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Abstract

Adapting generic models to specific domains or tasks, a process termed adaptation, has long

been of interest in speech and language processing, particularly when target data are insuffi-

cient for training bespoke models from scratch. The pre-training fine-tuning paradigm has

underpinned the development and application of such generic models, which are initially

trained on extensive datasets before subsequent refinement on domain- or task-specific data.

While recent large pre-trained models increasingly demonstrate in-context or zero-shot learn-

ing capabilities, adaptation remains crucial for significantly enhancing performance when

more target data are available. Primarily motivated by the adaptation of text-to-speech syn-

thesis (TTS) models, in this thesis, we investigate a series of adaptation techniques, including

both TTS-specific methods and generic fine-tuning approaches, with particular emphasis on

data efficiency, parameter efficiency, and generalizability.

The thesis begins by exploring the integration of diffusion models into adaptive TTS systems,

motivated by the recent success of deep generative models in synthesizing realistic speech.

Building on the Diffusion Transformer architecture, we utilize adaptive layer normalization

to condition the diffusion network on text representations, which further enables parameter-

efficient adaptation. Compared to convolutional counterparts, the proposed approach offers

faster inference for general TTS tasks and outperforms transformer-based adaptive TTS models

in terms of naturalness and speaker similarity under few-shot and few-parameter settings.

The second part shifts from ad hoc adaptation to generic parameter-efficient fine-tuning

(PEFT) for TTS systems, which increasingly rely on large pre-trained models with strong zero-

shot capabilities. Despite PEFT enabling efficient adaptation, catastrophic forgetting remains

an issue, damaging the base model’s generalizability. To mitigate this, we apply Bayesian

transfer learning techniques to regularize PEFT with low-rank adaptation (LoRA) and preserve

pre-training knowledge, utilizing diagonal and Kronecker-factored Laplace approximations.

Experiments on language modeling and TTS demonstrate that catastrophic forgetting can

be overcome by our methods without degrading fine-tuning performance, with Kronecker-

factored approximation yielding superior pre-training knowledge preservation.

Continuing the exploration of Bayesian learning theory from the previous part, the final part of

this thesis investigates the applications of variational inference to PEFT. Unlike Laplace approx-

imation, variational inference frames posterior estimation as an online optimization problem,

allowing for more flexible and expressive distributions. We first assess its effectiveness in

improving predictive accuracy and calibration relative to Laplace-based methods. We then
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Abstract

leverage its online posterior estimates to identify and prune redundant LoRA components,

enabling automatic, layer-wise allocation of the parameter budget.

In summary, the thesis contributes to the advancement of adaptive TTS systems and offers

Bayesian perspectives on enhancing generic adaptation techniques with respect to gener-

alizability and efficiency. In particular, it provides a principled investigation of posterior

estimation for adapted parameters using both Laplace approximation and variational infer-

ence, highlighting the advantages of Bayesian learning in fine-tuning.

Keywords: speech synthesis, deep generative models, adaptation, parameter-efficient fine-

tuning, Bayesian transfer learning, Laplace approximation, variational inference
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Résumé

L’adaptation de modèles génériques à des domaines ou à des tâches spécifiques, un processus

appelé adaptation, suscite depuis longtemps un intérêt dans le traitement de la parole et

du langage, en particulier lorsque les données cibles sont insuffisantes pour entraîner des

modèles sur mesure depuis zéro. Le paradigme d’apprentissage par pré-entraînement puis

affinement (fine-tuning) a sous-tendu le développement et l’application de ces modèles géné-

riques, qui sont d’abord entraînés sur de vastes ensembles de données avant d’être affinés

sur des données spécifiques à un domaine ou à une tâche. Bien que les récents modèles

de grande taille pré-entraînés démontrent de plus en plus des capacités d’apprentissage en

contexte ou sans entraînement préalable (zero-shot), l’adaptation reste cruciale pour amélio-

rer significativement les performances lorsque davantage de données cibles sont disponibles.

Principalement motivée par l’adaptation des modèles de synthèse texte-vers-parole (TTS),

cette thèse explore une série de techniques d’adaptation, incluant à la fois des méthodes

spécifiques au TTS et des approches génériques d’affinement, avec un accent particulier sur

l’efficacité en termes de données, l’efficacité paramétrique, et la généralisabilité.

La thèse commence par explorer l’intégration des modèles de diffusion dans les systèmes TTS

adaptatifs, motivée par le succès récent des modèles génératifs profonds dans la synthèse de

parole réaliste. En s’appuyant sur l’architecture Diffusion Transformer, nous utilisons une

normalisation adaptative des couches (adaptive layer norm) pour conditionner le réseau de

diffusion sur des représentations textuelles, ce qui permet une adaptation efficace en termes

de paramètres. Comparée aux approches convolutionnelles, l’approche proposée offre une

inférence plus rapide pour les tâches TTS générales et surpasse les modèles TTS adaptatifs à

base de transformers en termes de naturel et de similarité de locuteur dans des contextes à

faible nombre d’exemples et de paramètres.

La seconde partie passe d’une adaptation ad hoc à un affinement générique efficace en

paramètres (PEFT) pour les systèmes TTS, qui reposent de plus en plus sur des modèles pré-

entraînés de grande taille avec de fortes capacités zero-shot. Bien que le PEFT permette une

adaptation efficace, l’oubli catastrophique reste un problème, nuisant à la généralisabilité du

modèle de base. Pour y remédier, nous appliquons des techniques d’apprentissage transféré

bayésien afin de régulariser le PEFT avec une adaptation à faible rang (LoRA) et de préserver

les connaissances issues du pré-entraînement, en utilisant des approximations de Laplace

diagonales et factorisées de Kronecker. Les expériences en modélisation du langage et en TTS

démontrent que l’oubli catastrophique peut être évité par nos méthodes sans dégrader les

performances d’affinement, l’approximation factorisée de Kronecker assurant une meilleure
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Résumé

préservation des connaissances acquises lors du pré-entraînement.

Poursuivant l’exploration de la théorie bayésienne initiée dans la partie précédente, la dernière

partie de cette thèse étudie les applications de l’inférence variationnelle au PEFT. Contrai-

rement à l’approximation de Laplace, l’inférence variationnelle reformule l’estimation du

postérieur comme un problème d’optimisation en ligne, permettant des distributions plus

flexibles et expressives. Nous évaluons d’abord son efficacité en termes d’amélioration de la

précision prédictive et de la calibration par rapport aux méthodes basées sur Laplace. Nous

exploitons ensuite ses estimations postérieures en ligne pour identifier et élaguer les compo-

santes LoRA redondantes, permettant une allocation automatique et couche-par-couche du

budget de paramètres.

En résumé, cette thèse contribue à l’avancement des systèmes TTS adaptatifs et propose des

perspectives bayésiennes pour améliorer les techniques d’adaptation générales en termes de

généralisabilité et d’efficacité. En particulier, elle offre une analyse rigoureuse de l’estimation

a posteriori des paramètres adaptés en utilisant à la fois l’approximation de Laplace et l’in-

férence variationnelle, mettant en évidence les avantages de l’apprentissage bayésien pour

l’ajustement fin.

Mots-clés : synthèse vocale, modèles génératifs profonds, adaptation, affinement efficace en

paramètres, apprentissage transféré bayésien, approximation de Laplace, inférence variation-

nelle
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1 Introduction

1.1 Motivation

The rapid advancement of speech technology has revolutionized human-computer interac-

tion, giving rise to a wide range of applications, including voice assistants, audiobooks, and

speech-to-speech translation. This progress can be primarily attributed to two interrelated

factors: innovations in modeling techniques and the increasing scale of training data and

model capacity. From a methodological perspective, advances in deep generative models,

such as diffusion models (Ho et al., 2020; Song et al., 2021) and flow matching (Lipman et al.,

2023), have enabled the synthesis of highly realistic speech signals; meanwhile, speech lan-

guage models (Défossez et al., 2024; Xu et al., 2025) powered by autoregressive models such as

transformers have demonstrated strong multi-functional capabilities on both generative and

discriminative tasks when multimodal data is unified within a shared discrete token space. On

the scaling front, the growth of training data has necessitated the development of increasingly

large models, which, once exceeding certain thresholds, often exhibit emergent capabilities

not present in smaller counterparts.

Independent of modeling methods, a persistent challenge in the development of speech

technology is the need for customization and personalization across various applications, i.e.,

tailoring speech processing systems to individual users or specialized domains. For example,

in text-to-speech synthesis (TTS), users may wish to generate speech in a particular voice,

such as their own, or in a speaking style that is either underrepresented or entirely absent

from the training data. Likewise, in automatic speech recognition (ASR), service providers

often aim to extend the functionality of a general-purpose ASR system to better serve specific

user groups, such as children or speakers of a particular language or dialect. These scenarios

give rise to the challenge of adapting a generic model to a specific domain or task, a process

commonly referred to as adaptation, especially in contexts where the available data is too

limited to train a dedicated model from scratch. A key consideration in adaptation is efficiency,

both in terms of data usage and parameter modification. The objective is to achieve high

performance with limited adaptation data by updating only a small subset of the base model’s

1



Chapter 1. Introduction

parameters, thereby minimizing data requirements and computational overhead.

Funded by the Swiss National Science Foundation (SNSF) project, Neural Architectures for

Speech Technology, we are primarily motivated by the adaptation of TTS systems to specific

speaker identity, speaking style, and emotion. Adaptation methods are closely tied to model

architectures; in the context of TTS, this primarily concerns the acoustic model. Early neural

TTS acoustic models were characterized by sequence-to-sequence models with an encoder-

decoder architecture (Shen et al., 2018; Ren et al., 2021a). Research in this era generally

followed two directions: designing specialized methods to improve the generalization of

base models across domains, and enhancing adaptation efficiency by minimizing data and

parameter requirements. The first direction often involves domain-specific, ad hoc techniques

due to the heterogeneity of model architectures (Wang et al., 2018; Hsu et al., 2019); we argue

that the trend toward unified model architectures will reduce such complexity. The latter,

which forms the basis of the initial phase of this thesis, focuses on identifying adaptable

components or integrating dedicated modules to enable efficient adaptation (Chen et al.,

2021; Huang et al., 2022b).

Nevertheless, recent developments in the field have motivated a reorientation of our research

objectives. First, there has been a growing interest in general-purpose models shifting from

task-specific ones, largely driven by innovations in modeling techniques. In TTS, large pre-

trained models are now able to not only deliver human-level natural speech, but also support

advanced functions such as zero-shot voice cloning and speech editing (Wang et al., 2023a;

Li et al., 2023; Huang et al., 2024). Second, architectural unification across domains has led

to the adoption of generic adaptation techniques (Ding et al., 2023a), many originating from

natural language processing (NLP), replacing earlier ad hoc approaches. Consequently, the

distinction among different adaptation targets has diminished, with adaptation framed as a

general transfer learning problem. Third, the pre-training fine-tuning paradigm has become

fundamental in model development, leveraging large-scale data for general model training,

followed by task-specific refinement. These developments highlight the need to explore

general adaptation methods suited to this new paradigm in the second phase of the thesis,

among which parameter-efficient fine-tuning (PEFT) has emerged as a promising approach.

PEFT techniques aim to adapt large pre-trained models to new tasks or domains by modifying

a small fraction of parameters or adding lightweight components while keeping most of

the model frozen. This reduces computation, memory, and storage costs, enabling efficient

customization on low-resource devices and simplifying the deployment of multiple task-

specific variants from a shared base model. While PEFT has significantly enhanced adaptation

efficiency, it still presents several problems requiring further investigation, many of which are

inherent to transfer learning. A first concern is the potential loss of generalizability: the model

may lose much of the knowledge it gained during pre-training. This loss can adversely affect

the model’s ability to generalize to unseen data, and is even more unfavorable on modern large

pre-trained models that are usually multi-functional by training on a diverse range of tasks and

data. A second issue is model overconfidence: given limited adaptation data, the model may
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produce erroneous predictions with disproportionately high confidence, thereby undermining

reliability and posing risks in real-world applications. Finally, instead of relying on predefined

strategies for parameter modification, automatically identifying the most critical modules

or layers for adaptation can further optimize performance and efficiency. In light of these

challenges, this thesis seeks to develop a unified and theoretically grounded framework for

model adaptation.

1.2 Main Contributions

This thesis contains three broad contributions across two primary phases, each addressing

key challenges from ad hoc to generalized approaches.

The first phase of this thesis is situated in the era of encoder-decoder models for acoustic

modeling in TTS, during which the integration of deep generative models such as flow and

diffusion models as decoders has substantially improved the quality and naturalness of syn-

thesized speech. Within this context, we aim to design an architecture that not only generates

high-quality, natural-sounding speech but also enables efficient adaptation in low-resource

settings, both in terms of data and model parameters. Motivated by the success of diffusion

models in synthesizing realistic speech, we investigate how diffusion can be included in adap-

tive TTS systems. Inspired by the adaptable layer norm modules for transformer, we adapt

the Diffusion Transformer architecture as a new backbone of diffusion models for acoustic

modeling. Specifically, the adaptive layer norm is used to condition the diffusion process on

text representations, which further enables parameter-efficient adaptation. We show the new

architecture to be a faster alternative to its convolutional counterpart for general TTS, while

demonstrating a clear advantage on naturalness and similarity over the transformer for few-

shot and few-parameter adaptation. To formally evaluate our system against state-of-the-art

approaches, we submitted an entry to the Blizzard Challenge 2023 which focused on French

TTS. Our submission utilized the proposed model, with an additional focus on text analysis

specifically addressing liaisons and heterophonic homographs. Formal evaluations ranked

our system favorably among competitors, demonstrating its ability to achieve state-of-the-art

performance in terms of synthesis quality and naturalness.

The second phase of this thesis transitions from model-specific adaptation techniques to more

general PEFT frameworks. The first focus within this phase addresses the issue of catastrophic

forgetting, where fine-tuning undermines the pre-trained model’s inherent capabilities. In

TTS, this issue manifests as a loss of zero-shot synthesis performance, eventually compro-

mising generalizability and overall synthesis quality. To overcome catastrophic forgetting, we

investigates the application of Bayesian transfer learning within the PEFT paradigm. At the

core of this approach is the estimation of the posterior distribution over pre-trained model

parameters using the Laplace approximation. This posterior distribution acts as a regularizer

during adaptation, guiding updates in a manner that preserves the information acquired

during pre-training. We demonstrate that existing Bayesian transfer learning techniques can
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be applied to PEFT to prevent catastrophic forgetting provided that the parameter shift is

differentiable and therefore amenable to gradient-based optimization. In a principled series of

experiments on language modeling and speech synthesis tasks, we utilize established Laplace

approximations, including diagonal and Kronecker-factored approaches, to regularize PEFT

with low-rank adaptation (LoRA) and compare their performance in pre-training knowledge

preservation. Our results demonstrate that catastrophic forgetting can be overcome by our

methods without degrading the fine-tuning performance, and using the Kronecker-factored

approximation produces a better preservation of the pre-training knowledge than the diagonal

ones.

Continuing the exploration of Bayesian learning theory, the final component of the thesis ex-

amines the applications of variational inference to PEFT. Sharing the ultimate goal of learning

parameter distributions with Laplace approximation, variational inference formulates poste-

rior estimation as an optimization problem, allowing for the learning of more expressive and

accurate posterior along the training process. Utilizing Improved Variational Online Newton

(IVON), a state-of-the-art variational inference optimizer, we first assess its effectiveness in

improving predictive accuracy and calibration relative to Laplace-based methods. By sam-

pling from the learned parameter distribution during inference, both IVON and Laplace-based

method are shown to significantly improve calibration and reduce overconfidence. We then

leverage IVON’s online posterior estimates to identify and prune redundant LoRA compo-

nents, enabling automatic, layer-wise allocation of parameter budget. This not only enhances

performance and efficiency but also offers a Bayesian interpretation of importance scoring

strategies commonly used for parameter selection in PEFT.

1.3 Thesis Outline

This thesis is organized into six chapters, with the main contributions presented in Chapters 3

to 5. The current chapter introduces the motivation, contributions, and structure of the thesis.

Chapter 2 provides the necessary background, including an overview of deep generative

models foundational to modern TTS systems, the evolution of neural TTS architectures, a

summary of parameter-efficient fine-tuning (PEFT) techniques, and a review of the datasets

and evaluation metrics used throughout the thesis.

Chapter 3 presents the first contribution: the integration of the Diffusion Transformer ar-

chitecture for adaptive TTS using adaptive layer normalization. This design enables both

data-efficient and parameter-efficient adaptation. The chapter also details our submission to

the Blizzard Challenge 2023 and reports the corresponding evaluation results.

Chapter 4 introduces the second contribution. It includes a thorough mathematical derivation

of the Bayesian transfer learning theory using Laplace approximation, which provides a unified

framework for overcoming catastrophic forgetting in PEFT. The chapter validates the approach

through systematic experiments in language modeling and speaker adaptation for TTS.
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Chapter 5 describes the third contribution, which explores the applications of variational

inference in PEFT for predictive uncertainty estimation and parameter importance estima-

tion. The first part compares variational inference with Laplace-based methods in terms of

improving predictive accuracy and calibration. The second part leverages online posterior

estimates to guide parameter selection and improve adaptation performance and efficiency.

Chapter 6 concludes the thesis and outlines directions for future research.

Note: To improve the clarity and fluency of the written text, large language models, including

OpenAI’s ChatGPT, Google’s Gemini, and DeepSeek, were employed during the writing process

of this thesis. These tools were used solely for language refinement, such as enhancing

grammar, style, and phrasing.
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2 Background

2.1 Deep Generative Models

2.1.1 Variational Autoencoder

Variational Autoencoder (VAE) (Kingma and Welling, 2014) is a type of deep generative model

that operate within the framework of probabilistic graphical models and variational inference.

The primary objective of a VAE is to learn the underlying probability distribution p(x) of

training data, enabling both the generation of new data samples resembling the training data

and the learning of meaningful low-dimensional latent representations.

VAEs achieve this by positing a generative process involving unobserved, continuous latent

variables z. It is assumed that the data x is generated from z according to some conditional

distribution pθ(x|z), often referred to as the decoder, parameterized by θ. The latent variables

themselves are assumed to follow a prior distribution p(z), typically chosen to be a simple

distribution like the standard Gaussian N (0,I). The marginal likelihood of the data is then

given by the integral:

pθ(x) =
∫

pθ(x|z)p(z)dz (2.1)

Directly maximizing this marginal likelihood log pθ(x) with respect to θ is generally intractable

for complex neural networks used for pθ(x|z). VAEs address this challenge by introducing

an encoder, denoted by qφ(z|x), parameterized by φ, which serves as an approximation to

the true posterior pθ(z|x). Instead of maximizing the marginal log-likelihood directly, VAEs

optimize a lower bound known as the Evidence Lower Bound (ELBO), L(θ,φ;x), derived using

variational principles:

log pθ(x) ≥L(θ,φ;x) = Eqφ(z|x)[log pθ(x|z)]−DK L(qφ(z|x)||p(z)) (2.2)

Here, Eqφ(z|x)[log pθ(x|z)] represents the expected reconstruction log-likelihood under the

approximate posterior. This term encourages the decoder pθ(x|z) to accurately reconstruct
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the input data x from latent representations z sampled according to the encoder’s output

distribution qφ(z|x). The second term, DK L(qφ(z|x)||p(z)), is the Kullback-Leibler (KL) diver-

gence between the approximate posterior and the prior p(z). This term acts as a regularizer

that encourages the distribution of encoded representations qφ(z|x) for a given x to remain

close to the prior distribution p(z), thereby promoting a structured latent space.

The gap between the true log-likelihood and the ELBO is the KL divergence between the

approximate and true posterior: log pθ(x)−L(θ,φ;x) = DK L(qφ(z|x)||pθ(z|x)). Maximizing

the ELBO thus corresponds to simultaneously maximizing the reconstruction likelihood and

minimizing the divergence between the approximate posterior and the prior, which implicitly

minimizes the divergence between the approximate and the true posterior.

Both the encoder qφ(z|x) and the decoder pθ(x|z) are typically implemented using deep

neural networks, which are jointly optimized using gradient descent on the negative ELBO.

A key technique enabling such optimization is the reparameterization trick, which allows

gradients to backpropagate through the sampling process from qφ(z|x). For instance, if

qφ(z|x) =N (z;µφ(x),σ2
φ(x)), a sample z can be drawn as z =µφ(x)+σφ(x)⊙ϵ, where ϵ∼N (0,I)

and ⊙ denotes element-wise multiplication. This reparameterization makes the expectation

term in the ELBO differentiable with respect to φ.

2.1.2 Normalizing Flow

Flow-based generative models explicitly model the data distribution by leveraging normalizing

flows. A normalizing flow applies a sequence of invertible transformations to map a simple

prior distribution p(z) to a complex data distribution p(x), using the change-of-variable law of

probabilities. These invertible functions, denoted by f, are referred to as flow steps:

x = f1 ◦ f2 ◦ ...fK (z) (2.3)

Thanks to the invertibility of each flow step, the exact log-likelihood of data can be computed

analytically via the change-of-variable formula:

log pθ(x) = log pθ(z)+
K∑

i=1
log

∣∣det
(
J
(
f−1

i (x)
))∣∣

z = f−1
K ◦ f−1

K−1 ◦ . . . f−1
1 (x)

(2.4)

Here, J denotes the Jacobian matrix of the inverse transformation f−1
i (x). In practice, the flow

steps are parameterized by neural networks, and the model is trained by minimizing the

negative log-likelihood of the data.

The key design considerations in constructing normalizing flows are twofold: first, each f

must be invertible and differentiable to ensure tractable computation of the transformed
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density; second, the Jacobian determinant must be computationally efficient to evaluate.

Prominent examples of flow-based architectures include NICE (Dinh et al., 2015), RealNVP

(Dinh et al., 2017), and Glow (Kingma and Dhariwal, 2018), which are specifically designed

to allow efficient computation of both the inverse mapping and the Jacobian determinant

in a single forward pass. Normalizing flows offer a key advantage over VAEs by providing

exact likelihood calculation, which leads to better likelihood estimates and generation quality,

avoiding issues like the blurry reconstructions and posterior collapse commonly observed in

VAEs.

2.1.3 Diffusion Model

Diffusion models refer broadly to two classes of generative models: Denoising Diffusion

Probabilistic Models (DDPM) (Ho et al., 2020), formulated via Markov chains, and Score-based

Generative Models (SGM) (Song et al., 2021), based on stochastic differential equations. Due

to space constraints, we focus on DDPM, which offers a more probabilistically grounded

formulation.

DDPM consists of two Markov processes: a forward diffusion process that gradually adds

noise to the data, and a reverse process that reconstructs data from noise. The forward

process transforms a clean data point x0 into a Gaussian noise sample xT over T steps using a

predefined noise schedule βt ∈β1, . . . ,βT :

q (xt | xt−1) =N
(
xt ;

√
1−βt xt−1,βt I

)
, q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) (2.5)

Defining αt = 1−βt and ᾱt =∏t
i=1αi , one can derive a closed-form expression:

q (xt | x0) =N
(
xt ;

√
ᾱt x0, (1− ᾱt )I

)
(2.6)

This allows sampling xt at any timestep directly from x0 without iterating through intermediate

steps.

The reverse process reconstructs data by gradually denoising xT back to x0 using parameter-

ized Gaussian transitions:

pθ (xt−1 | xt ) =N
(
xt−1;µθ (xt , t ) ,Σθ (xt , t )

)
, pθ (x0:T ) = p (xT )

T∏
t=1

pθ (xt−1 | xt ) (2.7)

with p(xT ) =N (0,I). The reverse transition probability pθ (xt−1 | xt ) can be parameterized by
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a neural network θ, and is analytically tractable when conditioned on x0:

q (xt−1 | xt ,x0) = N
(
xt−1;µ̃t (xt ,x0) , β̃t I

)
µ̃t (xt ,x0) =

p
ᾱt−1βt

1− ᾱt
x0 +

p
αt (1− ᾱt−1)

1− ᾱt
xt , β̃t = 1− ᾱt−1

1− ᾱt
βt .

(2.8)

Similar to VAEs, the training objective is to maximize the data likelihood via the evidence lower

bound (ELBO). The loss is given by:

L(θ) = Eq

[
KL

(
q (xT | x0)∥p (xT )

)+ T∑
t=2

KL
(
q (xt−1 | xt ,x0)∥pθ (xt−1 | xt )

)− log pθ (x0 | x1)

]
(2.9)

Every KL term in the loss function calculates the distance between two Gaussian distribution

thus can be computed in closed form. Note that the first term is a constant and not parame-

terized. By setting Σθ (xt , t ) as a constant and reparameterizing x0 = 1p
ᾱt

(
xt −

p
1− ᾱtϵ

)
from

q(xt |x0) =N (xt ;
p
ᾱt x0, (1− ᾱt )I), Ho et al. (2020) demonstrate the problem of learning µ̃t can

be converted to estimating the Gaussian noise ϵ with neural network θ. The loss is then to

minimize the difference between the true noise ϵ and the estimated noise:

Lsimple (θ) = Et ,x0,ϵ
[∥ϵ−ϵθ (xt , t )∥2] (2.10)

Diffusion models generally outperform normalizing flows in generating high-fidelity and

diverse samples due to their ability to model complex, multi-modal distributions more effec-

tively. While normalizing flows require invertible architectures and a fixed dimensionality,

which can limit their expressiveness, diffusion models employ a multi-step denoising pro-

cess that gradually transforms noise into data, offering greater flexibility and robustness in

capturing intricate data structures.

2.2 Neural Text-to-Speech Architectures

2.2.1 Overview

A neural network-based TTS system generally consists of three main components: text analysis,

acoustic model, and vocoder, as is shown in Figure 2.1.

1. The text analysis module transforms input text into linguistic features. For neural

TTS, it is largely simplified to text normalization and grapheme-to-phoneme (G2P)

conversion: the module first converts character input to standardized word format

(e.g. “2025” normalized to “twenty twenty-five”), and then obtains the corresponding

phoneme sequence in the second step (e.g. “modern” converted to “M AA1 D ER0 N”).

Traditionally, both steps are implemented using rule-based systems and lexicon lookups.
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Text Text	Analysis Acoustic	Model Vocoder Waveform
Linguistic

Features

Acoustic

Features

Figure 2.1: Main components of neural TTS system.

Neural network-based methods have been introduced later, framing text normalization

and G2P conversion as sequence-to-sequence learning tasks. With more recent language

model-based TTS systems, these steps are increasingly abstracted away. Such models

typically tokenize input text at the word or character level, allowing the acoustic model

to directly learn the mapping from textual input to speech features without explicit

intermediate representations.

2. The acoustic model converts linguistic features into acoustic representations, serving as

a core component in a TTS system. Traditionally, the most widely used representation

has been the mel-spectrogram, which is a continuous, low-dimensional feature that

captures pitch, energy, and timbral information using conventional signal processing

techniques. However, recent advances in speech representation learning, particularly in

tokenization and quantization methods (Hsu et al., 2021; Chen et al., 2022; Zeghidour

et al., 2022; Défossez et al., 2023), have enabled the transformation of continuous

speech signals into discrete tokens. These discrete representations facilitate unified,

multi-modal modeling of text and speech within a single architecture. The design of

the acoustic model varies depending on the specific application, the type of acoustic

representation employed, and the structure of the overall TTS pipeline. Nevertheless, the

central task of acoustic modeling is typically framed as simply a sequence-to-sequence

learning problem. Broadly, acoustic models can be categorized into two main types:

encoder-decoder models and speech language models.

3. The vocoder synthesizes an intelligible audio waveform from acoustic features. Vocoders

can be broadly categorized based on their architectures, including CNN- (van den

Oord et al., 2016), RNN- (Kalchbrenner et al., 2018), GAN- (Kong et al., 2020), flow-

(Prenger et al., 2019), and diffusion-based (Kong et al., 2021) models. Traditionally, they

have been designed as general-purpose converters that transform a mel-spectrograms

into a time-domain waveform. However, these architectures are readily adaptable to

alternative acoustic representations, including discrete tokens, as such tokens can be

easily mapped to continuous feature spaces via embedding lookups. Recent neural

audio codecs (Zeghidour et al., 2022; Défossez et al., 2023) adopt an encoder-decoder

architecture in which the decoder effectively functions as a vocoder, reconstructing

waveform from discrete token sequences. Ultimately, the choice of vocoder architecture

is closely tied to the nature of the acoustic representation used in the system.

The acoustic model–vocoder paradigm underlies most TTS systems, including those based

on language models. Although fully end-to-end models exist that directly generate speech

waveform from text, they typically integrate the functions of both the acoustic model and

the vocoder into a unified architecture. For instance, VITS (Kim et al., 2021) incorporates a
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VAE, a normalizing flow, and a GAN-based vocoder into a single model, effectively blurring

the distinction between the acoustic model and vocoder. In this setup, the acoustic features

are represented as latent variables of the VAE instead of mel-spectrograms. Regardless of

the overall system design, the acoustic model remains the core component responsible for

determining both the content and style of the generated speech, and therefore is the primary

focus of our TTS research. In the remainder of this section, we will examine two key approaches

of acoustic modeling in detail: encoder-decoder models and speech language models.

2.2.2 Encoder-Decoder Models

A typical encoder-decoder acoustic model comprises two main components: a text en-

coder, which transforms the linguistic input, such as words, phonemes, or characters, into

fixed-dimensional representations, and a decoder, which sequentially generates acoustic

features from these representations. Both the encoding and decoding stages can be framed as

sequence-to-sequence modeling tasks, and are commonly implemented using architectures

such as CNNs, RNNs, or transformers.

A key challenge in this framework is the inherent length mismatch between linguistic and

acoustic sequences: for example, determining how many mel-spectrogram frames should

correspond to a single phone. Two paradigms that address this challenge are Tacotron 2

(Shen et al., 2018) and FastSpeech 2 (Ren et al., 2021a). Tacotron 2 follows an autoregressive

approach: the text encoder is a bidirectional RNN, while the decoder is a unidirectional

RNN that learns alignment between text representations and mel-spectrogram frames via

an attention mechanism. Similarly, Transformer TTS (Zheng et al., 2020) replaces the RNNs

with transformer blocks while retaining the autoregressive nature of the decoder. In contrast,

FastSpeech 2 adopts a non-autoregressive approach, utilizing feed-forward transformer blocks

in both the encoder and decoder. It introduces a variance adapter between the encoder and

decoder, which explicitly predicts the duration of each phone. During inference, the encoder

outputs are expanded based on the predicted durations before being passed to the decoder.

This adds another requirement of obtaining the alignment, which can be achieved either

through external forced alignment tools prior to training, such as the Montreal Forced Aligner

(MFA) (McAuliffe et al., 2017), or by learning the alignment dynamically during training using

algorithms like monotonic alignment search (Kim et al., 2020).

Further research in the era of encoder-decoder acoustic models focused on improving control-

lability, expressiveness, and naturalness. Enhancements in controllability and expressiveness

are typically introduced in the stages preceding the decoder, where the model learns to encode

not only linguistic content but also speaker-specific and stylistic variations. This includes

fine-grained control over prosodic features such as pitch, energy, and speaking rate, often

achieved through explicit conditioning or learned latent representations (Min et al., 2021;

Huang et al., 2022b). Approaches such as global style tokens (Wang et al., 2018), variational au-

toencoders (Hsu et al., 2019), and reference encoders (Wu et al., 2022; Huang et al., 2022b) have
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proven effective in capturing and reproducing diverse speaker identities and speaking styles.

In contrast, improving naturalness has largely relied on advances in decoder architectures,

particularly through the adoption of deep generative models. Flow (Valle et al., 2021; Kim et al.,

2020), diffusion (Jeong et al., 2021; Popov et al., 2021), and flow matching models (Mehta et al.,

2024) have emerged as powerful alternatives to traditional decoder architectures, capable of

modeling the complex distributions of acoustic features with greater precision. These models

not only enhance the perceptual quality of synthesized speech by avoiding oversmoothing

of mel-spectrograms and artifacts, but also produce more nuanced and natural prosody by

modeling complex dependencies across the entire utterance.

2.2.3 Speech Language Models

Recent advances in speech language models are fundamentally enabled by the development

of neural audio codecs, which enable efficient discretization of continuous waveform into

compact, learnable token sequences. These codec models, such as Soundstream (Zeghidour

et al., 2022) and EnCodec (Défossez et al., 2023), decompose speech into discrete or quantized

representations, allowing language models to process speech as sequences akin to text. By

leveraging tokenized speech representations, speech language models treat speech synthesis

as a conditional language modeling problem, where autoregressive architectures such as a

transformer generate speech tokens guided by textual input and reference audio. VALL-E

(Wang et al., 2023a), a representative model in this paradigm, employs a hierarchical pipeline

that generates coarse acoustic tokens first with an autoregressive transformer, followed by

residual token predictions using a non-autoregressive transformer. Following this framework,

subsequent work aimed to improve cross-lingual capability (Zhang et al., 2023c), alignment

accuracy (Xin et al., 2024; Song et al., 2025), and generation efficiency (Chen et al., 2024).

Beyond the VALL-E paradigm, newer models have targeted improvements in quality, effi-

ciency, and controllability of TTS systems. While most LLM-based TTS models rely on discrete

tokenization via neural audio codecs, some studies have explored continuous representations

within autoregressive frameworks to overcome limitations in audio quality (Meng et al., 2024).

For efficiency, techniques such as generating multi-level codebook tokens in a single pass

by generating multiple tokens simultaneously at a step have been proposed (Copet et al.,

2023). Alternatively, models like SparkTTS (Wang et al., 2025) eliminate the need to generate

high-level codebook tokens by first producing fixed-length global tokens that encode speaker

attributes, followed by semantic tokens that capture linguistic content. On the controllability

front, the multi-modal nature of speech language models enables speech generation to be

guided by natural language prompts. For instance, VoiceCraft (Peng et al., 2024) employs

neural codec language models and specialized architectures to support precise, text-guided

speech editing. Similarly, InstructSpeech (Huang et al., 2024) uses multi-task LLMs trained

on paired natural language instructions and speech data to allow fine-grained control over

both semantic content and prosodic attributes. More recently, multi-task training has enabled

speech language models to unify speech understanding and generation within a single multi-
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modal architecture (Défossez et al., 2024; Xu et al., 2025). These advancements push the field

toward highly versatile and general-purpose speech processing systems.

2.3 Parameter-Efficient Fine-Tuning

2.3.1 Overview

Parameter-efficient fine-tuning (PEFT) techniques aim to adapt large pre-trained models

to new tasks or domains while minimizing the number of trainable parameters. Instead of

updating the entire model, these methods focus on modifying only a small subset of inherent

parameters or adding lightweight components while keeping the bulk of the pre-trained model

frozen. PEFT not only reduces computation, memory, and storage costs, enabling efficient

model customization on low-resource devices, but also facilitates sharing and deployment of

multiple specialized model variants derived from a single base model.

Depending on whether the focus is on fine-tuning newly added modules or modifying the

intrinsic parameters of a pre-trained model, PEFT techniques can be broadly categorized into

addition-based methods and reparameterization-based methods. In the remainder of this

section, we introduce several representative techniques from each category.

2.3.2 Addition-Based Methods

Addition-based methods introduce lightweight modules or input modifications to the model

while keeping the majority of the pre-trained parameters frozen, which can be further catego-

rized into adapter-based methods and prompt-based methods.

Adapter-Based Methods

Adapter modules (Houlsby et al., 2019; Pfeiffer et al., 2020) are lightweight, trainable compo-

nents inserted into the transformer architecture. Typically, each adapter consists of a two-layer

feed-forward network that forms a bottleneck structure: a down-projection Wdown ∈ Rd×r

reduces the dimensionality of the hidden representations from the model’s hidden size d to a

lower-dimensional latent space of rank r ≪ d , followed by a nonlinearity, and an up-projection

Wup ∈ Rr×d that restores the original dimensionality. Formally, given a hidden state h ∈ Rd ,

the adapter output is computed as: Adapter(h) = Wupσ(Wdownh)+h, where σ(·) denotes the

activation function, and the residual connection ensures compatibility with the original model

behavior. Adapters can be flexibly inserted at various points within the transformer layer, such

as between the self-attention and feed-forward modules, or within residual connections.

Apart from bottleneck adapters, there exist other adapter-based techniques aiming to improve

parameter efficiency by introducing inductive biases into adapter layers. For instance, Com-

pacter (Mahabadi et al., 2021a) proposes a method combining hypercomplex multiplication
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with parameter sharing: the original linear layer is parameterized as a sum of Kronecker prod-

ucts of two smaller matrices. Hyperformer (Mahabadi et al., 2021b) learns adapter parameters

by generating them using shared hypernetworks, assuming that there is shared knowledge

across layers and tasks.

Prompt-Based Methods

Prompt-based methods modify the model input or internal activations to guide task-specific

behavior without altering the original model weights. Two representative methods are prompt

tuning (Lester et al., 2021) and prefix tuning (Li and Liang, 2021). Prompt tuning learns a

sequence of continuous task-specific embeddings (soft prompts) that are prepended to the

input tokens. These embeddings are optimized during training and serve as a lightweight

mechanism for conditioning the model. Prefix tuning extends this approach by optimizing

continuous vectors that are prepended to the key and value matrices at each transformer

layer. Compared to prompt tuning, prefix tuning directly influences the attention mechanism,

thereby providing a more expressive form of conditioning.

2.3.3 Reparameterization-Based Methods

Reparameterization-based methods directly alter the parameterization of the pre-trained

model without any architectural modifications, either by modifying a subset of existing pa-

rameters or by expressing changes in a compact and structured form.

Low-Rank Adaptation

Low-rank adaptation (LoRA) (Hu et al., 2022) hypothesizes that the updates to model param-

eters during fine-tuning lie in a low-dimensional subspace, i.e., the weight modifications

exhibit low intrinsic rank. Accordingly, instead of updating the full weight matrices, LoRA

introduces a pair of trainable low-rank matrices A ∈Rdo×r and B ∈Rr×di to approximate the

weight update as ∆W ≈ α
r AB, where r ≪ min(do ,di ) and α is a scaling factor that controls

the update magnitude. This parameterization is applied to the weight matrices of the self-

attention layers, typically the query and value projections, while the original weights remain

frozen. During inference, the low-rank approximation AB is reconstructed and added to the

corresponding frozen weight matrix, yielding the adapted weights W = W0+∆W, with minimal

overhead in both storage and computation.

Variants of LoRA can be broadly categorized by their focus on improving efficiency or enhanc-

ing adaptation performance. Efficiency-focused variants such as QLoRA (Dettmers et al., 2023)

leverage low-bit quantization to reduce memory cost, while VeRA (Kopiczko et al., 2024) uses

shared random matrices and learns small scaling vectors to improve parameter efficiency.

Variants focused on adaptation performance include AdaLoRA (Zhang et al., 2023b), which

dynamically allocates ranks during training based on importance scores, and DoRA (Liu
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et al., 2024a), which modifies the adaptation mechanism by separating weight updates into

magnitude and direction components for better expressiveness.

Adaptation of Inherent Parameters

There are several methods that only fine-tune a subset of existing parameters. Cai et al. (2020)

propose to freeze the model weights and updates only the bias parameters during fine-tuning.

By avoiding the storage of intermediate activations, this approach achieves significant memory

savings. Similarly, Zaken et al. (2022) explore a related technique for pre-trained language

models, where only the biases and the final output layer are fine-tuned. Diff Pruning (Guo

et al., 2021) reparameterizes the fine-tuned model parameters θ as the sum of the pre-trained

parameters θ and a difference vector ∆θ, such that: θ′ = θ+∆θ. To encourage ∆θ to be as

sparse as possible, diff pruning applies a differentiable approximation of the L0-norm penalty

to regularize ∆θ and promote sparsity.

2.4 Datasets

2.4.1 Text-to-Speech Synthesis

LJ Speech

The LJ Speech dataset (Ito, 2017) is an English-language speech corpus consisting of 13,100

audio clips of a single female speaker reading passages from seven non-fiction books. Each

clip is paired with a corresponding text transcription. The recordings were captured by the

LibriVox project between 2016 and 2017 and provided in 16-bit PCM WAV format at a sampling

rate of 22,050 Hz. Clip durations range from approximately 1 to 10 seconds, totaling about 24

hours of audio. The source texts were published between 1884 and 1964 in the public domain.

VCTK

The CSTR VCTK (voice cloning toolkit) corpus (Yamagishi et al., 2019) consists of approximately

44,000 English-language speech recordings produced by 110 speakers with a variety of accents,

primarily from the United Kingdom. Each speaker reads around 400 sentences selected from

newspaper texts, with recordings captured in a controlled acoustic environment using a 96 kHz

sampling rate and 24-bit resolution, later downsampled to 48 kHz for distribution. The dataset

provides over 44 hours of recorded speech, with audio files in WAV format accompanied by

transcriptions and metadata including speaker accent, gender, and age information.
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LibriVox and Its Derivatives

The LibriVox 1 project provides a large collection of public domain audiobooks, primarily in

English, recorded by volunteers and used as the basis for several speech corpora. LibriSpeech

(Panayotov et al., 2015) is derived from LibriVox recordings and comprises approximately

982 hours of English speech from 2,484 speakers sampled at 16 kHz with corresponding

transcriptions, primarily utilized for automatic speech recognition. LibriTTS (Zen et al., 2019),

specifically designed for TTS research and built upon LibriSpeech’s materials, offers about 585

hours of speech from 2,456 speakers at a higher 24 kHz sampling rate, segmented at sentence

boundaries and including both original and normalized texts. LibriLight (Kahn et al., 2020),

based on the same source material, comprises over 60,000 hours of unlabeled English speech

sampled at 16 kHz and is intended for self-supervised learning.

2.4.2 Natural Language Processing

The Pile

The Pile (Gao et al., 2021) is an 825 GiB open-source English text corpus developed by

EleutherAI to train large-scale language models. It comprises 22 diverse, high-quality subsets,

including sources like PubMed Central, OpenWebText2, arXiv, GitHub, Stack Exchange, and

Wikipedia. The dataset features a wide range of content, from academic papers and legal

documents to code repositories and social media discussions. The Pile has been utilized in

training various large language models, such as OPT (Zhang et al., 2022) and GPT-NeoX (Black

et al., 2022).

Natural Language Understanding Benchmarks

The General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019) is a

standardized evaluation suite designed to assess the performance of general-purpose natural

language understanding models across a diverse set of NLP tasks. It comprises nine distinct

English single-sentence and sentence-pair tasks: (1) Corpus of Linguistic Acceptability (CoLA),

which evaluates whether a sentence is grammatically acceptable; (2) Stanford Sentiment Tree-

bank (SST-2), a binary classification task for determining the sentiment of movie reviews; (3)

Microsoft Research Paraphrase Corpus (MRPC), which identifies whether a pair of sentences

are semantic paraphrases; (4) Quora Question Pairs (QQP), which assesses if two questions are

semantically equivalent; (5) Semantic Textual Similarity Benchmark (STS-B), which requires

predicting a similarity score between sentence pairs; (6) Multi-Genre Natural Language Infer-

ence (MNLI), a large-scale dataset for determining whether a premise entails, contradicts, or

is neutral with respect to a hypothesis; (7) Question Answering NLI (QNLI), which determines

if a Wikipedia sentence contains the answer to a given question; (8) Recognizing Textual

Entailment (RTE), a collection of shorter entailment datasets; and (9) Winograd NLI (WNLI), a

1https://librivox.org/
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small-scale dataset focusing on coreference resolution as a form of natural language inference.

In addition, Chapter 5 utilizes a set of more challenging commonsense reasoning benchmarks

to evaluate the fine-tuning performance of large language models: (1) AI2 Reasoning Challenge

(ARC) (Clark et al., 2018): a dataset of grade-school science questions that require nontrivial

reasoning and knowledge beyond simple pattern recognition; (2) Boolean Questions (BoolQ)

(Clark et al., 2019): a binary question-answering dataset where each question is paired with

a supporting passage; (3) OpenBookQA (OBQA) (Mihaylov et al., 2018): a multiple-choice

question-answering dataset designed to test a model’s ability to combine science facts with

broad common knowledge; (4) WinoGrande (Sakaguchi et al., 2020): a dataset of coreference

resolution tasks by presenting sentences that require sophisticated reasoning to disambiguate

pronoun references.

Audio Question Answering Benchmark

The Audio Question Answering task dataset for the DCASE 2025 Challenge2 (Yang et al., 2025)

comprises three curated multiple-choice question-answering (QA) subsets—Bioacoustics QA

(BQA), Temporal Soundscapes QA (TSQA), and Complex QA (CQA)—each designed to evaluate

distinct dimensions of audio-language understanding and reasoning. BQA focuses on fine-

grained auditory grounding in the bioacoustic domain, requiring models to recognize species-

specific vocalizations of 31 marine mammals and to reason about their acoustic characteristics

and ecological context. The subset includes 700 training and 200 development QA pairs based

on recordings from the Watkins Marine Mammal Sound Database, featuring a wide range of

sampling rates (600 Hz to 160 kHz) and durations (0.4 seconds to over 10 minutes). TSQA

is designed to assess temporal reasoning capabilities by presenting models with questions

concerning the classification and temporal structure of overlapping or sequential sound

events. It comprises 1k training and 600 development QA pairs, derived from 10-second mono

audio clips sampled at 32–48 kHz from multiple public datasets. Each question targets specific

temporal relationships such as event ordering, onset and offset detection, and duration

estimation. CQA contains 6.4k training and 1.6k development QA pairs and is constructed

to test higher-order reasoning over complex, real-world audio scenarios. Based on audio

from AudioSet (Gemmeke et al., 2017) and the Mira dataset (Ju et al., 2024), CQA involves

multi-faceted questions that require integration of temporal, acoustic, and contextual cues to

interpret overlapping events, auditory sequences, and abstract relational patterns.

2https://huggingface.co/datasets/PeacefulData/2025_DCASE_AudioQA_Official
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2.5 Evaluation Metrics

2.5.1 Text-to-Speech Synthesis

Subjective Evaluation

Mean Opinion Score The Mean Opinion Score (MOS), standardized by ITU-T P.800, is a

widely used subjective metric for evaluating the quality of synthesized speech in TTS systems.

A group of listeners rate speech samples from various TTS systems on a 5-point scale from 1

(Bad) to 5 (Excellent), based on attributes such as naturalness and intelligibility. The averaged

score, and the 95% confidence interval are typically reported to support the interpretation of

results and statistical significance. In addition, a variant known as Similarity MOS (SMOS)

is used to evaluate how similar the synthesized speech is to a target reference, often in tasks

where preserving the original speaker’s identity or style is critical.

MUSHRA The Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) test, stan-

dardized by ITU-R BS.1534, is a subjective method for evaluating audio quality, particularly

effective for systems at intermediate to high-quality levels. In this test, listeners rate a set of

stimuli, including the systems under evaluation, a hidden high-quality reference, and one or

more degraded anchors, on a continuous scale (0-100). This comparative approach allows for

finer distinctions in quality than MOS, helping to detect subtle differences in perceived audio

quality among high-fidelity speech synthesis systems.

Preference test The preference test is a subjective method to determine human preference

between two or more speech synthesis systems. Listeners are presented with pairs of audio

samples from different systems for the same text and are asked to indicate their preference

based on criteria like naturalness or overall quality, or to judge them as equally good. Results

are reported as the percentage of listeners who preferred one system, with confidence intervals

provided to assess the statistical reliability and significance of the differences between systems.

Objective Evaluation

Quality Conventional objective measures of speech quality, such as Mel-Cepstral Distortion

(MCD), Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001), Short-Time Objective

Intelligibility (STOI) (Taal et al., 2010), and Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)

(Roux et al., 2019), are often insufficient for distinguishing the nuanced quality differences

produced by modern TTS systems. To address this limitation, recent approaches employ

neural networks to predict perceptual scores like MOS, aiming to approximate human judg-

ments. For example, UTMOS (Saeki et al., 2022), developed for the VoiceMOS Challenge 2022

(Huang et al., 2022d), adopts an ensemble approach combining fine-tuned self-supervised

models such as wav2vec 2 (Baevski et al., 2020) and WavLM (Chen et al., 2022), and traditional
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machine learning methods applied to extracted features. TorchAudio-Squim (Kumar et al.,

2023) provides a reference-less framework capable of estimating both objective metrics,such

as PESQ, STOI, and SI-SDR, and subjective MOS, utilizing deep recurrent neural networks to

model sequential features. While such models offer scalable and efficient means of evaluation,

they remain surrogate metrics and should be complemented by formal subjective testing for

reliable performance assessment.

Intelligibility A practical and increasingly adopted approach to assessing the intelligibility

of synthesized speech involves applying automatic speech recognition (ASR) systems to

the synthesized audio to generate transcriptions, which are then compared against ground

truth text using standard metrics such as word error rate (WER) and character error rate

(CER). This method leverages the availability of high-performance open-source ASR models,

including wav2vec (Baevski et al., 2020), WavLM (Chen et al., 2022), and Whisper (Radford

et al., 2023), enabling objective and scalable intelligibility evaluation without requiring manual

transcription. Limitations of this approach include potential bias within the ASR system,

misalignment with human perception, and dependency on the ASR model’s performance.

Similarity Similar to intelligibility, speaker similarity can be automatically evaluated using

speaker verification models that compare synthesized speech with a reference sample and

produce a similarity score. High-performing models for this task include ECAPA-TDNN

(Desplanques et al., 2020) and self-supervised models such as WavLM (Chen et al., 2022).

Beyond speaker identity, this approach can be extended to assess similarity in paralinguistic

features such as emotion and speaking style, provided appropriate recognizers are available.

For example, the accuracy of emotion recognition can serve as a proxy for evaluating emotional

expressiveness in synthesized speech. However, as with ASR-based intelligibility measures, the

reliability of these evaluations heavily depends on the performance of the underlying models,

and formal subjective assessments remain essential for comprehensive validation.

2.5.2 Natural Language Processing

Perplexity

Perplexity is a commonly used evaluation metric for language models, quantifying how well a

model predicts a sample of text. It is defined as the exponentiation of the average negative log-

likelihood of a test set, providing an intuitive measure of uncertainty in the model’s predictions.

For a language model that assigns a probability distribution P (w1, w2, . . . , wN ) to a sequence of

words w1, w2, . . . , wN , the perplexity (PPL) is given by: PPL = exp
(− 1

N

∑N
i=1 logP (wi |w1, . . . , wi−1)

)
where N is the length of the word sequence, and P (wi |w1, . . . , wi−1) represents the probability

assigned to word wi conditioned on the preceding words. A lower perplexity indicates a

better-performing model, as it reflects greater confidence in its predictions of the next word.
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Calibration Measures

In addition to predictive accuracy, three commonly used metrics for assessing calibration

are expected calibration error (ECE), negative log-likelihood (NLL), and the Brier score. A

well-calibrated model ensures that when it predicts a class with probability p, the actual

probability of the prediction being correct is also close to p. Each of these metrics offers a

unique perspective on how well the model’s confidence aligns with its correctness.

Expected calibration error (ECE) The ECE measures the discrepancy between a model’s

predicted probabilities and the true empirical probabilities. ECE computes this by partitioning

predictions into confidence bins and comparing the mean predicted confidence with the

empirical accuracy within each bin. For M bins, ECE is defined as:

ECE =
M∑

m=1

|Bm |
n

|acc(Bm)−conf(Bm)| , (2.11)

where Bm is the set of samples in bin m, |Bm | is the size of the set, acc(Bm) is the accuracy

within bin m, conf(Bm) is the average predicted confidence within bin m, and n is the number

of samples. Lower ECE indicates better calibration.

Negative log likelihood (NLL) Derived from the likelihood principle, NLL measures how well

the predicted class probabilities align with the true labels. For a dataset of n samples, NLL is

computed as:

NLL =− 1

n

n∑
i=1

log p(yi | xi ), (2.12)

where p(yi | xi ) is the predicted probability for the true class yi , xi is the test input. NLL

penalizes models that assign low probabilities to the correct class, reflecting performance in

both calibration and discrimination. A lower NLL indicates better correctness and sharpness.

Brier score The Brier score evaluates the mean squared error between predicted probabilities

and the true labels. For a classification task with K classes, the Brier score is defined as:

Brier = 1

n

n∑
i=1

K∑
k=1

(
p(yi = k | xi )− 1(yi = k)

)2 , (2.13)

where 1(yi = k) is an indicator function. The score ranges from 0 to 1, with lower values

indicating better-calibrated predictions.
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3 A Diffusion-Based Adaptive TTS
Model

Encoder-decoder models such as Tacotron 2 (Wang et al., 2017) and FastSpeech 2 (Ren et al.,

2021a) have significantly advanced acoustic modeling for TTS, enabling high-quality and

efficient speech generation. More recently, the integration of flow (Valle et al., 2021; Kim et al.,

2020), diffusion (Jeong et al., 2021; Popov et al., 2021), and flow matching models (Mehta et al.,

2024) as decoders of acoustic models has further enhanced the quality and naturalness of

synthesized speech. In this chapter, we aim to design an architecture that not only generates

high-quality, natural-sounding speech but also supports efficient adaptation in low-resource

settings, both in terms of data and model parameters.

Building on the success of diffusion in synthesizing realistic speech Jeong et al. (2021); Lee

et al. (2022), we investigate how diffusion can be included in adaptive TTS systems. Inspired

by the adaptable layer norm modules for transformer, we adapt a new backbone of diffusion

models, Diffusion Transformer, for acoustic modeling. Specifically, the adaptive layer norm

in the architecture is used to condition the diffusion network on text representations, which

further enables parameter-efficient adaptation. We show the new architecture to be a faster

alternative to its convolutional counterpart for general TTS, while demonstrating a clear

advantage on naturalness and similarity over the transformer for few-shot and few-parameter

adaptation.

To evaluate our system against state-of-the-art approaches, we submitted an entry to the Bliz-

zard Challenge 2023 (Perrotin et al., 2023), which focused on TTS for the French language. Our

submission utilized the proposed model, with an additional focus on text analysis—specifically

addressing liaisons and heterophonic homographs. Formal evaluations ranked our system

favorably among competing entries, demonstrating its ability to achieve state-of-the-art per-

formance in terms of synthesis quality and naturalness.

This chapter is a consolidation of the following publications:

Chen, H. and Garner, P. N. (2023a). Diffusion transformer for adaptive text-to-speech. In

12th ISCA Speech Synthesis Workshop, SSW 2023, Grenoble, France, August 26-28, 2023, pages
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157–162. ISCA

Chen, H., He, M., de Gibson, L. C., and Garner, P. N. (2023). The Idiap speech synthesis system

for the Blizzard challenge 2023. In 18th Blizzard Challenge Workshop, Grenoble, France, August

29, 2023. ISCA

3.1 Introduction

Adaptive text-to-speech (TTS) (Wang et al., 2018; Min et al., 2021; Chen et al., 2021; Casanova

et al., 2022) aims to synthesize personalized voices of target speakers or speaking styles. In the

typical scenario of adaptive TTS, a source acoustic model pretrained on a large multi-speaker

corpus is adapted with limited data of the target to synthesize the desired voice. In general,

adaptive TTS systems should be well generalizable and adaptable to various speaker traits and

acoustic conditions with as few data as possible. Meanwhile, the adapted voice should be of

high quality and naturalness, in terms of which deep generative models (Kim et al., 2020, 2021;

Liu et al., 2022b) have demonstrated their superiority over previous solutions. In particular,

the more recent diffusion models (Liu et al., 2022b; Jeong et al., 2021; Popov et al., 2021) have

dominated in terms of quality and naturalness.

While the generalizability and adaptability have been the most important properties of adap-

tive TTS systems and in many cases interrelated, they can be attributed to different parts of

the model or algorithm design. On the one hand, the techniques that improve the ability to

generalize to various features in speech signals can be categorized into 1) employing reference

encoders to generate representations of the desired attribute of speech on various seman-

tic levels (Chen et al., 2021; Casanova et al., 2022; Huang et al., 2022b), which are normally

plugged in before the decoder; 2) learning algorithms that help factorize such representations

into expressive components (Wang et al., 2018; Min et al., 2021; Hsu et al., 2019), which are

usually combined with reference encoders; and 3) ad hoc designs of the model structure that

control desired features (Min et al., 2021; Chen et al., 2021; Choi et al., 2022), which are more

model-specific. On the other hand, adaptability, while partly overlapping with the former,

emphasizes more the application itself, including considerations of few-data (Chen et al.,

2021; Kim et al., 2022), few-parameter (Chen et al., 2021) and zero-shot (Casanova et al., 2022;

Wu et al., 2022) scenarios. However, no matter in which concept, there is a clear distinction

between generic techniques that fit different backbones, such as reference encoders, and

ones with ad hoc architectural designs of the network. The latter are more associated with

the adaptability of the model, especially in few-data and parameter-efficient settings. Fur-

thermore, when combined with generic adaptation techniques, such architectures will enable

both compute-efficient zero-shot adaptation, and high-quality adaptation when finetuning is

performed.

In general, we are interested in integrating adaptable components into diffusion-based acous-

tic models that add extra adaptability on top of their high-quality synthesis. Despite diffusion

models having been well studied for general acoustic modeling, few works have explored them
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for adaptive TTS systems. Guided-TTS 2 (Kim et al., 2022) utilizes diffusion with classifier guid-

ance to adapt to diverse voices, while lacking parameter efficiency since the whole decoder

needs finetuning during adaptation. In Grad-StyleSpeech (Kang et al., 2022), the diffusion

mostly works as a post-net that refines the output of an adaptive transformer decoder, and

the researchers only tested adapting the whole diffusion post-net in the few-shot setting. Our

preliminary study (Chen and Garner, 2023b) shows a convolutional diffusion decoder can

be adapted using conditional layer normalization, however, it must be used with adaptive

transformer layers to achieve usable adaptation quality. Our search for solutions focuses

on the architecture design of the diffusion backbone. Such a design will not only facilitate

parameter-efficient adaptation during finetuning, but also has the potential to be combined

with a reference encoder to improve the network’s generalizability.

In this context, we propose to adapt a novel backbone of diffusion models, Diffusion Trans-

former (DiT) (Peebles and Xie, 2022), for adaptive TTS. Inspired by the recent innovation in

image synthesis and the effectiveness of conditional layer norm (Min et al., 2021; Chen et al.,

2021; Wu et al., 2022) in the transformer network, we adapt the DiT’s adaptive layer norm to re-

ceive a sequence as condition instead of the class embedding to make it suitable for TTS tasks.

Through a series of experiments, we demonstrate that 1) for general TTS tasks, the DiT can

serve as a substitute backbone for present diffusion decoders in the acoustic model, yielding

comparable performance to current designs while providing faster synthesis; 2) for few-shot

adaptation, the benefits of the DiT include its capability to perform parameter-efficient adap-

tation, and its superiority in speech quality and similarity over previous transformer-based

solutions; 3) when based on zero-shot adaptation solutions, the DiT can efficiently achieve

high-quality adaptation when finetuning is necessary. Audio samples are available 1.

3.2 Diffusion Transformer for TTS

Like other deep generative model-based solutions, a typical diffusion-based acoustic model

comprises a transformer text encoder, a variance adapter adopted from FastSpeech 2 (Ren et al.,

2021a), and a diffusion-based decoder, as is shown in Figure 3.2a. Essentially, diffusion models

generate high-quality and natural samples by denoising a sample from a prior distribution to

real data through a diffusion process. In most cases, the learning problem of diffusion can be

expressed as learning a denoiser network that predicts the noise in each diffusion step, while

other parameterization forms of the denoiser also exist.

3.2.1 Architecture

In principle, the denoiser network takes the sample from the previous step as input to predict

the noise in the reverse diffusion process while being conditioned on text representations C

and the step embedding t . The network design enjoys flexibility as long as its output has the

1https://recherchetts.github.io/dit/
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Figure 3.1: The architecture of the non-causal WaveNet-based diffusion backbone network.

same dimension as the input. The prevalent architectures of the denoiser network in acoustic

models include the bidirectional dilated convolutional network (CNN) (Jeong et al., 2021; Liu

et al., 2022b; Huang et al., 2022c) as is shown in Figure 3.1, also referred to as the non-causal

WaveNet (van den Oord et al., 2016), and the U-Net (Popov et al., 2021; Kim et al., 2022). The

former is best known for the inductive bias of audio signals and is also commonly used in

variational autoencoders (Ren et al., 2021b) and flow models (Kim et al., 2020, 2021; Prenger

et al., 2019), while the U-Net (Ronneberger et al., 2015) is a generic network that originates

from image processing.

Recently, Peebles and Xie (2022) proposed a new class of diffusion models based on the trans-

former architecture, namely Diffusion Transformer (DiT), which was shown to outperform

U-Net backbones and inherit the scalability, robustness and efficiency of the transformer

model class. As is depicted in Figure 3.2b, the DiT blocks receive the sample from the last

step as input, perform the common transformations of the transformer and generate the

output. The innovation of DiT lies in the way conditions are injected into the network: the

standard layer norm modules in the transformer blocks are replaced with adaptive layer norm

(adaLN), so that the dimension-wise scale and shift parameters γ and β can be regressed

from the sum of the class embedding c and the step embedding t through a linear layer. In

addition to adaLN, the authors further propose to zero-initiate the final adaptive layer norm

in each block to accelerate convergence, and also regress scaling parameters α that are placed

before any residual connections within the DiT block. This is referred to as adaLN-Zero. The

authors demonstrate that adaLN-Zero achieves the best performance and adds the least com-

putation cost to the model compared to introducing conditions by in-context learning and

cross-attention.

The original DiT was tested on image synthesis tasks, in which only the class embedding
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Figure 3.2: The architecture of the DiT-based acoustic model. The reference encoder only
exists in adaptive TTS systems.

controls the content to be generated. To adapt it for TTS, we make the adaLN-Zero accept a

sequence of encoded text representations. In actuality, the implementation of adaLN-Zero

requires no modification whatsoever. The novelty lies in the fact that the regression of all scale

and shift parameters is now performed on the sum of the text representation matrix C and the

step embedding t , generating the necessary scale and shift parameters for each vector in the

input sequence, as is shown in Figure 3.2c. Note that the size of the text representation matrix

matches that of the hidden representations in the DiT block, since they are both expanded to

the length of the mel spectrogram using phoneme durations. Therefore, instead of the same

scale and shift vectors applied on the entire input sequence in the affine transform of the

layer norm, a sequence of such vectors with the same dimension as the input is applied. This

allows the adaptive layer norm to modulate the input sequence using the text representations

without adding any computation cost compared to the original adaLN.

3.2.2 Generator-Based Diffusion

Following Chapter 2.1.3, the common parameterization method of diffusion is to let the neural

network be a noise predictor. It originates from the reverse diffusion process (Eq. 2.7):

pθ (xt−1 | xt ) =N
(
xt−1;µθ (xt , t ) ,Σθ (xt , t )

)
(3.1)

where the reverse transition probability pθ (xt−1 | xt ) is parameterized by a neural network θ.

By setting Σθ (xt , t ) to a constant and reparameterizing x0 = 1p
ᾱt

(
xt −

p
1− ᾱtϵ

)
which is de-

rived from the noise adding function of the forward process (Eq. 2.6): q(xt |x0) =N (xt ;
p
ᾱt x0, (1−

ᾱt )I) , the problem of learning µθ can be converted to estimating the Gaussian noise ϵ, result-

ing in the simplified loss function (Eq. 2.10):

Lsimple(θ) = Et ,x0,ϵ
[∥ϵ−ϵθ (xt , t )∥2] (3.2)
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With the diffusion in this form, it usually requires hundreds to thousands of denoising steps to

ensure high-quality synthesis.

An alternative way to parameterize the denoiser is to make it directly predict the clean data

in each denoising step. Specifically, the neural network fθ(xt , t ) that outputs x0 given xt now

models the distribution pθ(x0 | xt ). Next, xt−1 is sampled using the posterior distribution:

q (xt−1 | xt ,x0) = N
(
xt−1;µ̃t (xt ,x0) , β̃t I

)
µ̃t (xt ,x0) =

p
ᾱt−1βt

1− ᾱt
x0 +

p
αt (1− ᾱt−1)

1− ᾱt
xt ,

β̃t = 1− ᾱt−1

1− ᾱt
βt .

(3.3)

The rest of the inference process remains the same. The loss is then defined in the data space:

Lgen
simple (θ) = Et ,x0

[∥∥x0 − fθ (xt , t )
∥∥2

]
(3.4)

This parameterization method is sometimes referred to as the generator-based method (Sal-

imans and Ho, 2022; Huang et al., 2022c). Some recent work (Huang et al., 2022c; Liu et al.,

2022c) utilizes this method to enable fast synthesis for diffusion-based acoustic models. Huang

et al. (2022c) compared the generator-based method with the conventional denoising-based

method with varying diffusion steps and found that the former achieved the highest quality in

all settings. To accelerate inference while maintaining high synthesis quality, we adopt the

generator-based method in our model.

3.2.3 Comparison with Baseline

We first test our model on basic TTS tasks and compare the DiT architecture with the prevalent

non-causal WaveNet. We would expect the DiT to perform identically to the baseline in terms

of speech quality.

Implementation details Both models consist of a 4-layer transformer phoneme encoder with

a hidden size of 256, a variance adapter that is the same as the one in FastSpeech 2 (Ren et al.,

2021a), and a diffusion decoder. The DiT network is configured as 4-layer with a hidden size

of 256 and 2 attention heads, which is the same as a commonly-used transformer decoder,

while the WaveNet network is set to 20-layer with 256 hidden size. Our implementation is

based on the open-source software 2 3 of related models. The numbers of parameters of the

WaveNet-based model and the DiT-based model are 30.50M and 28.83M, respectively.

2NATSpeech: https://github.com/NATSpeech/NATSpeech
3DiT: https://github.com/facebookresearch/DiT
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Table 3.1: The MOS scores with 95% confidence interval, SECS and CER scores on LJSpeech,
and real-time factors.

Arch. MOS (↑) SECS (↑) CER (↓) RTF (↓)

Vocoder 4.35 ± 0.10 0.983 1.83% -

WaveNet 4.06 ± 0.10 0.790 2.41% 0.021
DiT 4.01 ± 0.10 0.784 2.38% 0.012

Data We train the models on the single speaker corpus LJSpeech (Ito, 2017). Two sets of 500

utterances are selected as the validation and test set, while the rest are used as training set. All

data are preprocessed following the practice in FastSpeech 2, with a sampling rate of 22,050

Hz.

Training and inference The models are trained on one NVIDIA RTX3090 using a batch size of

40,000 speech frames, with the “rsqrt" (reciprocal of the square root) scheduler, 4,000 warm-up

steps, and a learning rate factor of 2. For the diffusion process, a beta schedule of 16 steps

is used for both training and inference. A HiFi-GAN (Kong et al., 2020) vocoder trained on

LJSpeech is used to synthesize waveforms. The inference is performed on the same hardware.

Evaluation For objective evaluation, we utilize the SpeechBrain (Ravanelli et al., 2021) toolkit

to run speaker verification and speech recognition 4 on the entire test set. The averaged

speaker embedding cosine similarity (SECS) and character error rate (CER) are calculated

as indicators of how well the model captures the speaker identity and the intelligibility of

synthesized samples. For subjective evaluation, we recruited 20 native raters on Prolific 5

crowd-sourcing platform to rate the overall quality and naturalness of randomly selected 20

samples from the test set using the P.808 toolkit (Naderi and Cutler, 2020). We also calculate the

real-time factor (RTF) of the two models that reflects the synthesis speed, which is conducted

when synthesizing around 200 paragraphs.

3.2.4 Results

All test results are listed in Table 3.1. The subjective test results show the DiT architecture has

a gap of only 0.05 compared to the non-causal WaveNet within the 95% confidence interval of

0.10 which, consistent with our expectation, suggests the DiT offers a similar synthesis quality

to the prevalent architecture. This is also reflected on the two objective test scores, which only

demonstrate minor difference between the two architectures.

The RTFs indicate that the model with a DiT backbone is overall 70% faster than the one with

4spkrec-ecapa-voxceleb; asr-wav2vec2-librispeech
5https://www.prolific.co
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a WaveNet backbone, using the model configuration above. By breaking down the time cost

into different components, we found that the 4-layer DiT-based decoder has around 2.4 times

the speed of a 20-layer WaveNet-based decoder.

Overall, the results of the basic TTS task demonstrate that the DiT is a faster alternative of

the diffusion backbone to the non-causal WaveNet, which also shows a slight advantage on

the model size. This is perhaps not persuasive enough for switching the diffusion backbone,

however, the merit of DiT lies in its ability to be adapted efficiently, which will be elaborated in

the next section.

3.3 Adaptive Diffusion Transformer

3.3.1 Method

In the transformer architecture (Vaswani et al., 2017), the layer norm (Ba et al., 2016) helps

reduce the variance of the hidden representations after the attention and feed-forward trans-

formation to stabilize and speed up training. Previous work (Min et al., 2021; Chen et al., 2021;

Wu et al., 2022) has found that the layer norm in transformer can greatly influence the hidden

activation and the final prediction with the learnable scale and shift parameters. Furthermore,

these parameters can be regressed from the speaker or style representation, e.g. the speaker

embedding, through a small neural network, which can be finetuned during adaptation. The

method significantly reduces the number of parameters to be adapted for each new speaker

or style, while maintaining high-quality synthesis.

As for DiT, the architecture unification enables us to apply the same method to the adaptive

layer norm. Inherently, the adaLN receives all the conditional input to the decoder, including

the speaker embedding and possibly embeddings from reference encoders. This cancels the

requirement for any additional input to the decoder.

In the following experiments, we compare our adaptive DiT model with AdaSpeech, a transformer-

based solution with conditional layer norm. Given the diffusion’s superiority in high-quality

synthesis, we would expect the DiT to offer better speech quality and speaker similarity

compared to the baseline.

3.3.2 Experimental Setup

Implementation details We implement necessary components to construct AdaSpeech using

the same TTS framework as before, including the phoneme- and utterance-level encoders in

the acoustic condition modeling module and the conditional layer norm in the transformer

decoder layers. We use the same acoustic condition modeling module as AdaSpeech, thus

the only difference between the DiT-based model and AdaSpeech is the decoder architecture.

The model configuration of AdaSpeech follows the official settings, while the DiT follows the

previous configuration.
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Table 3.2: The subjective and objective test results of few-shot adaptation experiments.

Dataset VCTK LibriTTS

Metric #Params MOS (↑) SMOS (↑) SECS (↑) CER (↓) SECS (↑) CER (↓)

Vocoder - 4.37 ± 0.08 - 0.955 3.16% 0.929 2.61%

AdaSpeech 1.184M 2.76 ± 0.08 2.86 ± 0.10 0.505 3.12% 0.508 3.77%
DiT 1.711M 3.77 ± 0.09 3.94 ± 0.10 0.570 2.50% 0.582 3.46%

Data All models are pretrained on the two clean subsets train-clean-360 and train-clean-100

of the multi-speaker LibriTTS dataset (Zen et al., 2019), with a total of 1151 speakers and 245

hours. For adaptation, we use LibriTTS and the multi-speaker corpus VCTK (Yamagishi et al.,

2019) to test the in-domain and out-of-domain adaptation performances. For LibriTTS, we

select 10 speakers from the test-clean subset, and 10 random utterances for each speaker

as test set. For VCTK, 11 speakers (7 females and 4 males) with different accents are selected

following (Casanova et al., 2022), while for each speaker 10 utterances with the same spoken

content across all speakers are selected as test set.

Training, adaptation, and inference Following AdaSpeech, all models are trained in two

stages in which the numbers of training steps are 60,000 and 40,000 respectively, on the

same hardware as before. The batch size is set to 50,000 speech frames for AdaSpeech and

40,000 for the DiT-based model. Other configurations follow the official or previous settings

unless otherwise stated. During adaptation, only the speaker embedding and the layer norm

modules are finetuned using 10 random utterances of the target speaker for 2,000 steps using

a fixed learning rate of 2×10−4. A HiFi-GAN vocoder trained on VCTK is used to synthesize

waveforms.

Evaluation Subjective tests are carried out for the more challenging LibriTTS to VCTK out-

of-domain adaptation task. The same 20 native raters are involved in the subjective test to

rate the MOS for naturalness and the SMOS (Similarity MOS) for speaker similarity of 22

speaker-balanced samples from the VCTK test set generated by each system. The reference of

each utterance given in the subjective test is the vocoder synthesized sample of the utterance.

The objective SECS and CER scores are calculated on the entire test sets of both VCTK and

LibriTTS. We calculate the number of parameters to be finetuned for each model.

3.3.3 Results and Analyses

The subjective and objective test results are shown in Table 3.2. In the out-of-domain adapta-

tion task, subjective test results demonstrate a clear improvement of both naturalness and

speaker similarity by the DiT decoder compared to the transformer. In objective evaluation,

the DiT achieves a higher speaker similarity score and a lower character error rate, which
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Chapter 3. A Diffusion-Based Adaptive TTS Model

indicates the DiT is able to generate more intelligible speech with a voice more similar to the

reference. In the in-domain adaptation task, the DiT results in a higher speaker similarity score,

while AdaSpeech does not improve much. The DiT has approximately 50% more parameters

finetuned compared to the transformer, due to the extra scaling parameters α.
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Figure 3.3: The speaker embedding cosine similarity (SECS) and character error rate (CER)
of varying adaptation data. The number of utterances used for adaptation is labeled on each
data point. AS: AdaSpeech, LT: LibriTTS.

We further study the naturalness and speaker similarity with varying amount of adaptation

data on VCTK and LibriTTS, and conduct objective tests. As is shown in Figure 3.3, with

increasing number of utterances used for adaptation, the speaker similarity and intelligibility

continue to improve for all models and on both datasets. Overall, the DiT outperforms the

transformer in both metrics under all settings, and the difference between the two models

becomes larger when the more utterances are available.

It is worth noting that, during our test listening of the adapted samples, we found AdaSpeech is

more sensitive to the noise in the training data than the DiT, resulting in the adapted samples

being more noisy. This is likely due to the low-quality samples in the train-clean-360
subset, since adapting an AdaSpeech trained on VCTK results in a cleaner voice. Nonetheless,

this phenomenon suggests the DiT is more robust against noise, which can be explained with

the diffusion’s denoising nature.

3.3.4 Zero-Shot Adaptation

Previous experiments have demonstrated that the DiT when adapted is able to generate a

more high-quality voice with better similarity to the target compared to the transformer.

Although we mainly focus on few-shot adaptation tasks, we are still interested to see how the

architecture performs in the zero-shot setting. We also take the chance to demystify what part

of the model architecture contributes the most to the generalizability of the model.

We first test the transformer decoder, the DiT decoder, and the non-causal WaveNet-based

32



3.3 Adaptive Diffusion Transformer

diffusion decoder on top of the acoustic condition modeling module (the reference encoding)

of AdaSpeech. All three models are trained on LibriTTS using the recipe described in Section

3.3. For inference, we randomly select one utterance from the target speaker in the VCTK

test set. The objective test results are shown in Table 3.3. It can be observed that the DiT-

based and the WaveNet-based diffusion decoders bring similar slight improvements to the

speaker similarity compared to the transformer decoder, although all scores are significantly

lower than few-shot adaptation. The WaveNet-based diffusion decoder seems to yield better

intelligibility than DiT, however both diffusion decoders outperform the transformer.

We further base the two diffusion decoders on a state-of-the-art zero-shot solution, Gener-

Speech (Huang et al., 2022b), and its official implementation 6. All models share the same

official training recipe. Note that in GenerSpeech, a flow-based post-net is used on top of

the transformer decoder to refine the output. We found the 4-layer DiT in this setting is

difficult to converge, hence we use a 6-layer one instead. This time the diffusion does not

show much improvement on the speaker similarity compared to the transformer. However,

the two diffusion-based models yield notably higher intelligibility which is reflected on the

CER, with the WaveNet backbone slightly better than the DiT.

Table 3.3: The objective test results of zero-shot adaptation.

Arch. AdaSpeech GenerSpeech

Metric SECS (↑) CER (↓) SECS (↑) CER (↓)

Vocoder 0.955 3.16% 0.955 3.16%

Transformer 0.107 2.66% 0.292 6.90%
DiT 0.132 2.34% 0.299 4.43%
WaveNet 0.134 2.20% 0.307 4.06%

Overall, the results suggest that despite the diffusion providing slightly better speaker similarity,

the bulk of generalizability lies in the reference encoding part of one adaptive system. Under

these certain architectures of the acoustic model, the main benefit of a diffusion decoder in

a zero-shot adaptive system is the higher-quality synthesis, rather than better similarity. In

comparison with few-shot adaptation, the results also demonstrate the necessity of finetuning

to achieve high similarity. On the choice of backbone architecture in the zero-shot setting, the

WaveNet seems to slightly outperform the DiT. However, as is discussed above, the adaptive

layer norm in the DiT backbone enables the model to be adapted efficiently when finetuning

is performed, while the DiT is still a decent alternative to the prevalent non-causal WaveNet in

zero-shot usage.

6https://github.com/Rongjiehuang/GenerSpeech
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3.4 Blizzard Challenge 2023

To formally evaluate the performance of our system relative to other state-of-the-art TTS

systems, we submitted an entry to the Blizzard Challenge 2023, which focused on the task of

French TTS. Our system follows the conventional pipeline of text analysis, acoustic modeling

(AM) and vocoding. For text analysis, open-source pretrained part-of-speech (POS) taggers and

lemmatizers are utilized to provide more accurate grapheme-to-phoneme (G2P) conversion

on top of eSpeak. The rest of the system incorporates a fully diffusion-based approach which

comprises a diffusion transformer-based acoustic model and FastDiff as the vocoder, both

of which are trained only on the provided data to ensure high-quality synthesis. Our entry

provides a baseline for the cascading diffusion AM-vocoder architecture since no extra design

is adopted to enhance the naturalness of speech. Evaluation results have demonstrated high

synthesis quality of our system and the effectiveness of the proposed phonemization pipeline.

3.4.1 Introduction

The hub task of the Blizzard Challenge 2023 is to build a voice from the provided French

data, which consists of around 51 hours of audiobook recordings read by a female French

speaker. The spoke task focuses on speaker adaptation and aims to build a voice from around

2 hours of audiobook recordings read by another female French speaker. The Idiap system

was submitted to both the hub task and the spoke task.

The top priority of the text-to-speech (TTS) task is to generate high-quality, natural, and

intelligible speech. Since neural networks were first introduced to TTS (van den Oord et al.,

2016; Wang et al., 2017), the quality of the synthesized speech has been improved dramatically

over the intervening years. In recent years, deep generative model (DGM) based TTS systems

(Kim et al., 2020, 2021; Lee et al., 2022) have demonstrated their superiority in high-quality

and fast synthesis over previous sequence-to-sequence modeling counterparts (Shen et al.,

2018; Ren et al., 2021a; Zheng et al., 2020). In particular, the more recent diffusion-based

acoustic models (Jeong et al., 2021; Popov et al., 2021; Lee et al., 2022) and vocoders (Kong

et al., 2021; Lam et al., 2022; Huang et al., 2022a) have dominated in terms of quality and

naturalness. Since 2023, emerging large-scale pretrained language models (Wang et al., 2023a;

Rubenstein et al., 2023) and DGMs (Shen et al., 2023; Le et al., 2023) have revolutionized

speech synthesis research in generating human-level natural speech and adapting to the

target speaker, speaking style or language with very few data. However, these models are

neither open to the research community nor can be trained on normal hardware.

Given the provided data are of sufficient quality and quantity, the challenges mainly lie in how

to process liaisons and heterophonic homographs in the language which takes place during the

text analysis. In French, liaison refers to the act of pronouncing a linking consonant between

two words in a suitable phonetic and syntactic context, which usually gives information about

the grammatical structure of a noun phrase. The relatively rare heterophonic homographs

refer to words that are spelled the same but pronounced differently, and almost always occur
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between words of different grammatical categories. These special properties require extra

efforts to deliver accurate grapheme-to-phoneme (G2P) conversion in a neural TTS system

that uses phoneme input. Available open-source non-neural French phonemizers include the

Montreal Forced Aligner (MFA) (McAuliffe et al., 2017), Gruut 7 and eSpeak (also eSpeak-ng)
8. Among them, the first two only perform G2P on word level and handle neither liaison

nor homographs. While the eSpeak is a rule-based phonemizer and handles liaison in many

cases, it is unable to distinguish heterophonic homographs at the grammatical level since

it does not consider part-of-speech. There are also open-source neural G2P models (Zhu

et al., 2022) available for the French language, however these models are normally trained on

open-source lexicons that do not usually include liaisons and homographs; this limits their

performance in real-life scenarios. For systems that support character input (Shen et al., 2018;

Zheng et al., 2020; Kim et al., 2020, 2021), the problem can be solved to some extent by the

neural network itself given the corpus covers a wide range of the special cases. However, the

use of characters as textual input will largely induce higher computation cost and decelerate

training and inference due to longer input length compared to using phonemes.

From the practical point of view, the limited computational resources available to us and

the short time frame of the challenge are pertinent. Here at Idiap, the servers are mostly

equipped with consumer GPU cards and are not optimized for multi-GPU training, leaving

us a limited selection of model architectures. In addition, despite Idiap’s being situated in

a French speaking region, no dedicated toolboxes or dictionaries have been developed for

French TTS in recent years. This requires us to utilize publicly available resources as much as

possible to cope with the aforementioned particularities of the French language.

Based on the analyses above, we aimed to build a TTS system that 1) employs accessible model

architectures that offer high-quality and natural synthesis, 2) properly handles the special

properties of the French language, and 3) can be trained efficiently on our infrastructure to

allow fast verification and iteration. Specifically, for text analysis, we leveraged publicly avail-

able part-of-speech (POS) taggers and lemmatizers to achieve more accurate G2P conversion

on top of the eSpeak backend. For neural architectures, our system adopts a conventional

cascading architecture consisting of a diffusion transformer-based acoustic model and FastD-

iff (Huang et al., 2022a), a diffusion-based vocoder. The acoustic model employs a standard

non-autoregressive encoder-decoder design that purely relies on the generative modeling

power of the diffusion, which makes our system a baseline of the diffusion-based AM-vocoder

architecture. Evaluation results have shown a high quality synthesis achieved by our system

and the effectiveness of the text analysis pipeline.

7https://github.com/rhasspy/gruut
8https://github.com/espeak-ng/espeak-ng
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3.4.2 Text Analysis

Liaisons

Liaison in the French language refers to the phonetic linking or connection between words

in spoken language. It involves the pronunciation of a consonant sound at the end of a

word when the following word begins with a vowel sound. Liaison is a characteristic feature

of French pronunciation and helps maintain the smooth flow of speech. In most cases, it

is limited to word sequences that have a logical connection in meaning, such as an article

followed by a noun, an adjective followed by a noun, a personal pronoun followed by a verb,

and similar patterns.

The presence of specific liaison patterns in French makes rule-based phonemization a highly

suitable technique, which is exactly the one built into eSpeak. Other types of phonemizers also

exist, such as the lexicon-based Gruut. In a lexicon-based phonemizer, words are either looked

up in a pre-existing lexicon or their pronunciations are predicted using a pretrained G2P model.

However, the word-by-word nature of lexicon-based phonemization necessitates additional

rules to handle liaisons between words, which are often unavailable in such systems. Recent

advancements in G2P solutions, such as sequence-to-sequence neural networks utilized in

(Rao et al., 2015; Zhu et al., 2022), directly predict phonemes from the input text. Nevertheless,

the effectiveness of these models heavily relies on the coverage of the training text corpus,

limiting their practicality due to the scarcity of high-quality datasets.

Heterophonic Homographs

In general, heterophonic homographs in French are words that are spelled the same but

pronounced differently and have different meanings. Fortunately, their existence is relatively

rare, and the phenomenon almost always occurs between words of different grammatical

categories, which makes it possible to disambiguate by inferring from the grammatical context.

The first step is to understand in what grammatical categories the common homographs exist.

Among publicly available resources online, Wiktionary 9 provides a comprehensive list of 813

heterophonic homographs that exist in the French language. In one blog 10 and Hajj et al.

(2022), the most common scenarios are summarized and corresponding examples are given.

In summary, these scenarios include 1) indicative imperfect first person plural of a verb vs.

plural of a noun that end with “-tions”, 2) indicative present third person plural of a verb vs.

adjective or noun that end with “-ent”, 3) infinitive of a first group verb vs. nouns that end with

“-er”, and 4) miscellaneous cases.

Intuitively, for most cases where words in a pair fall in different grammatical categories, the

disambiguation can be done by identifying the part-of-speech of the word. For other cases

9https://fr.wiktionary.org/wiki/Cat%C3%A9gorie:Homographes_non_homophones_en_fran%C3%A7ais
10https://a3nm.net/blog/frencblizzard_non_homophonous_homographs.html
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where the two words belong to the same category, such as “convient” and “pressent”, this can

be solved by inferring the original form of the word from the context, i.e., lemmatization, to

determine their pronunciations.

Method

Having known the above particularities in the French language, we construct the text analysis

module as follows. First, the text input is phonemized by the eSpeak G2P backend. Since

eSpeak is able to process liaisons, we only need to refine its corresponding output for ho-

mographs considering the grammatical context. To achieve this, we first create a look-up

table where different pronunciations of each homographs and the corresponding part-of-

speech categories or original forms can be queried, mainly referring to the last two sources

mentioned above. During inference, if any homograph in the look-up table exists in the text,

we utilize publicly available pretrained POS taggers 11 and lemmatizers 12 to recognize the

part-of-speech or the original form of the homograph. Using the inferred information, we refer

to the look-up table to obtain the actual phonemes of each homograph. Finally, we compare

the phonemes generated by eSpeak with the queried phonemes and rectify the incorrect

output.

3.4.3 Neural Architectures

To balance synthesis quality and training efficiency, we employ a cascading diffusion-based

architecture consisting of a diffusion transformer acoustic model and the FastDiff vocoder.

Acoustic Model

The acoustic model (Chen and Garner, 2023a) comprises 1) the transformer-based text encoder

that encodes phoneme embeddings into hidden representations, 2) the variance adapter

that predicts the pitch, energy, and duration of each phoneme and expands the hidden

representations to the length of the mel-spectrogram, and 3) the diffusion transformer decoder

which generates the mel-spectrogram through a diffusion process. The diffusion transformer

is an faster alternative to the most commonly used non-causal WaveNet that offers equivalent

synthesis quality.

The architecture of the acoustic model is rather standard: there are no extra components or

designs that particularly enhance the naturalness or the speaking style, thus it purely relies on

the generative modeling power of the diffusion to render natural speech. We take the chance

to see how the standard diffusion architecture performs compared to other more advanced

competitors, especially when trained on a highly expressive corpus.

11https://huggingface.co/qanastek/pos-french-camembert-flair
12https://github.com/explosion/spacy-models/releases/tag/fr_dep_news_trf-3.5.0
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Vocoder

FastDiff (Huang et al., 2022a) is a conditional diffusion-based vocoder for high-quality wave-

form synthesis. The denoiser network employs a stack of time-aware location-variable convo-

lutions with diverse receptive field patterns to model long-term time dependencies. Originally,

a noise predictor was further adopted to derive tighter schedules to accelerate inference with-

out distinct quality degradation. However, we found this algorithm is difficult to implement

and the derived sampling schedule must be optimized for every dataset, which makes it

less favorable for the adaptation task. Therefore, we use the linear schedule instead of the

fast schedule. We also found that FastDiff can be trained more efficiently compared to its

GAN-based counterparts, which usually require days of training and multiple GPUs.

3.4.4 Experiments

Data

For the hub task, the NEB corpus consists of 289 chapters of 5 audiobooks from Librivox read

by a female French speaker Nadine Eckert-Boulet (NEB), totaling 51 hours and 12 minutes.

Around two thirds of the utterances are annotated with texts, phonemes and phoneme du-

rations, while the other third has text only. We found the phoneme annotations provided

in the dataset lack the tonal and stress marks that are offered by eSpeak, and are likely to

be generated by speech recognition models since minor errors can be found. Given the

phonemes are unavailable during inference as part of the challenge, and the provided data

are insufficient to train a dedicated G2P model, we decide to use eSpeak’s phoneme set and

run the phoneme-audio alignment using Montreal Forced Aligner (McAuliffe et al., 2017) to

obtain the phoneme durations. Two sets of 500 utterances are selected as the validation and

test set, while the rest are used as training set. All data are preprocessed following the practice

in FastSpeech 2 (Ren et al., 2021a), with a sampling rate of 22,050 Hz.

For the spoke task, the AD corpus consists of 2515 utterances read by another female French

speaker Aurélie Derbier (AD), totaling 2 hours and 3 minutes. We randomly select 50 utterances

for the validation set and test set respectively, while the rest specifications follow the hub task.

Implementation Details

The model configurations of the acoustic model follow Chen and Garner (2023a), including

a 4-layer transformer encoder with 256 hidden size, a variance adapter same as the one in

Ren et al. (2021a), and a 4-layer diffusion transformer decoder with 256 hidden size and 2

heads. For the vocoder, we use the official implementation 13 without modification. The

number of parameters of the acoustic model is around 29M, while the vocoder has around

13M parameters.

13https://github.com/Rongjiehuang/FastDiff
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3.4 Blizzard Challenge 2023

Training and Inference

All experiments are conducted on a single NVIDIA RTX 3090 GPU. For the hub task, the

acoustic model is trained using a batch size of 40,000 speech frames for 200k iterations, with

the “rsqrt” (reciprocal of the square root) scheduler, 4,000 warm-up steps, and a learning rate

factor of 2. For the diffusion process, a beta schedule of 16 steps is used for both training and

inference. The vocoder is trained using a batch size of 25,600 samples for 1M iterations, with a

constant learning rate of 2×10−4. We use a diffusion schedule of 1000 steps for training and

a faster schedule of 200 steps for inference. Both of the acoustic model and the vocoder are

trained from scratch, which takes around 1 day and 2 days, respectively. The real-time factor

of the entire system is 0.48, in which the acoustic model counts for 0.01 while the vocoder

takes up the majority of inference time.

For the spoke task, we finetune the entire acoustic model and vocoder used for the hub task

to adapt to the AD voice. Specifically, the acoustic model is finetuned for 20k steps with a

learning rate of 2×10−4, while the vocoder is finetuned for 10k steps with a learning rate of

1×10−4.

3.4.5 Results and Analyses

Our system is identified as T, whereas A represents natural speech, and BF and BT are two

reference systems.

Hub Task: Quality

Our system is ranked the 7th among 18 participants with a mean MOS score of 3.8. Three

systems achieved significantly higher synthesis quality compared to ours, while four together

with our system yielded comparable results. In the detailed results broken down by the

qualification of testers, we found that non-native listeners and non-speech experts tended

to give higher scores compared to native listeners and speech experts. The results suggest

that despite our system offering high signal quality, it might be at a disadvantage in terms of

naturalness. This can be attributed to the lack of more advanced prosody modeling techniques

in the acoustic model, since only the conventional variance adapter was used.

Hub Task: Similarity

For the similarity test, the ranking is 9/18 with a mean MOS score of 3.0. Similar patterns can

be found in the results breakdown as in the quality test. We also notice that the speaking style

of the generated speech can sometimes be distinct from the reference, which can be attributed

to the generative modeling nature of the diffusion decoder and the highly variable voice in the

audio book. Additional style modeling methods should be introduced to alleviate the issue.
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Figure 3.4: MOS results of quality, hub task.

Figure 3.5: MOS results of similarity, hub task.
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3.5 Conclusions

Hub Task: Intelligibility

In the heterophonic homograph intelligibility test, our system, ranked 6/18, achieves an

accuracy of 83% (the percentage of test utterances that are pronounced correctly), which is

17% higher than the reference system BF that relies solely on eSpeak. The results demonstrate

the effectiveness of our proposed text analysis pipeline. Since our method mainly depends on

the POS tagger and lemmatizer to correct the incorrect output of eSpeak, we would expect

using more accurate models can further improve the phonemization accuracy.

(a) Pronunciation accuracy (%) (b) Significant difference

Figure 3.6: Intelligibility of heterophonic homographs, hub task.

However, in the conventional intelligibility test, the word error rate of our system is surprisingly

high at 19.4%. One possible explanation for this phenomenon is that the lack of speaking

style and prosody modeling techniques in the acoustic model results in the fast speaking

rate commonly existing in the audio book corpus, which hampers the understanding of such

semantically unpredictable sentences. It could also have been caused by the inaccurate

alignment between phonemes and speech frames generated by MFA, in which case using a

more advanced forced alignment tool would help mitigate the issue.

Spoke Task

In the spoke task of speaker adaptation, our system, ranked in the middle, receives a quality

MOS of 3.9 and a similarity MOS of 3.6. Around four systems achieved significantly higher

scores than our system in both tests. The results are reasonable since we only perform finetun-

ing on the acoustic model and the vocoder without other dedicated adaptation techniques.

3.5 Conclusions

In this chapter, we proposed to utilize a new backbone of diffusion models, Diffusion Trans-

former, for adaptive TTS. Specifically, the adaptive layer norm in the architecture was used to

41



Chapter 3. A Diffusion-Based Adaptive TTS Model

condition the diffusion network on text representations, which further enabled parameter-

efficient adaptation. On basic TTS tasks, the new architecture was verified to be a faster

alternative to its convolutional counterpart. For few-shot adaptation, the DiT decoder demon-

strated a clear advantage on naturalness and speaker similarity over the transformer decoder

while maintaining parameter efficiency. When used in a zero-shot adaptive system, while we

found the DiT is a decent alternative to the non-causal WaveNet, its main merit is to provide

efficient high-quality adaptation when finetuning is performed. Combined with a diffusion-

based vocoder and additional efforts on text analysis for French, our system is ranked favorably

in the Blizzard Challenge 2023, demonstrating its capability of high-quality and natural speech

synthesis.
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4 Bayesian Transfer Learning for
Parameter-Efficient Fine-Tuning

This chapter is situated within the context of recent advances in TTS systems, which increas-

ingly rely on large-scale models pre-trained on extensive data. These models—particularly

those incorporating language model-based architectures—usually demonstrate strong zero-

shot synthesis capabilities and adopt general-purpose architectures such as transformers. As

a result, parameter-efficient fine-tuning (PEFT) techniques, originally developed for broader

adaptation tasks, have emerged as a compelling approach for domain adaptation in TTS.

Despite their efficiency, PEFT methods remain vulnerable to catastrophic forgetting, where

fine-tuning can degrade the pre-trained model’s inherent capabilities. In the context of TTS,

this issue manifests as a loss of zero-shot synthesis performance, ultimately compromis-

ing generalizability and overall synthesis quality. To address this challenge, we investigate

Bayesian transfer learning theory to overcome forgetting within the PEFT framework. We

demonstrate that existing Bayesian transfer learning techniques can be applied to PEFT to

prevent catastrophic forgetting as long as the parameter shift of the fine-tuned layers can be

calculated differentiably. In a principled series of experiments on language modeling and

speech synthesis tasks, we utilize established Laplace approximations, including diagonal and

Kronecker-factored approaches, to regularize PEFT with low-rank adaptation (LoRA) and com-

pare their performance in pre-training knowledge preservation. Our results demonstrate that

catastrophic forgetting can be overcome by our methods without degrading the fine-tuning

performance, and using the Kronecker-factored approximation produces a better preservation

of the pre-training knowledge than the diagonal ones.

The work in this chapter has been published as:

Chen, H. and Garner, P. N. (2024). Bayesian parameter-efficient fine-tuning for overcoming

catastrophic forgetting. IEEE/ACM Transactions on Audio, Speech, and Language Processing,

32:4253–4262
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4.1 Introduction

In the context of TTS, it has long been of interest to adapt a generic model to a specific domain

such as a given speaker identity, language, or emotion. The process is termed adaptation;

typically the generic model would be well-trained on a large dataset, whereas the (domain-

specific) adaptation dataset would be too small to train a bespoke model. Adaptation proved

particularly useful in statistical parametric and neural TTS (Yamagishi et al., 2009; Arik et al.,

2018), and remains a goal of the recent Blizzard Challenge (Perrotin et al., 2023). More recently,

the state of the art in TTS is represented by more generic generative models that have arisen

in the machine learning community, with advances made in the domains of text (Brown et al.,

2020; OpenAI, 2023), vision (Rombach et al., 2022; Saharia et al., 2022), and audio (Borsos

et al., 2023; Vyas et al., 2023), all feeding through to TTS.

A key paradigm that has emerged in the development and application of such generic models

is the pre-training fine-tuning approach, which involves initially training a model on a large

dataset (pre-training) and subsequently fine-tuning it on a task-specific dataset. The paradigm

has proven to be highly effective, leading to substantially more accurate and robust outcomes.

More recent large pre-trained models have increasingly been equipped with in-context or

zero-shot learning capabilities (Rombach et al., 2022; Wang et al., 2023a; Vyas et al., 2023).

However, when there are more data available for the target task, fine-tuning is still useful to

further improve the performance considerably (Mosbach et al., 2023). Notice that, whilst the

vocabulary differs slightly, the goal is the same as for TTS. It follows that current research in

fine-tuning provides the means to adapt current TTS models.

The performance gains achieved by large pre-trained models are undeniably linked to their

scale. Larger models, with their increased capacity, tend to deliver superior performance.

However, as the size of pre-trained models increases, the costs associated with fine-tuning

and storing all parameters become prohibitively high, making it practically infeasible. This

has led to the study of parameter-efficient fine-tuning (PEFT) techniques (Houlsby et al.,

2019; Li and Liang, 2021; Zaken et al., 2022; Hu et al., 2022), which optimize a small subset

of the model parameters (either original parameters or additional ones) while leaving the

rest unchanged, significantly reducing computation and storage costs. PEFT techniques have

not only facilitated fine-tuning of large pre-trained models on low-resource devices but also

enabled the easy sharing and deployment of customized models as far fewer parameters need

to be stored and transferred.

Despite the benefits of (parameter-efficient) fine-tuning, it is not without its pitfalls. One sig-

nificant risk is catastrophic forgetting (McCloskey and Cohen, 1989; French, 1999; Goodfellow

et al., 2014), where the model loses much of the knowledge it gained during pre-training. This

loss can adversely affect the model’s ability to generalize to unseen data, a critical aspect of

any machine learning model. The phenomenon is even more unfavorable on modern large

pre-trained models that are usually multi-functional by training on a diverse range of tasks

and data. For example, a language model may forget its general knowledge after continual
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instruction tuning (Luo et al., 2023), or hypothetically, the controllability of emotions of a

speech synthesizer may be compromised after fine-tuning on a specific voice.

Bayesian learning theory provides a principled solution to overcoming catastrophic forgetting.

Considering optimizing the neural network as performing a maximum a posteriori (MAP)

estimation of the network parameters given the fine-tuning data, it tries to find the optimal

trade-off between the likelihood of the fine-tuning data and the prior knowledge of the pre-

trained model, of which the latter is accessible in the form of the posterior over the parameters

given the pre-training data. Although the true posterior is intractable, it can be approximated

by fitting a Gaussian distribution with a mean equal to the MAP solution and a precision equal

to the observed Fisher information. The technique is known as the Laplace approximation

(MacKay, 1992) and has been thoroughly studied (Kirkpatrick et al., 2017; Martens and Grosse,

2015; Botev et al., 2017; Ritter et al., 2018b).

In this work, we demonstrate quite generally that existing Bayesian learning techniques can

be applied to PEFT to overcome catastrophic forgetting. Deriving from the Bayesian transfer

learning framework, we show that it is viable to regularize PEFT to preserve the pre-training

knowledge as long as the parameter shift of the fine-tuned layers can be expressed in a

differentiable manner. Utilizing established Laplace approximation techniques including

diagonal (Kirkpatrick et al., 2017; Li et al., 2018) and Kronecker-factored (Martens and Grosse,

2015; Ritter et al., 2018a) approximations of the Hessian, we conduct a series of experiments

on language modeling and speech synthesis tasks with low-rank adaptation (LoRA) (Hu et al.,

2022) to demonstrate the effectiveness and compare the performance of different methods.

Specifically, we start from a study on text classification and causal language modeling tasks, the

quantitative nature of which allows both rigorous comparison of techniques and comparison

with existing literature. We then verify our findings on our target task of speaker adaptation of

speech synthesis, where the results are typically more subjective and more onerous to generate.

Our results demonstrate that catastrophic forgetting can be overcome by such methods

without degrading the fine-tuning performance, and the Kronecker-factored approximations

generate a better preservation of the pre-training knowledge than the diagonal ones. Audio

samples and source code are available1.

4.2 Related Work

4.2.1 Laplace Approximation

The Laplace approximation (MacKay, 1992) is an established technique in statistics and ma-

chine learning to approximate a complex posterior distribution with a Gaussian distribution.

This is achieved by identifying the mode of the posterior distribution, which is the maximum

a posteriori estimate, and then approximating the distribution around this mode using a

second-order Taylor expansion. Two popular kinds of Laplace approximation are the diagonal

1https://github.com/idiap/bayesian-peft
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approximation (Kirkpatrick et al., 2017; Li et al., 2018), which only considers the variance of

each model parameter itself and ignores the interactions between model parameters, and the

Kronecker-factored approximation (Martens and Grosse, 2015) that also takes the covariance

between parameters within each layer into account. Thanks to the additional information on

the off-diagonal elements of the Hessian, the Kronecker-factored approximation has been

shown to be more accurate than the diagonal approximation in capturing the loss landscape

(Ritter et al., 2018a).

The Laplace approximation has been widely applied in neural network optimization (natural

gradient descent) (Pascanu and Bengio, 2014; Martens and Grosse, 2015; Botev et al., 2017;

George et al., 2018), improving calibration of neural networks (predictive uncertainty estima-

tion) (Ritter et al., 2018b; Kristiadi et al., 2020; Immer et al., 2021a; Daxberger et al., 2021), and

overcoming catastrophic forgetting in transfer and continual learning (Kirkpatrick et al., 2017;

Ritter et al., 2018a; Kao et al., 2021). In this work, we focus on its application in mitigating

catastrophic forgetting in the PEFT setting.

4.2.2 Parameter-Efficient Fine-Tuning

There exists a variety of PEFT techniques taking different approaches to adding new trainable

components to, or modifying existing parameters of the pre-trained model. Representative

PEFT techniques include

1. inserting serial or parallel adapters with a bottleneck structure to the model (Houlsby

et al., 2019; Pfeiffer et al., 2020; He et al., 2022),

2. prepending trainable tokens to the input and hidden states of the transformer block (Li

and Liang, 2021; Lester et al., 2021),

3. fine-tuning the bias terms inside the model only (Zaken et al., 2022),

4. optimizing the low-rank approximation of the change of weights (Hu et al., 2022; Hyeon-

Woo et al., 2022; Edalati et al., 2023; Yeh et al., 2024), and

5. the combination of the above methods (He et al., 2022; Mao et al., 2022).

4.2.3 Continual Learning

Continual learning aims to enable the model to learn from non-stationary streams of data.

(van de Ven et al., 2022) categorizes continual learning into three types: task-, domain-, and

class-incremental learning. In the context of the adaptation of TTS models, we are interested

in the scenario where the pre-trained model is fine-tuned to solve the same task as the pre-

training one using data from different domains. This is an example of the domain-incremental

type. Despite close ties with continual learning, the scenario concerned aligns better with

transfer learning and domain adaptation. Further constraints that should be considered
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include that not all pre-training data are accessible and that the pre-training process cannot

be replayed. All such constraints limit the usage of techniques designed for task- and class-

incremental learning, such as Learning without Forgetting (Li and Hoiem, 2016) and Synaptic

Intelligence (Zenke et al., 2017).

There have been attempts to utilize PEFT techniques, mainly low-rank adaptation (LoRA),

in the continual learning setting. C-LoRA (Smith et al., 2024) leverages a self-regularization

mechanism with LoRA to prevent catastrophic forgetting in continual customization of text-

to-image models; O-LoRA (Wang et al., 2023b) continually learns tasks in different low-rank

subspaces that are kept orthogonal to each other to minimize interference. For general fine-

tuning, (Xiang et al., 2023) proposes to regularize the LoRA weights with Elastic Weight Con-

solidation (Kirkpatrick et al., 2017) when fine-tuning language models on question-answering

tasks while preserving their general inference abilities.

4.3 Bayesian Transfer Learning

4.3.1 Framework

The optimization of neural networks can be interpreted as performing a maximum a posteriori

(MAP) estimation of the network parameters θ given the training data. In the transfer learning

setting, the model has been pre-trained on a task A using data DA, and is then fine-tuned on

a downstream task B using data DB. The overall objective is to find the optimal parameters on

task B while preserving the prior knowledge of the pre-trained model on task A. The posterior

to be maximized in the MAP estimation can be written as:

p(θ|DA,DB) = p(DB|θ,DA)p(θ|DA)

p(DB|DA)

= p(DB|θ)p(θ|DA)

p(DB)

(4.1)

where DB is assumed to be independent of DA. Taking a logarithm of the posterior, the MAP

objective is therefore:

θ∗ = argmax
θ

log p(θ|DA,DB)

= argmax
θ

[log p(DB|θ)+ log p(θ|DA)− log p(DB)]

= argmax
θ

[log p(DB|θ)+ log p(θ|DA)]

(4.2)

The first term p(DB|θ) is the likelihood of the data DB given the parameters θ, which can be

expressed as the training loss function on task B, denoted by LB(θ). The second term p(θ|DA)

is the posterior of the parameters given the pre-training data DA. If training the network from

scratch, i.e., assuming DA and DB to be one dataset D, this term is usually approximated
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by a zero-mean isotropic Gaussian distribution, i.e., p(θ|D) =N (θ|0,σ2I), corresponding to

L2 regularization. However, for transfer learning, this posterior must encompass the prior

knowledge of the pre-trained model to reflect which parameters are important for task A.

Despite the true posterior being intractable, log p(θ|DA) can be defined as a function f (θ) and

approximated around the optimum point f (θ0) (MacKay, 1992), where θ0 is the pre-trained

values and ∇ f (θ0) = 0. Performing a second-order Taylor expansion on f (θ) around θ0 gives:

log p(θ|DA) ≈ f (θ0)+ 1

2
(θ−θ0)⊤∇2 f (θ0)(θ−θ0)

= f (θ0)+ 1

2
(θ−θ0)⊤H(θ−θ0)

(4.3)

where H is the Hessian matrix of f (θ) at θ0. The second term suggests that the posterior of

the parameters on the pre-training data can be approximated by a Gaussian distribution with

mean θ0 and covariance H−1. Note that the negation of the expected value of the Hessian over

the data distribution is the Fisher information matrix (FIM) F, i.e., F =−EDA[H]. Following

Equation 4.2, the training objective becomes:

θ∗ = argmin
θ

[LB(θ)− 1

2
(θ−θ0)⊤H(θ−θ0)] (4.4)

Finally, the loss function that we minimize during fine-tuning can be written as:

L(θ) =LB(θ)+λ(θ−θ0)⊤F(θ−θ0) (4.5)

where λ is the regularization strength that determines how much prior knowledge should be

preserved during fine-tuning.

4.3.2 Diagonal Approximation of the Hessian

Modern neural networks typically have millions to billions of parameters, thus the Hessian,

being at least terabytes, is intractable to compute and store. One practical approximation of

the Hessian is the diagonal of the Fisher information matrix, i.e., the expected square of the

gradients over the data distribution, known as Elastic Weight Consolidation (EWC) (Kirkpatrick

et al., 2017). The loss function of EWC is:

LEW C (θ) =LB(θ)+λFEW C (θ−θ0)2 (4.6)

where FEW C is the vectorized expected square of the gradients over the distribution of DA.

To estimate FEW C , a small subset of the pre-training data DA is sampled and used to compute

the gradients of the training loss function LA(θ) on task A. The final FEW C is then the average

of the square gradients over the sampled data.

A simplified version of EWC, named L2-SP (Li et al., 2018), assigns equal importance to all
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parameters, which is equivalent to assuming that the Fisher information matrix is an identity

matrix. The loss function of L2-SP is:

LL2−SP (θ) =LB(θ)+λ(θ−θ0)2 (4.7)

L2-SP can be regarded as an extension of the L2 regularization: instead of zero, it limits the

parameters to be close to the pre-trained values during fine-tuning by assigning a Gaussian

prior N (θ0,σ2I). Despite being overly simplified, L2-SP proves to be effective in preventing

catastrophic forgetting in transfer learning (Li et al., 2018), and is particularly useful when the

pre-training data are unavailable since no estimation of the FIM is required.

4.3.3 Kronecker-Factored Approximation of the Hessian

While first-order approximations such as EWC and L2-SP are simple and efficient, they are not

accurate enough to capture the complete loss landscape since they ignore the off-diagonal

elements of the Hessian, i.e., the interactions between parameters. To address this issue,

recent advances in second-order optimization (Martens and Grosse, 2015; Botev et al., 2017)

utilize block-diagonal approximations of the Hessian: the diagonal blocks of the Hessian, cor-

responding to the interactions between parameters within a single layer, can be approximated

as a Kronecker product of two much smaller matrices. This approximation is known as the

Kronecker-factored approximate curvature, usually abbreviated as KFAC.

Following (Martens and Grosse, 2015), we denote the input, the weight, the pre-activations, the

non-linear function, and the output of the l -th layer as al−1, Wl , sl , φl and al , respectively. For

simplicity, we only consider linear layers with no bias term, thus sl = Wl al−1 and al =φl (sl ). We

further define gl = ∂L
∂sl

as the gradient of the loss function L with respect to the pre-activations

sl . The FIM with respect to the weights Wl can be written as:

Fl
K F AC = ∂2L

∂2vec(Wl )
= Al ⊗Gl (4.8)

where vec(Wl ) is the vectorized form of Wl , Al = al−1a⊤
l−1, Gl = gl g⊤

l and ⊗ is the Kronecker

product operator. To calculate the expectation, the two factors are assumed to be independent,

thus the expected Kronecker product is approximated as the Kronecker product of the expected

factors. Thanks to a property of the Kronecker product, the quadratic penalty term for each

layer can be efficiently calculated:

(Al ⊗Gl )vec(∆Wl ) = vec(Gl∆Wl Al ) (4.9)

where ∆Wl = Wl −W0
l is the parameter shift from the pre-trained weight W0

l of the l-th layer.
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The overall loss function of KFAC is:

LK F AC (θ) =LB(θ)+λ
L∑

l=1
vec(∆Wl )∗vec(Gl∆Wl Al ) (4.10)

Despite KFAC’s assumption of independence between layers, the most important in-layer

parameter interactions are taken into account. It has been demonstrated that KFAC leads to

better prior knowledge preservation in continual learning than using a diagonal approximation

of the Hessian (Ritter et al., 2018a).

4.4 Bayesian PEFT

In this work, we aim to show that Bayesian transfer learning can provide a unifying framework

for a variety of PEFT techniques. Such an approach not only retains the parameter efficiency of

PEFT but also brings a principled approach to regularization, in turn overcoming catastrophic

forgetting.

Looking back on Eq. 4.5, it is not difficult to see that, as long as the parameter shift ∆Wl of

the fine-tuned layers can be expressed in a differentiable way, the Bayesian transfer learning

framework can be applied to any PEFT technique in the form of modification to the inherent

weight of the pre-trained model. The loss function of Bayesian transfer learning with PEFT is

therefore:

LPEF T (θ) =LB(θ)+λ
L∑

l=1
vec(∆Wl )⊤Fl vec(∆Wl ) (4.11)

The most representative PEFT technique that fits this requirement is the low-rank adaptation

(LoRA) family. LoRA (Hu et al., 2022) aims to optimize the low-rank approximation of the

change of the original weight matrices based on the hypothesis that the change of weights

during fine-tuning has a low intrinsic rank. It is formulated as adding the matrix product of

two low-rank matrices to the original weight matrix, i.e., Wl = W0
l +γAl B⊤

l , where W0
l ∈Rdo×di

is the pre-trained weight matrix, γ is a scaling factor, Al ∈ Rdo×r and Bl ∈ Rdi×r are two low-

rank matrices. Therefore, the weight modification (delta weight) of each layer is simply

∆Wl = γAl B⊤
l . Following Eq. 4.11, the loss function of Bayesian transfer learning with LoRA is:

LLoR A(θ) =LB(θ)+λ
L∑

l=1
vec(γAl B⊤

l )⊤Fl vec(γAl B⊤
l ) (4.12)

Apart from the original LoRA, there exist several variants of LoRA including AdaLoRA (Zhang

et al., 2023b), which adaptively assigns the rank to the LoRA matrices in each layer, FedPara

(LoHa) (Hyeon-Woo et al., 2022; Yeh et al., 2024), of which the delta weight is the Hadamard

product of two LoRA delta weights, and KronA (LoKr) (Edalati et al., 2023; Yeh et al., 2024),

which generates the delta weight by the Kronecker product of two low-rank matrices. Thanks
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to the explicit formulation of the delta weight, the LoRA family fits any aforementioned

approximation of the Hessian in the Bayesian transfer learning framework. We also note

that other PEFT methods such as (IA)3 (Liu et al., 2022a) and Orthogonal Butterfly (Liu et al.,

2024b), that do not explicitly calculate the delta weight, also fit in the framework, although

regularizing these methods may require extra computation and memory. Given that the

original LoRA has achieved sufficiently good performance, e.g., it matches the full fine-tuning

performance on the GLUE benchmark (Hu et al., 2022), and other LoRA variants only offer

insubstantial improvements, we only employ the original LoRA and focus on the study of

regularization methods in our experiments.

4.5 Experiments: Language Modeling

4.5.1 Tasks

We first apply our methods to fine-tuning pre-trained language models with LoRA on two sets

of language modeling tasks: text classification and causal language modeling. The reason for

this choice of task is twofold: The first is that language models can be evaluated quantitatively;

a clear metric is associated with each task. The second is that it allows objective comparison

with the wider literature.

Text Classification

We select three sentence-pair classification tasks and one single-sentence classification task

from the GLUE benchmark (Wang et al., 2019). The sentence-pair tasks are: MNLI (Williams

et al., 2018), a natural language inference task of predicting whether a premise entails, con-

tradicts or is neutral to a hypothesis, QQP (Iyer et al., 2019), a paraphrase detection task of

predicting whether a pair of sentences are semantically equivalent, and QNLI (Rajpurkar

et al., 2016), a question answering task of predicting whether a sentence answers a question.

The single-sentence task is SST-2 (Socher et al., 2013), a sentiment analysis task of predicting

whether a sentence has positive or negative sentiment. For all tasks, the fine-tuning perfor-

mance is reflected by the accuracy on the validation set. The number of training examples in

the 4 selected datasets are MNLI: 393k, QQP: 363k, QNLI: 105k, and SST-2: 67k.

Causal Language Modeling

We experiment on the two subsets, WikiText-2 and WikiText-103, of the WikiText dataset

(Merity et al., 2017), a collection of over 100 million tokens extracted from the set of verified

good and featured articles on Wikipedia. The number of tokens in WikiText-2 and WikiText-103

are 2.1M and 103M, respectively. The fine-tuning performance is reflected by the perplexity

on the validation set, which is shared by the two subsets.
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4.5.2 Model: OPT

We select the Open Pre-trained Transformers (OPTs) (Zhang et al., 2022) with 350M and 1.3B

parameters as the pre-trained models for our experiments. The OPTs are a suite of decoder-

only transformers ranging from 125M to 175B parameters pre-trained on a series of large

open-access corpora, including a subset of the Pile (Gao et al., 2021). Our choice of model

sizes is based on those of state-of-the-art pre-trained TTS models ranging from 100M to 1B

parameters (Li et al., 2023; Vyas et al., 2023; Lajszczak et al., 2024), so that the findings will

hopefully provide useful guidance for our target task.

For text classification, a classification head is added on the last token the model generates and

trained along with LoRA. This is purely for the simplicity of the implementation, though it

could also be done by instruction tuning. For causal language modeling, the model structure

remains unchanged.

4.5.3 Experimental Details

Implementation We base our code on the text classification and the causal language mod-

eling examples of the Hugging Face Transformers library (Wolf et al., 2020). The Bayesian

transfer learning techniques are implemented with the Hugging Face Parameter-Efficient

Fine-Tuning (PEFT) library (Mangrulkar et al., 2022).

Hessian estimation The Hessian estimates are computed on the pre-training task, i.e., the

causal language modeling task, and are shared by all fine-tuning tasks. We randomly sample

20,000 examples from the subset of the Pile used to pre-train the OPTs to compute the Hessian

estimates for EWC and KFAC, and another 2,000 examples for the evaluation of the pre-training

knowledge preservation.

Training and evaluation All models are trained using the Adam optimizer (Kingma and Ba,

2015) on each dataset for 3 epochs without weight decay. The learning rate is set to 5×10−4

for the 350M model and 2×10−4 for the 1.3B model, both with a linear decay schedule. For

the text classification tasks, the batch size for all models is set to 32, while for the causal

language modeling tasks, the batch size is set to 16 for the 350M model and 8 for the 1.3B

model with a context window of 1024 tokens. LoRA is applied to the linear modules that

produce the query and value in every self-attention module. The rank and the scaling factor of

LoRA are set to 16 and 2 respectively for all models, resulting in the percentage of trainable

parameters of the 350M and 1.3B model being 0.473% and 0.239%, respectively. To evaluate

the fine-tuning performance, we calculate the accuracy or the perplexity on the validation

set for the text classification tasks and the causal language modeling tasks respectively. For

MNLI, the “matched” validation set is used. For the evaluation of the pre-training knowledge

preservation, we calculate the perplexity on the sampled test set of the Pile. We run a coarse
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Chapter 4. Bayesian Transfer Learning for Parameter-Efficient Fine-Tuning

hyper-parameter sweep on the regularization strength λ with a step size of 10 times for each

method on each task. The optimalλ is selected balancing the fine-tuning performance and the

preservation of pre-training knowledge, typically the point where fine-tuning performance is

going to drop greatly if the regularization further strengthens. All experiments were conducted

on machines equipped with one NVIDIA RTX3090. The results are averaged over 5 runs with

different random seeds.

4.5.4 Results and Analyses

The main results are shown in Table 4.1. Note that the method “None” refers to LoRA without

regularization. We elaborate our findings from several perspectives.

Catastrophic forgetting Compared to the pre-trained models, all models fine-tuned without

regularization demonstrated significant forgetting of the pre-training knowledge, e.g., the

perplexity on the pre-training data increased from 15.40 to 523.7 when fine-tuned on MNLI.

Comparing different tasks, it is obvious that the forgetting is more severe when the model is

fine-tuned on more data. In terms of model sizes, we notice that larger models tend to forget

the pre-training knowledge less than smaller models, which suggests larger models have better

resistance to catastrophic forgetting.

Comparison of regularization methods All regularization methods significantly reduced the

loss of pre-training knowledge. Among them, L2-SP underperforms other methods by a large

margin, which is reasonable given its over-simplified assumption of diagonal Hessian with

equal importance on all parameters. In general, the Kronecker-based methods outperform

EWC especially when there is more fine-tuning data, however, the difference is less significant

for larger models. This demonstrates that knowledge preservation does benefit from more

accurate Hessian estimations.

Regularization strength We provide an example of the regularization strengthλ sweep for the

350M model fine-tuned on MNLI, which is shown in Table 4.2. As λ increases, the parameters

are more constrained to the pre-trained values, thus the fine-tuning performance drops. We

select the optimal λ as the one that achieves a fine-tuning performance better than that of

using the original LoRA and has the lowest perplexity on the pre-training data. It can be seen

that, compared to KFAC-based methods, the pre-training knowledge preservation of EWC

is worse when achieving the same level of fine-tuning performance. We also observe that

the fine-tuning benefits from the regularization when λ is small, which can be attributed

to the fact that the Hessian estimation introduces a Gaussian prior that better describes

the loss landscape than assuming an isotropic Gaussian prior at zero. This suggests that

Bayesian transfer learning can lead to better fine-tuning performance as well as overcoming

catastrophic forgetting.
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Table 4.2: Comparison of performance with varying regularization strength of OPT-350M on
MNLI.

Method λ Accuracy↑ Perplexity↓
Pre-trained - - 15.40

None - 83.33% 523.74

L2-SP
10−4 84.52% 52.51
10−3 83.35% 33.65
10−2 81.51% 34.23

EWC
103 84.11% 26.84
104 83.67% 18.67
105 82.03% 16.88

KFAC
105 84.32% 19.38
106 84.21% 17.24
107 83.12% 17.10

Hessian estimates with varying samples We further experiment on Hessian estimates with

a reduced amount of pre-training data to investigate the effect of the sample size on the

accuracy of the Hessian estimation. The results are shown in Table 4.3. We observe that EWC is

more robust to the sample size than KFAC, showing no degradation in pre-training knowledge

preservation with Hessian estimates on fewer samples, whereas KFAC demonstrates significant

degradation in perplexity on the pre-training data when the sample size is reduced to 20. This

can also be corroborated by the increasing fine-tuning performance of KFAC when sample

sizes decrease, which signifies less effective regularization. However, for other larger sample

sizes, KFAC always outperforms EWC. Overall, the results suggest that KFAC, while being

superior to EWC, requires more data to be estimated accurately than EWC, which is reasonable

given its additional off-diagonal elements in the Hessian estimation.

Table 4.3: Comparison of Hessian estimates with varying samples.

Model Samples
MNLI WikiText-103

EWC KFAC EWC KFAC

OPT-350M

20000 83.67% / 18.67 84.21% / 17.24 15.80 / 16.87 15.60 / 16.08
2000 83.66% / 18.77 84.30% / 17.64 15.80 / 16.96 15.57 / 16.22
200 83.71% / 18.50 84.51% / 17.60 15.83 / 16.84 15.47 / 16.79
20 83.59% / 18.63 84.47% / 21.39 15.83 / 16.96 15.37 / 18.50

OPT-1.3B

20000 87.78% / 11.72 87.76% / 11.45 10.70 / 13.45 10.70 / 11.55
2000 87.79% / 11.74 87.70% / 11.46 10.70 / 13.36 10.70 / 11.53
200 87.74% / 11.70 87.76% / 11.54 10.71 / 13.22 10.66 / 11.68
20 87.85% / 11.67 87.71% / 11.94 10.70 / 13.49 10.59 / 12.53
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Computational cost and memory usage We compare the computational cost and memory

usage of each regularization method in Table 4.4. Note that the calculation is based on a linear

layer with weight Wl ∈Rdo×di using a single sample. The computational cost has two sources:

the estimation stage, where a small subset of the pre-training data is sampled to compute the

FIM, and the training stage, where the regularization loss is computed at each iteration.

Table 4.4: Comparison of computational cost and memory usage.

Method
Computation

Memory
Estimation Regularization

L2-SP 0 O(dodi ) 0
EWC O(dodi ) O(dodi ) O(di do)
KFAC O(d 2

o +d 2
i ) O(dodi (do +di )) O(d 2

o +d 2
i )

Overall, the comparison highlights a trade-off between computational efficiency and the

expressiveness of the regularization. While L2-SP incurs virtually no estimation cost and has

negligible memory overhead, it provides only a coarse constraint. EWC introduces moderate

additional cost by requiring the averaged square of gradient but remains relatively manageable.

In contrast, KFAC offers a more accurate approximation of curvature information, but at the

expense of substantially higher computational and memory requirements.

4.6 Experiments: Speech Synthesis

4.6.1 Tasks

Having verified the efficacy of our methods quantitatively and objectively on language model-

ing tasks, we further apply them to our target application: the fine-tuning of speech synthesis

models. Such models are typically more onerous and subjective to evaluate. Our strategy is

to demonstrate that the results from the objective evaluation also apply to the more specific

target application.

Specifically, we fine-tune a pre-trained zero-shot speech synthesizer with LoRA to adapt it

to an unseen speaker. Next, we evaluate the speaker similarity on both the target speaker

and other out-of-domain (OOD) speakers, of which the former represents the fine-tuning

performance and the latter indicates how well the model preserves the pre-training knowledge.

To amplify the effect of catastrophic forgetting, the target speaker and other OOD speakers

should be distinct from the pre-training data, thus we select speakers with particular accents

for both fine-tuning and evaluation.

We appreciate that the task of evaluating the pre-training knowledge preservation is perhaps

of less practical value since there is more interest in getting a similar voice to the target speaker

than maintaining the zero-shot performance on other speakers in such a setting. However,

this is a necessary compromise owing to several reasons. Firstly, the current publicly available
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state-of-the-art speech synthesis models mainly target speaker adaptation and are far from

being omnipotent, meaning a good zero-shot performance on other speech characteristics

is not guaranteed. Further, both the objective and subjective evaluation methods of speaker

similarity are well-established, which is not the case for most of the others. Finally, the

multi-speaker speech data are easy to obtain, while in other cases the data are not. Despite

the limitation, we believe the results will provide practical guidance not only for speaker

adaptation on this model but also for many other models and usages where catastrophic

forgetting is detrimental to the model’s inherent capabilities.

4.6.2 Model: StyleTTS 2

To proceed with the proposed tasks, we need an open-access pre-trained TTS model that has

good synthesis quality and zero-shot performance for speaker adaptation. StyleTTS 2 (Li et al.,

2023) is a recently proposed end-to-end TTS model that utilizes style diffusion and adversarial

training with a large speech language model to generate human-level expressive and diverse

speech. It also achieves a remarkable zero-shot performance though only trained on limited

data of 245 hours from the LibriTTS dataset (Zen et al., 2019) compared to large-scale models

such as VALL-E (Wang et al., 2023a), which is trained on 60k hours of data. Initial experiments

on zero-shot synthesis show that despite StyleTTS 2 rendering excellent synthesis quality, the

synthesized speech tends to lose the accent traits of the target speaker, which can be attributed

to the limited training data. Nevertheless, this could be suitable for our experiments as it

makes the improvement brought by fine-tuning or the degradation of zero-shot performance

more distinguishable.

StyleTTS 2 has a variety of components, many of which are composed of modules that are not

compatible with LoRA or whose Hessian estimation needs extra calculation, such as LSTMs

and 1D/2D convolutions. However, we found in our initial experiments that only fine-tuning

the linear modules in StyleTTS 2 already achieves reasonably good performance. Therefore,

for convenience, we only fine-tune the linear modules in all components that are useful for

inference of StyleTTS 2.

4.6.3 Experimental Details

Implementation Our code is based on the official implementation of StyleTTS 2 2. The same

PEFT library for previous experiments is used for applying Bayesian methods and LoRA to the

model.

Hessian estimation We use the official fine-tuning code to calculate the Hessian estimates,

during which all training losses are enabled to ensure the gradients are properly back-propagated

to all components. Based on the experience from language modeling experiments, we ran-

2https://github.com/yl4579/StyleTTS2
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domly sample 1,000 utterances from the train-clean-360 subset of the LibriTTS dataset for

Hessian estimation to ensure accuracy.

Data We select p248, a female speaker with an Indian accent in the VCTK dataset (Yamagishi

et al., 2019) as the target speaker and randomly split the data into the training set of 356

utterances (approximately 21 minutes) and the test set of 20 utterances. For OOD speakers, we

select another 9 speakers (5 females, 4 males) with different accents from VCTK and randomly

choose 20 utterances of each speaker as test sets.

Training and inference We adopt the official multi-stage fine-tuning strategy of 50 epochs

described in the code repository for all models, only reducing the batch size from 8 to 2 due

to hardware limits. LoRA is applied to the linear modules in all components except for the

discriminators and the text aligner which are fully trained and only used during training. The

rank and the scaling factor of LoRA are set to 16 and 2 respectively, resulting in an overall

percentage of trainable parameters of 1.639% (2.26M of 138M). The fine-tuning is conducted 3

times with different random seeds. For inference, we synthesize test samples using the test

sentences for every speaker using the fine-tuned model. All experiments were conducted on

the same hardware as previous experiments.

Evaluation We conduct both objective and subjective evaluations, focusing exclusively on

the speaker similarity. Essentially, we use the objective test results as the guideline for our ex-

periments and corroborate our findings with subjective test results. More details are provided

in the following sections.

Regularization Based on the fact that L2-SP is far inferior to other methods, we only experi-

ment with EWC and KFAC in this section. The optimal regularization strength λ is selected

using the same criterion as in the language modeling experiments based on the results of the

hyperparameter sweep. It is 103 for both EWC and KFAC.

4.6.4 Objective Evaluation

For the objective evaluation, we use an ECAPA-TDNN (Desplanques et al., 2020) speaker

verification model 3 to compute the averaged speaker embedding cosine similarity (SECS)

score between the synthesized speech and the ground truth on the test set of each speaker.

The averaged results of the three runs are shown in Table 4.5. Note that OOD All/Female/Male

are the aggregated scores of all/female/male OOD speakers, “Full” and “Linear” stand for full

fine-tuning and linear module-only fine-tuning, respectively. We analyze the results from the

following perspectives.

3https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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Fine-tuning performance After fine-tuning, the SECS score of the target speaker p248 in-

creases from 0.216 to above 0.6, which manifests that fine-tuning is essential for improving

speaker similarity. Without a doubt, the full fine-tuning achieves the best performance. The

linear module only fine-tuning (“Linear”) and its LoRA-enabled counterpart (“LoRA”) perform

similarly, however falling behind by a less than 10% margin. This demonstrates the efficacy of

the linear module-only fine-tuning scheme. Applying EWC and KFAC on top of LoRA further

degrades the performance slightly, with KFAC performing slightly better than EWC.

Zero-shot performance The overall scores on all OOD speakers clearly demonstrate the

catastrophic forgetting, dropping from 0.293 for the pre-trained model to 0.159 for the fully

fine-tuned model. Fine-tuning the linear modules only with or without LoRA slightly mitigates

the forgetting, suggesting it is necessary to apply additional regularization. Under optimal λ

settings, KFAC (0.280) performs substantially better than EWC (0.224), only showing a slight

degradation compared to the pre-trained model. The gender breakdown indicates that the

fine-tuned model generally achieves a higher similarity on females than males, which can be

attributed to the female fine-tuning data. This is confirmed by our test listening that the male

speech synthesized by models without regularization severely deteriorates and resembles

female speech more. In the speaker breakdown, despite the pre-trained model performing

well on some speakers, the fine-tuning degrades similarities on all OOD speakers. One of the

reasons for this could be the distinction between the target speaker and the OOD speakers

in terms of the accent and the timbre. Moreover, the similarity drops more on speakers that

previously had high similarity before fine-tuning. However, in any case, KFAC successfully

preserves the zero-shot performance of the model, exceeding EWC by a large margin.

Table 4.6: Comparison of EWC and KFAC with varying regularization strength.

λ
EWC KFAC

Target OOD Target OOD

102 0.641 0.213 0.647 0.261
103 0.633 0.224 0.648 0.280
104 0.575 0.270 0.593 0.283
105 0.379 0.271 0.491 0.271

Regularization strength We provide the λ sweep results in Table 4.6. It can be seen that

under allλ settings, KFAC always achieves better fine-tuning performance and better zero-shot

performance preservation than EWC. When matching a good similarity score above 0.6 on the

target, EWC shows a significant degradation on OOD speakers. Furthermore, as λ increases,

EWC’s fine-tuning performance drops faster than KFAC and its zero-shot performance never

surpasses that of KFAC. Overall, the results suggest that KFAC helps maintain the zero-shot

synthesis ability of the pre-trained model while achieving good fine-tuning performance,

whereas EWC suffers from a significant loss of fine-tuning performance when preserving the
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pre-training knowledge. This is consistent with the results of language modeling experiments

on the smaller 350M model, however here the phenomenon is more pronounced.

4.6.5 Subjective Evaluation

Sample selection Having verified the efficacy with objective tests, we further conduct a

subjective evaluation to corroborate our findings. One of the concerns is that the synthesized

samples of OOD speakers usually result in a much lower perceptual similarity than those of the

target speaker, making it difficult to distinguish the performance of low-performing models.

In this regard, we select two OOD speakers that have the highest SECS scores and the most

difference among models in each gender for the listening test, which are p225, p261, p245,

and p302. 10 samples of the target speaker and 5 samples of each OOD speaker are randomly

selected, totaling 10 female samples and 10 male samples of the OOD speakers for each model.

We also add a ground truth (GT) group for comparison.

Implementation We hired 20 native English speakers from the United Kingdom on the

Prolific 4 crowd-sourcing platform to rate the speaker similarity between the synthesized

speech and the reference on a 5-point scale (5: completely same speaker, 4: mostly similar,

3: equally similar and dissimilar, 2: mostly dissimilar, 1: completely different speaker), using

a modified Degradation Category Rating (DCR) method based on the P.808 toolkit (Naderi

and Cutler, 2020). The reference is a random recording of the speaker with spoken content

different from that of the test sample and is bound to each test sample. The averaged result is

often referred to as the Similarity Mean Opinion Score (SMOS).

Table 4.7: Subjective test results with 95% confidence interval.

Model Target OOD All OOD Female OOD Male

GT 4.46 ± 0.11 4.59 ± 0.07 4.65 ± 0.10 4.52 ± 0.11

Pre-trained 1.90 ± 0.15 2.22 ± 0.13 2.36 ± 0.20 2.08 ± 0.17

Linear 4.06 ± 0.16 1.50 ± 0.10 1.83 ± 0.17 1.18 ± 0.07
LoRA 3.86 ± 0.16 1.48 ± 0.09 1.83 ± 0.17 1.13 ± 0.06
LoRA+EWC 3.60 ± 0.14 1.51 ± 0.10 1.77 ± 0.17 1.26 ± 0.09
LoRA+KFAC 3.81 ± 0.16 2.08 ± 0.13 2.31 ± 0.20 1.85 ± 0.16

Results and analyses The results are shown in Table 4.7. In general, the subjective test

results corroborated our findings from objective tests, hence we mainly comment on the

discrepancies between the two tests. For the target speaker, fine-tuning linear modules

(“Linear”) achieves an SMOS of 4.06, which is a significant improvement from the pre-trained

model of 1.90 and is considerably good given the ground truth of 4.46. Different from the

4https://www.prolific.com

61

https://www.prolific.com
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objective test results, the LoRA-only model shows a disadvantage of 0.20 compared to “Linear”,

meaning fine-tuning a low-rank representation does degrade the fine-tuning performance for

this model. The small difference between EWC and KFAC shown by SECS scores is actually

perceivable, indicated by a difference of 0.21 in SMOS. In terms of zero-shot performance,

EWC’s preservation effect is not reflected on SMOS considering all OOD speakers, which is in

contrast with KFAC. The gender breakdown shows a slight degradation on male OOD speakers

for the LoRA with KFAC model, suggesting KFAC did not perfectly preserve the zero-shot

performance of the pre-trained model as the SECS scores showed.

4.7 Conclusions

In this work, we explored applying Bayesian learning techniques to parameter-efficient fine-

tuning to overcome catastrophic forgetting. We started from the derivation of the Bayesian

transfer learning framework and demonstrated that PEFT could be regularized to preserve

the pre-training knowledge as long as the parameter shift of the fine-tuned layers could be

calculated differentiably. We then conducted experiments with LoRA on both language model-

ing and speech synthesis tasks to verify the efficacy of the proposed methods and compared

the performance of different Laplace approximations. Our results show that catastrophic

forgetting can be overcome by our methods without degrading the fine-tuning performance.

Furthermore, the results on both tasks suggest using the Kronecker-factored approximations

of the Hessian produces more effective preservation of the pre-training knowledge and better

fine-tuning performance than the diagonal approximations, even though the former requires

more data to be estimated accurately.

Current limitations of this work include that it cannot be applied to PEFT techniques that

add new components to the model such as bottleneck adapters; however this is not a serious

concern given suitable techniques like LoRA already provide good fine-tuning performance.

Further, it is only feasible when at least part of the pre-training data is accessible. Finally, the

efficacy on larger (TTS) models has not been verified due to the inaccessibility to these models

and hardware constraints. We would like to evaluate our methods on larger TTS models when

they become publicly available in the future.
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5 Variational Learning for Parameter-
Efficient Fine-Tuning

In the previous chapter, we explored the application of the Laplace approximation in Bayesian

transfer learning: the parameter distribution of the pre-trained model can be approximated

post hoc by a Gaussian distribution through a second-order Taylor expansion around the

pre-trained mode. This distribution can then be used to regularize parameter-efficient fine-

tuning (PEFT) to preserve pre-training knowledge. In parallel with the Laplace approximation,

variational inference generalizes this idea by reframing posterior approximation as an op-

timization problem. Despite sharing the ultimate goal of learning distributions of neural

network parameters, variational inference techniques usually appear as online optimizers that

estimate posterior distributions during training. This flexibility allows variational methods to

learn more expressive posterior distributions along the training process.

In this chapter, we investigate the applications of variational learning in PEFT, utilizing the

Improved Variational Online Newton (IVON), a state-of-the-art variational inference optimizer.

In the first part, we demonstrate that variational learning can effectively improve predictive

accuracy and calibration in PEFT, benchmarking its performance on natural language and

audio understanding tasks against the Laplace approximation. In the second part, we utilize

the online estimation of the posterior distribution of parameters to prune unimportant ranks

for low-rank adaptation (LoRA), enabling automatic allocation of parameter budget to different

layers and modules across the model.

The work in the second part is adapted from the following publication:

Chen, H. and Garner, P. N. (2025). A Bayesian interpretation of adaptive low-rank adaptation.

In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1–5.
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5.1 Predictive Uncertainty Estimation

5.1.1 Introduction

Despite large language models (LLMs) having succeeded on a wide range of language and

speech processing tasks, their probabilistic predictions are often poorly calibrated when

fine-tuned on small datasets: the confidence scores they output do not always align with the

true likelihood of correctness, often demonstrating overconfidence (Jiang et al., 2021; Tian

et al., 2023; OpenAI, 2023). This misalignment may compromise predictive accuracy, posing

challenges in high-stakes or risk-sensitive applications where reliable uncertainty estimation

is crucial.

Variational inference (VI) offers a principled framework for uncertainty estimation by treat-

ing model parameters as posterior distributions rather than point estimates. By learning

such posterior distributions, VI enables direct modeling of parameter uncertainty, which

in turn leads to better-calibrated predictions and improved generalization by ensembling

the output using multiple model samples during inference. Recent advances in efficient VI

methods, such as Improved Variational Online Newton (IVON) (Shen et al., 2024), have made

it feasible to fine-tune large-scale models while maintaining computational tractability. A

closely related, state-of-the-art approach to improving calibration is the Linearized Laplace

Approximation (LLA) (Daxberger et al., 2021), which provides a post-hoc Bayesian solution

by fitting a Gaussian posterior around the pre-trained mode. When applied to LoRA-based

fine-tuning, LLA can yield well-calibrated uncertainty estimates without extensive retraining

(Yang et al., 2024), outperforming conventional uncertainty estimation methods such as deep

ensemble (Lakshminarayanan et al., 2017), stochastic weight averaging (Maddox et al., 2019),

and Monte-Carlo dropout (Gal and Ghahramani, 2016).

In this section, we examine how variational inference (VI) and the Laplace approximation

can improve calibration in LLMs, with a focus on their theoretical foundations and practical

trade-offs. By applying the two methods to LoRA-based fine-tuning on a series of common-

sense reasoning and audio understanding tasks, we aim to assess their respective strengths

and limitations in enhancing general fine-tuning performance and calibration within the

framework of PEFT.

5.1.2 Variational Inference

Overview

Variational inference (VI) transforms the modeling of neural network parameter distributions

into an optimization problem. It seeks a tractable surrogate distribution (often Gaussian) by

minimizing the Kullback-Leibler (KL) divergence between the approximation and the true

posterior. Essentially, VI leverages the evidence lower bound (ELBO) as a variational objective,

framing inference as an optimization task that enables the use of stochastic gradient descent
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computation is in the first line of Eq. 2 where a Gauss-
Newton estimate over a minibatchB is computed at a sample
from the Gaussian, while the rest is similar to Adam: the
second line is gradient momentum, where s0m/λ is added
due to the prior. The third and fourth line are identical to
the scale and parameter vectors updates, respectively. The
constant c = γ+s0/λ where γ > 0 is a damping parameter.

The computation of the Gauss-Newton estimate is tricky
because it requires per-example squaring, which is not a
standard operation in deep learning and could be difficult
to implement. In Osawa et al. (2019, Fig. 1), this ends up
increasing the cost by a factor of two. The Gauss-Newton
estimate also introduces an additional approximation in the
variational learning, even though it helps to ensure the posi-
tivity of h. Another issue is the use of an additional damping
parameter γ which departs from the Bayesian framework.

Ideally, we want a method that directly optimizes Eq. 1 with-
out additional approximations and also seamlessly fits into
an Adam-like framework without any significant compu-
tational overheads. Methods such as MC-dropout, SWAG,
and Laplace do not solve this problem, and rather circum-
vent it by relying on algorithms that optimize ¯̀, not L. The
goal of this paper is to propose a method that can match the
accuracy of Adam while directly optimizing L.

3. Improved Variational Online Newton
We present the Improved Variational Online Newton (IVON)
method by adapting the method of Lin et al. (2020) and
introducing practical tricks necessary to achieve good per-
formance at large scale. They propose an improved version
of the Bayesian Learning Rule (Khan & Rue, 2021) which
ensures positivity of certain variational parameters, such as,
the Gaussian variance or scale parameter of a Gamma distri-
bution. For the Gaussian case, they propose an Adam-like
update which makes the update in Eq. 2 simpler. Specifi-
cally, they use the following Hessian estimate by using the
reparameterization trick,

ĥ← ∇̂¯̀(θ) · θ −m

σ2
, (3)

which does not require per-example gradient squares, rather
just a single vector multiplication with the minibatch gra-
dient. The above estimate is easy to compute but, unlike
the Gauss-Newton estimate, it is not always positive and
can make h in Eq. 2 negative (Khan et al., 2018, App. D).
Lin et al. (2020) solve this problem by using Riemannian
gradient descent which ensures positivity by adding an extra
term in the update of h,

h← (1− ρ)h + ρĥ + 1
2ρ

2(h− ĥ)2/(h + s0/λ), (4)

where ρ > 0 is a constant. Positivity holds even when ĥ are
negative, as shown in Lin et al. (2020, Theorem 1).

Algorithm 1 Improved Variational Online Newton (IVON).

Require: Learning rates {αt}, weight-decay δ > 0.
Require: Momentum parameters β1, β2 ∈ [0, 1).
Require: Hessian init h0 > 0.
Init: m← (NN-weights), h← h0, g← 0, λ← N .
Init: σ ← 1/

√
λ(h + δ).

Optional: αt ← (h0 + δ)αt for all t.
1: for t = 1, 2, . . . do
2: ĝ← ∇̂¯̀(θ), where θ ∼ q
3: ĥ← ĝ · (θ −m)/σ2

4: g← β1g+(1−β1)ĝ

5: h← β2h+(1−β2)ĥ+ 1
2 (1− β2)2(h− ĥ)2/(h + δ)

6: ḡ← g/(1− βt
1)

7: m←m− αt(ḡ + δm)/(h + δ)

8: σ ← 1/
√
λ(h + δ)

9: end for
10: return m,σ

In Alg. 1, we use the two modifications (highlighted in
red) to get an improved version of VON, called IVON. The
updates closely resemble Adam, but there is a sampling step
in line 2 (highlighted in blue) and there is no square-root
over h in line 7. IVON therefore uses a Newton-like update.
The Hessian estimator in Eq. 3 is less costly compared to
other second-order optimizers (Dauphin et al., 2015; Yao
et al., 2021; Liu et al., 2024). It is valid even for losses
that are not twice-differentiable (for example, for ReLU
activations). These aspects make IVON a unique second-
order optimizer with similar costs to Adam.

Below are a few practical tricks needed for good results.

1. Instead of the prior precision s0, we use the weight-
decay regularizer δ as the prior. The scaling parameter
λ is set to N , except for finetuning on small datasets.

2. Unlike Lin et al. (2020, Fig. 1), the update of h does
not use δ. We do not debias h and we update it before
m which has no impact on the performance.

3. The Hessian h is initialized with a constant h0. Lin
et al. (2020) most likely set it to 0 due to the debiasing
step used in their work. We find the initialization to be
useful. Too small values can destabilize the training
while larger values may give poor performance.

4. When training transformers, it can be helpful to clip the
preconditioned gradient in line 7 entrywise to [−ξ, ξ].

5. Optionally, we rescale αt by (h0 + δ) so that the first
steps of the algorithm have step-size close to the initial
αt. When clipping is used, this step is omitted.

3

Figure 5.1: Improved Variational Online Newton (IVON). 1

within modern deep learning frameworks to efficiently fit probabilistic models. This flexibility

has made VI a practical solution to training Bayesian neural networks (Khan et al., 2018;

Osawa et al., 2019; Shen et al., 2024), where parameter uncertainty is explicitly modeled to

improve generalization and robustness. Thanks to the uncertainty estimation of parameters,

VI provides advantages over deep learning methods such as Adam (Kingma and Ba, 2015;

Loshchilov and Hutter, 2019) including better calibration and generalization, better predictive

uncertainty estimation, and the possibility of model merging for knowledge transfer.

In contrast with traditional deep learning methods that estimate parameters by minimizing

the empirical risk ℓ(θ) (the loss function) with gradient descent, variational methods estimate

a posterior distribution q(θ) over parameters by minimizing

L(q) = Eq(θ)[ℓ(θ)]+DK L(q(θ)||p(θ)) (5.1)

where p(θ) is the prior. The optimization of L(q) is fundamentally different from minimizing

ℓ(θ) using gradient descent. For example, the expectation term requires sampling of θ before

each forward pass, and the number of parameters of q is doubled for the commonly used

Gaussian distribution with a diagonal covariance. Early approaches (Graves, 2011; Blundell

et al., 2015) aim to optimize q(θ) (µ and σ2 for diagonal Gaussian) using different stochastic

gradient estimators. However, these methods have failed to scale up on modern architectures.

Recent natural gradient-based methods (Khan et al., 2018; Osawa et al., 2019) have shown

promising results using an Adam-like form; however, they still underperform Adam and have

1Originally in Shen et al. (2024).
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significantly higher computational costs.

Improved Variational Online Newton (IVON)

The Improved Variational Online Newton (IVON) (Shen et al., 2024) is a recent VI optimizer

that matches the performance of Adam at a comparable computational cost. Its key innova-

tions include bypassing the expensive per-example gradient square computation through a

reparameterization trick and incorporating several practical techniques to enhance perfor-

mance. IVON stands out as the first VI optimizer proven to be both effective and efficient for

training large networks, while still delivering the benefits of VI.

Figure 5.1 shows the algorithm of IVON. In comparison with Adam, the main differences

include 1) the sampling of neural network parameters θ before the forward pass in line 2; 2)

the reparameterization trick for estimating the current Hessian ĥ in line 3; 3) tracking the

exponential moving average of Hessian h instead of the gradient square; 4) there is no square

root over Hessian h; and 5) the output of the mean m and the standard deviation σ instead of

a point estimate of parameters θ. Overall, IVON offers an Adam-like framework without any

significant computational overheads.

IVON introduces several additional hyperparameters that should be taken into consideration.

Here, we list important ones that could greatly impact the training stability and the final

performance.

1. Hessian initialization h0: the Hessian is the inverse of the variance. Therefore, a larger

h0 corresponds to a smaller initial variance, leading to a more concentrated and deter-

ministic initial posterior. This typically results in more stable training in the early stages.

However, it also reduces the benefits of uncertainty estimation, potentially resulting in

poorer performance.

2. Learning rate αt : the learning rate for IVON is usually set to a higher value compared to

Adam, typically on the order from 10−2 to 10−1. In the case of PEFT or that the training

set is small, the learning rate could be set even higher to facilitate fast convergence.

3. Effective sample size λ: λ modulates the scale of the estimated variance, thereby con-

trolling the level of stochasticity introduced by sampling prior to each forward pass. A

smaller λ increases the sampling temperature, which can lead to greater variance and

potential instability during training. In practice, λ is often set equal to the size of the

training dataset. However, for very small datasets, using a larger λ can help stabilize the

short training process and improve overall performance.
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5.1.3 Linearized Laplace Approximation

Similar to the Bayesian transfer learning framework introduced in the previous chapter, the

use of the Laplace approximation for predictive uncertainty estimation also builds upon

the maximum a posteriori (MAP) estimation. However, the objective here is distinct: rather

than transferring knowledge from pre-training to fine-tuning data, the focus is on capturing

predictive uncertainty during inference for a model fine-tuned with PEFT on a downstream

task. Accordingly, the derivation begins from the MAP estimate of the PEFT parameters based

solely on the fine-tuning data, independent of the pre-training data or the original pre-trained

model.

MAP Estimation

For classification or next-token prediction tasks, the training objective is to estimate the

posterior distribution of model parameters θ:

p(θ | X,y) = p(y | X,θ)p(θ)

p(y | X)
(5.2)

where X represents the input matrix, and y represents the target vector. Here, p(θ | X,y) is

the posterior distribution, p(y | θ,X) is the likelihood, and p(y | X) is the evidence (marginal

likelihood). We employ an isotropic Gaussian prior with precision λ:

p(θ) =N (0,λ−1I) (5.3)

Taking a logarithm of the posterior, the MAP estimation maximizes the following function

f (θ), which is the numerator on the right-hand side of Eq. 5.2:

f (θ) = log p(y | X,θ)+ log p(θ) = log p(θ | X,y)+const

θMAP = argmax
θ

f (θ)
(5.4)

Performing a second-order Taylor expansion of f (θ) around θMAP gives:

f (θ) ≈ f (θMAP)− 1

2
(θ−θMAP)⊤(∇2

θ f (θ)|θMAP )(θ−θMAP) (5.5)

This quadratic term corresponds to a Gaussian posterior centered at θMAP with covariance

given by the inverse Hessian:

p(θ | X,y) ≈N (θ|θMAP,Σ)

Σ=−(∇2
θL(θ)|θMAP )−1 =−(∇2

θ log p(y | X,θ)|θMAP +λI)−1
(5.6)
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We utilize the Fisher information matrix to approximate the covariance:

F I M(θ) =
N∑

n=1
Ep(y| fθ(xn ))

[
∇θp(y | fθ(xn))

(∇θp(y | fθ(xn))
)⊤]

(5.7)

where the expectation is taken with respect to the model’s output distribution. Same as in

Chapter 4, the structures of the FIM include diagonal and Kronecker-factored approximations.

Neural Network Linearization

Neural network linearization (Kunstner et al., 2019; Immer et al., 2021b; Antorán et al., 2022)

approximates a nonlinear neural network with a linear model around a specific point in pa-

rameter space using a first-order Taylor expansion. It has been found that making predictions

using the linearized model is more effective than sampling from the approximate posterior

over the weights (Daxberger et al., 2021; Deng et al., 2022). The linearized model can be

expressed as:

fθ(x∗) ≈ fθMAP (x∗)+∇θ fθ(x∗)|⊤θMAP
(θ−θMAP) (5.8)

where x∗ is a test input. Note that ∇θ fθ(x∗)|⊤
θMAP

represents a matrix containing the gradient

over parameters θ per output dimension (number of classes or tokens). This formulation

corresponds to the linearized Laplace approximation.

Given the approximated posterior in Eq. 5.6 and the linearized model in Eq. 5.8, we can

marginalize over the posterior of the weights to obtain a Gaussian posterior distribution on

the output logits:

fθ(x∗) ∼N ( fθMAP (x∗),Λ) (5.9)

where

Λ= (∇θ fθ(x∗)|⊤θMAP
)Σ(∇θ fθ(x∗)|θMAP ) (5.10)

To sample from fθ(x∗), we utilize the Cholesky factorization of the covariance matrix (Λ= LL⊤):

f̃θ(x∗) = fθMAP (x∗)+Lξ (5.11)

where ξ is a i.i.d. standard Gaussian noise vector. The model output is computed by averag-

ing probabilities (obtained via softmax on sampled logits) by Monte-Carlo sampling on the

Gaussian noise.
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5.1.4 Method

We apply IVON and LLA to PEFT with LoRA and evaluate their performance in terms of both

predictive accuracy and calibration. Below, we detail the particularities of each technique and

introduce metrics for evaluating calibration.

IVON

When applied to LoRA, IVON serves as a drop-in replacement for Adam, specifically optimizing

the two additional low-rank matrices in each module. Like Adam, IVON estimates a diagonal

covariance matrix assuming independence between parameters, and thus maintains a similar

computational cost related to tracking second-order gradients. During training, the primary

overhead arises from the sampling step before each forward pass; however, this cost remains

marginal when using a single Monte Carlo sample per iteration. At test time, there are two

options: 1) use the prediction at the mean of posterior parameter distribution, which is the

most computationally efficient approach; and 2) average predictions over n samples drawn

from the posterior, which requires n forward passes and increases computation by a factor

of n when n > 1. The application of IVON to LoRA also appeared in a concurrent work

(Cong et al., 2024); here, we focus on the comparison between IVON and LLA under different

configurations.

Linearized Laplace Approximation

For LLA, post-hoc posterior estimation is performed after standard fine-tuning with Adam

by fitting the Laplace approximation on the fine-tuning data. The low-rank matrices in each

LoRA adapter are treated as two separate linear layers. Two key considerations are 1) the type

of the Laplace approximation: either diagonal or Kronecker-factored, with the latter offering

better posterior estimates while having higher computation and memory cost as shown in

the previous chapter; and 2) the layers to apply: either across all LoRA adapters (denoted by

LA) or limited to the final classification head (last-layer LA, or LLLA). The choice of LA and

LLLA is mainly a tradeoff between computation and memory cost and posterior estimation

accuracy: while applying LA to all LoRA adapters can further improve uncertainty estimation

and robustness particularly in tasks where uncertainty propagates through multiple layers, it

also incurs substantially higher computational and memory cost, especially with Kronecker-

factored approximations. The application of LLA to PEFT with LoRA was introduced in Yang

et al. (2024) as Laplace-LoRA.
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5.1.5 Experiments: Commonsense Reasoning

Models and Datasets

We fine-tune the Llama 2 7B model (Touvron et al., 2023) with LoRA on six commonsense

reasoning datasets (see Section 2.4.2, with numbers of training samples in the parentheses):

ARC-Challenge (ARC-C, 1.12k), ARC-Easy (ARC-E, 2.25k), BoolQ (9.43k), OpenBookQA (OBQA,

4.96k), WinoGrande-Medium (WG-M, 2.56k), and WinoGrande-Small (WG-S, 640). These

are the same datasets used in Yang et al. (2024) for direct comparison with baselines. ARC-

Challenge, ARC-Easy, and OpenBookQA are multiple-choice tasks, while the rest are binary-

choice tasks. The input to the model is the context followed by a question and the options

(A. ..., B. ..., etc.), the task is to predict the correct label (such as A) as a next token prediction

task. LoRA is applied to the query and value linear modules of attention, with rank set to 8 and

alpha set to 16 (corresponding to an amplification factor of 2).

Implementation Details

We use the official implementation2 of the IVON optimizer. For LLA, we rely on the official

implementation of Laplace-LoRA3, which is built on the Laplace 4 and ASDL5 libraries. LoRA

is implemented using the Hugging Face Transformers (Wolf et al., 2020) and PEFT (Mangrulkar

et al., 2022) packages.

Training and Evaluation

All models are trained for 10,000 steps with a batch size of 4 on all tasks. For IVON, we use an

effective sample size λ of 107, a Hessian initialization h0 of 1×10−3, a weight decay δ of 10−8,

and a learning rate of 0.03 with linear learning rate decay to 0. Setting an effective sample size

much higher than the actual number of training samples reduces the sampling temperature,

which in turn ensures a more stable training process. In contrary, the Hessian initialization has

been set to a relatively small value (which corresponds to a large variance) for the optimizer to

learn a more expressive posterior. For LLA, we train the model using the AdamW optimizer

(Loshchilov and Hutter, 2019) without weight decay (which is identical to Adam without

weight decay) while adopting the same hyperparameters as in the original Laplace-LoRA

implementation. The Hessian estimation is performed using all training samples, followed

by the optimization of prior precision λ maximizing marginal likelihood as described in

(Daxberger et al., 2021).

Evaluation is performed on the validation sets of corresponding datasets using accuracy, ECE,

NLL, and Brier score. For IVON, we report results under three settings: predictions at the

2https://github.com/team-approx-bayes/ivon
3https://github.com/adamxyang/laplace-lora
4https://github.com/aleximmer/Laplace
5https://github.com/kazukiosawa/asdl
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posterior mean, single-sample Monte Carlo (MC-1), and the average over 8 Monte Carlo

samples (MC-8). All results are averaged over 5 runs with different random seeds. For LLA, we

compare 4 different settings considering the type of the Laplace approximation (diagonal or

KFAC) and the layers to apply (all LoRA adapted layers or last layer).

Results and Analyses

All results are shown in Table 5.1. We elaborate our findings from the following perspectives.

Note that we use LLA to denote linearized Laplace approximation, LA to denote LLA applied

to all LoRA enabled layers, and LLLA to denote LLA applied to the last layer.

Accuracy Among all methods, IVON evaluated at the posterior mean achieves the highest

accuracy on most tasks, outperforming Adam both with and without LLA. Applying LLA can

yield a slight improvement over the MAP solution. In general, KFAC outperforms the diagonal

approximation, especially when applied to all layers. However, applying LLA with diagonal

approximation to all layers (LAdiag) underperforms that applied to the last layer (LLLAdiag),

suggesting the diagonal approximation is not accurate enough to describe the posterior

distribution across the entire model. For IVON, performance drops noticeably when using a

single Monte Carlo sample, compared to predictions at the mean. Increasing the number of

samples to 8 improves accuracy, but a small gap to the mean prediction still remains. These

results suggest that both IVON and LLA enhance downstream performance, with IVON at the

posterior mean offering the best trade-off between accuracy and computational efficiency.

Calibration Overall, LLA outperforms IVON in calibration. Among all LLA configurations,

KFAC applied to all layers (LAKFAC) achieves the best calibration, with the lowest ECE and

Brier score, while LAdiag significantly underperforms LAKFAC in terms of ECE. This aligns with

expectations as KFAC offers a more expressive posterior approximation compared to the

diagonal covariance. However, the benefit of LLA diminishes when restricted to the last layer,

with LLLAKFAC and LLLAdiag performing similarly however better than MAP. This suggests

that much of the model’s uncertainty originates from intermediate layers, and both KFAC and

diagonal covariance can well model the uncertainty in the last layer. For IVON, predictions at

the posterior mean reduce ECE and Brier score compared to MAP, while using a single Monte

Carlo sample offers no improvement but a slight degradation. Increasing to 8 Monte Carlo

samples improves calibration but still underperforms LAKFAC.

Computation and Memory Cost Both methods incur similar computational costs during

training (fine-tuning), with IVON being approximately 1–2% slower than Adam. The key

differences arise in the post-training phase. LLA requires fitting a Laplace approximation on (a

subset of) the training data to estimate the posterior covariance, which entails a computational

cost comparable to an additional pass over the data with full forward and backward computa-
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Table 5.1: Comparison of LLA and IVON applied to fine-tuning Llama-2 7B with LoRA on
commonsense reasoning tasks. The best and the second best results are marked.

Metric Optimizer Method ARC-C ARC-E BoolQ OBQA WG-M WG-S Avg.

ACC↑

Adam

MAP 64.6 84.8 85.5 78.9 74.2 66.9 75.8
LLLAdiag 65.3 85.0 85.6 79.2 74.6 66.8 76.1
LAdiag 65.1 84.3 85.7 78.5 74.6 66.8 75.8
LLLAKFAC 65.2 85.0 85.6 79.2 74.6 66.8 76.1
LAKFAC 66.0 85.1 85.6 79.1 74.6 66.9 76.2

IVON

Mean 70.3 87.6 86.7 81.4 76.6 71.8 79.1
MC-1 62.1 83.0 85.5 76.6 76.7 70.6 75.7
MC-8 66.7 85.7 86.4 79.9 76.4 71.6 77.8

ECE ↓
(100×)

Adam

MAP 33.2 14.2 7.9 19.0 24.3 32.5 21.8
LLLAdiag 20.5 10.3 7.8 17.7 23.5 17.3 16.2
LAdiag 14.2 14.5 18.7 10.6 7.3 7.8 12.2
LLLAKFAC 22.4 11.2 7.9 17.9 23.6 19.1 17.0
LAKFAC 5.1 3.3 4.5 6.7 12.2 7.1 6.5

IVON

Mean 25.5 10.4 5.6 10.3 23.0 27.8 17.1
MC-1 29.9 12.0 5.3 9.0 23.0 29.1 18.0
MC-8 12.3 3.5 2.5 3.2 21.5 22.9 11.0

NLL↓

Adam

MAP 3.54 1.46 0.45 1.56 1.81 3.65 2.08
LLLAdiag 1.29 0.69 0.45 1.32 1.57 0.78 1.02
LAdiag 0.97 0.54 0.46 0.64 0.58 0.63 0.64
LLLAKFAC 1.36 0.73 0.45 1.38 1.65 0.80 1.06
LAKFAC 0.93 0.49 0.37 0.74 0.81 0.64 0.66

IVON

Mean 1.97 0.69 0.35 0.64 2.30 3.34 1.55
MC-1 2.13 0.79 0.38 0.70 2.30 3.34 1.61
MC-8 1.00 0.40 0.32 0.53 2.05 2.30 1.10

Brier ↓
(100×)

Adam

MAP 67.1 28.9 22.8 39.4 49.5 65.1 45.5
LLLAdiag 55.3 25.9 22.8 37.9 48.1 50.7 40.1
LAdiag 51.4 26.1 28.6 32.7 37.1 44.1 36.7
LLLAKFAC 56.3 26.3 22.9 38.1 48.3 51.7 40.6
LAKFAC 47.2 22.2 21.5 31.3 39.5 43.9 34.3

IVON

Mean 53.5 22.0 20.1 29.3 46.1 55.7 37.8
MC-1 66.0 28.8 22.0 34.2 46.1 58.2 42.5
MC-8 46.9 20.2 19.7 27.6 44.3 50.2 34.8
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tions. Computation and memory costs depend on the type of the Laplace approximation; as

discussed in Chapter 4, KFAC is significantly more costly than diagonal approximations, which

could be problematic on low-resource devices. At inference time, LLA requires running a

forward and multiple backward passes (number of classes or tokens) to obtain the gradient for

the sampling on the output logits, as shown in Equation 5.10, which makes the inference speed

lower than that of training. In contrast, IVON requires multiple forward passes to compute

averaged predictions without backward passes, with an additional memory cost of loading

optimizer state (two times the number of optimized parameters). Overall, IVON offers a

flexible trade-off between calibration and computational and memory cost at inference, while

LLA incurs a post-training posterior estimation overhead as well as additional computation

and memory cost for the backward passes during inference.

5.1.6 Experiments: Audio Question Answering

Having demonstrated the efficacy of IVON in enhancing predictive accuracy and calibration

on natural language understanding tasks, we further evaluate its effectiveness in fine-tuning a

multimodal LLM for audio understanding and reasoning tasks, thereby assessing its applica-

bility to multimodal data.

Models and Datasets

We fine-tune the Qwen2.5-Omni 3B model (Xu et al., 2025) with LoRA on the DCASE 2025

Audio Question Answering dataset (Yang et al., 2025), which consists of Bioacoustics QA (BQA,

0.7k), Temporal Soundscapes QA (TSQA, 1k), and Complex QA (CQA, 6.4k) (see Chapter 2.4.2).

Qwen2.5-Omni is an end-to-end multimodal LLM designed to perceive diverse modalities,

including text, images, audio, and video, while simultaneously generating text and natural

speech responses in a streaming manner. Similar to previous experiments, the model is

provided with the audio sequence followed by a question and several options, and the task

is to predict the correct option. The experiments are conducted using the LLaMAFactory

framework6. LoRA is applied to all linear layers, with rank set to 8 and alpha set to 16.

Training and Evaluation

All models are trained for 3 epochs with a batch size of 4. For IVON, we use an effective

sample size λ of 107, a Hessian initialization h0 of 1×10−3, a learning rate of 0.03 with cosine

learning rate decay to 0, and a weight decay δ of 0. For Adam, we train the model using the

AdamW optimizer without weight decay and a learning rate of 5×10−5 with cosine learning

rate decay to 0. Evaluation is performed on the development set using previous metrics with

results reported on three subsets respectively. In addition to the averaged results across all

samples (Avg.), the averaged scores across three subsets (Domain Avg.) are also calculated.

6https://github.com/hiyouga/LLaMA-Factory
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For IVON, results are reported under two settings: predictions at the posterior mean, and

the average over 8 Monte Carlo samples (MC-8). All results are averaged over 10 runs with

different random seeds.

Table 5.2: Comparison of IVON and Adam applied to fine-tuning Qwen2.5-Omni 3B with LoRA
on audio question answering tasks. The best results are marked.

Metric Method BQA TSQA CQA
Domain

Avg.
Avg.

ACC↑
Adam 88.57 67.39 84.21 80.06 80.45
IVON Mean 89.02 67.16 85.02 80.40 80.97
IVON MC-8 88.93 67.16 85.02 80.37 80.97

ECE ↓
(100×)

Adam 9.7 26.2 12.7 16.2 15.7
IVON Mean 7.4 18.6 9.1 11.7 11.2
IVON MC-8 6.6 15.6 7.9 10.0 9.5

NLL↓
Adam 0.52 1.42 0.71 0.88 0.87
IVON Mean 0.39 1.09 0.55 0.68 0.67
IVON MC-8 0.36 0.99 0.51 0.62 0.61

Brier ↓
(100×)

Adam 20.5 57.0 28.0 35.1 34.5
IVON Mean 17.4 50.0 24.3 30.6 30.1
IVON MC-8 16.9 47.7 23.5 29.4 28.9

Results and Analyses

Overall, the results support our previous findings on commonsense reasoning tasks. In terms

of accuracy, IVON evaluated at mean outperforms Adam by 0.52% across all samples and by

0.34% in domain-averaged scores. For reference, directly prompting the base model yields

a domain averaged accuracy of 53.8%. For calibration metrics, IVON consistently surpasses

Adam across all subsets, with particularly notable gains on BQA and TSQA with limited fine-

tuning data. Leveraging 8 MC samples further enhances calibration while maintaining the

accuracy of IVON at mean. These results confirm that IVON can serve as a drop-in replace-

ment for Adam, offering improved predictive accuracy and calibration, even in challenging

multimodal reasoning scenarios. Moreover, it enables further calibration improvements at

test time through multiple inference passes.

5.1.7 Conclusions

In this section, we studied two uncertainty-aware fine-tuning techniques, IVON and LLA, in

the context of parameter-efficient fine-tuning with LoRA. Our empirical results demonstrate

that IVON evaluated at the posterior mean generally delivers the highest predictive accuracy

while offering better-calibrated predictions compared to Adam. In addition, calibration can

be further improved by ensembling with multiple Monte Carlo samples. In contrast, LLA,
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particularly when employing the Kronecker-factored approximation across all LoRA-enabled

layers, achieves the best performance in calibration, albeit at the cost of substantially more

computation and memory, and more complex implementation.

The strengths of the two methods are complementary: IVON is well-suited for scenarios

where high predictive accuracy and inference-time flexibility are priorities, while LLA excels

in settings that require well calibrated predictions and are less sensitive to computation and

memory costs. These findings suggest that the two techniques should be chosen based on

the specific needs of the application: whether it prioritizes predictive accuracy, calibration, or

inference efficiency.

5.2 Parameter Importance Estimation

Motivated by the sensitivity-based importance score of the adaptive low-rank adaptation

(AdaLoRA), we utilize uncertainty-aware metrics, including the signal-to-noise ratio (SNR),

along with the IVON optimizer, for adaptive parameter budget allocation. The resulting

Bayesian counterpart not only has matched or surpassed the performance of using the

sensitivity-based importance metric but is also a faster alternative to AdaLoRA with Adam.

Our theoretical analysis reveals a significant connection between the two metrics, providing a

Bayesian perspective on the efficacy of sensitivity as an importance score. Furthermore, our

findings suggest that the magnitude, rather than the variance, is the primary indicator of the

importance of parameters.

5.2.1 Introduction

In the context of the adaptation of large-scale pre-trained models, it has long been of interest to

fine-tune the model in a parameter-efficient manner. Parameter-efficient fine-tuning (PEFT)

techniques (Ding et al., 2023a) typically optimize a small subset of the model parameters

that are either original or additional ones while leaving the rest unchanged. The low-rank

adaptation (LoRA) (Hu et al., 2022) is one of the most efficient and flexible PEFT techniques.

Based on the assumption that the change of weights during fine-tuning has a low intrinsic rank,

LoRA performs adaptation by optimizing the low-rank approximation of the change of the

original weight matrices. Nevertheless, LoRA has limitations as it pre-defines an identical rank

for all target weight matrices and therefore ignores the varying importance of weights across

modules and layers. This is problematic as adding more trainable parameters to important

weights contributes to better performance, however by contrast, doing so to less important

weights yields marginal improvements or even inferior outcomes (Zhang et al., 2023b).

In light of the limitations, there arises a natural question of how to allocate trainable pa-

rameters to different modules according to their importance to maximize the fine-tuning

performance. To this end, a variety of techniques for LoRA has been proposed to address the

problem, the most representative one of which is AdaLoRA (Zhang et al., 2023b). AdaLoRA
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parameterizes the delta weight mimicking the singular value decomposition (SVD) to enable

dynamic adjustment of the rank: it identifies the importance of each SVD triplet in the entire

model by a sensitivity-based metric and gradually prunes less important triplets during fine-

tuning to reach the parameter budget. It has been demonstrated that AdaLoRA can effectively

improve the model performance and parameter efficiency compared to LoRA.

Motivated by AdaLoRA, we are primarily interested in the importance scoring mechanism as it

can be generically applied to PEFT for parameter selection. The sensitivity-based importance

metric is originally based on the heuristic that the importance of parameters can be quantified

by the error induced by removing them, which in turn can be approximated by the square of

the gradient-weight product (Theis et al., 2018; Molchanov et al., 2019). Meanwhile, there are

importance metrics with strong theoretical support, many of which originate from Bayesian

neural networks (BNNs). A widely recognized metric is the signal-to-noise ratio (SNR) (Graves,

2011; Blundell et al., 2015; Neklyudov et al., 2017), commonly used in BNN pruning and

compression. The interpretation is straightforward: a low SNR makes the neuron’s output too

noisy to be useful, while a high SNR indicates valuable, low-noise output. The SNR could be

a drop-in replacement for the sensitivity-based importance score in AdaLoRA, allowing the

pruning of SVD triplets with low SNRs during fine-tuning for dynamic rank adjustment.

The calculation of SNR requires knowledge of the variance of the parameters, typically assum-

ing they follow a Gaussian distribution; this is closely related to VI. VI tackles the optimization

task of neural networks by approximating complex posterior distributions of the parameters;

this involves selecting a simpler, parameterized distribution and minimizing the Kullback-

Leibler (KL) divergence between this distribution and the true posterior. Recent advances in

VI (Shen et al., 2024) have shown not only superior performance in calibration and predictive

uncertainty estimation compared to traditional optimizers like Adam (Kingma and Ba, 2015),

but also high efficiency and effectiveness in large-scale networks.

In this study, we leverage Bayesian importance metrics alongside the IVON optimizer to

develop a Bayesian counterpart to AdaLoRA, utilizing SNR as the importance score. By com-

paring its performance with the sensitivity-based importance metric on the GLUE benchmark

(Wang et al., 2019), we demonstrate that the Bayesian approach not only achieves comparable

or superior performance but also offers a 10% speed-up over the original AdaLoRA with Adam.

A closer examination of the underlying theory reveals a strong connection between these

two metrics, providing a Bayesian interpretation of the sensitivity as an importance score.

Additionally, our findings indicate that the magnitude, rather than the variance, is the primary

indicator of the importance of parameters. The source code is available.7

7https://github.com/idiap/vilora
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5.2.2 Adaptive Budget Allocation

Overview

The techniques that enable adaptively allocating trainable parameters across different mod-

ules and layers generally fall into two categories: importance scoring-based methods and

regularization-based methods. For importance scoring-based methods, the key is to find a

proper importance metric and prune less important components accordingly. Whilst some

work (Zhang et al., 2023a; Wang et al., 2024) adopts AdaLoRA’s sensitivity-based approach,

other heuristic metrics, such as the magnitude of the weight (Mao et al., 2024) and the accu-

mulated gradient (Nikdan et al., 2024), have also been explored. Among regularization-based

approaches, diff pruning (Guo et al., 2021) is representative: it applies L0 regularization to the

delta weight (which shares the same dimensions as the pre-trained weights) and prunes it

element-wise according to the magnitude. Similarly, but based on LoRA, SoRA (Ding et al.,

2023b) introduces a gating unit in-between the two LoRA matrices and applies L1 regulariza-

tion to the gate to zero out unimportant ranks. However, regularization-based approaches

cannot guarantee to achieve target parameter budgets since they depend on unpredictable

sparsity regularizations controlled by sparsity-promoting priors and threshold values, and

therefore often require onerous hyperparameter tuning.

Revisiting AdaLoRA

AdaLoRA has the following main components.

SVD-based adaptation AdaLoRA parameterizes the delta weight in the form of singular

value decomposition: W = W0 +∆W = W0 +PΛQ, where P and Q are singular vectors and the

diagonal matrixΛ contains singular values. To avoid the intensive computational cost of SVD,

a penalty R(P,Q) = ||P⊤P−I||2F+||Q⊤Q−I||2F is added to the loss to enforce the orthogonality of

P and Q so that every rank is independent of each other. During adaptation, only the singular

values are masked out while the singular vectors are maintained so that dropped triplets can

be reactivated later.

Sensitivity-based importance scoring The sensitivity is defined as the magnitude of the

gradient-weight product: I (θ) = |θ∇θℓ|, where θ is a trainable parameter. The authors of

AdaLoRA argue that the sensitivity itself is too variable and uncertain to be estimated due to

the stochasticity of training and therefore propose to use sensitivity smoothing and uncertainty

quantification:
Ī (θ) =β1 Ī t−1(θ)+ (1−β1)I t (θ)

Ū (θ) =β2Ū t−1(θ)+ (1−β2)|I t (θ)− Ī t (θ)|
(5.12)

where Ī t is the smoothed sensitivity by exponential moving average and Ū t is the uncertainty

quantification of I . The final importance score is s t (θ) = Ī t (θ) ·Ū t (θ). The authors compared
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its performance with the magnitude of singular values and the sensitivity without smoothing

and found the proposed metric performed the best.

Global budget scheduler The global budget is defined as the total rank of all delta weights in

the model. AdaLoRA starts from an initial budget b0 that is slightly higher (usually 1.5 times)

than the target budget bT , warms up the training for ti steps, and gradually decreases the

budget bt to reach bT following a cubic schedule. After this, the budget distribution is fixed

until training finishes after t f steps.

Bayesian Importance Scores

In this work, we focus on theoretically supported importance metrics that originate from

Bayesian neural networks (BNN). BNNs model weights as probability distributions, enabling

the network to quantify uncertainties in its predictions. The most commonly used distribution

is the Gaussian distribution, therefore the model is parameterized by two sets of parameters:

the mean µ and the standard deviationσ (or the varianceσ2, we also refer to σ as variance for

the sake of simplicity).

SNR(θ) = |µ|/σ The signal-to-noise ratio (SNR) (Graves, 2011; Blundell et al., 2015; Neklyudov

et al., 2017) is a commonly used importance metric in BNN that considers both the magnitude

and the variance (also the uncertainty) of the weights. It has a simple interpretation: a low SNR

results in a neuron’s output being too noisy to be useful, while a high SNR signifies meaningful

output with minimal noise. It has been utilized in both in-training and post-training pruning

of BNNs (Li et al., 2024; Graves, 2011).

SNR(|θ|) Li et al. (Li et al., 2024) argue that the random sampling of weights before each

forward pass of BNN needs to be considered. Instead of using |µ| which is equal to |Eqθ|
(where q is the posterior distribution of parameters), it is more appropriate to use Eq |θ| in the

SNR. The resulting metric is:

SNRq (|θ|) =
µ

(
2Φ

(µ
σ

)−1
)+ 2σp

2π
exp

(
− µ2

2σ2

)
√
σ2 +µ2 −

[
µ

(
2Φ

(µ
σ

)−1
)+ 2σp

2π
exp

(
− µ2

2σ2

)]2
(5.13)

whereΦ(x) := ∫ x
−∞

1p
2π

exp
(
− y2

2

)
d y is the cumulative distribution function. It has been shown

the new metric outperforms the standard SNR in training sparse BNNs (Li et al., 2024).

|µ| and 1/σ We want to identify the key component in the SNR that reflects the importance of

parameters. The absolute value of the mean, or the magnitude, is a straightforward metric that

directly impacts the neuron’s output. This metric is widely used in neural network pruning,

78



5.2 Parameter Importance Estimation

commonly known as magnitude pruning (Han et al., 2015). Another choice is to use the

variance alone as an importance metric. The intuition is that parameters with a low variance

have less uncertainty, and therefore are more important.

Method

The calculation of SNR requires approximating a Gaussian distribution over parameters,

which is exactly the objective of variational inference. In our experiments, we utilize IVON

to estimate the variance of parameters, enabling the use of SNR as an importance metric

following AdaLoRA’s framework.

5.2.3 Experiments

Models and Datasets

We compare the fine-tuning performance of AdaLoRA using different importance scores on

DeBERTaV3-base (He et al., 2023). The experiments are conducted on the General Language

Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), which includes four natural

language inference tasks, three similarity and paraphrase tasks, and two single-sentence

classification tasks.

Implementation Details

We base our code on the text classification examples of the Hugging Face Transformers library

(Wolf et al., 2020) and the Parameter-Efficient Fine-Tuning (PEFT) library (Mangrulkar et al.,

2022). For IVON, we use the official implementation8. We compare the methods under two

budget configurations where the target rank is set to 2 and 4 respectively, resulting in the total

trainable parameters being 0.3M and 0.6M (of 86M). Full fine-tuning and LoRA applied to all

modules are also added as baselines.

Training and Evaluation

Our experiments are based on the official hyperparameters of AdaLoRA9 which are optimal

when training with Adam. For IVON, the learning rate is set to 0.5 for MRPC and RTE and

0.4 for the rest. Same as Adam, a warm-up stage and the linear decay learning rate schedule

are adopted. We found that IVON generally converges slower than Adam at the beginning of

training, therefore requiring a much higher learning rate during warm-up for good results

especially on small datasets. As a result, for COLA, STS-B, MRPC, and RTE, we use a higher

learning rate of 2.0 in the warm-up stage and return to the normal learning rate afterwards. For

8https://github.com/team-approx-bayes/ivon
9https://github.com/QingruZhang/AdaLoRA

79

https://github.com/team-approx-bayes/ivon
https://github.com/QingruZhang/AdaLoRA


Chapter 5. Variational Learning for Parameter-Efficient Fine-Tuning

evaluation, we use the best-performing model on the validation set. The results are averaged

across 5 runs with different random seeds.

5.2.4 Results and Analyses

The main results are shown in Table 5.3. For MNLI, the “matched” validation set was used for

evaluation. Note that we sort the tasks according to dataset sizes and divide them into two

groups since we notice that IVON needs extra tricks to ensure good results on small datasets.

In general, all PEFT methods outperform full fine-tuning, and AdaLoRA outperforms LoRA.

Switching the optimizer from Adam to IVON results in comparable performance, demonstrat-

ing that IVON is capable of state-of-the-art performance in PEFT. We further elaborate our

findings from the following perspectives.

Comparison of Importance Scores

Both SNR(θ) and SNR(|θ|) outperform sensitivity when using IVON, and at least one of the

SNR metrics outperforms or ties with the original AdaLoRA with Adam. However, there is no

clear winner between the two SNR metrics. This could be explained by the fact that the sparsity

level in the AdaLoRA case is not high (only 1/3 of the initial ranks are pruned), and that it is the

SVD triplet that is pruned as a parameter group, thus the performance difference between the

two metrics is not properly reflected in such a setting. Interestingly, magnitude outperforms

sensitivity and one of the SNR metrics especially on small datasets. Magnitude was not

experimented in Zhang et al. (2023b). On the one hand, this demonstrates the effectiveness of

magnitude pruning; on the other hand, this is probably because the sensitivity or the variance

needs more iterations to be estimated accurately given their smoothing nature. Using the

variance alone performs the worst among all metrics, however, it still outperforms LoRA with

a fixed rank, indicating that the uncertainty of parameters does correlate with the importance.

Visualizing Final Rank Distributions

Figure 5.2 shows the final rank distributions of different methods after fine-tuning the model

on MNLI. An obvious difference between Adam and IVON using the sensitivity can be observed

comparing (a) and (b), indicating a distinction between the training dynamics of the two

optimizers. The distributions of the two SNR metrics (c, d) and the magnitude (e) resemble

that of the sensitivity with IVON, which corroborates with quantified results. Unlike the

magnitude (e), the variance (f) shows an evenly-distributed pattern. This confirms that the

magnitude plays a determining role in reflecting the importance of parameters.
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Chapter 5. Variational Learning for Parameter-Efficient Fine-Tuning

	
	

	

Layer	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

𝐖𝒒	 3	 2.4	 2.8	 2	 4.8	 5	 4.4	 5.4	 5.6	 6	 6	 4.4	

𝐖𝒌	 2.4	 2	 3	 2.4	 4.6	 4.4	 5.2	 5.6	 6	 6	 5.8	 6	

𝐖𝒗	 2.6	 3.2	 3.8	 4.2	 4.4	 5	 5.8	 5.8	 5.4	 5.8	 5.8	 5.4	

𝐖𝒐	 1.6	 2	 3.2	 4.2	 5.8	 5.8	 5.6	 5.6	 5.8	 5.6	 6	 5	

𝐖𝒇𝟏 	 4.2	 3.4	 4.4	 5.2	 5.8	 6	 5.6	 6	 6	 6	 6	 2	

𝐖𝒇𝟐 	 0.2	 0.2	 0.4	 0.4	 1	 0.6	 0.8	 0.8	 2	 2.6	 2.4	 0.2	
	

Layer	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

𝐖𝒒	 0.4	 0	 0.8	 1	 1.2	 2.8	 2.4	 4.4	 4.2	 4	 5	 1.6	

𝐖𝒌	 0.2	 1	 0.6	 0.6	 3.6	 3.6	 2.8	 4.8	 4.8	 5	 5.6	 3.8	

𝐖𝒗	 3	 3.4	 4	 5.2	 4.8	 5	 5.6	 5.4	 5.4	 6	 6	 5.4	

𝐖𝒐	 2.8	 1.8	 3.4	 3.8	 4.4	 5	 5.4	 5.8	 5.8	 5.6	 5.2	 5.2	

𝐖𝒇𝟏 	 4	 4.8	 4.4	 5.2	 5.8	 5.6	 5.2	 6	 6	 5.8	 5.8	 3.4	

𝐖𝒇𝟐 	 3.2	 3.8	 3.8	 4.2	 3.8	 3.4	 5	 4.8	 5.2	 4.8	 4.6	 2.6	
	

(a) Sensitivity, Adam (b) Sensitivity, IVON 
Layer	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

𝐖𝒒	 0.8	 1.4	 2.2	 2.4	 3.6	 2.8	 3.4	 4.6	 4.4	 4.6	 5.4	 2.6	

𝐖𝒌	 1.2	 2.8	 1.6	 2	 4.4	 4.8	 3.4	 4.6	 4.4	 5.2	 4.8	 3.8	

𝐖𝒗	 4.2	 2.4	 3.6	 4	 4.4	 4.2	 4.6	 4.8	 6	 6	 6	 5.2	

𝐖𝒐	 3.4	 1.8	 3.8	 3.8	 4.8	 5	 5	 5.2	 5.4	 4.8	 5.4	 5.8	

𝐖𝒇𝟏 	 3.6	 3.6	 4.2	 4.4	 5	 5.2	 5.6	 5.6	 5.8	 5.6	 5.8	 1.4	

𝐖𝒇𝟐 	 2.8	 2.6	 4	 3.2	 3.6	 3.6	 3.8	 4.4	 4.8	 5	 4.4	 3.2	
	

Layer	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

𝐖𝒒	 1	 1	 1.8	 2.8	 3.4	 3	 3.4	 4.8	 4.2	 4.6	 5.4	 2.6	

𝐖𝒌	 1.4	 2.6	 2.2	 2.2	 4	 4.8	 3.8	 4.8	 4.4	 4.8	 5	 4.2	

𝐖𝒗	 4	 2.6	 3.8	 4.2	 4.2	 4.4	 4.8	 5.2	 5.8	 6	 5.8	 5.6	

𝐖𝒐	 3.2	 1.6	 3	 3.6	 4.8	 4.8	 5.2	 5.8	 5.4	 5	 5.4	 5.8	

𝐖𝒇𝟏 	 3.6	 3.8	 3.8	 4.6	 5.2	 5.4	 5.2	 5.6	 5.8	 5.6	 5.8	 1.4	

𝐖𝒇𝟐 	 2.8	 2.8	 4.2	 3.2	 3.2	 3	 4	 4	 4.6	 4.8	 4.4	 2.8	
	

(c) SNR(|𝜃|), IVON (d) |𝜇|/𝜎, IVON 
Layer	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

𝐖𝒒	 1.8	 0.8	 2.4	 2.6	 3.8	 3.2	 4	 4.2	 4.4	 4.6	 5.4	 2.2	

𝐖𝒌	 1.4	 3.6	 0.8	 1.8	 4.2	 4.6	 3.8	 4.8	 4.6	 5	 5.4	 3.8	

𝐖𝒗	 4	 2.8	 4	 4.6	 4.2	 3.8	 4.6	 4.8	 5.8	 6	 6	 5.4	

𝐖𝒐	 2.8	 2	 3.8	 3.6	 4.4	 4.8	 5.4	 5.2	 5.6	 4.8	 5.4	 5.8	

𝐖𝒇𝟏 	 3.6	 3.6	 4.4	 4.4	 5.2	 5	 5.4	 5.6	 5.8	 5.4	 5.8	 1.8	

𝐖𝒇𝟐 	 3	 2.2	 3.4	 3.4	 3.6	 3.4	 3.6	 4	 4.4	 4.8	 4.4	 3	
	

Layer	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

𝐖𝒒	 5.2	 5.6	 5.4	 6	 4.4	 4	 5.2	 3.8	 3.8	 5	 3.4	 4.8	

𝐖𝒌	 5.6	 5	 6	 6	 3.8	 4	 4.6	 3.8	 4.2	 3.6	 2.8	 3.8	

𝐖𝒗	 4.4	 4.4	 4.8	 4	 3	 4.2	 3.4	 4.2	 2.6	 2.8	 4	 2.6	

𝐖𝒐	 4.2	 4.2	 3.6	 4.2	 4	 3	 4	 3.4	 4.4	 3.2	 3.2	 2.2	

𝐖𝒇𝟏 	 3.4	 4	 3.6	 4	 4	 3.2	 4.6	 3	 4.2	 3.4	 3.4	 3.4	

𝐖𝒇𝟐 	 4.6	 4.2	 4.6	 4.2	 3.6	 3.8	 4	 3.8	 3.6	 3.6	 3.6	 3	
	

(e) |𝜇|, IVON (f) 1/𝜎, IVON 

Figure 5.2: Comparison of rank distributions after fine-tuning DeBERTaV3-base on MNLI,
with deeper colors indicating higher ranks. Results are averaged across five runs with different
random seeds. Wq , Wk , Wv , Wo : weights of the query, key, value, output layers of attention;
W f1 , W f2 : weights of the feed-forward layers.
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5.2 Parameter Importance Estimation

Speed

The variance of the parameter is inferred inherently in IVON, thus the SNR does not require

the extra computation of the weight-gradient product of the sensitivity during fine-tuning.

On an NVIDIA H100, using the SNR with IVON brings a 10% speed up compared to using

the sensitivity with Adam, despite the IVON itself being 1-2% slower than Adam with other

conditions kept the same.

A Bayesian Interpretation of Sensitivity

The similarity in performance and the rank distribution between the sensitivity and the SNR

suggests a close relationship between them. A closer examination of the underlying theory

reveals that sensitivity is, in fact, aligned with the principles of SNR. Specifically, in IVON, the

standard deviation σ is calculated as σ= 1/
p
λ(h+δ), where h is the diagonal Hessian, λ is

the effective sample size, and δ is a weight decay term. Notably, h can be approximated by

the expected squared gradient on the training data (Kirkpatrick et al., 2017), h ≈ ED[(∇θℓ)2],

also known as the diagonal of the expected Fisher information matrix (FIM). Consequently,

the inverse of the standard deviation, 1/σ, in the context of SNR, is akin to the root mean

square of the gradient
√
ED[(∇θℓ)2], and therefore analogous to the magnitude of the gradient

|∇θℓ|. This implies that the sensitivity |θ∇θℓ| has the component |∇θℓ| acting as an uncertainty

measure analogous to 1/σ in SNR, thereby providing a Bayesian interpretation of the sensitivity

as an importance metric. These findings resonate with the comment in Molchanov et al. (2019)

that the sensitivity has connections with the FIM. Note that both methods adopt exponential

moving average smoothing to compute the global value of the corresponding metric during

training. The main difference is that the smoothing is applied to the magnitude of the gradient-

weight product in AdaLoRA, while the SNR is computed using the global Hessian tracked by

IVON.

5.2.5 Conclusions

In this study, we developed a Bayesian alternative to AdaLoRA, leveraging the signal-to-noise

ratio as the importance score with the IVON optimizer. By comparing the performance of

different importance metrics, we demonstrated that this Bayesian approach not only matched

or surpassed the performance of using the sensitivity-based importance metric on the GLUE

benchmark, but was also a faster alternative to the original AdaLoRA with Adam. The theo-

retical analysis uncovered a significant link between these two metrics, offering a Bayesian

perspective on the efficacy of the heuristic sensitivity-based metric as an importance score.

Furthermore, our results suggested that the magnitude, rather than the variance, served as the

key indicator of the importance of parameters.
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6 Conclusions and Future Work

6.1 Conclusions

This thesis presented three broad contributions across two primary phases, moving from ad

hoc, model-specific adaptation towards more generalized PEFT frameworks.

In the first phase, we investigated the integration of diffusion models into adaptive TTS systems

based on encoder-decoder architectures. Central to this effort was the use of adaptive layer

normalization to condition the diffusion process on text representations, enabling parameter-

efficient adaptation. On standard TTS tasks, the proposed architecture was shown to be

a faster alternative to its convolutional counterpart. In few-shot adaptation scenarios, the

new decoder demonstrated clear improvements in naturalness and speaker similarity over a

transformer-based decoder, while maintaining parameter efficiency. The effectiveness of the

approach was further validated through participation in the Blizzard Challenge 2023, where

our system achieved competitive rankings in synthesis quality and naturalness.

The second phase of the thesis transitioned to exploring more general PEFT frameworks. A

first contribution in this phase addressed the critical issue of catastrophic forgetting during

fine-tuning, which can degrade a pre-trained model’s inherent capabilities and overall gener-

alizability. We demonstrated that Bayesian transfer learning techniques, through estimating a

posterior distribution over pre-trained model parameters using Laplace approximation, can

serve as an effective regularizer within the PEFT paradigm that guides parameter updates

to preserve pre-training knowledge. Through a series of experiments on language modeling

and TTS tasks, we showed that applying established Laplace approximations to regularize

LoRA-based PEFT could overcome catastrophic forgetting without compromising fine-tuning

performance, and the Kronecker-factored approximation provided superior preservation of

pre-training knowledge compared to the diagonal ones.

Finally, we extended our exploration of Bayesian learning by investigating variational infer-

ence as a more flexible and expressive alternative to Laplace-based methods. Using the IVON

optimizer, we first demonstrated improved predictive accuracy and calibration in PEFT and
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Chapter 6. Conclusions and Future Work

compared it with Laplace approximation. Furthermore, we leveraged IVON’s online posterior

estimates to develop a Bayesian approach for identifying and pruning redundant LoRA com-

ponents. This enabled automatic, layer-wise allocation of the parameter budget, leading to

enhanced performance and efficiency while providing a principled Bayesian interpretation of

common importance scoring strategies used in PEFT parameter selection.

6.2 Future Work

The architectural unification across domains has facilitated the widespread adoption of

generic adaptation techniques such as PEFT, leading to a diminished distinction among

different adaptation targets. As a result, adaptation is increasingly framed as a general transfer

learning problem. In light of this trend, we discuss several potential directions for future re-

search to advance current transfer learning and PEFT frameworks, particularly from a Bayesian

perspective.

This thesis has demonstrated the potential of Bayesian learning approaches that estimate

posterior distributions over network parameters for a variety of applications. Specifically,

the Laplace approximation enables efficient estimation of the posterior around a mode us-

ing limited data, providing both a mechanism for preserving pre-trained knowledge during

adaptation and a means for uncertainty quantification to improve calibration. With regard

to the former, transfer learning is in fact closely related to continual learning, as discussed

in Chapter 4. In this context, Laplace-based methods can be applied to support continual

learning of LoRA adapters, enabling modular integration of task-specific knowledge without

mutual interference. For example in TTS, LoRA adapters could be designed as plug-in mod-

ules with disentangled functionalities, such as one encoding speaker identity and another

encoding emotional tone, allowing for compositional control over the same base model. On

the other hand, despite the effectiveness of Laplace-based methods, particularly those em-

ploying Kronecker-factored approximations, they can still incur significant computational

and memory costs even when applied to a subset of parameters and using few data. Thus,

identifying more computationally and memory-efficient Hessian estimations while maintain-

ing precise posterior estimation, is a valuable direction for further investigation. Furthermore,

beyond predictive uncertainty estimation, the Laplace approximation can also be valuable

in generative settings: for example, to detect flawed outputs, filter low-quality samples, or

identify out-of-domain inputs that may lead to unreliable generations.

Variational inference offers a more flexible and expressive framework for posterior estimation

during training. However, its practical adoption is often hindered by the computational over-

head incurred during inference, particularly when multiple samples must be drawn to form

an ensemble prediction, thereby reducing inference speed in proportion to the number of

samples. To address this limitation, future work could explore more efficient sampling strate-

gies that minimize or eliminate the need for repeated forward passes. Additionally, given the

demonstrated effectiveness of last-layer Laplace approximations in mitigating overconfidence
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6.2 Future Work

in predictions, it would be worthwhile to investigate the application of variational inference to

specific model components that perform prediction tasks prone to such issues to improve the

model’s overall performance. Another promising avenue lies in the combination of Laplace

approximation and variational inference techniques for adaptation. One potential approach

is to use the Laplace approximation to estimate the loss landscape around a pre-trained mode

and initializing the variational posterior with the corresponding Hessian approximation. This

would allow prior information from the pre-trained model to be incorporated directly into the

variational fine-tuning process, potentially enhancing performance and generalizability.
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