methods [Schaldenbrand

et al. 2023; Vinker et al. 2023; Xing et al. 2023]. Our method provides

similar capacities, but we take advantage of the �ne-tuned CLIPAG

model of Ganz and Elad [2024] and support long smooth strokes,

which was not possible with previous methods.

Di�usion-driven graphics. In the context of 3D asset generation,

Poole et al. [2023] pioneered the so-called Score Distillation Sam-

pling (SDS), which enables gradient propagation from pre-trained

di�usion models to parametric representations. While e�ective,

the original method relies on high classi�er-free guidance (CFG)

scales, often resulting in over-saturation and lack of detail [Katzir
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Fig. 2. Flow chart of our pipeline, all operations are di�erentiable.

Fig. 3. Optimization procedure. From le� to right: input image with an

initial spline (quintic with multiplicity 3 on all keypoints) and subsequent

optimization steps 10, 150, 300.

et al. 2024]. Recent methods, including variational methods [Wang

et al. 2023], DDIM inversion [Liang et al. 2024] and noise-free score

distillation (NFSD) [Katzir et al. 2024], address these challenges,

improving �delity and control. Our method is compatible with all

these techniques, and we speci�cally adopt the approach of Liang

et al. [2024], which proved to be the most e�ective for us.

In the context of 2D asset generation, Jain et al. [2023b] pioneered

the use of SDS in conjunction with the Di�VG method of Li et al.

[2020], demonstrating the expressive potential of di�usion for vector

graphics generation. Iluz et al. [2023] use SDS for stylizing vector

font outlines to resemble user-de�ned semantics. To name a few,

variants of SDS have been used for prompt-based sketch generation

[Xing et al. 2023] and animation [Gal et al. 2024], 2D vector graphics

[Xing et al. 2024; Zhang et al. 2024] as well as 3D line art [Qu et al.

2024; Tojo et al. 2024]. None of these methods support the creation

of long, smooth strokes aligned with our objectives, except for

Tojo et al. [2024], who also use B-splines to produce long single-

stroke outputs. We incorporate their proposed repulsion loss in our

method. However, their work does not cover high-order derivative

smoothing, relies on curve discretization, uses a custom CUDA

renderer, and does not support variable-width strokes.

3 Method

Our approach works as follows: we specify one or more B-splines

through a series of 2D or 3D keypoints, where the third dimension

can be used to describe width variation along a stroke. The B-splines

are converted to cubic piecewise Bézier curves that are then rendered

in a di�erentiable manner with themethod of Li et al. [2020] (see also

Figure 2). Similarly to conventional Di�VG pipelines, this enables

gradient optimization of the key-points with costs that depend on

curve geometry as well as on the rendered version of the curves.

Figure 3 shows the process: �rst, some initial points and an image

are given; then, during optimization a spline gradually represents

the input image more explicitly, while the stroke widths are jointly

adapted.

3.1 Uniform B-splines

We use normalized uniform or “cardinal” B-splines that have uni-

formly spaced integer knots [De Boor 2001], which simpli�es com-

putations and proves successful in our applications. A B-spline of

degree ? and order : = ? + 1 is a linear combination

x (D) =

=−1∑

8=0

c8#: (D − C8 )

where = control-points I = [c0, c1, . . . c=−1] and shifted bases #:
are associated with a non-decreasing sequence of< = = + : knots.

In our formulation we keep these �xed to

t = [C0, . . . , C<−1] = [−?, . . . , 0, . . . , = − :
︸       ︷︷       ︸
C? ,...,C<−:

, . . . =] .

The spline is de�ned by sampling D in the interval [C:−1, C<−: ].

Increasing order derivatives x (3 ) of a B-spline are easily computed as

weighted combinations of lower order B-splines. We refer the reader

to the supplement for details on the basis functions construction, but

these are readily available in many modern scienti�c computation

packages [Virtanen et al. 2020]. The number of curves and control

points is prede�ned, so that basis functions and knot sequences can

be precomputed and remain �xed during optimization.

3.2 Spline construction

B-splines are approximating curves, and both periodicity and clamp-

ing to endpoints require the repetition of either knots or control

points. This is typically achieved with repeated knots, but we follow

Fujioka et al. [2006] and use repeated control points. This maintains

strict uniformity while enabling adaptive smoothing of corner-like

features and simplifying integral computations, which is advanta-

geous for our use-case. Instead of directly specifying control points,

we let a user initially specify a spline through a series of " key-

points W = q
1
, . . . , q" and optimize these rather than the spline

control points directly. The key-points are automatically adapted

into a series of control points I depending on the curve’s desired

clamped or periodic behavior.

For a clamped (open) spline the control points are given by the

key-points W padded the �rst and last key-point repeated :−1 times.

This results in a parametric motion that begins and ends with a rest.

For periodic closed splines we construct I by appending the �rst

: − 1 keypoints to the initially speci�ed key-point sequence W .

Key-points may optionally be repeated to create sharp corners, as

each repetition initially reduces the continuity of the curve by one

degree [Farin 2001]. This strategy is useful to produce additional

degrees of freedom for the subsequent optimization, where the cor-

ners can be adaptively smoothed depending on the desired amount

of smoothing.

3.3 Smoothing B-splines

B-splines of order : are by de�nition�:−2-continuous, but more im-

portantly their construction facilitates the formulation of smoothing

criteria since they allow closed form computation of derivatives and

ACM Trans. Graph., Vol. 44, No. 6, Article 225. Publication date: December 2025.
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integrals. In our method, we adopt a smoothing cost based on the

squared magnitude of the curve derivatives, which is standard in the

smoothing literature and is also known for its utility in curve fairing

[Pottmann 1990] and for modeling human armmovements [Todorov

and Jordan 1998]. These methods typically trade o� smoothness

with a geometric accuracy term, but in our work we consider a

variety of image-space objectives instead of geometry and de�ne a

smoothing cost:

L3
smooth

=

1

)

∫ C<−:

C:−1

∥x (3 ) (D)∥2dD =

1

)
c⊤M̄c (1)

where) = C<−: − C:−1 and c is a vector that concatenates all control

points of the spline. The integral can be calculated exactly by setting

M̄ to a block Gram-matrix constructed from the inner products of

the basis function derivatives [Fujioka and Kano 2007; Vermeulen

et al. 1992], resulting in the standard spline smoothing criterion.

Alternatively, a �nite di�erence approximation of M̄ results in the

penalized-spline method of Eilers and Marx [1996]. Both methods

have similar run-time performance because the matrix is precom-

puted for each stroke, and we refer the reader to the supplement

for derivations. Most of our examples use quintic splines with a

smoothing cost L3

smooth
on the third positional derivative (jerk).

We do so on the basis that “minimum jerk” is a known criterion

that has been used to model hand and arm movements [Flash and

Hogan 1985; Todorov and Jordan 1998] as well as an approximant

for curvature variation in curve fairing [Lu 2015]. Nevertheless, our

method generalizes to di�erent curve and smoothing orders (Fig. 4).

3.4 Conversion to Bézier and rendering

Our goal is to integrate smoothing B-splines into a Di�VG pipeline

by taking advantage of the linear relationship between B-splines and

Bézier curves. B-splines can be converted exactly to piecewise Bézier

curves of the same degree. To do so we use the method of Romani

and Sabin [2004], which reduces to a matrix multiplication between

the �attened spline control points c and a block transformation

matrix Y .

Our method also supports smoothing costs on higher-order posi-

tional derivatives such as jerk (third derivative) and snap (fourth

derivative), which require polynomial curves of degree greater than

three. Although native rendering of such higher-degree curves is

not supported in Di�VG and remains a challenge, we observe that

reducing the degree of B-splines to three introduces negligible geo-

metric error (less than 0.3% of the curve’s bounding box diagonal

in all our experiments), making the optimization of higher-degree

B-splines practical for image-based error calculations.

We perform a degree reduction of Bézier curves using the multi-

reduction method of Sunwoo [2005], which involves a second block

transformation matrix X̄. As a result, the control points for a cubic

piecewise Bézier curve compatible with Di�VG are computed from

the (�attened) control points c with the linear map X̄Ȳc . We refer

the reader to the work of Romani and Sabin [2004] and Sunwoo

[2005] for details; we include in the supplement details and matrices

for quintic Bézier and their reduction to cubic.

Di�VG rendering and optimization. The conversion procedure

results in a sequence of Bézier control points ∈ IR
3 , where the third

dimension represents the stroke radius. Control points and associ-

ated stroke and �ll colors are all treated as di�erentiable parameters

to be optimized. Rendering the scene results in an image I, which is

di�erentiable with respect to all the underlying parameters.

4 Applications

The proposed B-spline construction, smoothing and conversion to

Bézier enables the optimization of long, expressive and optionally

periodic curves, which would be challenging to produce with cur-

rently known methods leveraging Di�VG. All the results presented

hereafter are produced using a combined cost:

L = LI + LG (2)

consisting of an image-space term, LI, and a geometric term, LG.

We construct each term as a combination of losses depending on

the application objective. LI relies on di�erentiable rasterization,

which allows gradients to propagate from raster-based objectives to

the geometry parameters. LG leverages the properties of B-splines

to enable smoothing, stylization objectives, and constraints while

preserving continuity. We denote the relative weights of any loss

L◦ as _◦, e.g. the weight of a smoothing loss on the third derivative

is denoted as _smooth. If not speci�ed, the weights are assumed to be

1. When also optimizing stroke widths, we clip these to a minimum

and maximum value at each iteration.

We generate strokes using the Adam optimizer and use a cosine

annealing schedule on the learning rates. We run our experiments

on a single NVIDIA GeForce RTX 3060 with 12 Gb of memory.

We run most of the presented applications for 300 steps, which

approximately takes between 30 and 60 seconds on our system. One

exception is using di�usion-guidance, which takes approximately

0.6 to 1.0 second per step depending on the method used, leading

to an optimization time of up to 6 minutes.

Fig. 4. Comparison of di�erent spline degrees ? (rows), smoothing deriv-

ative orders 3 and smoothing weight _smooth (columns). In each row, we

let the smooting derivative to ? − 1. We quantify smoothness using the

dimensionless jerk measure [Hogan and Sternad 2009]. Lower is smoother.

We use the stylized area fill method in Section 4.1 using the style image in

Fig. 6, le�.

ACM Trans. Graph., Vol. 44, No. 6, Article 225. Publication date: December 2025.
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Fig. 5. Text combining areas generated with our stylized area filling method.

Each le�er is generated separately.

Fig. 6. Examples of stylized area filling for a le�er “S”. The images on the

lower le� are used to guide stylization.

Fig. 7. Le�, weighted Voronoi samples (black) for a bitmap of the le�er ’A’

and an open TSP path connecting the points (blue). Middle, initial quintic B-

spline with key-points given by the Voronoi samples overlaid on the bitmap

area with 50% opacity. Right, result of an optimization with LG = L3

smooth
and LI for the 50% opacity bitmap. Decreasing opacity results in sparser

and thinner strokes.

4.1 Area fillings and pa�ern generation

As a baseline for our method we demonstrate how our pipeline

can be used to create pattern �lls of solid regions. It illustrates also

how our approach can be �exibly used to control stylization while

maintaining smoothness (Fig. 5 and 6).

Initialization. Stochastic gradient descent is well known to be

sensitive to initialization due to its susceptibility to local minima.

We �nd good points using an initialization strategy based on so-

called weighted Voronoi stippling [Secord 2002]. For simplicity, we

adopt this method for di�erent applications presented in this paper.

The input can be an arbitrary bitmap (Fig. 7, Left) or a saliency map

(Fig. 13). To create a single stroke, we use a TSP route connecting

the points in an open or looping path. This method is known in

the literature as “TSP art” [Kaplan and Bosch 2005] (Fig. 7, Left).

For open paths, we select the left-topmost point and the bottom-

rightmost as initial and �nal points, respectively.

Image coverage loss. We �nd that setting LI as a multiscale mean

squared error (MSE) loss works particularly well to �ll an area or

silhouette de�ned as an image. This loss is computed between the

target and the rendered image, with each step corresponding to a

progressively reduced scale and blurred version of the image. This

approach is similar to the shape-based losses used by Iluz et al.

(a) (b) (c)

Fig. 8. Stylized coverage of a le�er “S” using the image on the le� as a

target. (a) Optimization using Bézier curves. (b) Optimization using quintic

splines and smoothing on jerk with _smooth = 1. (c). Same procedure with

_smooth = 10.

Fig. 9. Examples combining image coverage with a patch-wise loss on CLIP

features derived from an example image (top le�) and using the same

initialization from Fig. 7. From the le�, the first two examples use a quintic

spline with a smoothing loss LG = L3

smooth
(jerk). For comparison, the right

example uses a Catmull-Rom spline only enforcing�1 continuity. Allowing

zero stroke width results in the appearance of multiple strokes, but the

optimization is still performed on a single curve (le�, do�ed cyan).

[2023] and Tojo et al. [2024], but lower scales encourage alignment

with broader intensity regions and faster convergence, while higher

scales promote a more accurate silhouette reconstruction. Reducing

the opacity of the target image directly decreases the density of

curves used to cover it (Fig. 7-right), allowing control over the

visual result.

Bounding box loss. For some of our optimization procedures, it

is useful to extend LG with a bounding box loss that keeps curve

key-points within the bounding box of a given image:

Lbox =

∑

8

1⊤
[
i
(
bmin − p8

)
+ i

(
p8 − bmax

) ]

where Lbox > 0 only if key-points fall outside of the bounding box

bmin, bmax and where i can be either a Softplus or a ReLU function

applied element-wise to the vectors.

Image-space semantic-driven stylization. Together with geometry-

based stylization costs, we can add a semantic stylization termLstyle

to the image-space loss LI, which enables stylization based on a

text prompt or features extracted from an example image ( Fig. 8 , 6

and 9). We apply the technique proposed by Kwon and Ye [2022] for

semantic-driven image stylization and use a patch-wise directional

loss between the encoded features of an example image and the

encoded features of the rendered curves. We use the augmented

CLIPAG [Ganz and Elad 2024] ViT-B/32 transformer architecture

as we �nd it to be e�cient while working well for our use vector

stylization use-case.

ACM Trans. Graph., Vol. 44, No. 6, Article 225. Publication date: December 2025.
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(a) (b) (c)

Fig. 10. Di�usion driven stroke abstraction with ControlNet and IP-adapter

conditioning. (a) a variable width abstraction of “Spock”. (b) Allowing a

single strokes to reach zero width in regions results in an e�ective strategy

for automatically determining the number of strokes for a multi-stroke

abstraction. (c) combining the di�usion cost with a stylization term that

favors horizontal and vertical orientations.

Fig. 11. Rendering stroke abstractions with a spray-like brush. The quintic

B-splines together with smoothing on jerk produce smooth motions that

tend to slow down where curvature is higher. This is a characteristic feature

of human hand motions [Viviani, Paolo and Flash, Tamar 1995] and results

in a lower deposition of paint particles where speed is higher.

4.2 Single-stroke image abstraction

Most existing Di�VG-based methods that work with di�usion mod-

els rely on variants of Score Distillation Sampling (SDS) together

with a text caption to guide the generation of parametric vector

primitives. We follow a similar approach but enable image-conditi-

oned stylization by integrating ControlNet [Zhang et al. 2023] with

Canny edge detection and IP-Adapter [Ye et al. 2023] into the di�u-

sion pipeline. ControlNet helps to preserve structural cues from the

input image, while IP-Adapter encourages the strokes to align with

its global appearance and style (Fig. 10 and 11).

In our experiments, we �nd that using a generic text prompt such

as “A black and white drawing” for stroke-based outputs is su�cient

to generate recognizable abstractions and stylizations of an input

image. For a given condition ~, the gradient of the SDS-like loss

with respect to the optimizated parameters \ has the form:

∇\LSDS = EC

[
l (C)

(
&q (GC , C, ~) − &

) m6(\ )
m\

]
, (3)

where &q (GC , C, ~) is the predicted denoising direction for a latent

GC at time step C , & is the noise predicted by the model and l (C) is a

weighting function dependent on the time-step.

We employ the time-step schedule annealing procedure proposed

by Liang et al. [2024] and use their Interval Score Matching (ISM)

variant of SDS, which helps convergence in our experiments and

enables a standard classi�er-free guidance of 7.5.

It is known that for di�usion models, higher time steps during

denoising typically produce coarser features, while lower time steps

Fig. 12. From le� to right: varying theminimum time-step (100, 300, 500, 700)

for 300 timesteps of the ISM [Liang et al. 2024] variant of SDS and a single

quintic stroke. The cyan line emphasizes the centerline of the stroke, which

reaches zero width in certain regions.

Fig. 13. Le�, initialization with a saliency map computed from the nor-

malized logits of the last layer of the OneFormer panoptic segmentation

model [Jain et al. 2023a]. Right, stroke optimization using ISMwith di�usion

conditioned on the edge map, using a minimum time step of 400 and with

an additional stylization loss _style guided by the same image as Fig. 8.

yield �ner details [Hwang et al. 2023]. Given our goal of producing

single stroke image abstractions, the curves lack su�cient degrees

of freedom to capture these �ner details, so we limit the time steps in

the denoising process to a minimum of 500 (Fig. 12). With a similar

motivation, we �nd that with di�usion-guided stroke abstraction it

is useful to initialize the strokes with a multiplicity > 1 (we use 3

with quintic splines in our examples). Using a higher multiplicity

results in smoother strokes, where fewer details are captured.

4.3 Area-based image abstraction

Our method allows for the generation of smooth closed areas, and

we observe that this is useful to generate image abstractions similar

to what can be seen in certain designs consisting of overlapping

smooth regions and a limited color palette. Examples include psych-

edelic designs, album covers, screen-printed graphics, or street-art

inspired fashion and graphic designs.We are interested in generating

outputs that aim to be printed or fabricated as collages with a limited

number of regions and colors. To guide stylization, we use �lled

areas instead of strokes and set LI to a variant of the CLIP-driven

geometric cost described by Vinker et al. [2022]

LCLIP =

∑

;



CLIP; (Î) − CLIP; (I\ )



1
, (4)

using the !1 norm instead of !2 and omitting the semantic term

originally proposed by the authors. We use layers 2 and 3 together

with the CLIPAG [Ganz and Elad 2024] architecture. We use CLIP as

opposed to di�usion because we �nd this to be signi�cantly faster,

while being e�ective for this kind of stylization task.

Repulsion loss. For applications using closed curves, we adopt

the repulsion method for 3D wire fabrication proposed by Tojo
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Fig. 14. �antized color vectorizations using an additional image-driven

stylization term Lstyle. The pale�e is extracted from the style image.

Fig. 15. Increasing _style weight for an abstract vectorization of Bach. From

le� to right _style = 0, _style = 0.06 , _style = 0.1

et al. [2024] to compute a geometric loss Lrepul, penalizing self-

intersections and overlaps based on a tangent-point energy kernel

for a set of sampled points along the spline. For this application, we

compute the loss for each area separately, thus allowing overlaps

and intersections among di�erent areas.

Optimization with quantized coloring. Jang et al. [2017] use the

Gumbel-Softmax trick to make discrete choices di�erentiable during

training. We apply the same idea to assign colors to image regions,

using soft selections from a �xed color palette that can be optimized

with backpropagation. To progressively transit from soft to discrete

assignments during the training process, we anneal the Gumbel-

Softmax temperature using an exponential schedule.

Given a set of  palette colors organized as a matrix \ ∈ IR
 ×3,

we optimize the logits per area ℓ8 ∈ R
 using a soft assignment

a8 = softmax

(
ℓ8 + g8

g

)
with g8 ∼ Gumbel(0, V) ,

where V is a scale parameter that we empirically set to 0.15 to avoid

excessive noise during optimization [Huijben et al. 2023] and g is

a temperature parameter that we anneal during optimization. We

use these soft colors computed as v8 = a⊤8 \ during the optimization.

At the same time, for visualization, we obtain hard assignments

by taking the argmax over the optimized logits and selecting the

corresponding palette color. To encourage a balanced use of all the

speci�ed palette colors, we add a regularization term:

_ 


E8 [a8 ] −  −11



2

to LI, which penalizes deviations from a uniform color assignment,

encouraging a balanced use of the palette. Figures 14 and 15 show

some results.

Area initialization and optimization. We initialize a user-de�ned

number of areas using weighted Voronoi sampling on a saliencymap

of the input image and create an initial series of closed curves with

keypoints given by the vertices of each resulting Voronoi regions.

Each curve is then assigned random initial logit and the curves

are sorted by increasing saliency of the covered area. Optimization

proceeds with the inclusion of the repulsion loss inLG, which keeps

the area outlines from intersecting.

4.4 Text stylization

In line with the smooth curve image abstractions, we aim to generate

text abstractions made of smooth curves that �t inside a target area.

Examples of this approach can be seen in posters, graphic designs,

as well as in “calligrams”: renditions of text that is arranged to �t

a speci�c silhouette, such as those seen in the methods of Xu and

Kaplan [2007] and Zou et al. [2016] (c.f. Figure 17). Our pipeline

results in a simple way to generate calligrams, such as “blobby” texts

(Fig. 16) and abstract monospace fonts (Fig. 18).

We tackle text stylization with the tools we have covered so far

and start with a bitmap image Î representing the desired silhouette

and an initial text layout rendered as a second image Itxt. We uni-

formly sample the glyph outlines and produce key-point sequences

used in optimization. The optimization deforms the outlines based

on a loss that balances silhouette coverage, outline smoothness, and

repulsion between outline points. This procedure alone smooths

and �ts the outlines into the target area, but this may compromise

legibility (Figure 18c).

To preserve legibility, we introduce a perceptual loss based on the

features of a pretrained vision encoder, which we use to compute the

feature-space distance between the rendered deformed image I and

the original layout Itxt. We �nd that using the last-layer [CLS] token

as feature of the TrOCR model [Li et al. 2023] and calculating a loss

based on the !1-norm of the embeddings produce robust results for

this application (Figure 18).

The placement of glyph can be manual or automatic. In the auto-

matic case, we optimize a similarity transform per glyph to maxi-

mize silhouette coverage while avoiding overlaps and maintaining

a readable text layout. We �rst o�set each glyph by a user-speci�ed

amount to encourage padding around the text. At each optimization

step, we render both a morphologically opened version of the silhou-

ette and glyphs into two images using white with 50% opacity on a

black background. We minimize a loss that combines (i) a coverage

term LI (Section 4.1), (ii) an overlap cost given by
∑
ReLU(E − 0.5)

for each pixel intensity E ∈ [0, 1] of the rendered image and (iii)

(a) (b) (c) (d)

Fig. 16. Automatic calligram production for a silhoue�e generated with

the prompt “Silhoue�e of a BUNNY“. (a) initial text layout rendered with

50% opacity and overlayed on the silhoue�e. (b) intermediate step of the

layout optimization displaying an image area that increases the overlap

cost. (c) Sampled glyphs placed according to the layout. (d) Result of the

optimization.
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(a) (b)

Fig. 17. Calligram generation: comparison of (a) an example from Zou et al.

[2016] for a camel silhoue�e and (b) two runs of our method on the same

silhoue�e with automatic initialization and two di�erent fonts.

(f)

(a) (b) (c) (d) (e)

Fig. 18. Monospace font generation. (a) A le�er “R” (quintic B-splines with

jerk cost) adapted to a triangle, using _repul = 666, _txt = 6.6 and _smooth =

200.0. (b) Se�ing _repul = 0 (no repulsion), still results in a readable le�er but

(c) removing the legibility loss does not. (d) B-splines with legibility but no

smoothing. (e) Catmull-Rom to enforce tangent continuity with legibility

loss (for comparison). (f) Combining glyphs optimized to fit a triangle, a

square and a circle.

Fig. 19. More calligrams generated with our system. The seagull silhoue�e

is generated using the prompt “Silhoue�e of a SEAGULL”.

an alignment cost
∑

∥\ ∥ that penalizes the absolute turning an-

gles \ between consecutive glyph center-points and maintains text

ordering. We note that image generation models such as DALL-E

3 [Betker et al. 2023] are particularly e�ective at generating sil-

houettes with a prompt, which �nally results in a fully automatic

calligram generation pipeline.

5 Discussion

In our example applications, we have seen how a B-spline reparame-

trization can be used to generate long and expressive strokes and

curves in a Di�VG pipeline. B-splines enforce high-order continu-

ity by design, which enables analytic smoothing losses that help

producing more regular geometry when combined with di�erent

stylization losses. This o�ers a considerable advantage compared

to using only Bézier curves or parametrizations with lower order

continuity, especially for applications like the ones demonstrated

in this paper. Qualitative examples of this can be seen in examples

Fig. 20. Stroke abstraction of Thelonious Monk. Le�, using a single stroke

and Voronoi with TSP initialzation. Middle, using multiple strokes with

multiple key-points along vertical lines. Right, using facial features extracted

with MediaPipe [Lugaresi et al. 2019].

Fig. 21. Smooth speed and acceleration of a quntic spline covering a num-

ber “5” and optimized using the method of Section 4.1. With appropriate

resampling the path kinematics can be safely tracked with a robot.

Fig. 22. Our method produces smooth kinematics that facilitate reproduc-

tion with a robot, and the varying width can be used to control brush

pressure. Le� and center, the robot reproducing portraits. Right, the robot

reproducing a stylized area fill.

such as Figure 8 and Figure 18. For conciseness, we used a simi-

lar Voronoi-based initialization strategy in most of our examples.

However, our method performs well with di�erent initializations

(Fig. 20), which can serve as an additional design parameter to be

explored by users.

One common challenge in stroke-based abstraction pipelines is

controlling the trade-o� between visual �delity and geometric sim-

plicity. Previous methods typically address this by pre-determining

the number of curves [Vinker et al. 2022] or by integrating a learned

component into the optimization loop [Vinker et al. 2023]. We �nd

that our use of smoothing, combined with optimizable stroke width,

allows this trade-o� to be controlled parametrically and with the

number of strokes emerging from the optimization. This results in

a solution that is signi�cantly simpler than previous methods.

We investigate the utility of our representations and di�erent

loss terms in di�erent examples of our applications. In Figure 18

we perform a small qualitative ablation showing the e�ectiveness
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of the proposed legibility loss (Figure 18c) as well as the bene�ts

of B-splines and smoothing compared to Catmull-Rom splines (Fig-

ure 18e), which only enforce �1 continuity. In Figure 8a we can

observe that directly optimizing Bézier curves e�ectively captures

features of the example style image. However, higher degrees of

freedom produce results that capture �ner details at the expense of

a clear stroke structure. Although this additional detail may be de-

sirable in certain applications, it is not suitable for the applications

considered in our work.

Interestingly, the computational overhead of the proposed B-

spline to Bézier matrix conversion is lower than the one for the

additional optimization parameters required for an equivalent multi-

Bézier curve. We tested performance with a simple comparison

where we cover an area by optimizing the 290 key-points of a single

open cubic B-spline. We compared this to a similar setup directly

optimizing the corresponding 874 Bézier control points. On our

hardware setup, the Bézier case is 4.5 times slower. This shows that

the additional cost of the proposed matrix conversion is negligible

and suggests that our method is an e�cient way to enforce output

continuity in Di�VG settings.

Robotic reproduction. Optimizing splines with degree greater than

three results in smooth acceleration pro�les (Fig. 21). This enables

a safe reproduction of the resulting trajectory kinematics with an

articulated robot arm (Fig. 22), without requiring an intermediate

reparameterization step. We tested this by reproducing the trajec-

tories using a 7-axis Franka robot equipped with a brush. We �rst

transformed the control points to a desired workspace coordinate

system, treating the stroke widths as perpendicular distances to the

drawing plane. We then sampled the trajectories at a resolution that

produced a maximum speed and accelerations within the robot’s

mechanical limits. The inverse kinematics for the resulting trajecto-

ries are then computed with an iterative linear quadratic regulator

(iLQR) [Li and Todorov 2004].

6 Conclusions and future work

We have presented a framework for integrating high-order B-splines

into Di�VG pipelines together with minimum-square derivative-

based smoothing costs. We have explored di�erent applications and

demonstrated how this enables the generation of long, smooth, and

stylized strokes through a combination of geometric and image-

space loss functions. While the combination of losses allows for a

large variety of creative outputs, a practical challenge is the necessity

to weigh di�erent losses to achieve the desired result, which, given

the iterative optimization procedure, can be slow and tedious.

Although our formulation draws on a large body of existing work

on B-splines, an e�ective use of this tool together with Di�VG is

novel, and we expect it to be a valuable tool for the community. We

used uniform B-splines because of their simplicity and e�ectiveness

for our use cases. However, exploring non-uniform parameteriza-

tions, such as NURBs, presents an interesting direction for further

research, as it may unlock additional �exibility and control for styl-

ized outputs.

Acknowledgments

This work was funded by the EACVA (Embodied Agents in Contem-

porary Visual Art) Project, led by Goldsmiths (UKRI/AHRC grant

AH/X002241/1) and the University of Konstanz (grant 508324734,

Deutsche Forschungsgemeinschaft/DFG). Special thanks to Guil-

laume Clivaz (Idiap Research Institute) for the technical support

and useful discussions.

A B-Spline details

A B-spline (or basis-spline) or order : is a piecewise polynomial

curve of degree ? = :−1 de�ned by a linear combination of=weights

or control points c0, c1, . . . c=−1 and a non-decrasing sequence of

< = = + : knots (or breakpoints) C0, C1, C2, . . . , C<−1.

x (D) =

=−1∑

8=0

c8�8,: (D)

Each basis function �8,: de�nes : polynomial segments spanning

: + 1 knots C8 , C8+1, . . . , C8+: and is positive in the half-open domain

[C8 , C8 + :). The knots between C? and C<−: (not included) are called

“internal” or “interior” knots. From here: For = control points we

have = + : knots and = − : interior knots.

B-spline bases can be de�ned through the “Cox-de Boor” recur-

sion starting from order 1 (degree 0):

�8,1 (D) =

{
1 if C8 ≤ D < C8+1

0 otherwise

And with

�8,: (D) =
D − C8

C8+:−1 − C8
�8,:−1 (D) +

C8+: − D

C8+: − C8+1
�8+1,:−1 (D)

The number of control points =, order : and number of knots<

are related by = + : −< = 0. For nonrepeating knot sequences, the

curve will be �:−2 continuously di�erentiable.

A.1 Derivatives

The derivative of a B-spline basis function of order : is given by

d

dD
�8,: (D) = �

′
8,: (D) =

: − 1

C8+:−1 − C8
�8,:−1 (D) −

: − 1

C8+: − C8+1
�8+1,:−1 (D) .

It is a linear combination of all the derivatives of the basis function.

As a result, the derivative of a B-spline is equivalent to a B-spline

of order : − 1 with a new set of control points given by weighted

di�erences of pairs of consecutive control points.

A.2 Cardinal B-splines

A cardinal B-spline (not to be confused with cardinal/Catmull-Rom

splines) is a “normalized uniform B-spline”. It has uniformly spaced

knots, with C8+1 − C8 = ℎ (uniform) with ℎ = 1 (normalized) so

the knots are all integers (Fig. 23). Uniformity and normalization

simplify the computations of a B-spline as all basis functions are

translated versions of the same basis function that we denote as

#: (D). We then have

x (D) =

=−1∑

8=0

c8#: (D − C8 )
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and the B-spline derivatives simplify to

d

dD
#: (D) = #

′
: (D) = #:−1 (D) − #:−1 (D − 1)

so

¤x (D) =

=−1∑

8=0

c8 (#:−1 (D − C8 ) − #:−1 (D − C8 − 1))

A.3 Smoothing term

The smoothing term can be computed exactly and is considerably

simpli�ed for the case of cardinal B-splines [Schumaker 1981].While

di�erent approaches exist to calculate this kind of integral [de Boor

et al. 1976; Vermeulen et al. 1992] to calculate this kind of integral,

we follow Fujioka and Kano [2007] and Fujioka et al. [2017] to have

L3
smooth

=

∫ ∞

−∞

� (D) dD −

∫ C:−1

−∞

� (D) dD −

∫ ∞

C=

� (D) dD

with � (D) = ∥x (3 ) (D)∥2

This can be computed explicitly by constructing a Gramian M

with:

�8, 9 =




∫ :
0
#

(3 )
8, 9 dD −

∫ ?−8
0

#
(3 )
8, 9 dD if 8 < ? and 9 < ?

∫ :
0
#

(3 )
8, 9 dD −

∫ ?−8
0

#
(3 )
=+?−8,=+?− 9dD if 8 ≥ = and 9 ≥ =

∫ :
0
#

(3 )
8, 9 dD otherwise

and

#
(3 )
8, 9 = #

(3 )

:
(D)#

(3 )

:
(D − 9 + 8)

.

Then each �8, 9 can be computed exactly using quadrature [Ver-

meulen et al. 1992].

If we let c ∈ IR
=� be a vector that concatenates = control points,

each of dimensions � we have

L3
smooth = c⊤M̄c, M̄ = M ⊗ O�

where ⊗ is the Kroenecker product and O� is the identity matrix of

dimensions � .
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Fig. 23. B-Splines and their bases with degrees 3 and 4.

P-splines. A similar procedure can be e�ciently approximated

with discretization of the derivative cost, using penalized-splines

(P-splines) as described by Eilers and Marx [1996]. To do this, we

can simply use M = J⊤

(3 )
J (3 ) with J (3 ) a matrix representing the

�nite di�erence operator of order 3 . The advantage of this method

is the simplicity of implementation and the possibility of achieving

similar smoothing results. We can arbitrarily combine the degree of

discrete di�erences with the degree of the curve. We expose both

methods for completeness and to enable applications where the

integral cost may be necessary (e.g., planning and robotics).

A.4 Conversion to Bézier

With the method of Romani and Sabin [2004], converting the ? + 1

control points of a quintic B-spline of degree ? to single Bézier

segment of the same degree, can be done with a (? + 1) × (? + 1)

matrix that we denote as Y? . To convert all the control points of a

B-spline we stack multiple shifted and overlapping copies of Y? into

a larger matrix Y , by shifting each copy by ? rows and 1 column.

For a quintic spline this can be visualized as:

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

The blocks for a quintic spline are given by:

Y5 =
1

120



1 26 66 26 1 0

0 16 66 36 2 0

0 8 60 48 4 0

0 4 48 60 8 0

0 2 36 66 16 0

0 1 26 66 26 1



.

The block matrix Ȳ used to compute the Bézier control points from

the �attend B-spline control points c is given by the Kroenecker

product Y ⊗ O� .

A.5 Degree reduction

With the method of Sunwoo [2005], reducing a Bézier curve of

degree ? to one of degree @ can be done with a (@ + 1) × (? + 1)

matrix that we denote as X?,@ . To reduce the degree of all the control

points of a Bézier chain we stack multiple shifted and overlapping

copies of X?,@ into a larger matrix X by shifting each copy by ? rows

and @ columns. For a reduction from quintic to cubic this can be

visualized as:
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• • • • • •

• • • • • •

• • • • • •

• • • • • • • • • • •

• • • • • •

• • • • • •

• • • • • •

The blocks of the quintic to cubic reduction matrix are given by

X5,3
=



1 0 0 0 0 0

− 2

3

5

3
0 0 0 0

0 0 0 0
5

3
− 2

3

0 0 0 0 0 1


The block matrix X̄ used to compute the reduced Bézier control

points from is given by the Kroenecker product X ⊗ O� .
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