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Abstract. District Heating Networks (DHNs) play a key role in sus-
tainable energy transition scenarios, but their efficiency depends on effec-
tive supply temperature control. Traditional rule-based strategies, such
as heating curves, are widely used due to their simplicity and stabil-
ity. However, they are often tuned over extended periods, during which
the network operates suboptimally. This paper proposes an alternative
approach based on a differentiable dynamic simulation model, allow-
ing direct optimization of control parameters through gradient descent.
We apply this approach to optimize the parameters of various heating
curve formulations and evaluate its performance on a real meshed net-
work using monitoring data. Results show a reduction of heat losses even
compared to manual regulation, demonstrating the potential of gradient-
based methods for DHN control.
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tion, optimization

1 Introduction

District Heating Networks (DHNSs) play a critical role in sustainable energy tran-
sition scenarios [1] as they allow the efficient distribution of thermal energy from
centralized or decentralized sources to consumers in urbanized settings [2]. Many
existing networks follow the design principles of 3rd-generation DHNs [3], where
there is a significant temperature difference between the working fluid and the
surrounding soil. In such systems, supply temperature control is crucial: higher
temperatures ensure that consumer demand is met but come at the cost of in-
creased energy losses. Conventional control methods rely on predefined rules or
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simple linear dependencies on outdoor temperature, known as heating curves
[4]. These curves are typically tuned over extended periods of time, commonly
a full year of operation, with parameters slowly adjusted based on observed
performance. While this approach is straightforward and provides operational
stability, it results in prolonged periods of suboptimal control, leading to un-
necessary energy waste. Moreover, when major changes occur in the network,
the tuning process must be repeated, making it difficult to adapt efficiently to
evolving conditions.

This paper addresses these limitations by formulating an optimization-based
approach to control strategy design. Using a differentiable dynamic thermal
model, we optimize the control parameters of heating curves directly through
gradient-based methods, allowing for systematic performance improvements with-
out the need for extensive trial-and-error tuning. We study the performance of
these optimized strategies on a real network and compare them against man-
ual temperature setting, demonstrating their potential to enhance efficiency and
reduce energy waste in DHN operations.

Given the constraints on data availability, we focus our analysis on a rep-
resentative 5-day period. However, the proposed method can be extended to
longer periods, provided that the gradient computation is adapted to manage
computational costs and maintain numerical stability.

2 Methodology

2.1 Case Study Network

For this study, we used the DHN of Verbier, Switzerland, as described in [5].
At the time of data collection, the network comprised 165 active substations,
35 dedicated to ramp defrosting, and three heat plants (MAIN, SEC1, SEC2).
These have no accumulators, limiting their potential for temperature control
and increasing the importance of an accurate control strategy. The distribution
network had a meshed topology with six internal loops, a total pipe length of
28 km, and covered an altitude difference of 126 m. Most pipes were buried at a
depth of 0.8 m, though some ran through basements or parking lots.

Monitoring data, including flow, temperature, and pressure, was collected
between January 10 and 22, 2022, at variable intervals and resampled to a 15-
minute resolution. During the monitoring period SEC2 operated sporadically
with insufficient data and was therefore excluded from the analysis. Outdoor air
temperature data was collected from the nearby MeteoSwiss weather station in
Montagnier, Val de Bagnes (839 m asl), and the soil temperature at network
depth estimated as -2.23°C for the whole period. For further details, we refer the
reader to the original work (see []).

An overview of the monitored data is given in Figure [Il The left plot il-
lustrates the range of air temperatures and the corresponding network demand,
while the right plot shows the operational settings of MAIN. Unlike conventional
setups where the supply temperature is regulated based on air temperature, here
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it is manually set. The demand peaks at around 9 AM, which is met by increasing
the mass flow rate and, consequently, lowering the supply temperature. Around
10 PM, as demand decreases, the mass flow rate is reduced, and the supply
temperature is increased to compensate for the longer travel time and prevent
excessively low temperatures at consumer substations. A different control strat-
egy is used for SEC1, where the temperature and mass flow are kept almost
constant at 82°C and 5 kg/s respectively.

Network Demand MAIN Operational Setting
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Fig. 1. Daily variations in monitoring data. (Left) The total power demand (kW) and
air temperature (°C) over a day, showing mean values and ranges. (Right) The mass
flow (kg/s) and supply temperature (°C) at the MAIN plant, illustrating operational
dynamics. Shaded regions indicate the variability within the investigated period.

2.2 Dynamic Model of the DHN

In this section, we present the dynamic thermal model used in this work, that is
adapted from [5] and has been validated on the considered case study. We focus
solely on the thermal dynamics of the network, assuming a predefined mass flow
based on the results of the above study. In the first subsection, we discuss the
modeling assumptions. We then describe the considered components and the
overall convergence strategy.

Modeling assumptions. We assume that the DHN is a closed system, with no
leaks or injections of water, represented as a directed graph G = (V, ), where
the edges £ correspond to components - pipes, consumers, or producers - while
the vertices V represent junctions. Producers and consumers have fixed mass
flow directions, and their outlet vertices have no other incoming edges.

Component functions. For each component, we model the outlet tempera-
ture, Gout (°C), as a function of the inlet temperature, 6, (°C):

Oout = P (Oin)- (1)
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In pipes, this relationship was originally adapted from the two-capacity La-
grangian model in [6]. Pipes are treated as hollow cylinders with three layers:
internal wall, insulation, and casing. The water is discretized into volumes of
varying size, each with a constant temperature. The internal wall is segmented
using the same spatial discretization as the water. Unlike [6], at each time step
t, we first solve the source problem to update the temperatures of water volumes
and pipe wall segments. The heat loss of a water segment v with volume V,, and
temperature 0, over a time step At (s) is given by:

At

QY = (6 = 0y=V) = DV,ef D 5 &)
where h = 3600 s, and the water density p and specific heat capacity c, are
evaluated at the initial temperature of the time step, following the relationships
in [7]. Next, volumes are advected, and the outlet temperature of the pipe is
obtained as a volume-weighted sum of the exiting water temperatures. If the
incoming volume V;;, exceeds the pipe’s capacity Viax, the excess must be added

to the outflow. To account for this, we define a blending parameter « as:

Vvi - Vmax
= max (0, ‘/l) (3)

which represents the fraction of inlet water that surpasses the pipe’s capacity.
The outlet temperature is then given by:

Oout = a - Oin + (1 - O‘) : gout (4)
where 0,y represents the volume-weighted average temperature of the portion
of outflow originating from water already in the pipe at the start of the time
step. The process is illustrated in Figure 2] Consumers are modeled as fixed
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Fig. 2. Illustration of the pipe model. In this case, the incoming volume is smaller
than the total pipe volume (a = 0), and the outlet temperature is computed as the
volume-weighted average temperature of the portion of water highlighted by the red
dotted border.

temperature difference components, thus we enforce:

Gout = ein - Aeset (5)

Finally, the outlet temperature of producers is imposed as boundary condi-
tion independently from the inlet temperature.
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Overall convergence. The convergence criterion is based on nodal energy
conservation. At each time step, we assume that the orientation of the j-th edge
aligns with the positive direction of the flow. As a first condition to determine the
temperature 6 at each node in the network, we impose that the inlet temperature
of an edge matches the temperature of its starting vertex:

oind = Gt(j Vj c€. (6)

Where the notation ¢(j) indicates the starting vertex (tail) of edge j.

We then set the ending vertices of producers as slack nodes, indicated with
the subscript s, and impose their temperatures as that of the corresponding
unique incoming edge Gimp,; (°C):

91’ = aimp,% Vi € Vs- (7)

Finally, we impose the conservation of energy at the remaining vertices. Fol-
lowing and @, this can be written as:

Zm] cp - ;i (0y5)) — (Z mk> cp-0; =0, VieV\V.. (8)
JEL; keO

where Z; is the set of edges entering node i, O; is the set of edges leaving
node i, 7i; is the mass flow rate (kg/s) through edge j, 0},(;) is the temperature
(°C) of the upstream node of edge j and 6; is the temperature (°C) at node 1.
¢p is the specific heat capacity that we assume to be constant at 4180 J/(kg - K)
within the energy balance calculation. On the other hand, it ensures linearity
in the system , provided the edge-wise temperature transfer functions ¢;(-)
are themselves linear. As this condition is met using the components model
previously described, combining and we obtain a square system of linear
equations in the form:

Al=b 9)
that can be solved using LU factorization. Note that if non-slack nodes with zero
mass flow are present, A is singular. Therefore, the equations of such nodes are
removed from system @ and solved separately. In particular, these nodes are
assigned with the average value of the temperatures of adjacent water volumes
in pipes.

2.3 Control Strategies

We consider the following heating curves: a constant model and a conventional
piece-wise linear model. In both cases, we test variants with pre-heating, night
setback or both. The piece-wise linear model is controlled by 4 (learnable) pa-
rameters, 0,0y, 0.,04:

GC? eair < ea
eout = fl(eair) = ec + W7 ea < eair < eb (10)
9d7 oair > 91)
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With the requirement that 6, < 6. The model with pre-heating has 3 ad-
ditional parameters: the starting time ¢y, the duration 7, and the temperature
difference A. Given t; = tg + 7 and assuming to < ty:

eout = fl(eair> + A* (11)

A" = Alo(k(t — to)) — o(k(x — 1)) (12)

Where o is the sigmoid function and k& = 100. Here, A* is used to avoid
discontinuity induced by a sudden change of temperature. The same formulation
is used for setback, with the temperature delta constrained to be negative.

2.4 Optimization Approach

Given a control strategy, we seek to find its optimal sets of parameters - one
for MAIN and one for SEC1 - and compare the performance of the optimized
strategy with the manually controlled supply temperatures used during the mon-
itoring period. We frame this optimization problem as follows:

, T gc\r
an (S50 233 ) "
= t=1 j=1
. () ® ()
o [ a0, ) <o 0
. 0, otherwise
AG; = eret,mimj - efé%,j (15)

Here, &, represents the set of pipes where energy losses Qgt)(P) are evaluated,
while &, denotes the subset of consumers excluding ramps. The penalty term

Q;t)(P) accounts for violations of the theoretical minimum return temperature

Oret,min,j, With AHJ@ measuring the deficit between this minimum and the simu-

lated return temperature 052 i The reference value Ore min,; is estimated as the

minimum return temperature observed during the monitoring period.

Since the dynamic simulation model described in Section [2.2]and the control
strategies presented in Section [2.3| are differentiable, we can adjust the param-
eters P using gradient descent. At each k-th iteration of gradient descent, the
full trajectory of T time steps period is evaluated with a fixed set of parameters
P*, which is then updated as:

p+D) — pk) g L(p®), (16)

Where L is the objective function to minimize in Eq. and 7 is the
learning rate. In addition to the T time steps, an initial period of 24 hours is
also simulated at each iteration using the conditions of the first time step to
initialize the temperatures of water volumes and pipe walls.
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For each heating curve variant we perform 50 steps of gradient descent with
an initial learning rate of 0.01. If there are no improvements on the loss for
more than 5 iterations, the learning rate is reduced by half, up to a minimum of
0.0001. To prevent large parameter updates in a single step that could lead to
instabilities, the update value for temperature-related parameters is clipped to
the range [-1, 1]. The A factor in Eq. is chosen as 1000. Further analysis is
conducted using the optimal parameter set found for each heating curve.

3 Results and Discussion

Results of the experiments are given in Table [T} along with the losses result-
ing from the manual control as a reference. On average, the piecewise-linear

Table 1. Results: total heat losses over the 5 days considered for each heating curve.

Model Heat loss
Value (kWh) Diff From Best (%)

Manual 42921 +0.66
Constant 42831 +0.45
Constant, pre-heating 42638 -
Constant, setback 43286 +1.51
Constant, pre-heating, setback 43359 +1.69
Linear 43446 +1.90
Linear, pre-heating 43237 +1.40
Linear, setback 43361 +1.70
Linear, pre-heating, setback 43895 +2.95

model shows worse performance than a constant supply temperature value. This
counterintuitive result likely stems from the operational strategy used during
the monitoring period, which was used as our boundary condition. The best
supply temperatures found for the base constant model are 81.0°C for MAIN
and 82.0°C for SECI, slightly lower than the setpoints enforced by the manual
control. This allowed to reduce heat losses to the ground while satisfying the
constraints for the temperature at consumer substations. Interestingly, models
with setback performed worse, and in most cases either the setback duration or
magnitude was reduced to almost zero during the optimization. Pre-heating was
beneficial for reducing losses, but contrarily to its usual usage it was pushed to
the afternoon and not used for shaving the peak demand in the morning. Simi-
larly to the manual control used, its starting times converged either around 11
AM, 14 PM or 22 PM, which correspond to sharp decreases in mass flow rate at
MAIN.

These adaptations suggest that the gradient descent method is successfully
navigating the complex solution space of the thermal model, confirming the via-
bility of the approach. While our analysis was constrained to a 5-day period, this
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methodology has the potential for extension to longer time-frames, provided that
the computation of gradients is adapted accordingly. On this regard, techniques
such as Backpropagation Through Time (BPTT) with truncated horizons might
be needed for maintaining numerical stability and managing computational costs
for longer trajectories. The approach also remains viable for larger networks,
provided that constraints are placed on the number of water volumes modeled
simultaneously across all pipes, for example by periodically joining adjacent vol-
umes.

4 Conclusion and Future Work

In this work, we proposed a gradient-based approach to DHN control optimiza-
tion using a differentiable dynamic thermal model. In particular, we used it as a
mean to tune heating curves for a real network based on monitoring data over a
period of 5 days. Despite the limitations imposed by using boundary conditions
on mass flow that are not correlated with the outdoor air temperature, results
show a reduction in heat losses compared to manual operations. This approach
eliminates the need for extensive trial-and-error tuning, and consequently, pe-
riods of suboptimal operations. Future work should expand this approach to
longer time horizons, which will require addressing computational challenges in
gradient calculation over extended periods. Additionally, extending the model
to include the hydraulic aspects of the network would provide a more complete
optimization framework, that could allow for a higher energy saving potential.
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