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Abstract

Adapting generic models to specific domains or tasks, a process termed adaptation, has long
been of interest in speech and language processing, particularly when target data are insuffi-
cient for training bespoke models from scratch. The pre-training fine-tuning paradigm has
underpinned the development and application of such generic models, which are initially
trained on extensive datasets before subsequent refinement on domain- or task-specific data.
While recent large pre-trained models increasingly demonstrate in-context or zero-shot learn-
ing capabilities, adaptation remains crucial for significantly enhancing performance when
more target data are available. Primarily motivated by the adaptation of text-to-speech syn-
thesis (TTS) models, in this thesis, we investigate a series of adaptation techniques, including
both TTS-specific methods and generic fine-tuning approaches, with particular emphasis on
data efficiency, parameter efficiency, and generalizability.

The thesis begins by exploring the integration of diffusion models into adaptive TTS systems,
motivated by the recent success of deep generative models in synthesizing realistic speech.
Building on the Diffusion Transformer architecture, we utilize adaptive layer normalization
to condition the diffusion network on text representations, which further enables parameter-
efficient adaptation. Compared to convolutional counterparts, the proposed approach offers
faster inference for general TTS tasks and outperforms transformer-based adaptive TTS models
in terms of naturalness and speaker similarity under few-shot and few-parameter settings.

The second part shifts from ad hoc adaptation to generic parameter-efficient fine-tuning
(PEFT) for TTS systems, which increasingly rely on large pre-trained models with strong zero-
shot capabilities. Despite PEFT enabling efficient adaptation, catastrophic forgetting remains
an issue, damaging the base model’s generalizability. To mitigate this, we apply Bayesian
transfer learning techniques to regularize PEFT with low-rank adaptation (LoRA) and preserve
pre-training knowledge, utilizing diagonal and Kronecker-factored Laplace approximations.
Experiments on language modeling and TTS demonstrate that catastrophic forgetting can
be overcome by our methods without degrading fine-tuning performance, with Kronecker-
factored approximation yielding superior pre-training knowledge preservation.

Continuing the exploration of Bayesian learning theory from the previous part, the final part of
this thesis investigates the applications of variational inference to PEFT. Unlike Laplace approx-
imation, variational inference frames posterior estimation as an online optimization problem,
allowing for more flexible and expressive distributions. We first assess its effectiveness in
improving predictive accuracy and calibration relative to Laplace-based methods. We then
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Abstract

leverage its online posterior estimates to identify and prune redundant LoRA components,
enabling automatic, layer-wise allocation of the parameter budget.

In summary, the thesis contributes to the advancement of adaptive TTS systems and offers
Bayesian perspectives on enhancing generic adaptation techniques with respect to gener-
alizability and efficiency. In particular, it provides a principled investigation of posterior
estimation for adapted parameters using both Laplace approximation and variational infer-
ence, highlighting the advantages of Bayesian learning in fine-tuning.

Keywords: speech synthesis, deep generative models, adaptation, parameter-efficient fine-
tuning, Bayesian transfer learning, Laplace approximation, variational inference
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Résumé

Ladaptation de modeles génériques a des domaines ou a des taches spécifiques, un processus
appelé adaptation, suscite depuis longtemps un intérét dans le traitement de la parole et
du langage, en particulier lorsque les données cibles sont insuffisantes pour entrainer des
modeles sur mesure depuis zéro. Le paradigme d’apprentissage par pré-entrainement puis
affinement (fine-tuning) a sous-tendu le développement et I'application de ces modeles géné-
riques, qui sont d’abord entrainés sur de vastes ensembles de données avant d’étre affinés
sur des données spécifiques a un domaine ou a une tache. Bien que les récents modeles
de grande taille pré-entrainés démontrent de plus en plus des capacités d’apprentissage en
contexte ou sans entrainement préalable (zero-shot), I’adaptation reste cruciale pour amélio-
rer significativement les performances lorsque davantage de données cibles sont disponibles.
Principalement motivée par 'adaptation des modeles de synthese texte-vers-parole (TTS),
cette these explore une série de techniques d’adaptation, incluant a la fois des méthodes
spécifiques au TTS et des approches génériques d’affinement, avec un accent particulier sur
I'efficacité en termes de données, I'efficacité paramétrique, et la généralisabilité.

La these commence par explorer I'intégration des modeéles de diffusion dans les systemes TTS
adaptatifs, motivée par le succes récent des modeles génératifs profonds dans la synthése de
parole réaliste. En s’appuyant sur 'architecture Diffusion Transformer, nous utilisons une
normalisation adaptative des couches (adaptive layer norm) pour conditionner le réseau de
diffusion sur des représentations textuelles, ce qui permet une adaptation efficace en termes
de parametres. Comparée aux approches convolutionnelles, 'approche proposée offre une
inférence plus rapide pour les taches TTS générales et surpasse les modeles TTS adaptatifs a
base de transformers en termes de naturel et de similarité de locuteur dans des contextes a
faible nombre d’exemples et de parametres.

La seconde partie passe d'une adaptation ad hoc a un affinement générique efficace en
parameétres (PEFT) pour les systemes TTS, qui reposent de plus en plus sur des modeles pré-
entrainés de grande taille avec de fortes capacités zero-shot. Bien que le PEFT permette une
adaptation efficace, I'oubli catastrophique reste un probléme, nuisant a la généralisabilité du
modele de base. Pour y remédier, nous appliquons des techniques d’apprentissage transféré
bayésien afin de régulariser le PEFT avec une adaptation a faible rang (LoRA) et de préserver
les connaissances issues du pré-entrainement, en utilisant des approximations de Laplace
diagonales et factorisées de Kronecker. Les expériences en modélisation du langage et en TTS
démontrent que I'oubli catastrophique peut étre évité par nos méthodes sans dégrader les
performances d’affinement, I’'approximation factorisée de Kronecker assurant une meilleure
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préservation des connaissances acquises lors du pré-entrainement.

Poursuivant I’exploration de la théorie bayésienne initiée dans la partie précédente, la derniere
partie de cette these étudie les applications de l'inférence variationnelle au PEFT. Contrai-
rement a 'approximation de Laplace, I'inférence variationnelle reformule I’estimation du
postérieur comme un probleme d’optimisation en ligne, permettant des distributions plus
flexibles et expressives. Nous évaluons d’abord son efficacité en termes d’amélioration de la
précision prédictive et de la calibration par rapport aux méthodes basées sur Laplace. Nous
exploitons ensuite ses estimations postérieures en ligne pour identifier et élaguer les compo-
santes LoRA redondantes, permettant une allocation automatique et couche-par-couche du
budget de parametres.

En résumé, cette these contribue a I'avancement des systémes TTS adaptatifs et propose des
perspectives bayésiennes pour améliorer les techniques d’adaptation générales en termes de
généralisabilité et d’efficacité. En particulier, elle offre une analyse rigoureuse de I'estimation
a posteriori des parametres adaptés en utilisant a la fois I’approximation de Laplace et 'in-
férence variationnelle, mettant en évidence les avantages de I'apprentissage bayésien pour
I'ajustement fin.

Mots-clés : syntheése vocale, modeles génératifs profonds, adaptation, affinement efficace en
parameétres, apprentissage transféré bayésien, approximation de Laplace, inférence variation-
nelle
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|§ Introduction

1.1 Motivation

The rapid advancement of speech technology has revolutionized human-computer interac-
tion, giving rise to a wide range of applications, including voice assistants, audiobooks, and
speech-to-speech translation. This progress can be primarily attributed to two interrelated
factors: innovations in modeling techniques and the increasing scale of training data and
model capacity. From a methodological perspective, advances in deep generative models,
such as diffusion models (Ho et al., 2020; Song et al., 2021) and flow matching (Lipman et al.,
2023), have enabled the synthesis of highly realistic speech signals; meanwhile, speech lan-
guage models (Défossez et al., 2024; Xu et al., 2025) powered by autoregressive models such as
transformers have demonstrated strong multi-functional capabilities on both generative and
discriminative tasks when multimodal data is unified within a shared discrete token space. On
the scaling front, the growth of training data has necessitated the development of increasingly
large models, which, once exceeding certain thresholds, often exhibit emergent capabilities
not present in smaller counterparts.

Independent of modeling methods, a persistent challenge in the development of speech
technology is the need for customization and personalization across various applications, i.e.,
tailoring speech processing systems to individual users or specialized domains. For example,
in text-to-speech synthesis (TTS), users may wish to generate speech in a particular voice,
such as their own, or in a speaking style that is either underrepresented or entirely absent
from the training data. Likewise, in automatic speech recognition (ASR), service providers
often aim to extend the functionality of a general-purpose ASR system to better serve specific
user groups, such as children or speakers of a particular language or dialect. These scenarios
give rise to the challenge of adapting a generic model to a specific domain or task, a process
commonly referred to as adaptation, especially in contexts where the available data is too
limited to train a dedicated model from scratch. A key consideration in adaptation is efficiency,
both in terms of data usage and parameter modification. The objective is to achieve high
performance with limited adaptation data by updating only a small subset of the base model’s



Chapter 1. Introduction

parameters, thereby minimizing data requirements and computational overhead.

Funded by the Swiss National Science Foundation (SNSF) project, Neural Architectures for
Speech Technology, we are primarily motivated by the adaptation of TTS systems to specific
speaker identity, speaking style, and emotion. Adaptation methods are closely tied to model
architectures; in the context of TTS, this primarily concerns the acoustic model. Early neural
TTS acoustic models were characterized by sequence-to-sequence models with an encoder-
decoder architecture (Shen et al., 2018; Ren et al., 2021a). Research in this era generally
followed two directions: designing specialized methods to improve the generalization of
base models across domains, and enhancing adaptation efficiency by minimizing data and
parameter requirements. The first direction often involves domain-specific, ad hoc techniques
due to the heterogeneity of model architectures (Wang et al., 2018; Hsu et al., 2019); we argue
that the trend toward unified model architectures will reduce such complexity. The latter,
which forms the basis of the initial phase of this thesis, focuses on identifying adaptable
components or integrating dedicated modules to enable efficient adaptation (Chen et al.,
2021; Huang et al., 2022b).

Nevertheless, recent developments in the field have motivated a reorientation of our research
objectives. First, there has been a growing interest in general-purpose models shifting from
task-specific ones, largely driven by innovations in modeling techniques. In TTS, large pre-
trained models are now able to not only deliver human-level natural speech, but also support
advanced functions such as zero-shot voice cloning and speech editing (Wang et al., 2023a;
Li et al., 2023; Huang et al., 2024). Second, architectural unification across domains has led
to the adoption of generic adaptation techniques (Ding et al., 2023a), many originating from
natural language processing (NLP), replacing earlier ad hoc approaches. Consequently, the
distinction among different adaptation targets has diminished, with adaptation framed as a
general transfer learning problem. Third, the pre-training fine-tuning paradigm has become
fundamental in model development, leveraging large-scale data for general model training,
followed by task-specific refinement. These developments highlight the need to explore
general adaptation methods suited to this new paradigm in the second phase of the thesis,
among which parameter-efficient fine-tuning (PEFT) has emerged as a promising approach.

PEFT techniques aim to adapt large pre-trained models to new tasks or domains by modifying
a small fraction of parameters or adding lightweight components while keeping most of
the model frozen. This reduces computation, memory, and storage costs, enabling efficient
customization on low-resource devices and simplifying the deployment of multiple task-
specific variants from a shared base model. While PEFT has significantly enhanced adaptation
efficiency, it still presents several problems requiring further investigation, many of which are
inherent to transfer learning. A first concern is the potential loss of generalizability: the model
may lose much of the knowledge it gained during pre-training. This loss can adversely affect
the model’s ability to generalize to unseen data, and is even more unfavorable on modern large
pre-trained models that are usually multi-functional by training on a diverse range of tasks and
data. A second issue is model overconfidence: given limited adaptation data, the model may
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produce erroneous predictions with disproportionately high confidence, thereby undermining
reliability and posing risks in real-world applications. Finally, instead of relying on predefined
strategies for parameter modification, automatically identifying the most critical modules
or layers for adaptation can further optimize performance and efficiency. In light of these
challenges, this thesis seeks to develop a unified and theoretically grounded framework for
model adaptation.

1.2 Main Contributions

This thesis contains three broad contributions across two primary phases, each addressing
key challenges from ad hoc to generalized approaches.

The first phase of this thesis is situated in the era of encoder-decoder models for acoustic
modeling in TTS, during which the integration of deep generative models such as flow and
diffusion models as decoders has substantially improved the quality and naturalness of syn-
thesized speech. Within this context, we aim to design an architecture that not only generates
high-quality, natural-sounding speech but also enables efficient adaptation in low-resource
settings, both in terms of data and model parameters. Motivated by the success of diffusion
models in synthesizing realistic speech, we investigate how diffusion can be included in adap-
tive TTS systems. Inspired by the adaptable layer norm modules for transformer, we adapt
the Diffusion Transformer architecture as a new backbone of diffusion models for acoustic
modeling. Specifically, the adaptive layer norm is used to condition the diffusion process on
text representations, which further enables parameter-efficient adaptation. We show the new
architecture to be a faster alternative to its convolutional counterpart for general TTS, while
demonstrating a clear advantage on naturalness and similarity over the transformer for few-
shot and few-parameter adaptation. To formally evaluate our system against state-of-the-art
approaches, we submitted an entry to the Blizzard Challenge 2023 which focused on French
TTS. Our submission utilized the proposed model, with an additional focus on text analysis
specifically addressing liaisons and heterophonic homographs. Formal evaluations ranked
our system favorably among competitors, demonstrating its ability to achieve state-of-the-art
performance in terms of synthesis quality and naturalness.

The second phase of this thesis transitions from model-specific adaptation techniques to more
general PEFT frameworks. The first focus within this phase addresses the issue of catastrophic
forgetting, where fine-tuning undermines the pre-trained model’s inherent capabilities. In
TTS, this issue manifests as a loss of zero-shot synthesis performance, eventually compro-
mising generalizability and overall synthesis quality. To overcome catastrophic forgetting, we
investigates the application of Bayesian transfer learning within the PEFT paradigm. At the
core of this approach is the estimation of the posterior distribution over pre-trained model
parameters using the Laplace approximation. This posterior distribution acts as a regularizer
during adaptation, guiding updates in a manner that preserves the information acquired
during pre-training. We demonstrate that existing Bayesian transfer learning techniques can
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be applied to PEFT to prevent catastrophic forgetting provided that the parameter shift is
differentiable and therefore amenable to gradient-based optimization. In a principled series of
experiments on language modeling and speech synthesis tasks, we utilize established Laplace
approximations, including diagonal and Kronecker-factored approaches, to regularize PEFT
with low-rank adaptation (LoRA) and compare their performance in pre-training knowledge
preservation. Our results demonstrate that catastrophic forgetting can be overcome by our
methods without degrading the fine-tuning performance, and using the Kronecker-factored
approximation produces a better preservation of the pre-training knowledge than the diagonal
ones.

Continuing the exploration of Bayesian learning theory, the final component of the thesis ex-
amines the applications of variational inference to PEFT. Sharing the ultimate goal of learning
parameter distributions with Laplace approximation, variational inference formulates poste-
rior estimation as an optimization problem, allowing for the learning of more expressive and
accurate posterior along the training process. Utilizing Improved Variational Online Newton
(IVON), a state-of-the-art variational inference optimizer, we first assess its effectiveness in
improving predictive accuracy and calibration relative to Laplace-based methods. By sam-
pling from the learned parameter distribution during inference, both IVON and Laplace-based
method are shown to significantly improve calibration and reduce overconfidence. We then
leverage IVON'’s online posterior estimates to identify and prune redundant LoRA compo-
nents, enabling automatic, layer-wise allocation of parameter budget. This not only enhances
performance and efficiency but also offers a Bayesian interpretation of importance scoring
strategies commonly used for parameter selection in PEFT.

1.3 Thesis Outline

This thesis is organized into six chapters, with the main contributions presented in Chapters 3
to 5. The current chapter introduces the motivation, contributions, and structure of the thesis.

Chapter 2 provides the necessary background, including an overview of deep generative
models foundational to modern TTS systems, the evolution of neural TTS architectures, a
summary of parameter-efficient fine-tuning (PEFT) techniques, and a review of the datasets
and evaluation metrics used throughout the thesis.

Chapter 3 presents the first contribution: the integration of the Diffusion Transformer ar-
chitecture for adaptive TTS using adaptive layer normalization. This design enables both
data-efficient and parameter-efficient adaptation. The chapter also details our submission to
the Blizzard Challenge 2023 and reports the corresponding evaluation results.

Chapter 4 introduces the second contribution. It includes a thorough mathematical derivation
of the Bayesian transfer learning theory using Laplace approximation, which provides a unified
framework for overcoming catastrophic forgetting in PEFT. The chapter validates the approach
through systematic experiments in language modeling and speaker adaptation for TTS.
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Chapter 5 describes the third contribution, which explores the applications of variational
inference in PEFT for predictive uncertainty estimation and parameter importance estima-
tion. The first part compares variational inference with Laplace-based methods in terms of
improving predictive accuracy and calibration. The second part leverages online posterior
estimates to guide parameter selection and improve adaptation performance and efficiency.

Chapter 6 concludes the thesis and outlines directions for future research.

Note: To improve the clarity and fluency of the written text, large language models, including
OpenAl’s ChatGPT, Google’s Gemini, and DeepSeek, were employed during the writing process
of this thesis. These tools were used solely for language refinement, such as enhancing
grammar, style, and phrasing.






¥4 Background

2.1 Deep Generative Models

2.1.1 Variational Autoencoder

Variational Autoencoder (VAE) (Kingma and Welling, 2014) is a type of deep generative model
that operate within the framework of probabilistic graphical models and variational inference.
The primary objective of a VAE is to learn the underlying probability distribution p(x) of
training data, enabling both the generation of new data samples resembling the training data
and the learning of meaningful low-dimensional latent representations.

VAE:s achieve this by positing a generative process involving unobserved, continuous latent
variables z. It is assumed that the data x is generated from z according to some conditional
distribution pg(x|z), often referred to as the decoder, parameterized by 6. The latent variables
themselves are assumed to follow a prior distribution p(z), typically chosen to be a simple
distribution like the standard Gaussian A/ (0,I). The marginal likelihood of the data is then
given by the integral:

po(X) = f pe(X|z) p(z)dz 2.1)

Directly maximizing this marginal likelihood log pg (x) with respect to 0 is generally intractable
for complex neural networks used for pg(x|z). VAEs address this challenge by introducing
an encoder, denoted by g4 (z|x), parameterized by ¢, which serves as an approximation to
the true posterior pg(zl|x). Instead of maximizing the marginal log-likelihood directly, VAEs
optimize a lower bound known as the Evidence Lower Bound (ELBO), £(@, ¢b;x), derived using
variational principles:

log pg (x) = L(6, ;%) = Eg, (zix [l0g pe (X12)] — Dx1(q¢ (2IX)||p(2) 2.2)

Here, Eg,@x [log pe (x|2)] represents the expected reconstruction log-likelihood under the
approximate posterior. This term encourages the decoder pg(x|z) to accurately reconstruct
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the input data x from latent representations z sampled according to the encoder’s output
distribution g (z|x). The second term, Dy (q¢(z|X)||p(2)), is the Kullback-Leibler (KL) diver-
gence between the approximate posterior and the prior p(z). This term acts as a regularizer
that encourages the distribution of encoded representations g (z[x) for a given x to remain
close to the prior distribution p(z), thereby promoting a structured latent space.

The gap between the true log-likelihood and the ELBO is the KL divergence between the
approximate and true posterior: log pg(x) — L(0,$;X) = Dk1(q¢(z|X)||pg(zx)). Maximizing
the ELBO thus corresponds to simultaneously maximizing the reconstruction likelihood and
minimizing the divergence between the approximate posterior and the prior, which implicitly
minimizes the divergence between the approximate and the true posterior.

Both the encoder g¢(z|x) and the decoder pg(x|z) are typically implemented using deep
neural networks, which are jointly optimized using gradient descent on the negative ELBO.
A key technique enabling such optimization is the reparameterization trick, which allows
gradients to backpropagate through the sampling process from g4 (z[x). For instance, if
qe(z|X) = N(z; Ky (x), 02¢(x)), asamplezcanbedrawnasz = p¢(x) +0 ¢ (x) o€, where € ~ N1
and © denotes element-wise multiplication. This reparameterization makes the expectation
term in the ELBO differentiable with respect to ¢.

2.1.2 Normalizing Flow

Flow-based generative models explicitly model the data distribution by leveraging normalizing
flows. A normalizing flow applies a sequence of invertible transformations to map a simple
prior distribution p(z) to a complex data distribution p(x), using the change-of-variable law of
probabilities. These invertible functions, denoted by f, are referred to as flow steps:

x=f of0..fx(2) 2.3)

Thanks to the invertibility of each flow step, the exact log-likelihood of data can be computed
analytically via the change-of-variable formula:

K
log pe(x) = log pg(2) + ) _ log|det (J (f;' )|
i=1 (2.4)

z=flof ! o ')

Here, J denotes the Jacobian matrix of the inverse transformation f; 1(x). In practice, the flow
steps are parameterized by neural networks, and the model is trained by minimizing the
negative log-likelihood of the data.

The key design considerations in constructing normalizing flows are twofold: first, each f
must be invertible and differentiable to ensure tractable computation of the transformed
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density; second, the Jacobian determinant must be computationally efficient to evaluate.
Prominent examples of flow-based architectures include NICE (Dinh et al., 2015), RealNVP
(Dinh et al., 2017), and Glow (Kingma and Dhariwal, 2018), which are specifically designed
to allow efficient computation of both the inverse mapping and the Jacobian determinant
in a single forward pass. Normalizing flows offer a key advantage over VAEs by providing
exact likelihood calculation, which leads to better likelihood estimates and generation quality,
avoiding issues like the blurry reconstructions and posterior collapse commonly observed in
VAEs.

2.1.3 Diffusion Model

Diffusion models refer broadly to two classes of generative models: Denoising Diffusion
Probabilistic Models (DDPM) (Ho et al., 2020), formulated via Markov chains, and Score-based
Generative Models (SGM) (Song et al., 2021), based on stochastic differential equations. Due
to space constraints, we focus on DDPM, which offers a more probabilistically grounded
formulation.

DDPM consists of two Markov processes: a forward diffusion process that gradually adds
noise to the data, and a reverse process that reconstructs data from noise. The forward
process transforms a clean data point Xq into a Gaussian noise sample x7 over T steps using a
predefined noise schedule §; € ;,...,87:

T
q (X¢ [ X¢-1) =N(xt;\/ 1 _ﬁtxt—l»ﬁtl), g x1.71%0) = [ [ ¢ &¢1x,-1) (2.5)
=1

Defininga;=1-f;and &; = l'[f:1 a;, one can derive a closed-form expression:

a0 1%0) = N [x65v/@%o, (1 - @01 2.6)

This allows sampling x; at any timestep directly from xy without iterating through intermediate
steps.

The reverse process reconstructs data by gradually denoising x7 back to x( using parameter-
ized Gaussian transitions:

T
po Xi—1 %) =N (X¢-1; g X, ), Z9 X1, 1)), po Xo.1) = px7) [ | po xe=11%¢) 2.7
=1

with p(x7) = N'(0,1). The reverse transition probability pg (x;-1 | X;) can be parameterized by



Chapter 2. Background

aneural network 0, and is analytically tractable when conditioned on xy:

g (X¢—1 1X¢,%0) = N (X¢-1; 1, (X¢,X0) , B¢

- V1P var(l—ae1) =~ 1=a; (2.8)
X1, Xp) = = + - Xy, =—
I, (X¢,Xp) 1—a, Xo 1-a, o Pr 1-a, Bt

Similar to VAEs, the training objective is to maximize the data likelihood via the evidence lower
bound (ELBO). The loss is given by:

T
L) =E4 |KL(q &7 %) | px7)) + Y_ KL (g X¢-1 | X£,%0) | po (X¢-1 | X1)) —log pg (Xo le)]
=2
2.9)

Every KL term in the loss function calculates the distance between two Gaussian distribution
thus can be computed in closed form. Note that the first term is a constant and not parame-
terized. By setting g (X;, f) as a constant and reparameterizing xo = \/% (x; —vI—a:e) from
qx¢1xo) = N x5 V@ Xo, (1 — @;)D), Ho et al. (2020) demonstrate the problem of learning fz, can
be converted to estimating the Gaussian noise € with neural network 6. The loss is then to

minimize the difference between the true noise € and the estimated noise:

Lsimple 0) =E¢x,¢ [l€—€g x;, 1)[1%] (2.10)

Diffusion models generally outperform normalizing flows in generating high-fidelity and
diverse samples due to their ability to model complex, multi-modal distributions more effec-
tively. While normalizing flows require invertible architectures and a fixed dimensionality,
which can limit their expressiveness, diffusion models employ a multi-step denoising pro-
cess that gradually transforms noise into data, offering greater flexibility and robustness in
capturing intricate data structures.

2.2 Neural Text-to-Speech Architectures

2.2.1 Overview

A neural network-based TTS system generally consists of three main components: text analysis,
acoustic model, and vocoder, as is shown in Figure 2.1.

1. The text analysis module transforms input text into linguistic features. For neural
TTS, it is largely simplified to text normalization and grapheme-to-phoneme (G2P)
conversion: the module first converts character input to standardized word format
(e.g. “2025” normalized to “twenty twenty-five”), and then obtains the corresponding
phoneme sequence in the second step (e.g. “modern” converted to “M AA1 D ERO N”).
Traditionally, both steps are implemented using rule-based systems and lexicon lookups.

10
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. Linguistic . Acoustic
Text Text Analysis Acoustic Model Vocoder Waveform
Features Features

Figure 2.1: Main components of neural TTS system.

Neural network-based methods have been introduced later, framing text normalization
and G2P conversion as sequence-to-sequence learning tasks. With more recent language
model-based TTS systems, these steps are increasingly abstracted away. Such models
typically tokenize input text at the word or character level, allowing the acoustic model
to directly learn the mapping from textual input to speech features without explicit
intermediate representations.

2. The acoustic model converts linguistic features into acoustic representations, serving as
a core component in a TTS system. Traditionally, the most widely used representation
has been the mel-spectrogram, which is a continuous, low-dimensional feature that
captures pitch, energy, and timbral information using conventional signal processing
techniques. However, recent advances in speech representation learning, particularly in
tokenization and quantization methods (Hsu et al., 2021; Chen et al., 2022; Zeghidour
et al., 2022; Défossez et al., 2023), have enabled the transformation of continuous
speech signals into discrete tokens. These discrete representations facilitate unified,
multi-modal modeling of text and speech within a single architecture. The design of
the acoustic model varies depending on the specific application, the type of acoustic
representation employed, and the structure of the overall TTS pipeline. Nevertheless, the
central task of acoustic modeling is typically framed as simply a sequence-to-sequence
learning problem. Broadly, acoustic models can be categorized into two main types:
encoder-decoder models and speech language models.

3. Thevocoder synthesizes an intelligible audio waveform from acoustic features. Vocoders
can be broadly categorized based on their architectures, including CNN- (van den
Oord et al., 2016), RNN- (Kalchbrenner et al., 2018), GAN- (Kong et al., 2020), flow-
(Prenger et al., 2019), and diffusion-based (Kong et al., 2021) models. Traditionally, they
have been designed as general-purpose converters that transform a mel-spectrograms
into a time-domain waveform. However, these architectures are readily adaptable to
alternative acoustic representations, including discrete tokens, as such tokens can be
easily mapped to continuous feature spaces via embedding lookups. Recent neural
audio codecs (Zeghidour et al., 2022; Défossez et al., 2023) adopt an encoder-decoder
architecture in which the decoder effectively functions as a vocoder, reconstructing
waveform from discrete token sequences. Ultimately, the choice of vocoder architecture
is closely tied to the nature of the acoustic representation used in the system.

The acoustic model-vocoder paradigm underlies most TTS systems, including those based
on language models. Although fully end-to-end models exist that directly generate speech
waveform from text, they typically integrate the functions of both the acoustic model and
the vocoder into a unified architecture. For instance, VITS (Kim et al., 2021) incorporates a

11



Chapter 2. Background

VAE, a normalizing flow, and a GAN-based vocoder into a single model, effectively blurring
the distinction between the acoustic model and vocoder. In this setup, the acoustic features
are represented as latent variables of the VAE instead of mel-spectrograms. Regardless of
the overall system design, the acoustic model remains the core component responsible for
determining both the content and style of the generated speech, and therefore is the primary
focus of our TTS research. In the remainder of this section, we will examine two key approaches
of acoustic modeling in detail: encoder-decoder models and speech language models.

2.2.2 Encoder-Decoder Models

A typical encoder-decoder acoustic model comprises two main components: a text en-
coder, which transforms the linguistic input, such as words, phonemes, or characters, into
fixed-dimensional representations, and a decoder, which sequentially generates acoustic
features from these representations. Both the encoding and decoding stages can be framed as
sequence-to-sequence modeling tasks, and are commonly implemented using architectures
such as CNNs, RNNs, or transformers.

A key challenge in this framework is the inherent length mismatch between linguistic and
acoustic sequences: for example, determining how many mel-spectrogram frames should
correspond to a single phone. Two paradigms that address this challenge are Tacotron 2
(Shen et al., 2018) and FastSpeech 2 (Ren et al., 2021a). Tacotron 2 follows an autoregressive
approach: the text encoder is a bidirectional RNN, while the decoder is a unidirectional
RNN that learns alignment between text representations and mel-spectrogram frames via
an attention mechanism. Similarly, Transformer TTS (Zheng et al., 2020) replaces the RNNs
with transformer blocks while retaining the autoregressive nature of the decoder. In contrast,
FastSpeech 2 adopts a non-autoregressive approach, utilizing feed-forward transformer blocks
in both the encoder and decoder. It introduces a variance adapter between the encoder and
decoder, which explicitly predicts the duration of each phone. During inference, the encoder
outputs are expanded based on the predicted durations before being passed to the decoder.
This adds another requirement of obtaining the alignment, which can be achieved either
through external forced alignment tools prior to training, such as the Montreal Forced Aligner
(MFA) (McAuliffe et al., 2017), or by learning the alignment dynamically during training using
algorithms like monotonic alignment search (Kim et al., 2020).

Further research in the era of encoder-decoder acoustic models focused on improving control-
lability, expressiveness, and naturalness. Enhancements in controllability and expressiveness
are typically introduced in the stages preceding the decoder, where the model learns to encode
not only linguistic content but also speaker-specific and stylistic variations. This includes
fine-grained control over prosodic features such as pitch, energy, and speaking rate, often
achieved through explicit conditioning or learned latent representations (Min et al., 2021;
Huang et al., 2022b). Approaches such as global style tokens (Wang et al., 2018), variational au-
toencoders (Hsu et al., 2019), and reference encoders (Wu et al., 2022; Huang et al., 2022b) have
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proven effective in capturing and reproducing diverse speaker identities and speaking styles.
In contrast, improving naturalness has largely relied on advances in decoder architectures,
particularly through the adoption of deep generative models. Flow (Valle et al., 2021; Kim et al.,
2020), diffusion (Jeong et al., 2021; Popov et al., 2021), and flow matching models (Mehta et al.,
2024) have emerged as powerful alternatives to traditional decoder architectures, capable of
modeling the complex distributions of acoustic features with greater precision. These models
not only enhance the perceptual quality of synthesized speech by avoiding oversmoothing
of mel-spectrograms and artifacts, but also produce more nuanced and natural prosody by
modeling complex dependencies across the entire utterance.

2.2.3 Speech Language Models

Recent advances in speech language models are fundamentally enabled by the development
of neural audio codecs, which enable efficient discretization of continuous waveform into
compact, learnable token sequences. These codec models, such as Soundstream (Zeghidour
et al., 2022) and EnCodec (Défossez et al., 2023), decompose speech into discrete or quantized
representations, allowing language models to process speech as sequences akin to text. By
leveraging tokenized speech representations, speech language models treat speech synthesis
as a conditional language modeling problem, where autoregressive architectures such as a
transformer generate speech tokens guided by textual input and reference audio. VALL-E
(Wang et al., 2023a), a representative model in this paradigm, employs a hierarchical pipeline
that generates coarse acoustic tokens first with an autoregressive transformer, followed by
residual token predictions using a non-autoregressive transformer. Following this framework,
subsequent work aimed to improve cross-lingual capability (Zhang et al., 2023c), alignment
accuracy (Xin et al., 2024; Song et al., 2025), and generation efficiency (Chen et al., 2024).

Beyond the VALL-E paradigm, newer models have targeted improvements in quality, effi-
ciency, and controllability of TTS systems. While most LLM-based TTS models rely on discrete
tokenization via neural audio codecs, some studies have explored continuous representations
within autoregressive frameworks to overcome limitations in audio quality (Meng et al., 2024).
For efficiency, techniques such as generating multi-level codebook tokens in a single pass
by generating multiple tokens simultaneously at a step have been proposed (Copet et al.,
2023). Alternatively, models like SparkTTS (Wang et al., 2025) eliminate the need to generate
high-level codebook tokens by first producing fixed-length global tokens that encode speaker
attributes, followed by semantic tokens that capture linguistic content. On the controllability
front, the multi-modal nature of speech language models enables speech generation to be
guided by natural language prompts. For instance, VoiceCraft (Peng et al., 2024) employs
neural codec language models and specialized architectures to support precise, text-guided
speech editing. Similarly, InstructSpeech (Huang et al., 2024) uses multi-task LLMs trained
on paired natural language instructions and speech data to allow fine-grained control over
both semantic content and prosodic attributes. More recently, multi-task training has enabled
speech language models to unify speech understanding and generation within a single multi-
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modal architecture (Défossez et al., 2024; Xu et al., 2025). These advancements push the field
toward highly versatile and general-purpose speech processing systems.

2.3 Parameter-Efficient Fine-Tuning

2.3.1 Overview

Parameter-efficient fine-tuning (PEFT) techniques aim to adapt large pre-trained models
to new tasks or domains while minimizing the number of trainable parameters. Instead of
updating the entire model, these methods focus on modifying only a small subset of inherent
parameters or adding lightweight components while keeping the bulk of the pre-trained model
frozen. PEFT not only reduces computation, memory, and storage costs, enabling efficient
model customization on low-resource devices, but also facilitates sharing and deployment of
multiple specialized model variants derived from a single base model.

Depending on whether the focus is on fine-tuning newly added modules or modifying the
intrinsic parameters of a pre-trained model, PEFT techniques can be broadly categorized into
addition-based methods and reparameterization-based methods. In the remainder of this
section, we introduce several representative techniques from each category.

2.3.2 Addition-Based Methods

Addition-based methods introduce lightweight modules or input modifications to the model
while keeping the majority of the pre-trained parameters frozen, which can be further catego-
rized into adapter-based methods and prompt-based methods.

Adapter-Based Methods

Adapter modules (Houlsby et al., 2019; Pfeiffer et al., 2020) are lightweight, trainable compo-
nents inserted into the transformer architecture. Typically, each adapter consists of a two-layer
feed-forward network that forms a bottleneck structure: a down-projection Wqgyn € R?*"
reduces the dimensionality of the hidden representations from the model’s hidden size d to a
lower-dimensional latent space of rank r « d, followed by a nonlinearity, and an up-projection
Wyp € R™*4 that restores the original dimensionality. Formally, given a hidden state h € R?,
the adapter output is computed as: Adapter(h) = Wyp0 (Wqownh) +h, where o (-) denotes the
activation function, and the residual connection ensures compatibility with the original model
behavior. Adapters can be flexibly inserted at various points within the transformer layer, such
as between the self-attention and feed-forward modules, or within residual connections.

Apart from bottleneck adapters, there exist other adapter-based techniques aiming to improve
parameter efficiency by introducing inductive biases into adapter layers. For instance, Com-
pacter (Mahabadi et al., 2021a) proposes a method combining hypercomplex multiplication
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with parameter sharing: the original linear layer is parameterized as a sum of Kronecker prod-
ucts of two smaller matrices. Hyperformer (Mahabadi et al., 2021b) learns adapter parameters
by generating them using shared hypernetworks, assuming that there is shared knowledge
across layers and tasks.

Prompt-Based Methods

Prompt-based methods modify the model input or internal activations to guide task-specific
behavior without altering the original model weights. Two representative methods are prompt
tuning (Lester et al., 2021) and prefix tuning (Li and Liang, 2021). Prompt tuning learns a
sequence of continuous task-specific embeddings (soft prompts) that are prepended to the
input tokens. These embeddings are optimized during training and serve as a lightweight
mechanism for conditioning the model. Prefix tuning extends this approach by optimizing
continuous vectors that are prepended to the key and value matrices at each transformer
layer. Compared to prompt tuning, prefix tuning directly influences the attention mechanism,
thereby providing a more expressive form of conditioning.

2.3.3 Reparameterization-Based Methods

Reparameterization-based methods directly alter the parameterization of the pre-trained
model without any architectural modifications, either by modifying a subset of existing pa-
rameters or by expressing changes in a compact and structured form.

Low-Rank Adaptation

Low-rank adaptation (LoRA) (Hu et al., 2022) hypothesizes that the updates to model param-
eters during fine-tuning lie in a low-dimensional subspace, i.e., the weight modifications
exhibit low intrinsic rank. Accordingly, instead of updating the full weight matrices, LoRA
introduces a pair of trainable low-rank matrices A € R%*" and B € R"*% to approximate the
weight update as AW = %AB, where r < min(d,, d;) and «a is a scaling factor that controls
the update magnitude. This parameterization is applied to the weight matrices of the self-
attention layers, typically the query and value projections, while the original weights remain
frozen. During inference, the low-rank approximation AB is reconstructed and added to the
corresponding frozen weight matrix, yielding the adapted weights W = Wy + AW, with minimal
overhead in both storage and computation.

Variants of LoRA can be broadly categorized by their focus on improving efficiency or enhanc-
ing adaptation performance. Efficiency-focused variants such as QLoRA (Dettmers et al., 2023)
leverage low-bit quantization to reduce memory cost, while VeRA (Kopiczko et al., 2024) uses
shared random matrices and learns small scaling vectors to improve parameter efficiency.
Variants focused on adaptation performance include AdaLoRA (Zhang et al., 2023b), which
dynamically allocates ranks during training based on importance scores, and DoRA (Liu
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et al., 2024a), which modifies the adaptation mechanism by separating weight updates into
magnitude and direction components for better expressiveness.

Adaptation of Inherent Parameters

There are several methods that only fine-tune a subset of existing parameters. Cai et al. (2020)
propose to freeze the model weights and updates only the bias parameters during fine-tuning.
By avoiding the storage of intermediate activations, this approach achieves significant memory
savings. Similarly, Zaken et al. (2022) explore a related technique for pre-trained language
models, where only the biases and the final output layer are fine-tuned. Diff Pruning (Guo
et al,, 2021) reparameterizes the fine-tuned model parameters @ as the sum of the pre-trained
parameters 0 and a difference vector A8, such that: 8’ = 6 + A@. To encourage A6 to be as
sparse as possible, diff pruning applies a differentiable approximation of the Ly-norm penalty
to regularize A@ and promote sparsity.

2.4 Datasets

2.4.1 Text-to-Speech Synthesis
LJ Speech

The LJ Speech dataset (Ito, 2017) is an English-language speech corpus consisting of 13,100
audio clips of a single female speaker reading passages from seven non-fiction books. Each
clip is paired with a corresponding text transcription. The recordings were captured by the
LibriVox project between 2016 and 2017 and provided in 16-bit PCM WAV format at a sampling
rate of 22,050 Hz. Clip durations range from approximately 1 to 10 seconds, totaling about 24
hours of audio. The source texts were published between 1884 and 1964 in the public domain.

VCTK

The CSTR VCTK (voice cloning toolkit) corpus (Yamagishi et al., 2019) consists of approximately
44,000 English-language speech recordings produced by 110 speakers with a variety of accents,
primarily from the United Kingdom. Each speaker reads around 400 sentences selected from
newspaper texts, with recordings captured in a controlled acoustic environment using a 96 kHz
sampling rate and 24-bit resolution, later downsampled to 48 kHz for distribution. The dataset
provides over 44 hours of recorded speech, with audio files in WAV format accompanied by
transcriptions and metadata including speaker accent, gender, and age information.
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LibriVox and Its Derivatives

The LibriVox ! project provides a large collection of public domain audiobooks, primarily in
English, recorded by volunteers and used as the basis for several speech corpora. LibriSpeech
(Panayotov et al., 2015) is derived from LibriVox recordings and comprises approximately
982 hours of English speech from 2,484 speakers sampled at 16 kHz with corresponding
transcriptions, primarily utilized for automatic speech recognition. LibriTTS (Zen et al., 2019),
specifically designed for TTS research and built upon LibriSpeech’s materials, offers about 585
hours of speech from 2,456 speakers at a higher 24 kHz sampling rate, segmented at sentence
boundaries and including both original and normalized texts. LibriLight (Kahn et al., 2020),
based on the same source material, comprises over 60,000 hours of unlabeled English speech
sampled at 16 kHz and is intended for self-supervised learning.

2.4.2 Natural Language Processing
The Pile

The Pile (Gao et al., 2021) is an 825 GiB open-source English text corpus developed by
EleutherAl to train large-scale language models. It comprises 22 diverse, high-quality subsets,
including sources like PubMed Central, OpenWebText2, arXiv, GitHub, Stack Exchange, and
Wikipedia. The dataset features a wide range of content, from academic papers and legal
documents to code repositories and social media discussions. The Pile has been utilized in
training various large language models, such as OPT (Zhang et al., 2022) and GPT-NeoX (Black
etal., 2022).

Natural Language Understanding Benchmarks

The General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019) is a
standardized evaluation suite designed to assess the performance of general-purpose natural
language understanding models across a diverse set of NLP tasks. It comprises nine distinct
English single-sentence and sentence-pair tasks: (1) Corpus of Linguistic Acceptability (CoLA),
which evaluates whether a sentence is grammatically acceptable; (2) Stanford Sentiment Tree-
bank (SST-2), a binary classification task for determining the sentiment of movie reviews; (3)
Microsoft Research Paraphrase Corpus (MRPC), which identifies whether a pair of sentences
are semantic paraphrases; (4) Quora Question Pairs (QQP), which assesses if two questions are
semantically equivalent; (5) Semantic Textual Similarity Benchmark (STS-B), which requires
predicting a similarity score between sentence pairs; (6) Multi-Genre Natural Language Infer-
ence (MNLI), a large-scale dataset for determining whether a premise entails, contradicts, or
is neutral with respect to a hypothesis; (7) Question Answering NLI (QNLI), which determines
if a Wikipedia sentence contains the answer to a given question; (8) Recognizing Textual
Entailment (RTE), a collection of shorter entailment datasets; and (9) Winograd NLI (WNLI), a

Thttps://librivox.org/
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small-scale dataset focusing on coreference resolution as a form of natural language inference.

In addition, Chapter 5 utilizes a set of more challenging commonsense reasoning benchmarks
to evaluate the fine-tuning performance of large language models: (1) AI2 Reasoning Challenge
(ARC) (Clark et al., 2018): a dataset of grade-school science questions that require nontrivial
reasoning and knowledge beyond simple pattern recognition; (2) Boolean Questions (BoolQ)
(Clark et al., 2019): a binary question-answering dataset where each question is paired with
a supporting passage; (3) OpenBookQA (OBQA) (Mihaylov et al., 2018): a multiple-choice
question-answering dataset designed to test a model’s ability to combine science facts with
broad common knowledge; (4) WinoGrande (Sakaguchi et al., 2020): a dataset of coreference
resolution tasks by presenting sentences that require sophisticated reasoning to disambiguate
pronoun references.

Audio Question Answering Benchmark

The Audio Question Answering task dataset for the DCASE 2025 Challenge? (Yang et al., 2025)
comprises three curated multiple-choice question-answering (QA) subsets—Bioacoustics QA
(BQA), Temporal Soundscapes QA (TSQA), and Complex QA (CQA)—each designed to evaluate
distinct dimensions of audio-language understanding and reasoning. BQA focuses on fine-
grained auditory grounding in the bioacoustic domain, requiring models to recognize species-
specific vocalizations of 31 marine mammals and to reason about their acoustic characteristics
and ecological context. The subset includes 700 training and 200 development QA pairs based
on recordings from the Watkins Marine Mammal Sound Database, featuring a wide range of
sampling rates (600 Hz to 160 kHz) and durations (0.4 seconds to over 10 minutes). TSQA
is designed to assess temporal reasoning capabilities by presenting models with questions
concerning the classification and temporal structure of overlapping or sequential sound
events. It comprises 1k training and 600 development QA pairs, derived from 10-second mono
audio clips sampled at 32-48 kHz from multiple public datasets. Each question targets specific
temporal relationships such as event ordering, onset and offset detection, and duration
estimation. CQA contains 6.4k training and 1.6k development QA pairs and is constructed
to test higher-order reasoning over complex, real-world audio scenarios. Based on audio
from AudioSet (Gemmeke et al., 2017) and the Mira dataset (Ju et al., 2024), CQA involves
multi-faceted questions that require integration of temporal, acoustic, and contextual cues to
interpret overlapping events, auditory sequences, and abstract relational patterns.

Zhttps://huggingface.co/datasets/PeacefulData/2025_DCASE_AudioQA_Official
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2.5 Evaluation Metrics

2.5 Evaluation Metrics

2.5.1 Text-to-Speech Synthesis
Subjective Evaluation

Mean Opinion Score The Mean Opinion Score (MOS), standardized by ITU-T P800, is a
widely used subjective metric for evaluating the quality of synthesized speech in TTS systems.
A group of listeners rate speech samples from various TTS systems on a 5-point scale from 1
(Bad) to 5 (Excellent), based on attributes such as naturalness and intelligibility. The averaged
score, and the 95% confidence interval are typically reported to support the interpretation of
results and statistical significance. In addition, a variant known as Similarity MOS (SMOS)
is used to evaluate how similar the synthesized speech is to a target reference, often in tasks
where preserving the original speaker’s identity or style is critical.

MUSHRA The Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) test, stan-
dardized by ITU-R BS.1534, is a subjective method for evaluating audio quality, particularly
effective for systems at intermediate to high-quality levels. In this test, listeners rate a set of
stimuli, including the systems under evaluation, a hidden high-quality reference, and one or
more degraded anchors, on a continuous scale (0-100). This comparative approach allows for
finer distinctions in quality than MOS, helping to detect subtle differences in perceived audio
quality among high-fidelity speech synthesis systems.

Preference test The preference test is a subjective method to determine human preference
between two or more speech synthesis systems. Listeners are presented with pairs of audio
samples from different systems for the same text and are asked to indicate their preference
based on criteria like naturalness or overall quality, or to judge them as equally good. Results
are reported as the percentage of listeners who preferred one system, with confidence intervals
provided to assess the statistical reliability and significance of the differences between systems.

Objective Evaluation

Quality Conventional objective measures of speech quality, such as Mel-Cepstral Distortion
(MCD), Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001), Short-Time Objective
Intelligibility (STOI) (Taal et al., 2010), and Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)
(Roux et al., 2019), are often insufficient for distinguishing the nuanced quality differences
produced by modern TTS systems. To address this limitation, recent approaches employ
neural networks to predict perceptual scores like MOS, aiming to approximate human judg-
ments. For example, UTMOS (Saeki et al., 2022), developed for the VoiceMOS Challenge 2022
(Huang et al., 2022d), adopts an ensemble approach combining fine-tuned self-supervised
models such as wav2vec 2 (Baevski et al., 2020) and WavLM (Chen et al., 2022), and traditional
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machine learning methods applied to extracted features. TorchAudio-Squim (Kumar et al.,
2023) provides a reference-less framework capable of estimating both objective metrics,such
as PESQ, STOI, and SI-SDR, and subjective MOS, utilizing deep recurrent neural networks to
model sequential features. While such models offer scalable and efficient means of evaluation,
they remain surrogate metrics and should be complemented by formal subjective testing for
reliable performance assessment.

Intelligibility A practical and increasingly adopted approach to assessing the intelligibility
of synthesized speech involves applying automatic speech recognition (ASR) systems to
the synthesized audio to generate transcriptions, which are then compared against ground
truth text using standard metrics such as word error rate (WER) and character error rate
(CER). This method leverages the availability of high-performance open-source ASR models,
including wav2vec (Baevski et al., 2020), WavLM (Chen et al., 2022), and Whisper (Radford
etal., 2023), enabling objective and scalable intelligibility evaluation without requiring manual
transcription. Limitations of this approach include potential bias within the ASR system,
misalignment with human perception, and dependency on the ASR model’s performance.

Similarity Similar to intelligibility, speaker similarity can be automatically evaluated using
speaker verification models that compare synthesized speech with a reference sample and
produce a similarity score. High-performing models for this task include ECAPA-TDNN
(Desplanques et al., 2020) and self-supervised models such as WavLM (Chen et al., 2022).
Beyond speaker identity, this approach can be extended to assess similarity in paralinguistic
features such as emotion and speaking style, provided appropriate recognizers are available.
For example, the accuracy of emotion recognition can serve as a proxy for evaluating emotional
expressiveness in synthesized speech. However, as with ASR-based intelligibility measures, the
reliability of these evaluations heavily depends on the performance of the underlying models,
and formal subjective assessments remain essential for comprehensive validation.

2.5.2 Natural Language Processing
Perplexity

Perplexity is a commonly used evaluation metric for language models, quantifying how well a
model predicts a sample of text. It is defined as the exponentiation of the average negative log-
likelihood of a test set, providing an intuitive measure of uncertainty in the model’s predictions.
For alanguage model that assigns a probability distribution P(w;, w,, ..., wy) to a sequence of
words wy, wo,..., wy, the perplexity (PPL) is given by: PPL = exp (—% Zﬁ\il logP(wilwy,..., wi,l))
where N is the length of the word sequence, and P(w;|wy,..., w;_1) represents the probability
assigned to word w; conditioned on the preceding words. A lower perplexity indicates a
better-performing model, as it reflects greater confidence in its predictions of the next word.
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Calibration Measures

In addition to predictive accuracy, three commonly used metrics for assessing calibration
are expected calibration error (ECE), negative log-likelihood (NLL), and the Brier score. A
well-calibrated model ensures that when it predicts a class with probability p, the actual
probability of the prediction being correct is also close to p. Each of these metrics offers a
unique perspective on how well the model’s confidence aligns with its correctness.

Expected calibration error (ECE) The ECE measures the discrepancy between a model’s
predicted probabilities and the true empirical probabilities. ECE computes this by partitioning
predictions into confidence bins and comparing the mean predicted confidence with the
empirical accuracy within each bin. For M bins, ECE is defined as:

ECE= Z M lacc(Byn) — conf(By,)], (2.11)

where B, is the set of samples in bin m, |B,,| is the size of the set, acc(B;;,) is the accuracy
within bin m, conf(B,,) is the average predicted confidence within bin m, and n is the number
of samples. Lower ECE indicates better calibration.

Negative log likelihood (NLL) Derived from the likelihood principle, NLL measures how well
the predicted class probabilities align with the true labels. For a dataset of n samples, NLL is
computed as:

1 n
NLL=-— Y logp(y; |x:), (2.12)
i=1

where p(y; | x;) is the predicted probability for the true class y;, x; is the test input. NLL
penalizes models that assign low probabilities to the correct class, reflecting performance in
both calibration and discrimination. A lower NLL indicates better correctness and sharpness.

Brier score The Brier score evaluates the mean squared error between predicted probabilities
and the true labels. For a classification task with K classes, the Brier score is defined as:

Brier =

1.2 K
- Z Y (pi = kix) =1y = b)), 2.13)
n:

i=1k=1

where 1(y; = k) is an indicator function. The score ranges from 0 to 1, with lower values
indicating better-calibrated predictions.
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8] A Diffusion-Based Adaptive TTS
Model

Encoder-decoder models such as Tacotron 2 (Wang et al., 2017) and FastSpeech 2 (Ren et al.,
2021a) have significantly advanced acoustic modeling for TTS, enabling high-quality and
efficient speech generation. More recently, the integration of flow (Valle et al., 2021; Kim et al.,
2020), diffusion (Jeong et al., 2021; Popov et al., 2021), and flow matching models (Mehta et al.,
2024) as decoders of acoustic models has further enhanced the quality and naturalness of
synthesized speech. In this chapter, we aim to design an architecture that not only generates
high-quality, natural-sounding speech but also supports efficient adaptation in low-resource
settings, both in terms of data and model parameters.

Building on the success of diffusion in synthesizing realistic speech Jeong et al. (2021); Lee
et al. (2022), we investigate how diffusion can be included in adaptive TTS systems. Inspired
by the adaptable layer norm modules for transformer, we adapt a new backbone of diffusion
models, Diffusion Transformer, for acoustic modeling. Specifically, the adaptive layer norm
in the architecture is used to condition the diffusion network on text representations, which
further enables parameter-efficient adaptation. We show the new architecture to be a faster
alternative to its convolutional counterpart for general TTS, while demonstrating a clear
advantage on naturalness and similarity over the transformer for few-shot and few-parameter
adaptation.

To evaluate our system against state-of-the-art approaches, we submitted an entry to the Bliz-
zard Challenge 2023 (Perrotin et al., 2023), which focused on TTS for the French language. Our
submission utilized the proposed model, with an additional focus on text analysis—specifically
addressing liaisons and heterophonic homographs. Formal evaluations ranked our system
favorably among competing entries, demonstrating its ability to achieve state-of-the-art per-
formance in terms of synthesis quality and naturalness.

This chapter is a consolidation of the following publications:

Chen, H. and Garner, P. N. (2023a). Diffusion transformer for adaptive text-to-speech. In
12th ISCA Speech Synthesis Workshop, SSW 2023, Grenoble, France, August 26-28, 2023, pages
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157-162. ISCA

Chen, H., He, M., de Gibson, L. C., and Garner, P. N. (2023). The Idiap speech synthesis system
for the Blizzard challenge 2023. In 18th Blizzard Challenge Workshop, Grenoble, France, August
29, 2023.1SCA

3.1 Introduction

Adaptive text-to-speech (TTS) (Wang et al., 2018; Min et al., 2021; Chen et al., 2021; Casanova
et al.,, 2022) aims to synthesize personalized voices of target speakers or speaking styles. In the
typical scenario of adaptive TTS, a source acoustic model pretrained on a large multi-speaker
corpus is adapted with limited data of the target to synthesize the desired voice. In general,
adaptive TTS systems should be well generalizable and adaptable to various speaker traits and
acoustic conditions with as few data as possible. Meanwhile, the adapted voice should be of
high quality and naturalness, in terms of which deep generative models (Kim et al., 2020, 2021;
Liu et al., 2022b) have demonstrated their superiority over previous solutions. In particular,
the more recent diffusion models (Liu et al., 2022b; Jeong et al., 2021; Popov et al., 2021) have
dominated in terms of quality and naturalness.

While the generalizability and adaptability have been the most important properties of adap-
tive TTS systems and in many cases interrelated, they can be attributed to different parts of
the model or algorithm design. On the one hand, the techniques that improve the ability to
generalize to various features in speech signals can be categorized into 1) employing reference
encoders to generate representations of the desired attribute of speech on various seman-
tic levels (Chen et al., 2021; Casanova et al., 2022; Huang et al., 2022b), which are normally
plugged in before the decoder; 2) learning algorithms that help factorize such representations
into expressive components (Wang et al., 2018; Min et al., 2021; Hsu et al., 2019), which are
usually combined with reference encoders; and 3) ad hoc designs of the model structure that
control desired features (Min et al., 2021; Chen et al., 2021; Choi et al., 2022), which are more
model-specific. On the other hand, adaptability, while partly overlapping with the former,
emphasizes more the application itself, including considerations of few-data (Chen et al.,
2021; Kim et al., 2022), few-parameter (Chen et al., 2021) and zero-shot (Casanova et al., 2022;
Wau et al., 2022) scenarios. However, no matter in which concept, there is a clear distinction
between generic techniques that fit different backbones, such as reference encoders, and
ones with ad hoc architectural designs of the network. The latter are more associated with
the adaptability of the model, especially in few-data and parameter-efficient settings. Fur-
thermore, when combined with generic adaptation techniques, such architectures will enable
both compute-efficient zero-shot adaptation, and high-quality adaptation when finetuning is
performed.

In general, we are interested in integrating adaptable components into diffusion-based acous-
tic models that add extra adaptability on top of their high-quality synthesis. Despite diffusion
models having been well studied for general acoustic modeling, few works have explored them
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for adaptive TTS systems. Guided-TTS 2 (Kim et al., 2022) utilizes diffusion with classifier guid-
ance to adapt to diverse voices, while lacking parameter efficiency since the whole decoder
needs finetuning during adaptation. In Grad-StyleSpeech (Kang et al., 2022), the diffusion
mostly works as a post-net that refines the output of an adaptive transformer decoder, and
the researchers only tested adapting the whole diffusion post-net in the few-shot setting. Our
preliminary study (Chen and Garner, 2023b) shows a convolutional diffusion decoder can
be adapted using conditional layer normalization, however, it must be used with adaptive
transformer layers to achieve usable adaptation quality. Our search for solutions focuses
on the architecture design of the diffusion backbone. Such a design will not only facilitate
parameter-efficient adaptation during finetuning, but also has the potential to be combined
with a reference encoder to improve the network’s generalizability.

In this context, we propose to adapt a novel backbone of diffusion models, Diffusion Trans-
former (DiT) (Peebles and Xie, 2022), for adaptive TTS. Inspired by the recent innovation in
image synthesis and the effectiveness of conditional layer norm (Min et al., 2021; Chen et al.,
2021; Wu et al., 2022) in the transformer network, we adapt the DiT’s adaptive layer norm to re-
ceive a sequence as condition instead of the class embedding to make it suitable for TTS tasks.
Through a series of experiments, we demonstrate that 1) for general TTS tasks, the DiT can
serve as a substitute backbone for present diffusion decoders in the acoustic model, yielding
comparable performance to current designs while providing faster synthesis; 2) for few-shot
adaptation, the benefits of the DiT include its capability to perform parameter-efficient adap-
tation, and its superiority in speech quality and similarity over previous transformer-based
solutions; 3) when based on zero-shot adaptation solutions, the DiT can efficiently achieve
high-quality adaptation when finetuning is necessary. Audio samples are available !.

3.2 Diffusion Transformer for TTS

Like other deep generative model-based solutions, a typical diffusion-based acoustic model
comprises a transformer text encoder, a variance adapter adopted from FastSpeech 2 (Ren et al.,
2021a), and a diffusion-based decoder, as is shown in Figure 3.2a. Essentially, diffusion models
generate high-quality and natural samples by denoising a sample from a prior distribution to
real data through a diffusion process. In most cases, the learning problem of diffusion can be
expressed as learning a denoiser network that predicts the noise in each diffusion step, while
other parameterization forms of the denoiser also exist.

3.2.1 Architecture

In principle, the denoiser network takes the sample from the previous step as input to predict
the noise in the reverse diffusion process while being conditioned on text representations C
and the step embedding . The network design enjoys flexibility as long as its output has the

https:/ /recherchetts.github.io/dit/
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Figure 3.1: The architecture of the non-causal WaveNet-based diffusion backbone network.

same dimension as the input. The prevalent architectures of the denoiser network in acoustic
models include the bidirectional dilated convolutional network (CNN) (Jeong et al., 2021; Liu
et al., 2022b; Huang et al., 2022¢) as is shown in Figure 3.1, also referred to as the non-causal
WaveNet (van den Oord et al., 2016), and the U-Net (Popov et al., 2021; Kim et al., 2022). The
former is best known for the inductive bias of audio signals and is also commonly used in
variational autoencoders (Ren et al., 2021b) and flow models (Kim et al., 2020, 2021; Prenger
et al., 2019), while the U-Net (Ronneberger et al., 2015) is a generic network that originates
from image processing.

Recently, Peebles and Xie (2022) proposed a new class of diffusion models based on the trans-
former architecture, namely Diffusion Transformer (DiT), which was shown to outperform
U-Net backbones and inherit the scalability, robustness and efficiency of the transformer
model class. As is depicted in Figure 3.2b, the DiT blocks receive the sample from the last
step as input, perform the common transformations of the transformer and generate the
output. The innovation of DiT lies in the way conditions are injected into the network: the
standard layer norm modules in the transformer blocks are replaced with adaptive layer norm
(adaLN), so that the dimension-wise scale and shift parameters ¥ and § can be regressed
from the sum of the class embedding c and the step embedding ¢ through a linear layer. In
addition to adaLN, the authors further propose to zero-initiate the final adaptive layer norm
in each block to accelerate convergence, and also regress scaling parameters « that are placed
before any residual connections within the DiT block. This is referred to as adaLN-Zero. The
authors demonstrate that adalLN-Zero achieves the best performance and adds the least com-
putation cost to the model compared to introducing conditions by in-context learning and
cross-attention.

The original DiT was tested on image synthesis tasks, in which only the class embedding
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Figure 3.2: The architecture of the DiT-based acoustic model. The reference encoder only
exists in adaptive TTS systems.

controls the content to be generated. To adapt it for TTS, we make the adaLN-Zero accept a
sequence of encoded text representations. In actuality, the implementation of adalL.N-Zero
requires no modification whatsoever. The novelty lies in the fact that the regression of all scale
and shift parameters is now performed on the sum of the text representation matrix C and the
step embedding t, generating the necessary scale and shift parameters for each vector in the
input sequence, as is shown in Figure 3.2c. Note that the size of the text representation matrix
matches that of the hidden representations in the DiT block, since they are both expanded to
the length of the mel spectrogram using phoneme durations. Therefore, instead of the same
scale and shift vectors applied on the entire input sequence in the affine transform of the
layer norm, a sequence of such vectors with the same dimension as the input is applied. This
allows the adaptive layer norm to modulate the input sequence using the text representations
without adding any computation cost compared to the original adal.N.

3.2.2 Generator-Based Diffusion

Following Chapter 2.1.3, the common parameterization method of diffusion is to let the neural
network be a noise predictor. It originates from the reverse diffusion process (Eq. 2.7):

po (Xi—11X1) =N (Xr—1; g X¢, 1), Zg (X¢, 1)) 3.1)

where the reverse transition probability pg (x;-; | X;) is parameterized by a neural network .
By setting =g (X, f) to a constant and reparameterizing Xy = \/L{Tt (x; — v/I—a.€) which is de-
rived from the noise adding function of the forward process (Eq. 2.6): g(x¢|xg) = N (X;; v@Xo, (1—
a;)) , the problem of learning pgy can be converted to estimating the Gaussian noise €, result-
ing in the simplified loss function (Eq. 2.10):

Lsimple(0) = Erx, ¢ [ll€ — €9 (x¢, D1I] (3.2)
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With the diffusion in this form, it usually requires hundreds to thousands of denoising steps to
ensure high-quality synthesis.

An alternative way to parameterize the denoiser is to make it directly predict the clean data
in each denoising step. Specifically, the neural network fp (x;, f) that outputs Xy given x; now
models the distribution pg(x¢ | x;). Next, x;_; is sampled using the posterior distribution:

q (X¢-1 | X¢,X0) = N (X¢—1; 1, (X1, %0) , B1)
V1P \/a_t(l_dt—l)x

fiy (X, Xg) = + ,

e (X1, X0) 1—a, Xo 1-a, t (3.3)
s 1—ai
pi=tp

The rest of the inference process remains the same. The loss is then defined in the data space:

Lo e 0 =Er [ [%0- fo x| (3.4)

simple

This parameterization method is sometimes referred to as the generator-based method (Sal-
imans and Ho, 2022; Huang et al., 2022c). Some recent work (Huang et al., 2022c; Liu et al.,
2022c) utilizes this method to enable fast synthesis for diffusion-based acoustic models. Huang
et al. (2022c) compared the generator-based method with the conventional denoising-based
method with varying diffusion steps and found that the former achieved the highest quality in
all settings. To accelerate inference while maintaining high synthesis quality, we adopt the
generator-based method in our model.

3.2.3 Comparison with Baseline

We first test our model on basic TTS tasks and compare the DiT architecture with the prevalent
non-causal WaveNet. We would expect the DiT to perform identically to the baseline in terms
of speech quality.

Implementation details Both models consist of a 4-layer transformer phoneme encoder with
a hidden size of 256, a variance adapter that is the same as the one in FastSpeech 2 (Ren et al.,
2021a), and a diffusion decoder. The DiT network is configured as 4-layer with a hidden size
of 256 and 2 attention heads, which is the same as a commonly-used transformer decoder,
while the WaveNet network is set to 20-layer with 256 hidden size. Our implementation is
based on the open-source software ? 3 of related models. The numbers of parameters of the
WaveNet-based model and the DiT-based model are 30.50M and 28.83M, respectively.

2NATSpeech: https://github.com/NATSpeech/NATSpeech
SDIT: https://github.com/facebookresearch/DiT
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Table 3.1: The MOS scores with 95% confidence interval, SECS and CER scores on L]Speech,
and real-time factors.

Arch. | MOS(1) | SECS(f) | CER(]) | RTF())
Vocoder | 4.35+0.10 | 0983 | 1.83% | -
WaveNet | 4.06+0.10 | 0.790 | 2.41% | 0.021

DiT 4.01+0.10 0.784 2.38% 0.012

Data We train the models on the single speaker corpus L]Speech (Ito, 2017). Two sets of 500
utterances are selected as the validation and test set, while the rest are used as training set. All
data are preprocessed following the practice in FastSpeech 2, with a sampling rate of 22,050
Hz.

Training and inference The models are trained on one NVIDIA RTX3090 using a batch size of
40,000 speech frames, with the “rsqrt" (reciprocal of the square root) scheduler, 4,000 warm-up
steps, and a learning rate factor of 2. For the diffusion process, a beta schedule of 16 steps
is used for both training and inference. A HiFi-GAN (Kong et al., 2020) vocoder trained on
LJSpeech is used to synthesize waveforms. The inference is performed on the same hardware.

Evaluation For objective evaluation, we utilize the SpeechBrain (Ravanelli et al., 2021) toolkit

to run speaker verification and speech recognition *

on the entire test set. The averaged
speaker embedding cosine similarity (SECS) and character error rate (CER) are calculated
as indicators of how well the model captures the speaker identity and the intelligibility of
synthesized samples. For subjective evaluation, we recruited 20 native raters on Prolific °
crowd-sourcing platform to rate the overall quality and naturalness of randomly selected 20
samples from the test set using the P808 toolkit (Naderi and Cutler, 2020). We also calculate the
real-time factor (RTF) of the two models that reflects the synthesis speed, which is conducted

when synthesizing around 200 paragraphs.

3.2.4 Results

All test results are listed in Table 3.1. The subjective test results show the DiT architecture has
a gap of only 0.05 compared to the non-causal WaveNet within the 95% confidence interval of
0.10 which, consistent with our expectation, suggests the DiT offers a similar synthesis quality
to the prevalent architecture. This is also reflected on the two objective test scores, which only
demonstrate minor difference between the two architectures.

The RTFs indicate that the model with a DiT backbone is overall 70% faster than the one with

4spkrec-ecapa-voxceleb; asr-wav2vec2-librispeech
Shttps:/ /www.prolific.co
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a WaveNet backbone, using the model configuration above. By breaking down the time cost
into different components, we found that the 4-layer DiT-based decoder has around 2.4 times
the speed of a 20-layer WaveNet-based decoder.

Overall, the results of the basic TTS task demonstrate that the DiT is a faster alternative of
the diffusion backbone to the non-causal WaveNet, which also shows a slight advantage on
the model size. This is perhaps not persuasive enough for switching the diffusion backbone,
however, the merit of DiT lies in its ability to be adapted efficiently, which will be elaborated in
the next section.

3.3 Adaptive Diffusion Transformer

3.3.1 Method

In the transformer architecture (Vaswani et al., 2017), the layer norm (Ba et al., 2016) helps
reduce the variance of the hidden representations after the attention and feed-forward trans-
formation to stabilize and speed up training. Previous work (Min et al., 2021; Chen et al., 2021;
Wu et al., 2022) has found that the layer norm in transformer can greatly influence the hidden
activation and the final prediction with the learnable scale and shift parameters. Furthermore,
these parameters can be regressed from the speaker or style representation, e.g. the speaker
embedding, through a small neural network, which can be finetuned during adaptation. The
method significantly reduces the number of parameters to be adapted for each new speaker
or style, while maintaining high-quality synthesis.

As for DiT, the architecture unification enables us to apply the same method to the adaptive
layer norm. Inherently, the adaLN receives all the conditional input to the decoder, including
the speaker embedding and possibly embeddings from reference encoders. This cancels the
requirement for any additional input to the decoder.

In the following experiments, we compare our adaptive DiT model with AdaSpeech, a transformer-
based solution with conditional layer norm. Given the diffusion’s superiority in high-quality
synthesis, we would expect the DiT to offer better speech quality and speaker similarity
compared to the baseline.

3.3.2 Experimental Setup

Implementation details We implement necessary components to construct AdaSpeech using
the same TTS framework as before, including the phoneme- and utterance-level encoders in
the acoustic condition modeling module and the conditional layer norm in the transformer
decoder layers. We use the same acoustic condition modeling module as AdaSpeech, thus
the only difference between the DiT-based model and AdaSpeech is the decoder architecture.
The model configuration of AdaSpeech follows the official settings, while the DiT follows the
previous configuration.
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Table 3.2: The subjective and objective test results of few-shot adaptation experiments.

Dataset | | VCTK | LibriTTS
Metric | #Params | MOS()  SMOS() SECS(1) CER(l) | SECS(1) CER(])
Vocoder | - | 437+0.08 - 0955  3.16% | 0929  261%
AdaSpeech

1.184M | 2.76+0.08 2.86+0.10 0.505 3.12% 0.508 3.77%

1.711IM | 3.77+0.09 3.94+0.10 0.570 2.50% 0.582 3.46%

Data All models are pretrained on the two clean subsets train-clean-360 and train-clean-100
of the multi-speaker LibriTTS dataset (Zen et al., 2019), with a total of 1151 speakers and 245
hours. For adaptation, we use LibriTTS and the multi-speaker corpus VCTK (Yamagishi et al.,
2019) to test the in-domain and out-of-domain adaptation performances. For LibriTTS, we
select 10 speakers from the test-clean subset, and 10 random utterances for each speaker
as test set. For VCTK, 11 speakers (7 females and 4 males) with different accents are selected
following (Casanova et al., 2022), while for each speaker 10 utterances with the same spoken
content across all speakers are selected as test set.

Training, adaptation, and inference Following AdaSpeech, all models are trained in two
stages in which the numbers of training steps are 60,000 and 40,000 respectively, on the
same hardware as before. The batch size is set to 50,000 speech frames for AdaSpeech and
40,000 for the DiT-based model. Other configurations follow the official or previous settings
unless otherwise stated. During adaptation, only the speaker embedding and the layer norm
modules are finetuned using 10 random utterances of the target speaker for 2,000 steps using
a fixed learning rate of 2 x 10~%. A HiFi-GAN vocoder trained on VCTK is used to synthesize
waveforms.

Evaluation Subjective tests are carried out for the more challenging LibriTTS to VCTK out-
of-domain adaptation task. The same 20 native raters are involved in the subjective test to
rate the MOS for naturalness and the SMOS (Similarity MOS) for speaker similarity of 22
speaker-balanced samples from the VCTK test set generated by each system. The reference of
each utterance given in the subjective test is the vocoder synthesized sample of the utterance.
The objective SECS and CER scores are calculated on the entire test sets of both VCTK and
LibriTTS. We calculate the number of parameters to be finetuned for each model.

3.3.3 Results and Analyses

The subjective and objective test results are shown in Table 3.2. In the out-of-domain adapta-
tion task, subjective test results demonstrate a clear improvement of both naturalness and
speaker similarity by the DiT decoder compared to the transformer. In objective evaluation,
the DiT achieves a higher speaker similarity score and a lower character error rate, which
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indicates the DiT is able to generate more intelligible speech with a voice more similar to the
reference. In the in-domain adaptation task, the DiT results in a higher speaker similarity score,
while AdaSpeech does not improve much. The DiT has approximately 50% more parameters
finetuned compared to the transformer, due to the extra scaling parameters a.

‘+ AS VCTK DIT VCTK -e- ASILT DiT LT‘
2
8
e 2.5 a
o
S
o 3 0 .
g
’é‘ 3.5 °10
3 205
54 : 1
3]
I
S 45 8
=
O

1 1 1 1
0.35 0.4 0.45 0.5 0.55 0.6
Speaker cosine similarity (SPK)

Figure 3.3: The speaker embedding cosine similarity (SECS) and character error rate (CER)
of varying adaptation data. The number of utterances used for adaptation is labeled on each
data point. AS: AdaSpeech, LT: LibriTTS.

We further study the naturalness and speaker similarity with varying amount of adaptation
data on VCTK and LibriTTS, and conduct objective tests. As is shown in Figure 3.3, with
increasing number of utterances used for adaptation, the speaker similarity and intelligibility
continue to improve for all models and on both datasets. Overall, the DiT outperforms the
transformer in both metrics under all settings, and the difference between the two models
becomes larger when the more utterances are available.

It is worth noting that, during our test listening of the adapted samples, we found AdaSpeech is
more sensitive to the noise in the training data than the DiT, resulting in the adapted samples
being more noisy. This is likely due to the low-quality samples in the train-clean-360
subset, since adapting an AdaSpeech trained on VCTK results in a cleaner voice. Nonetheless,
this phenomenon suggests the DiT is more robust against noise, which can be explained with
the diffusion’s denoising nature.

3.3.4 Zero-Shot Adaptation

Previous experiments have demonstrated that the DiT when adapted is able to generate a
more high-quality voice with better similarity to the target compared to the transformer.
Although we mainly focus on few-shot adaptation tasks, we are still interested to see how the
architecture performs in the zero-shot setting. We also take the chance to demystify what part
of the model architecture contributes the most to the generalizability of the model.

We first test the transformer decoder, the DiT decoder, and the non-causal WaveNet-based
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diffusion decoder on top of the acoustic condition modeling module (the reference encoding)
of AdaSpeech. All three models are trained on LibriTTS using the recipe described in Section
3.3. For inference, we randomly select one utterance from the target speaker in the VCTK
test set. The objective test results are shown in Table 3.3. It can be observed that the DiT-
based and the WaveNet-based diffusion decoders bring similar slight improvements to the
speaker similarity compared to the transformer decoder, although all scores are significantly
lower than few-shot adaptation. The WaveNet-based diffusion decoder seems to yield better
intelligibility than DiT, however both diffusion decoders outperform the transformer.

We further base the two diffusion decoders on a state-of-the-art zero-shot solution, Gener-
Speech (Huang et al., 2022b), and its official implementation ®. All models share the same
official training recipe. Note that in GenerSpeech, a flow-based post-net is used on top of
the transformer decoder to refine the output. We found the 4-layer DiT in this setting is
difficult to converge, hence we use a 6-layer one instead. This time the diffusion does not
show much improvement on the speaker similarity compared to the transformer. However,
the two diffusion-based models yield notably higher intelligibility which is reflected on the
CER, with the WaveNet backbone slightly better than the DiT.

Table 3.3: The objective test results of zero-shot adaptation.

Arch. ‘ AdaSpeech ‘ GenerSpeech

Metric | SECS (1) CER(]) | SECS(1) CER(l)
Vocoder | 0955  3.16% | 0955  3.16%
Transformer 0.107 2.66% 0.292 6.90%
DiT 0132  234% | 0299  4.43%
WaveNet 0134  220% | 0307  4.06%

Overall, the results suggest that despite the diffusion providing slightly better speaker similarity,
the bulk of generalizability lies in the reference encoding part of one adaptive system. Under
these certain architectures of the acoustic model, the main benefit of a diffusion decoder in
a zero-shot adaptive system is the higher-quality synthesis, rather than better similarity. In
comparison with few-shot adaptation, the results also demonstrate the necessity of finetuning
to achieve high similarity. On the choice of backbone architecture in the zero-shot setting, the
WaveNet seems to slightly outperform the DiT. However, as is discussed above, the adaptive
layer norm in the DiT backbone enables the model to be adapted efficiently when finetuning
is performed, while the DiT is still a decent alternative to the prevalent non-causal WaveNet in
zero-shot usage.

6https://github.com/Rongjiehuang/GenerSpeech
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3.4 Blizzard Challenge 2023

To formally evaluate the performance of our system relative to other state-of-the-art TTS
systems, we submitted an entry to the Blizzard Challenge 2023, which focused on the task of
French TTS. Our system follows the conventional pipeline of text analysis, acoustic modeling
(AM) and vocoding. For text analysis, open-source pretrained part-of-speech (POS) taggers and
lemmatizers are utilized to provide more accurate grapheme-to-phoneme (G2P) conversion
on top of eSpeak. The rest of the system incorporates a fully diffusion-based approach which
comprises a diffusion transformer-based acoustic model and FastDiff as the vocoder, both
of which are trained only on the provided data to ensure high-quality synthesis. Our entry
provides a baseline for the cascading diffusion AM-vocoder architecture since no extra design
is adopted to enhance the naturalness of speech. Evaluation results have demonstrated high
synthesis quality of our system and the effectiveness of the proposed phonemization pipeline.

3.4.1 Introduction

The hub task of the Blizzard Challenge 2023 is to build a voice from the provided French
data, which consists of around 51 hours of audiobook recordings read by a female French
speaker. The spoke task focuses on speaker adaptation and aims to build a voice from around
2 hours of audiobook recordings read by another female French speaker. The Idiap system
was submitted to both the hub task and the spoke task.

The top priority of the text-to-speech (TTS) task is to generate high-quality, natural, and
intelligible speech. Since neural networks were first introduced to TTS (van den Oord et al.,
2016; Wang et al., 2017), the quality of the synthesized speech has been improved dramatically
over the intervening years. In recent years, deep generative model (DGM) based TTS systems
(Kim et al., 2020, 2021; Lee et al., 2022) have demonstrated their superiority in high-quality
and fast synthesis over previous sequence-to-sequence modeling counterparts (Shen et al.,
2018; Ren et al.,, 2021a; Zheng et al., 2020). In particular, the more recent diffusion-based
acoustic models (Jeong et al., 2021; Popov et al., 2021; Lee et al., 2022) and vocoders (Kong
et al., 2021; Lam et al., 2022; Huang et al., 2022a) have dominated in terms of quality and
naturalness. Since 2023, emerging large-scale pretrained language models (Wang et al., 2023a;
Rubenstein et al., 2023) and DGMs (Shen et al., 2023; Le et al., 2023) have revolutionized
speech synthesis research in generating human-level natural speech and adapting to the
target speaker, speaking style or language with very few data. However, these models are
neither open to the research community nor can be trained on normal hardware.

Given the provided data are of sufficient quality and quantity, the challenges mainly lie in how
to process liaisons and heterophonic homographs in the language which takes place during the
text analysis. In French, liaison refers to the act of pronouncing a linking consonant between
two words in a suitable phonetic and syntactic context, which usually gives information about
the grammatical structure of a noun phrase. The relatively rare heterophonic homographs
refer to words that are spelled the same but pronounced differently, and almost always occur
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between words of different grammatical categories. These special properties require extra
efforts to deliver accurate grapheme-to-phoneme (G2P) conversion in a neural TTS system
that uses phoneme input. Available open-source non-neural French phonemizers include the
Montreal Forced Aligner (MFA) (McAuliffe et al., 2017), Gruut 7 and eSpeak (also eSpeak-ng)
8, Among them, the first two only perform G2P on word level and handle neither liaison
nor homographs. While the eSpeak is a rule-based phonemizer and handles liaison in many
cases, it is unable to distinguish heterophonic homographs at the grammatical level since
it does not consider part-of-speech. There are also open-source neural G2P models (Zhu
et al., 2022) available for the French language, however these models are normally trained on
open-source lexicons that do not usually include liaisons and homographs; this limits their
performance in real-life scenarios. For systems that support character input (Shen et al., 2018;
Zheng et al., 2020; Kim et al., 2020, 2021), the problem can be solved to some extent by the
neural network itself given the corpus covers a wide range of the special cases. However, the
use of characters as textual input will largely induce higher computation cost and decelerate
training and inference due to longer input length compared to using phonemes.

From the practical point of view, the limited computational resources available to us and
the short time frame of the challenge are pertinent. Here at Idiap, the servers are mostly
equipped with consumer GPU cards and are not optimized for multi-GPU training, leaving
us a limited selection of model architectures. In addition, despite Idiap’s being situated in
a French speaking region, no dedicated toolboxes or dictionaries have been developed for
French TTS in recent years. This requires us to utilize publicly available resources as much as
possible to cope with the aforementioned particularities of the French language.

Based on the analyses above, we aimed to build a TTS system that 1) employs accessible model
architectures that offer high-quality and natural synthesis, 2) properly handles the special
properties of the French language, and 3) can be trained efficiently on our infrastructure to
allow fast verification and iteration. Specifically, for text analysis, we leveraged publicly avail-
able part-of-speech (POS) taggers and lemmatizers to achieve more accurate G2P conversion
on top of the eSpeak backend. For neural architectures, our system adopts a conventional
cascading architecture consisting of a diffusion transformer-based acoustic model and FastD-
iff (Huang et al., 2022a), a diffusion-based vocoder. The acoustic model employs a standard
non-autoregressive encoder-decoder design that purely relies on the generative modeling
power of the diffusion, which makes our system a baseline of the diffusion-based AM-vocoder
architecture. Evaluation results have shown a high quality synthesis achieved by our system
and the effectiveness of the text analysis pipeline.

7https://github.com/rhasspy/gruut
8https://github.com/espeak-ng/espeak-ng
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3.4.2 Text Analysis
Liaisons

Liaison in the French language refers to the phonetic linking or connection between words
in spoken language. It involves the pronunciation of a consonant sound at the end of a
word when the following word begins with a vowel sound. Liaison is a characteristic feature
of French pronunciation and helps maintain the smooth flow of speech. In most cases, it
is limited to word sequences that have a logical connection in meaning, such as an article
followed by a noun, an adjective followed by a noun, a personal pronoun followed by a verb,
and similar patterns.

The presence of specific liaison patterns in French makes rule-based phonemization a highly
suitable technique, which is exactly the one built into eSpeak. Other types of phonemizers also
exist, such as the lexicon-based Gruut. In a lexicon-based phonemizer, words are either looked
up in a pre-existing lexicon or their pronunciations are predicted using a pretrained G2P model.
However, the word-by-word nature of lexicon-based phonemization necessitates additional
rules to handle liaisons between words, which are often unavailable in such systems. Recent
advancements in G2P solutions, such as sequence-to-sequence neural networks utilized in
(Rao et al., 2015; Zhu et al., 2022), directly predict phonemes from the input text. Nevertheless,
the effectiveness of these models heavily relies on the coverage of the training text corpus,
limiting their practicality due to the scarcity of high-quality datasets.

Heterophonic Homographs

In general, heterophonic homographs in French are words that are spelled the same but
pronounced differently and have different meanings. Fortunately, their existence is relatively
rare, and the phenomenon almost always occurs between words of different grammatical
categories, which makes it possible to disambiguate by inferring from the grammatical context.

The first step is to understand in what grammatical categories the common homographs exist.
Among publicly available resources online, Wiktionary  provides a comprehensive list of 813
heterophonic homographs that exist in the French language. In one blog 1° and Hajj et al.
(2022), the most common scenarios are summarized and corresponding examples are given.
In summary, these scenarios include 1) indicative imperfect first person plural of a verb vs.
plural of a noun that end with “-tions”, 2) indicative present third person plural of a verb vs.
adjective or noun that end with “-ent”, 3) infinitive of a first group verb vs. nouns that end with
“-er”, and 4) miscellaneous cases.

Intuitively, for most cases where words in a pair fall in different grammatical categories, the
disambiguation can be done by identifying the part-of-speech of the word. For other cases

https://fr.wiktionary.org/wiki/ Cat%C3%A9gorie:Homographes_non_homophones_en_fran%C3%A7ais
10https://a3nm.net/blog/frencblizzard_non_homophonous_homographs.html
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where the two words belong to the same category, such as “convient” and “pressent”, this can
be solved by inferring the original form of the word from the context, i.e., lemmatization, to
determine their pronunciations.

Method

Having known the above particularities in the French language, we construct the text analysis
module as follows. First, the text input is phonemized by the eSpeak G2P backend. Since
eSpeak is able to process liaisons, we only need to refine its corresponding output for ho-
mographs considering the grammatical context. To achieve this, we first create a look-up
table where different pronunciations of each homographs and the corresponding part-of-
speech categories or original forms can be queried, mainly referring to the last two sources
mentioned above. During inference, if any homograph in the look-up table exists in the text,
we utilize publicly available pretrained POS taggers !! and lemmatizers !2 to recognize the
part-of-speech or the original form of the homograph. Using the inferred information, we refer
to the look-up table to obtain the actual phonemes of each homograph. Finally, we compare
the phonemes generated by eSpeak with the queried phonemes and rectify the incorrect
output.

3.4.3 Neural Architectures

To balance synthesis quality and training efficiency, we employ a cascading diffusion-based
architecture consisting of a diffusion transformer acoustic model and the FastDiff vocoder.

Acoustic Model

The acoustic model (Chen and Garner, 2023a) comprises 1) the transformer-based text encoder
that encodes phoneme embeddings into hidden representations, 2) the variance adapter
that predicts the pitch, energy, and duration of each phoneme and expands the hidden
representations to the length of the mel-spectrogram, and 3) the diffusion transformer decoder
which generates the mel-spectrogram through a diffusion process. The diffusion transformer
is an faster alternative to the most commonly used non-causal WaveNet that offers equivalent
synthesis quality.

The architecture of the acoustic model is rather standard: there are no extra components or
designs that particularly enhance the naturalness or the speaking style, thus it purely relies on
the generative modeling power of the diffusion to render natural speech. We take the chance
to see how the standard diffusion architecture performs compared to other more advanced
competitors, especially when trained on a highly expressive corpus.

Uhttps://huggingface.co/qanastek/pos- french- camembert-flair
12https:/ /github.com/explosion/spacy-models/releases/tag/fr_dep_news_trf-3.5.0
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Vocoder

FastDiff (Huang et al., 2022a) is a conditional diffusion-based vocoder for high-quality wave-
form synthesis. The denoiser network employs a stack of time-aware location-variable convo-
lutions with diverse receptive field patterns to model long-term time dependencies. Originally,
anoise predictor was further adopted to derive tighter schedules to accelerate inference with-
out distinct quality degradation. However, we found this algorithm is difficult to implement
and the derived sampling schedule must be optimized for every dataset, which makes it
less favorable for the adaptation task. Therefore, we use the linear schedule instead of the
fast schedule. We also found that FastDiff can be trained more efficiently compared to its
GAN-based counterparts, which usually require days of training and multiple GPUs.

3.4.4 Experiments
Data

For the hub task, the NEB corpus consists of 289 chapters of 5 audiobooks from Librivox read
by a female French speaker Nadine Eckert-Boulet (NEB), totaling 51 hours and 12 minutes.
Around two thirds of the utterances are annotated with texts, phonemes and phoneme du-
rations, while the other third has text only. We found the phoneme annotations provided
in the dataset lack the tonal and stress marks that are offered by eSpeak, and are likely to
be generated by speech recognition models since minor errors can be found. Given the
phonemes are unavailable during inference as part of the challenge, and the provided data
are insufficient to train a dedicated G2P model, we decide to use eSpeak’s phoneme set and
run the phoneme-audio alignment using Montreal Forced Aligner (McAuliffe et al., 2017) to
obtain the phoneme durations. Two sets of 500 utterances are selected as the validation and
test set, while the rest are used as training set. All data are preprocessed following the practice
in FastSpeech 2 (Ren et al., 2021a), with a sampling rate of 22,050 Hz.

For the spoke task, the AD corpus consists of 2515 utterances read by another female French
speaker Aurélie Derbier (AD), totaling 2 hours and 3 minutes. We randomly select 50 utterances
for the validation set and test set respectively, while the rest specifications follow the hub task.

Implementation Details

The model configurations of the acoustic model follow Chen and Garner (2023a), including
a 4-layer transformer encoder with 256 hidden size, a variance adapter same as the one in
Ren et al. (2021a), and a 4-layer diffusion transformer decoder with 256 hidden size and 2
heads. For the vocoder, we use the official implementation 13 without modification. The
number of parameters of the acoustic model is around 29M, while the vocoder has around
13M parameters.

13https://github.com/Rongjiehuang/FastDiff
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Training and Inference

All experiments are conducted on a single NVIDIA RTX 3090 GPU. For the hub task, the
acoustic model is trained using a batch size of 40,000 speech frames for 200k iterations, with
the “rsqrt” (reciprocal of the square root) scheduler, 4,000 warm-up steps, and a learning rate
factor of 2. For the diffusion process, a beta schedule of 16 steps is used for both training and
inference. The vocoder is trained using a batch size of 25,600 samples for 1M iterations, with a
constant learning rate of 2 x 10™*. We use a diffusion schedule of 1000 steps for training and
a faster schedule of 200 steps for inference. Both of the acoustic model and the vocoder are
trained from scratch, which takes around 1 day and 2 days, respectively. The real-time factor
of the entire system is 0.48, in which the acoustic model counts for 0.01 while the vocoder
takes up the majority of inference time.

For the spoke task, we finetune the entire acoustic model and vocoder used for the hub task
to adapt to the AD voice. Specifically, the acoustic model is finetuned for 20k steps with a
learning rate of 2 x 10~#, while the vocoder is finetuned for 10k steps with a learning rate of
1x1074.

3.4.5 Results and Analyses

Our system is identified as 7, whereas A represents natural speech, and BF and BT are two
reference systems.

Hub Task: Quality

Our system is ranked the 7th among 18 participants with a mean MOS score of 3.8. Three
systems achieved significantly higher synthesis quality compared to ours, while four together
with our system yielded comparable results. In the detailed results broken down by the
qualification of testers, we found that non-native listeners and non-speech experts tended
to give higher scores compared to native listeners and speech experts. The results suggest
that despite our system offering high signal quality, it might be at a disadvantage in terms of
naturalness. This can be attributed to the lack of more advanced prosody modeling techniques
in the acoustic model, since only the conventional variance adapter was used.

Hub Task: Similarity

For the similarity test, the ranking is 9/18 with a mean MOS score of 3.0. Similar patterns can
be found in the results breakdown as in the quality test. We also notice that the speaking style
of the generated speech can sometimes be distinct from the reference, which can be attributed
to the generative modeling nature of the diffusion decoder and the highly variable voice in the
audio book. Additional style modeling methods should be introduced to alleviate the issue.
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3.5 Conclusions

Hub Task: Intelligibility

In the heterophonic homograph intelligibility test, our system, ranked 6/18, achieves an
accuracy of 83% (the percentage of test utterances that are pronounced correctly), which is
17% higher than the reference system BF that relies solely on eSpeak. The results demonstrate
the effectiveness of our proposed text analysis pipeline. Since our method mainly depends on
the POS tagger and lemmatizer to correct the incorrect output of eSpeak, we would expect
using more accurate models can further improve the phonemization accuracy.
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Figure 3.6: Intelligibility of heterophonic homographs, hub task.

However, in the conventional intelligibility test, the word error rate of our system is surprisingly
high at 19.4%. One possible explanation for this phenomenon is that the lack of speaking
style and prosody modeling techniques in the acoustic model results in the fast speaking
rate commonly existing in the audio book corpus, which hampers the understanding of such
semantically unpredictable sentences. It could also have been caused by the inaccurate
alignment between phonemes and speech frames generated by MFA, in which case using a
more advanced forced alignment tool would help mitigate the issue.

Spoke Task

In the spoke task of speaker adaptation, our system, ranked in the middle, receives a quality
MOS of 3.9 and a similarity MOS of 3.6. Around four systems achieved significantly higher
scores than our system in both tests. The results are reasonable since we only perform finetun-
ing on the acoustic model and the vocoder without other dedicated adaptation techniques.

3.5 Conclusions

In this chapter, we proposed to utilize a new backbone of diffusion models, Diffusion Trans-
former, for adaptive TTS. Specifically, the adaptive layer norm in the architecture was used to
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condition the diffusion network on text representations, which further enabled parameter-
efficient adaptation. On basic TTS tasks, the new architecture was verified to be a faster
alternative to its convolutional counterpart. For few-shot adaptation, the DiT decoder demon-
strated a clear advantage on naturalness and speaker similarity over the transformer decoder
while maintaining parameter efficiency. When used in a zero-shot adaptive system, while we
found the DiT is a decent alternative to the non-causal WaveNet, its main merit is to provide
efficient high-quality adaptation when finetuning is performed. Combined with a diffusion-
based vocoder and additional efforts on text analysis for French, our system is ranked favorably
in the Blizzard Challenge 2023, demonstrating its capability of high-quality and natural speech
synthesis.
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Bayesian Transfer Learning for
Parameter-Efficient Fine-Tuning

This chapter is situated within the context of recent advances in TTS systems, which increas-
ingly rely on large-scale models pre-trained on extensive data. These models—particularly
those incorporating language model-based architectures—usually demonstrate strong zero-
shot synthesis capabilities and adopt general-purpose architectures such as transformers. As
aresult, parameter-efficient fine-tuning (PEFT) techniques, originally developed for broader
adaptation tasks, have emerged as a compelling approach for domain adaptation in TTS.

Despite their efficiency, PEFT methods remain vulnerable to catastrophic forgetting, where
fine-tuning can degrade the pre-trained model’s inherent capabilities. In the context of TTS,
this issue manifests as a loss of zero-shot synthesis performance, ultimately compromis-
ing generalizability and overall synthesis quality. To address this challenge, we investigate
Bayesian transfer learning theory to overcome forgetting within the PEFT framework. We
demonstrate that existing Bayesian transfer learning techniques can be applied to PEFT to
prevent catastrophic forgetting as long as the parameter shift of the fine-tuned layers can be
calculated differentiably. In a principled series of experiments on language modeling and
speech synthesis tasks, we utilize established Laplace approximations, including diagonal and
Kronecker-factored approaches, to regularize PEFT with low-rank adaptation (LoRA) and com-
pare their performance in pre-training knowledge preservation. Our results demonstrate that
catastrophic forgetting can be overcome by our methods without degrading the fine-tuning
performance, and using the Kronecker-factored approximation produces a better preservation
of the pre-training knowledge than the diagonal ones.

The work in this chapter has been published as:

Chen, H. and Garner, P. N. (2024). Bayesian parameter-efficient fine-tuning for overcoming
catastrophic forgetting. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
32:4253-4262
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4.1 Introduction

In the context of TTS, it has long been of interest to adapt a generic model to a specific domain
such as a given speaker identity, language, or emotion. The process is termed adaptation;
typically the generic model would be well-trained on a large dataset, whereas the (domain-
specific) adaptation dataset would be too small to train a bespoke model. Adaptation proved
particularly useful in statistical parametric and neural TTS (Yamagishi et al., 2009; Arik et al.,
2018), and remains a goal of the recent Blizzard Challenge (Perrotin et al., 2023). More recently,
the state of the art in TTS is represented by more generic generative models that have arisen
in the machine learning community, with advances made in the domains of text (Brown et al.,
2020; OpenAl, 2023), vision (Rombach et al., 2022; Saharia et al., 2022), and audio (Borsos
etal., 2023; Vyas et al., 2023), all feeding through to TTS.

A key paradigm that has emerged in the development and application of such generic models
is the pre-training fine-tuning approach, which involves initially training a model on a large
dataset (pre-training) and subsequently fine-tuning it on a task-specific dataset. The paradigm
has proven to be highly effective, leading to substantially more accurate and robust outcomes.
More recent large pre-trained models have increasingly been equipped with in-context or
zero-shot learning capabilities (Rombach et al., 2022; Wang et al., 2023a; Vyas et al., 2023).
However, when there are more data available for the target task, fine-tuning is still useful to
further improve the performance considerably (Mosbach et al., 2023). Notice that, whilst the
vocabulary differs slightly, the goal is the same as for TTS. It follows that current research in
fine-tuning provides the means to adapt current TTS models.

The performance gains achieved by large pre-trained models are undeniably linked to their
scale. Larger models, with their increased capacity, tend to deliver superior performance.
However, as the size of pre-trained models increases, the costs associated with fine-tuning
and storing all parameters become prohibitively high, making it practically infeasible. This
has led to the study of parameter-efficient fine-tuning (PEFT) techniques (Houlsby et al.,
2019; Li and Liang, 2021; Zaken et al., 2022; Hu et al., 2022), which optimize a small subset
of the model parameters (either original parameters or additional ones) while leaving the
rest unchanged, significantly reducing computation and storage costs. PEFT techniques have
not only facilitated fine-tuning of large pre-trained models on low-resource devices but also
enabled the easy sharing and deployment of customized models as far fewer parameters need
to be stored and transferred.

Despite the benefits of (parameter-efficient) fine-tuning, it is not without its pitfalls. One sig-
nificant risk is catastrophic forgetting (McCloskey and Cohen, 1989; French, 1999; Goodfellow
etal., 2014), where the model loses much of the knowledge it gained during pre-training. This
loss can adversely affect the model’s ability to generalize to unseen data, a critical aspect of
any machine learning model. The phenomenon is even more unfavorable on modern large
pre-trained models that are usually multi-functional by training on a diverse range of tasks
and data. For example, a language model may forget its general knowledge after continual
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instruction tuning (Luo et al., 2023), or hypothetically, the controllability of emotions of a
speech synthesizer may be compromised after fine-tuning on a specific voice.

Bayesian learning theory provides a principled solution to overcoming catastrophic forgetting.
Considering optimizing the neural network as performing a maximum a posteriori (MAP)
estimation of the network parameters given the fine-tuning data, it tries to find the optimal
trade-off between the likelihood of the fine-tuning data and the prior knowledge of the pre-
trained model, of which the latter is accessible in the form of the posterior over the parameters
given the pre-training data. Although the true posterior is intractable, it can be approximated
by fitting a Gaussian distribution with a mean equal to the MAP solution and a precision equal
to the observed Fisher information. The technique is known as the Laplace approximation
(MacKay, 1992) and has been thoroughly studied (Kirkpatrick et al., 2017; Martens and Grosse,
2015; Botev et al., 2017; Ritter et al., 2018b).

In this work, we demonstrate quite generally that existing Bayesian learning techniques can
be applied to PEFT to overcome catastrophic forgetting. Deriving from the Bayesian transfer
learning framework, we show that it is viable to regularize PEFT to preserve the pre-training
knowledge as long as the parameter shift of the fine-tuned layers can be expressed in a
differentiable manner. Utilizing established Laplace approximation techniques including
diagonal (Kirkpatrick et al., 2017; Li et al., 2018) and Kronecker-factored (Martens and Grosse,
2015; Ritter et al., 2018a) approximations of the Hessian, we conduct a series of experiments
on language modeling and speech synthesis tasks with low-rank adaptation (LoRA) (Hu et al.,
2022) to demonstrate the effectiveness and compare the performance of different methods.
Specifically, we start from a study on text classification and causal language modeling tasks, the
quantitative nature of which allows both rigorous comparison of techniques and comparison
with existing literature. We then verify our findings on our target task of speaker adaptation of
speech synthesis, where the results are typically more subjective and more onerous to generate.
Our results demonstrate that catastrophic forgetting can be overcome by such methods
without degrading the fine-tuning performance, and the Kronecker-factored approximations
generate a better preservation of the pre-training knowledge than the diagonal ones. Audio
samples and source code are available'.

4.2 Related Work

4.2.1 Laplace Approximation

The Laplace approximation (MacKay, 1992) is an established technique in statistics and ma-
chine learning to approximate a complex posterior distribution with a Gaussian distribution.
This is achieved by identifying the mode of the posterior distribution, which is the maximum
a posteriori estimate, and then approximating the distribution around this mode using a
second-order Taylor expansion. Two popular kinds of Laplace approximation are the diagonal

Thttps://github.com/idiap/bayesian- peft

45


https://github.com/idiap/bayesian-peft

Chapter 4. Bayesian Transfer Learning for Parameter-Efficient Fine-Tuning

approximation (Kirkpatrick et al., 2017; Li et al., 2018), which only considers the variance of
each model parameter itself and ignores the interactions between model parameters, and the
Kronecker-factored approximation (Martens and Grosse, 2015) that also takes the covariance
between parameters within each layer into account. Thanks to the additional information on
the off-diagonal elements of the Hessian, the Kronecker-factored approximation has been
shown to be more accurate than the diagonal approximation in capturing the loss landscape
(Ritter et al., 2018a).

The Laplace approximation has been widely applied in neural network optimization (natural
gradient descent) (Pascanu and Bengio, 2014; Martens and Grosse, 2015; Botev et al., 2017;
George et al., 2018), improving calibration of neural networks (predictive uncertainty estima-
tion) (Ritter et al., 2018b; Kristiadi et al., 2020; Immer et al., 2021a; Daxberger et al., 2021), and
overcoming catastrophic forgetting in transfer and continual learning (Kirkpatrick et al., 2017;
Ritter et al., 2018a; Kao et al., 2021). In this work, we focus on its application in mitigating
catastrophic forgetting in the PEFT setting.

4.2.2 Parameter-Efficient Fine-Tuning

There exists a variety of PEFT techniques taking different approaches to adding new trainable
components to, or modifying existing parameters of the pre-trained model. Representative
PEFT techniques include

1. inserting serial or parallel adapters with a bottleneck structure to the model (Houlsby
et al., 2019; Pfeiffer et al., 2020; He et al., 2022),

2. prepending trainable tokens to the input and hidden states of the transformer block (Li
and Liang, 2021; Lester et al., 2021),

3. fine-tuning the bias terms inside the model only (Zaken et al., 2022),

4. optimizing the low-rank approximation of the change of weights (Hu et al., 2022; Hyeon-
Woo et al., 2022; Edalati et al., 2023; Yeh et al., 2024), and

5. the combination of the above methods (He et al., 2022; Mao et al., 2022).

4.2.3 Continual Learning

Continual learning aims to enable the model to learn from non-stationary streams of data.
(van de Ven et al., 2022) categorizes continual learning into three types: task-, domain-, and
class-incremental learning. In the context of the adaptation of TTS models, we are interested
in the scenario where the pre-trained model is fine-tuned to solve the same task as the pre-
training one using data from different domains. This is an example of the domain-incremental
type. Despite close ties with continual learning, the scenario concerned aligns better with
transfer learning and domain adaptation. Further constraints that should be considered
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include that not all pre-training data are accessible and that the pre-training process cannot
be replayed. All such constraints limit the usage of techniques designed for task- and class-
incremental learning, such as Learning without Forgetting (Li and Hoiem, 2016) and Synaptic
Intelligence (Zenke et al., 2017).

There have been attempts to utilize PEFT techniques, mainly low-rank adaptation (LoRA),
in the continual learning setting. C-LoRA (Smith et al., 2024) leverages a self-regularization
mechanism with LoRA to prevent catastrophic forgetting in continual customization of text-
to-image models; O-LoRA (Wang et al., 2023b) continually learns tasks in different low-rank
subspaces that are kept orthogonal to each other to minimize interference. For general fine-
tuning, (Xiang et al., 2023) proposes to regularize the LoRA weights with Elastic Weight Con-
solidation (Kirkpatrick et al., 2017) when fine-tuning language models on question-answering
tasks while preserving their general inference abilities.

4.3 Bayesian Transfer Learning

4.3.1 Framework

The optimization of neural networks can be interpreted as performing a maximum a posteriori
(MAP) estimation of the network parameters 0 given the training data. In the transfer learning
setting, the model has been pre-trained on a task .A using data D 4, and is then fine-tuned on
a downstream task 3 using data Dp. The overall objective is to find the optimal parameters on
task B while preserving the prior knowledge of the pre-trained model on task .A. The posterior
to be maximized in the MAP estimation can be written as:

p(Dg5l0,DA)pO|D.4)
p(DpID.A)

_ pDplO)pOID.4)

- p(Dp)

p@|D4, Dp) =
4.1)

where Dg is assumed to be independent of D 4. Taking a logarithm of the posterior, the MAP
objective is therefore:

0" = argmaxlogp(0|D_4,Dp)
V]
=argmax[log p(Dzl0) +log p(B|D 4) —log p(Dp)] (4.2)
]

=argmax[log p(Dgl|0) +1og p(B|D 4)]
(V]

The first term p(Dg|0) is the likelihood of the data Dy given the parameters @, which can be
expressed as the training loss function on task 13, denoted by £5(0). The second term p(8|D 4)
is the posterior of the parameters given the pre-training data D 4. If training the network from
scratch, i.e., assuming D 4 and Dp to be one dataset D, this term is usually approximated
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by a zero-mean isotropic Gaussian distribution, i.e., p(@|D) = N(0]0,52]), corresponding to
L, regularization. However, for transfer learning, this posterior must encompass the prior
knowledge of the pre-trained model to reflect which parameters are important for task .A.
Despite the true posterior being intractable, log p(01D 4) can be defined as a function f(0) and
approximated around the optimum point f(6y) (MacKay, 1992), where 0 is the pre-trained
values and V f(8) = 0. Performing a second-order Taylor expansion on f (@) around 0 gives:

1
log p(BID 4) = f(B0) + (0 ~00) "V £(00)(0 —8y)
(4.3)
1
=f00)+5© —8y) 'H(@O -0))

where H is the Hessian matrix of (@) at 8y. The second term suggests that the posterior of
the parameters on the pre-training data can be approximated by a Gaussian distribution with
mean 6 and covariance H™!. Note that the negation of the expected value of the Hessian over
the data distribution is the Fisher information matrix (FIM) F, i.e., F = —Ep , [H]. Following
Equation 4.2, the training objective becomes:

1
6" =argmin[L5(0) -5 (0 - 80) 'H(O - 0p)] (4.4)
0

Finally, the loss function that we minimize during fine-tuning can be written as:
L(0)=Lp(0)+ 10 —00) F@O -0y (4.5)

where A is the regularization strength that determines how much prior knowledge should be
preserved during fine-tuning.

4.3.2 Diagonal Approximation of the Hessian

Modern neural networks typically have millions to billions of parameters, thus the Hessian,
being at least terabytes, is intractable to compute and store. One practical approximation of
the Hessian is the diagonal of the Fisher information matrix, i.e., the expected square of the
gradients over the data distribution, known as Elastic Weight Consolidation (EWC) (Kirkpatrick
etal., 2017). The loss function of EWC is:

Lewc(0) = L5(0) + AFgyc(0 —0)? (4.6)

where Fryy ¢ is the vectorized expected square of the gradients over the distribution of D 4.

To estimate Fgyy ¢, a small subset of the pre-training data D 4 is sampled and used to compute
the gradients of the training loss function £ 4(0) on task .A. The final Fgyy ¢ is then the average
of the square gradients over the sampled data.

A simplified version of EWC, named L2-SP (Li et al., 2018), assigns equal importance to all

48



4.3 Bayesian Transfer Learning

parameters, which is equivalent to assuming that the Fisher information matrix is an identity
matrix. The loss function of L2-SP is:

Lra-sp@) = L5(0) + A6 —0p)* (4.7)

L2-SP can be regarded as an extension of the £, regularization: instead of zero, it limits the
parameters to be close to the pre-trained values during fine-tuning by assigning a Gaussian
prior A (8, 0°1). Despite being overly simplified, L2-SP proves to be effective in preventing
catastrophic forgetting in transfer learning (Li et al., 2018), and is particularly useful when the
pre-training data are unavailable since no estimation of the FIM is required.

4.3.3 Kronecker-Factored Approximation of the Hessian

While first-order approximations such as EWC and L2-SP are simple and efficient, they are not
accurate enough to capture the complete loss landscape since they ignore the off-diagonal
elements of the Hessian, i.e., the interactions between parameters. To address this issue,
recent advances in second-order optimization (Martens and Grosse, 2015; Botev et al., 2017)
utilize block-diagonal approximations of the Hessian: the diagonal blocks of the Hessian, cor-
responding to the interactions between parameters within a single layer, can be approximated
as a Kronecker product of two much smaller matrices. This approximation is known as the
Kronecker-factored approximate curvature, usually abbreviated as KFAC.

Following (Martens and Grosse, 2015), we denote the input, the weight, the pre-activations, the
non-linear function, and the output of the /-th layer as a;_,, Wy, s;, ¢; and a;, respectively. For
simplicity, we only consider linear layers with no bias term, thus s; = W;a;_; and a; = ¢;(s;). We
further define g; = g—fl as the gradient of the loss function £ with respect to the pre-activations
s;. The FIM with respect to the weights W; can be written as:

0°L

F! == =A;09G (4.8)
KFAC™ 32yec(W)) FE

where vec(W;) is the vectorized form of W;, A; = al_lalT_l, G = glng and ® is the Kronecker
product operator. To calculate the expectation, the two factors are assumed to be independent,
thus the expected Kronecker product is approximated as the Kronecker product of the expected
factors. Thanks to a property of the Kronecker product, the quadratic penalty term for each
layer can be efficiently calculated:

(A; ® G))vec(AW)) = vec(G;AW,A)) 4.9)

where AW; =W, — W(l) is the parameter shift from the pre-trained weight W‘l) of the [-th layer.
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The overall loss function of KFAC is:

L
Lxrac(@) =Lp0)+1)_ vec(AW)) * vec(G;AW,A;) (4.10)
=1

Despite KFAC’s assumption of independence between layers, the most important in-layer
parameter interactions are taken into account. It has been demonstrated that KFAC leads to
better prior knowledge preservation in continual learning than using a diagonal approximation
of the Hessian (Ritter et al., 2018a).

4.4 Bayesian PEFT

In this work, we aim to show that Bayesian transfer learning can provide a unifying framework
for a variety of PEFT techniques. Such an approach not only retains the parameter efficiency of
PEFT but also brings a principled approach to regularization, in turn overcoming catastrophic
forgetting.

Looking back on Eq. 4.5, it is not difficult to see that, as long as the parameter shift AW; of
the fine-tuned layers can be expressed in a differentiable way, the Bayesian transfer learning
framework can be applied to any PEFT technique in the form of modification to the inherent
weight of the pre-trained model. The loss function of Bayesian transfer learning with PEFT is
therefore:

L
Lprrr(0) =L5(0) +AZV€C(AW1)TF1VGC(AWZ) (4.11)
=1

The most representative PEFT technique that fits this requirement is the low-rank adaptation
(LoRA) family. LoRA (Hu et al., 2022) aims to optimize the low-rank approximation of the
change of the original weight matrices based on the hypothesis that the change of weights
during fine-tuning has a low intrinsic rank. It is formulated as adding the matrix product of
two low-rank matrices to the original weight matrix, i.e., W; = W(l) + yAlBlT, where W{l) € R xdi
is the pre-trained weight matrix, y is a scaling factor, A; € R%*" and B; € R%*" are two low-
rank matrices. Therefore, the weight modification (delta weight) of each layer is simply
AW; = yAlBlT. Following Eq. 4.11, the loss function of Bayesian transfer learning with LoRA is:

L
L1orA0)=Lp0) + 1) vec(yAB]) Fivec(yA;B/) (4.12)
=1

Apart from the original LoRA, there exist several variants of LoRA including AdaLoRA (Zhang
et al., 2023b), which adaptively assigns the rank to the LoRA matrices in each layer, FedPara
(LoHa) (Hyeon-Woo et al., 2022; Yeh et al., 2024), of which the delta weight is the Hadamard
product of two LoRA delta weights, and KronA (LoKr) (Edalati et al., 2023; Yeh et al., 2024),
which generates the delta weight by the Kronecker product of two low-rank matrices. Thanks
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to the explicit formulation of the delta weight, the LoRA family fits any aforementioned
approximation of the Hessian in the Bayesian transfer learning framework. We also note
that other PEFT methods such as (IA)3 (Liu et al., 2022a) and Orthogonal Butterfly (Liu et al.,
2024b), that do not explicitly calculate the delta weight, also fit in the framework, although
regularizing these methods may require extra computation and memory. Given that the
original LoRA has achieved sufficiently good performance, e.g., it matches the full fine-tuning
performance on the GLUE benchmark (Hu et al., 2022), and other LoRA variants only offer
insubstantial improvements, we only employ the original LoRA and focus on the study of
regularization methods in our experiments.

4.5 Experiments: Language Modeling

4.5.1 Tasks

We first apply our methods to fine-tuning pre-trained language models with LoRA on two sets
of language modeling tasks: text classification and causal language modeling. The reason for
this choice of task is twofold: The first is that language models can be evaluated quantitatively;
a clear metric is associated with each task. The second is that it allows objective comparison
with the wider literature.

Text Classification

We select three sentence-pair classification tasks and one single-sentence classification task
from the GLUE benchmark (Wang et al., 2019). The sentence-pair tasks are: MNLI (Williams
et al., 2018), a natural language inference task of predicting whether a premise entails, con-
tradicts or is neutral to a hypothesis, QQP (Iyer et al., 2019), a paraphrase detection task of
predicting whether a pair of sentences are semantically equivalent, and QNLI (Rajpurkar
et al,, 2016), a question answering task of predicting whether a sentence answers a question.
The single-sentence task is SST-2 (Socher et al., 2013), a sentiment analysis task of predicting
whether a sentence has positive or negative sentiment. For all tasks, the fine-tuning perfor-
mance is reflected by the accuracy on the validation set. The number of training examples in
the 4 selected datasets are MNLI: 393k, QQP: 363k, QNLI: 105k, and SST-2: 67k.

Causal Language Modeling

We experiment on the two subsets, WikiText-2 and WikiText-103, of the WikiText dataset
(Merity et al., 2017), a collection of over 100 million tokens extracted from the set of verified
good and featured articles on Wikipedia. The number of tokens in WikiText-2 and WikiText-103
are 2.1M and 103M, respectively. The fine-tuning performance is reflected by the perplexity
on the validation set, which is shared by the two subsets.
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4.5.2 Model: OPT

We select the Open Pre-trained Transformers (OPTs) (Zhang et al., 2022) with 350M and 1.3B
parameters as the pre-trained models for our experiments. The OPTs are a suite of decoder-
only transformers ranging from 125M to 175B parameters pre-trained on a series of large
open-access corpora, including a subset of the Pile (Gao et al., 2021). Our choice of model
sizes is based on those of state-of-the-art pre-trained TTS models ranging from 100M to 1B
parameters (Li et al., 2023; Vyas et al., 2023; Lajszczak et al., 2024), so that the findings will
hopefully provide useful guidance for our target task.

For text classification, a classification head is added on the last token the model generates and
trained along with LoRA. This is purely for the simplicity of the implementation, though it
could also be done by instruction tuning. For causal language modeling, the model structure
remains unchanged.

4.5.3 Experimental Details

Implementation We base our code on the text classification and the causal language mod-
eling examples of the Hugging Face Transformers library (Wolf et al., 2020). The Bayesian
transfer learning techniques are implemented with the Hugging Face Parameter-Efficient
Fine-Tuning (PEFT) library (Mangrulkar et al., 2022).

Hessian estimation The Hessian estimates are computed on the pre-training task, i.e., the
causal language modeling task, and are shared by all fine-tuning tasks. We randomly sample
20,000 examples from the subset of the Pile used to pre-train the OPTs to compute the Hessian
estimates for EWC and KFAC, and another 2,000 examples for the evaluation of the pre-training
knowledge preservation.

Training and evaluation All models are trained using the Adam optimizer (Kingma and Ba,
2015) on each dataset for 3 epochs without weight decay. The learning rate is set to 5 x 10~
for the 350M model and 2 x 10~ for the 1.3B model, both with a linear decay schedule. For
the text classification tasks, the batch size for all models is set to 32, while for the causal
language modeling tasks, the batch size is set to 16 for the 350M model and 8 for the 1.3B
model with a context window of 1024 tokens. LoRA is applied to the linear modules that
produce the query and value in every self-attention module. The rank and the scaling factor of
LoRA are set to 16 and 2 respectively for all models, resulting in the percentage of trainable
parameters of the 350M and 1.3B model being 0.473% and 0.239%, respectively. To evaluate
the fine-tuning performance, we calculate the accuracy or the perplexity on the validation
set for the text classification tasks and the causal language modeling tasks respectively. For
MNLI, the “matched” validation set is used. For the evaluation of the pre-training knowledge
preservation, we calculate the perplexity on the sampled test set of the Pile. We run a coarse
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hyper-parameter sweep on the regularization strength A with a step size of 10 times for each
method on each task. The optimal A is selected balancing the fine-tuning performance and the
preservation of pre-training knowledge, typically the point where fine-tuning performance is
going to drop greatly if the regularization further strengthens. All experiments were conducted
on machines equipped with one NVIDIA RTX3090. The results are averaged over 5 runs with
different random seeds.

4.5.4 Results and Analyses

The main results are shown in Table 4.1. Note that the method “None” refers to LoRA without
regularization. We elaborate our findings from several perspectives.

Catastrophic forgetting Compared to the pre-trained models, all models fine-tuned without
regularization demonstrated significant forgetting of the pre-training knowledge, e.g., the
perplexity on the pre-training data increased from 15.40 to 523.7 when fine-tuned on MNLI.
Comparing different tasks, it is obvious that the forgetting is more severe when the model is
fine-tuned on more data. In terms of model sizes, we notice that larger models tend to forget
the pre-training knowledge less than smaller models, which suggests larger models have better
resistance to catastrophic forgetting.

Comparison of regularization methods All regularization methods significantly reduced the
loss of pre-training knowledge. Among them, L.2-SP underperforms other methods by a large
margin, which is reasonable given its over-simplified assumption of diagonal Hessian with
equal importance on all parameters. In general, the Kronecker-based methods outperform
EWC especially when there is more fine-tuning data, however, the difference is less significant
for larger models. This demonstrates that knowledge preservation does benefit from more
accurate Hessian estimations.

Regularization strength We provide an example of the regularization strength A sweep for the
350M model fine-tuned on MNLI, which is shown in Table 4.2. As A increases, the parameters
are more constrained to the pre-trained values, thus the fine-tuning performance drops. We
select the optimal A as the one that achieves a fine-tuning performance better than that of
using the original LoRA and has the lowest perplexity on the pre-training data. It can be seen
that, compared to KFAC-based methods, the pre-training knowledge preservation of EWC
is worse when achieving the same level of fine-tuning performance. We also observe that
the fine-tuning benefits from the regularization when A is small, which can be attributed
to the fact that the Hessian estimation introduces a Gaussian prior that better describes
the loss landscape than assuming an isotropic Gaussian prior at zero. This suggests that
Bayesian transfer learning can lead to better fine-tuning performance as well as overcoming
catastrophic forgetting.
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Table 4.2: Comparison of performance with varying regularization strength of OPT-350M on
MNLIL

Method A Accuracy! Perplexity|
Pre-trained - - 15.40
None - 83.33% 523.74
107 84.52% 52.51
L2-SP 1073 83.35% 33.65
1072 81.51% 34.23
103 84.11% 26.84
EWC 104 83.67% 18.67
10° 82.03% 16.88
10° 84.32% 19.38
KFAC 108 84.21% 17.24
107 83.12% 17.10

Hessian estimates with varying samples We further experiment on Hessian estimates with
a reduced amount of pre-training data to investigate the effect of the sample size on the
accuracy of the Hessian estimation. The results are shown in Table 4.3. We observe that EWC is
more robust to the sample size than KFAC, showing no degradation in pre-training knowledge
preservation with Hessian estimates on fewer samples, whereas KFAC demonstrates significant
degradation in perplexity on the pre-training data when the sample size is reduced to 20. This
can also be corroborated by the increasing fine-tuning performance of KFAC when sample
sizes decrease, which signifies less effective regularization. However, for other larger sample
sizes, KFAC always outperforms EWC. Overall, the results suggest that KFAC, while being
superior to EWC, requires more data to be estimated accurately than EWC, which is reasonable
given its additional off-diagonal elements in the Hessian estimation.

Table 4.3: Comparison of Hessian estimates with varying samples.

MNLI WikiText-103
Model Samples
EWC KFAC EWC KFAC
20000 83.67%/18.67 84.21%/17.24 15.80/16.87 15.60/16.08
2000 83.66% /18.77 84.30%/17.64 15.80/16.96 15.57/16.22
OPT-350M 200 83.71%/18.50 84.51%/17.60 15.83/16.84 15.47/16.79
20 83.59%/18.63 84.47%/21.39 15.83/16.96 15.37/18.50
20000 87.78%/11.72 87.76%/11.45 10.70/13.45 10.70/11.55
2000 87.79% /11.74 87.70%/11.46 10.70/13.36 10.70/11.53
OPT-1.3B 200 87.74%/11.70 87.76%/11.54 10.71/13.22 10.66/11.68
20 87.85%/11.67 87.71%/11.94 10.70/13.49 10.59/12.53
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Computational cost and memory usage We compare the computational cost and memory
usage of each regularization method in Table 4.4. Note that the calculation is based on a linear
layer with weight W; € R%>% ysing a single sample. The computational cost has two sources:
the estimation stage, where a small subset of the pre-training data is sampled to compute the
FIM, and the training stage, where the regularization loss is computed at each iteration.

Table 4.4: Comparison of computational cost and memory usage.

Computation
Method Memory
Estimation Regularization
L2-SP 0 O(d,d;) 0
EWC Ol(dod;) Oldod;) Ol(d;d,)

KFAC  O(@di+d?) O(dydi(do+d)) O(di+d?)

Overall, the comparison highlights a trade-off between computational efficiency and the
expressiveness of the regularization. While L2-SP incurs virtually no estimation cost and has
negligible memory overhead, it provides only a coarse constraint. EWC introduces moderate
additional cost by requiring the averaged square of gradient but remains relatively manageable.
In contrast, KFAC offers a more accurate approximation of curvature information, but at the
expense of substantially higher computational and memory requirements.

4.6 Experiments: Speech Synthesis

4.6.1 Tasks

Having verified the efficacy of our methods quantitatively and objectively on language model-
ing tasks, we further apply them to our target application: the fine-tuning of speech synthesis
models. Such models are typically more onerous and subjective to evaluate. Our strategy is
to demonstrate that the results from the objective evaluation also apply to the more specific
target application.

Specifically, we fine-tune a pre-trained zero-shot speech synthesizer with LoRA to adapt it
to an unseen speaker. Next, we evaluate the speaker similarity on both the target speaker
and other out-of-domain (OOD) speakers, of which the former represents the fine-tuning
performance and the latter indicates how well the model preserves the pre-training knowledge.
To amplify the effect of catastrophic forgetting, the target speaker and other OOD speakers
should be distinct from the pre-training data, thus we select speakers with particular accents
for both fine-tuning and evaluation.

We appreciate that the task of evaluating the pre-training knowledge preservation is perhaps
of less practical value since there is more interest in getting a similar voice to the target speaker
than maintaining the zero-shot performance on other speakers in such a setting. However,
this is a necessary compromise owing to several reasons. Firstly, the current publicly available
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state-of-the-art speech synthesis models mainly target speaker adaptation and are far from
being omnipotent, meaning a good zero-shot performance on other speech characteristics
is not guaranteed. Further, both the objective and subjective evaluation methods of speaker
similarity are well-established, which is not the case for most of the others. Finally, the
multi-speaker speech data are easy to obtain, while in other cases the data are not. Despite
the limitation, we believe the results will provide practical guidance not only for speaker
adaptation on this model but also for many other models and usages where catastrophic
forgetting is detrimental to the model’s inherent capabilities.

4.6.2 Model: StyleTTS 2

To proceed with the proposed tasks, we need an open-access pre-trained TTS model that has
good synthesis quality and zero-shot performance for speaker adaptation. StyleTTS 2 (Li et al.,
2023) is a recently proposed end-to-end TTS model that utilizes style diffusion and adversarial
training with a large speech language model to generate human-level expressive and diverse
speech. It also achieves a remarkable zero-shot performance though only trained on limited
data of 245 hours from the LibriTTS dataset (Zen et al., 2019) compared to large-scale models
such as VALL-E (Wang et al., 2023a), which is trained on 60k hours of data. Initial experiments
on zero-shot synthesis show that despite StyleTTS 2 rendering excellent synthesis quality, the
synthesized speech tends to lose the accent traits of the target speaker, which can be attributed
to the limited training data. Nevertheless, this could be suitable for our experiments as it
makes the improvement brought by fine-tuning or the degradation of zero-shot performance
more distinguishable.

StyleTTS 2 has a variety of components, many of which are composed of modules that are not
compatible with LoRA or whose Hessian estimation needs extra calculation, such as LSTMs
and 1D/2D convolutions. However, we found in our initial experiments that only fine-tuning
the linear modules in StyleTTS 2 already achieves reasonably good performance. Therefore,
for convenience, we only fine-tune the linear modules in all components that are useful for
inference of StyleTTS 2.

4.6.3 Experimental Details

Implementation Our code is based on the official implementation of StyleTTS 2 2. The same
PEFT library for previous experiments is used for applying Bayesian methods and LoRA to the
model.

Hessian estimation We use the official fine-tuning code to calculate the Hessian estimates,
during which all training losses are enabled to ensure the gradients are properly back-propagated
to all components. Based on the experience from language modeling experiments, we ran-

Zhttps://github.com/yl4579/StyleTTS2
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domly sample 1,000 utterances from the train-clean-360 subset of the LibriTTS dataset for
Hessian estimation to ensure accuracy.

Data We select p248, a female speaker with an Indian accent in the VCTK dataset (Yamagishi
et al., 2019) as the target speaker and randomly split the data into the training set of 356
utterances (approximately 21 minutes) and the test set of 20 utterances. For OOD speakers, we
select another 9 speakers (5 females, 4 males) with different accents from VCTK and randomly
choose 20 utterances of each speaker as test sets.

Training and inference We adopt the official multi-stage fine-tuning strategy of 50 epochs
described in the code repository for all models, only reducing the batch size from 8 to 2 due
to hardware limits. LoRA is applied to the linear modules in all components except for the
discriminators and the text aligner which are fully trained and only used during training. The
rank and the scaling factor of LoRA are set to 16 and 2 respectively, resulting in an overall
percentage of trainable parameters of 1.639% (2.26M of 138M). The fine-tuning is conducted 3
times with different random seeds. For inference, we synthesize test samples using the test
sentences for every speaker using the fine-tuned model. All experiments were conducted on
the same hardware as previous experiments.

Evaluation We conduct both objective and subjective evaluations, focusing exclusively on
the speaker similarity. Essentially, we use the objective test results as the guideline for our ex-
periments and corroborate our findings with subjective test results. More details are provided
in the following sections.

Regularization Based on the fact that L2-SP is far inferior to other methods, we only experi-
ment with EWC and KFAC in this section. The optimal regularization strength A is selected
using the same criterion as in the language modeling experiments based on the results of the
hyperparameter sweep. It is 103 for both EWC and KFAC.

4.6.4 Objective Evaluation

For the objective evaluation, we use an ECAPA-TDNN (Desplanques et al., 2020) speaker
verification model 3 to compute the averaged speaker embedding cosine similarity (SECS)
score between the synthesized speech and the ground truth on the test set of each speaker.
The averaged results of the three runs are shown in Table 4.5. Note that OOD All/Female/Male
are the aggregated scores of all/female/male OOD speakers, “Full” and “Linear” stand for full
fine-tuning and linear module-only fine-tuning, respectively. We analyze the results from the
following perspectives.

Shttps://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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Fine-tuning performance After fine-tuning, the SECS score of the target speaker p248 in-
creases from 0.216 to above 0.6, which manifests that fine-tuning is essential for improving
speaker similarity. Without a doubt, the full fine-tuning achieves the best performance. The
linear module only fine-tuning (“Linear”) and its LoRA-enabled counterpart (“LoRA”) perform
similarly, however falling behind by a less than 10% margin. This demonstrates the efficacy of
the linear module-only fine-tuning scheme. Applying EWC and KFAC on top of LoRA further
degrades the performance slightly, with KFAC performing slightly better than EWC.

Zero-shot performance The overall scores on all OOD speakers clearly demonstrate the
catastrophic forgetting, dropping from 0.293 for the pre-trained model to 0.159 for the fully
fine-tuned model. Fine-tuning the linear modules only with or without LoRA slightly mitigates
the forgetting, suggesting it is necessary to apply additional regularization. Under optimal A
settings, KFAC (0.280) performs substantially better than EWC (0.224), only showing a slight
degradation compared to the pre-trained model. The gender breakdown indicates that the
fine-tuned model generally achieves a higher similarity on females than males, which can be
attributed to the female fine-tuning data. This is confirmed by our test listening that the male
speech synthesized by models without regularization severely deteriorates and resembles
female speech more. In the speaker breakdown, despite the pre-trained model performing
well on some speakers, the fine-tuning degrades similarities on all OOD speakers. One of the
reasons for this could be the distinction between the target speaker and the OOD speakers
in terms of the accent and the timbre. Moreover, the similarity drops more on speakers that
previously had high similarity before fine-tuning. However, in any case, KFAC successfully
preserves the zero-shot performance of the model, exceeding EWC by a large margin.

Table 4.6: Comparison of EWC and KFAC with varying regularization strength.

EWC KFAC
Target OOD Target 0OOD

10> 0.641 0.213 0.647 0.261
10> 0.633 0.224 0.648 0.280
10* 0575 0270 0.593 0.283
10° 0379 0271 0491 0.271

A

Regularization strength We provide the A sweep results in Table 4.6. It can be seen that
under all A settings, KFAC always achieves better fine-tuning performance and better zero-shot
performance preservation than EWC. When matching a good similarity score above 0.6 on the
target, EWC shows a significant degradation on OOD speakers. Furthermore, as A increases,
EWC’s fine-tuning performance drops faster than KFAC and its zero-shot performance never
surpasses that of KFAC. Overall, the results suggest that KFAC helps maintain the zero-shot
synthesis ability of the pre-trained model while achieving good fine-tuning performance,
whereas EWC suffers from a significant loss of fine-tuning performance when preserving the
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pre-training knowledge. This is consistent with the results of language modeling experiments
on the smaller 350M model, however here the phenomenon is more pronounced.

4.6.5 Subjective Evaluation

Sample selection Having verified the efficacy with objective tests, we further conduct a
subjective evaluation to corroborate our findings. One of the concerns is that the synthesized
samples of OOD speakers usually result in a much lower perceptual similarity than those of the
target speaker, making it difficult to distinguish the performance of low-performing models.
In this regard, we select two OOD speakers that have the highest SECS scores and the most
difference among models in each gender for the listening test, which are p225, p261, p245,
and p302. 10 samples of the target speaker and 5 samples of each OOD speaker are randomly
selected, totaling 10 female samples and 10 male samples of the OOD speakers for each model.
We also add a ground truth (GT) group for comparison.

Implementation We hired 20 native English speakers from the United Kingdom on the
Prolific * crowd-sourcing platform to rate the speaker similarity between the synthesized
speech and the reference on a 5-point scale (5: completely same speaker, 4: mostly similar,
3: equally similar and dissimilar, 2: mostly dissimilar, 1: completely different speaker), using
a modified Degradation Category Rating (DCR) method based on the P.808 toolkit (Naderi
and Cutler, 2020). The reference is a random recording of the speaker with spoken content
different from that of the test sample and is bound to each test sample. The averaged result is
often referred to as the Similarity Mean Opinion Score (SMOS).

Table 4.7: Subjective test results with 95% confidence interval.

Model Target OODAll OOD Female OOD Male
GT 446+0.11 4.59+0.07 4.65+0.10 4.52+0.11

Pre-trained 1.90+0.15 2.22+0.13 2.36+0.20 2.08+0.17

Linear 4.06+0.16 1.50+0.10 1.83+0.17 1.18£0.07
LoRA 3.86+0.16 1.48+0.09 1.83+0.17 1.13+£0.06
LoRA+EWC 3.60+0.14 1.51+0.10 1.77+£0.17 1.26+0.09
LoRA+KFAC 3.81+0.16 2.08+0.13 2.31+£0.20 1.85+0.16

Results and analyses The results are shown in Table 4.7. In general, the subjective test
results corroborated our findings from objective tests, hence we mainly comment on the
discrepancies between the two tests. For the target speaker, fine-tuning linear modules
(“Linear”) achieves an SMOS of 4.06, which is a significant improvement from the pre-trained
model of 1.90 and is considerably good given the ground truth of 4.46. Different from the

“https:/ /'www.prolific.com
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objective test results, the LoRA-only model shows a disadvantage of 0.20 compared to “Linear”,
meaning fine-tuning a low-rank representation does degrade the fine-tuning performance for
this model. The small difference between EWC and KFAC shown by SECS scores is actually
perceivable, indicated by a difference of 0.21 in SMOS. In terms of zero-shot performance,
EWC’s preservation effect is not reflected on SMOS considering all OOD speakers, which is in
contrast with KFAC. The gender breakdown shows a slight degradation on male OOD speakers
for the LoRA with KFAC model, suggesting KFAC did not perfectly preserve the zero-shot
performance of the pre-trained model as the SECS scores showed.

4,7 Conclusions

In this work, we explored applying Bayesian learning techniques to parameter-efficient fine-
tuning to overcome catastrophic forgetting. We started from the derivation of the Bayesian
transfer learning framework and demonstrated that PEFT could be regularized to preserve
the pre-training knowledge as long as the parameter shift of the fine-tuned layers could be
calculated differentiably. We then conducted experiments with LoRA on both language model-
ing and speech synthesis tasks to verify the efficacy of the proposed methods and compared
the performance of different Laplace approximations. Our results show that catastrophic
forgetting can be overcome by our methods without degrading the fine-tuning performance.
Furthermore, the results on both tasks suggest using the Kronecker-factored approximations
of the Hessian produces more effective preservation of the pre-training knowledge and better
fine-tuning performance than the diagonal approximations, even though the former requires
more data to be estimated accurately.

Current limitations of this work include that it cannot be applied to PEFT techniques that
add new components to the model such as bottleneck adapters; however this is not a serious
concern given suitable techniques like LoRA already provide good fine-tuning performance.
Further, it is only feasible when at least part of the pre-training data is accessible. Finally, the
efficacy on larger (TTS) models has not been verified due to the inaccessibility to these models
and hardware constraints. We would like to evaluate our methods on larger TTS models when
they become publicly available in the future.
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In the previous chapter, we explored the application of the Laplace approximation in Bayesian
transfer learning: the parameter distribution of the pre-trained model can be approximated
post hoc by a Gaussian distribution through a second-order Taylor expansion around the
pre-trained mode. This distribution can then be used to regularize parameter-efficient fine-
tuning (PEFT) to preserve pre-training knowledge. In parallel with the Laplace approximation,
variational inference generalizes this idea by reframing posterior approximation as an op-
timization problem. Despite sharing the ultimate goal of learning distributions of neural
network parameters, variational inference techniques usually appear as online optimizers that
estimate posterior distributions during training. This flexibility allows variational methods to
learn more expressive posterior distributions along the training process.

In this chapter, we investigate the applications of variational learning in PEFT, utilizing the
Improved Variational Online Newton (IVON), a state-of-the-art variational inference optimizer.
In the first part, we demonstrate that variational learning can effectively improve predictive
accuracy and calibration in PEFT, benchmarking its performance on natural language and
audio understanding tasks against the Laplace approximation. In the second part, we utilize
the online estimation of the posterior distribution of parameters to prune unimportant ranks
forlow-rank adaptation (LoRA), enabling automatic allocation of parameter budget to different
layers and modules across the model.

The work in the second part is adapted from the following publication:

Chen, H. and Garner, P. N. (2025). A Bayesian interpretation of adaptive low-rank adaptation.
In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1-5.
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5.1 Predictive Uncertainty Estimation

5.1.1 Introduction

Despite large language models (LLMs) having succeeded on a wide range of language and
speech processing tasks, their probabilistic predictions are often poorly calibrated when
fine-tuned on small datasets: the confidence scores they output do not always align with the
true likelihood of correctness, often demonstrating overconfidence (Jiang et al., 2021; Tian
etal., 2023; OpenAl, 2023). This misalignment may compromise predictive accuracy, posing
challenges in high-stakes or risk-sensitive applications where reliable uncertainty estimation
is crucial.

Variational inference (VI) offers a principled framework for uncertainty estimation by treat-
ing model parameters as posterior distributions rather than point estimates. By learning
such posterior distributions, VI enables direct modeling of parameter uncertainty, which
in turn leads to better-calibrated predictions and improved generalization by ensembling
the output using multiple model samples during inference. Recent advances in efficient VI
methods, such as Improved Variational Online Newton (IVON) (Shen et al., 2024), have made
it feasible to fine-tune large-scale models while maintaining computational tractability. A
closely related, state-of-the-art approach to improving calibration is the Linearized Laplace
Approximation (LLA) (Daxberger et al., 2021), which provides a post-hoc Bayesian solution
by fitting a Gaussian posterior around the pre-trained mode. When applied to LoRA-based
fine-tuning, LLA can yield well-calibrated uncertainty estimates without extensive retraining
(Yang et al., 2024), outperforming conventional uncertainty estimation methods such as deep
ensemble (Lakshminarayanan et al., 2017), stochastic weight averaging (Maddox et al., 2019),
and Monte-Carlo dropout (Gal and Ghahramani, 2016).

In this section, we examine how variational inference (VI) and the Laplace approximation
can improve calibration in LLMs, with a focus on their theoretical foundations and practical
trade-offs. By applying the two methods to LoRA-based fine-tuning on a series of common-
sense reasoning and audio understanding tasks, we aim to assess their respective strengths
and limitations in enhancing general fine-tuning performance and calibration within the
framework of PEFT.

5.1.2 Variational Inference
Overview

Variational inference (VI) transforms the modeling of neural network parameter distributions
into an optimization problem. It seeks a tractable surrogate distribution (often Gaussian) by
minimizing the Kullback-Leibler (KL) divergence between the approximation and the true
posterior. Essentially, VI leverages the evidence lower bound (ELBO) as a variational objective,
framing inference as an optimization task that enables the use of stochastic gradient descent
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Algorithm 1 Improved Variational Online Newton (IVON).

Require: Learning rates {« }, weight-decay 6 > 0.
Require: Momentum parameters /31, 32 € [0, 1).
Require: Hessian init hg > 0.
Init: m < (NN-weights), h < hy, g+ 0, A< N.
Init: o < 1/\/A(h+9).
Optional: «; < (hg + 0)ay for all ¢.

I: fort =1,2,...do

2 g+ VI(B), where 0 ~ ¢

3 h« g (6—m)/o?

4 g« pig+(1-51)g

5: h« foht(1-Bo)ht3(1 = B2)%(h — h)?/(h+ )

6: g+ g/(1-p1)

70 m<+ m—o(g+om)/(h+9)

8: o« 1/y/A(h+9)

9: end for
10: return m, o

Figure 5.1: Improved Variational Online Newton (IVON). !

within modern deep learning frameworks to efficiently fit probabilistic models. This flexibility
has made VI a practical solution to training Bayesian neural networks (Khan et al., 2018;
Osawa et al., 2019; Shen et al., 2024), where parameter uncertainty is explicitly modeled to
improve generalization and robustness. Thanks to the uncertainty estimation of parameters,
VI provides advantages over deep learning methods such as Adam (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019) including better calibration and generalization, better predictive
uncertainty estimation, and the possibility of model merging for knowledge transfer.

In contrast with traditional deep learning methods that estimate parameters by minimizing
the empirical risk £(8) (the loss function) with gradient descent, variational methods estimate
a posterior distribution (@) over parameters by minimizing

L(q) =Eq)[€(0)] +DxL(q@)p@) (6.1)

where p(8) is the prior. The optimization of £(g) is fundamentally different from minimizing
£(0) using gradient descent. For example, the expectation term requires sampling of 8 before
each forward pass, and the number of parameters of g is doubled for the commonly used
Gaussian distribution with a diagonal covariance. Early approaches (Graves, 2011; Blundell
etal., 2015) aim to optimize (@) (¢ and o2 for diagonal Gaussian) using different stochastic
gradient estimators. However, these methods have failed to scale up on modern architectures.
Recent natural gradient-based methods (Khan et al., 2018; Osawa et al., 2019) have shown
promising results using an Adam-like form; however, they still underperform Adam and have

1Originally in Shen et al. (2024).
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significantly higher computational costs.

Improved Variational Online Newton (IVON)

The Improved Variational Online Newton (IVON) (Shen et al., 2024) is a recent VI optimizer
that matches the performance of Adam at a comparable computational cost. Its key innova-
tions include bypassing the expensive per-example gradient square computation through a
reparameterization trick and incorporating several practical techniques to enhance perfor-
mance. [VON stands out as the first VI optimizer proven to be both effective and efficient for
training large networks, while still delivering the benefits of VI.

Figure 5.1 shows the algorithm of IVON. In comparison with Adam, the main differences
include 1) the sampling of neural network parameters 0 before the forward pass in line 2; 2)
the reparameterization trick for estimating the current Hessian h in line 3; 3) tracking the
exponential moving average of Hessian h instead of the gradient square; 4) there is no square
root over Hessian h; and 5) the output of the mean m and the standard deviation o instead of
a point estimate of parameters 8. Overall, IVON offers an Adam-like framework without any
significant computational overheads.

IVON introduces several additional hyperparameters that should be taken into consideration.
Here, we list important ones that could greatly impact the training stability and the final
performance.

1. Hessian initialization hy: the Hessian is the inverse of the variance. Therefore, a larger
hy corresponds to a smaller initial variance, leading to a more concentrated and deter-
ministic initial posterior. This typically results in more stable training in the early stages.
However, it also reduces the benefits of uncertainty estimation, potentially resulting in
poorer performance.

2. Learning rate a: the learning rate for IVON is usually set to a higher value compared to
Adam, typically on the order from 1072 to 10™!. In the case of PEFT or that the training
set is small, the learning rate could be set even higher to facilitate fast convergence.

3. Effective sample size A: A modulates the scale of the estimated variance, thereby con-
trolling the level of stochasticity introduced by sampling prior to each forward pass. A
smaller A increases the sampling temperature, which can lead to greater variance and
potential instability during training. In practice, A is often set equal to the size of the
training dataset. However, for very small datasets, using a larger A can help stabilize the
short training process and improve overall performance.
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5.1.3 Linearized Laplace Approximation

Similar to the Bayesian transfer learning framework introduced in the previous chapter, the
use of the Laplace approximation for predictive uncertainty estimation also builds upon
the maximum a posteriori (MAP) estimation. However, the objective here is distinct: rather
than transferring knowledge from pre-training to fine-tuning data, the focus is on capturing
predictive uncertainty during inference for a model fine-tuned with PEFT on a downstream
task. Accordingly, the derivation begins from the MAP estimate of the PEFT parameters based
solely on the fine-tuning data, independent of the pre-training data or the original pre-trained
model.

MAP Estimation

For classification or next-token prediction tasks, the training objective is to estimate the
posterior distribution of model parameters :

pylX,0)p@)

pylX) (5.2)

p(o |X,Y) =

where X represents the input matrix, and y represents the target vector. Here, p(0 | X,y) is
the posterior distribution, p(y| 8,X) is the likelihood, and p(y|X) is the evidence (marginal
likelihood). We employ an isotropic Gaussian prior with precision A:

p@) =N©,17'1) (5.3)

Taking a logarithm of the posterior, the MAP estimation maximizes the following function
f(0), which is the numerator on the right-hand side of Eq. 5.2:

(@) =logpyl|X,0) +logp@) =logp(0|X,y) + const

Oriap = argmax 1)) 64
Performing a second-order Taylor expansion of f () around @yap gives:
1
OENICVI G Onap) ' (V3 f(0)]0,) (0 — Oniap) (5.5)

This quadratic term corresponds to a Gaussian posterior centered at @yap with covariance
given by the inverse Hessian:

p@ |X,y) =~ N (0|0\ap, X)

2 = —(V5L(O)lgy,,) " = - (VA1 - >0
=-(Vg o) = —(Vglogp(ylX,0)lg,,, + AD
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We utilize the Fisher information matrix to approximate the covariance:

N
FIM®) = Y. Epyifoen | VP! fo®xn)(Vop(y| foxa)) ' (5.7)
n=1

where the expectation is taken with respect to the model’s output distribution. Same as in
Chapter 4, the structures of the FIM include diagonal and Kronecker-factored approximations.

Neural Network Linearization

Neural network linearization (Kunstner et al., 2019; Immer et al., 2021b; Antorén et al., 2022)
approximates a nonlinear neural network with a linear model around a specific point in pa-
rameter space using a first-order Taylor expansion. It has been found that making predictions
using the linearized model is more effective than sampling from the approximate posterior
over the weights (Daxberger et al., 2021; Deng et al., 2022). The linearized model can be
expressed as:

fo®%:) = foyp ) + Vo fo®xlg, (0 — Omiap) (5.8)

where x, is a test input. Note that Vg fp (x*)lgMAP represents a matrix containing the gradient
over parameters @ per output dimension (number of classes or tokens). This formulation
corresponds to the linearized Laplace approximation.

Given the approximated posterior in Eq. 5.6 and the linearized model in Eq. 5.8, we can
marginalize over the posterior of the weights to obtain a Gaussian posterior distribution on
the output logits:

fo &) ~ N (fo,u Xs), A) (5.9)

where

A= (Vo fo®xlg,, JE Vo fo:)lgy) (5.10)

To sample from fp (x.), we utilize the Cholesky factorization of the covariance matrix (A = LLT):

fo () = fo %) + LE 5.11)

where & is ai.i.d. standard Gaussian noise vector. The model output is computed by averag-
ing probabilities (obtained via softmax on sampled logits) by Monte-Carlo sampling on the
Gaussian noise.
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5.1.4 Method

We apply IVON and LLA to PEFT with LoRA and evaluate their performance in terms of both
predictive accuracy and calibration. Below, we detail the particularities of each technique and
introduce metrics for evaluating calibration.

IVON

When applied to LoRA, IVON serves as a drop-in replacement for Adam, specifically optimizing
the two additional low-rank matrices in each module. Like Adam, IVON estimates a diagonal
covariance matrix assuming independence between parameters, and thus maintains a similar
computational cost related to tracking second-order gradients. During training, the primary
overhead arises from the sampling step before each forward pass; however, this cost remains
marginal when using a single Monte Carlo sample per iteration. At test time, there are two
options: 1) use the prediction at the mean of posterior parameter distribution, which is the
most computationally efficient approach; and 2) average predictions over n samples drawn
from the posterior, which requires n forward passes and increases computation by a factor
of n when n > 1. The application of IVON to LoRA also appeared in a concurrent work
(Cong et al., 2024); here, we focus on the comparison between IVON and LLA under different
configurations.

Linearized Laplace Approximation

For LLA, post-hoc posterior estimation is performed after standard fine-tuning with Adam
by fitting the Laplace approximation on the fine-tuning data. The low-rank matrices in each
LoRA adapter are treated as two separate linear layers. Two key considerations are 1) the type
of the Laplace approximation: either diagonal or Kronecker-factored, with the latter offering
better posterior estimates while having higher computation and memory cost as shown in
the previous chapter; and 2) the layers to apply: either across all LoRA adapters (denoted by
LA) or limited to the final classification head (last-layer LA, or LLLA). The choice of LA and
LLLA is mainly a tradeoff between computation and memory cost and posterior estimation
accuracy: while applying LA to all LoRA adapters can further improve uncertainty estimation
and robustness particularly in tasks where uncertainty propagates through multiple layers, it
also incurs substantially higher computational and memory cost, especially with Kronecker-
factored approximations. The application of LLA to PEFT with LoRA was introduced in Yang
et al. (2024) as Laplace-LoRA.
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5.1.5 Experiments: Commonsense Reasoning
Models and Datasets

We fine-tune the Llama 2 7B model (Touvron et al., 2023) with LoRA on six commonsense
reasoning datasets (see Section 2.4.2, with numbers of training samples in the parentheses):
ARC-Challenge (ARC-C, 1.12k), ARC-Easy (ARC-E, 2.25k), BoolQ (9.43k), OpenBookQA (OBQA,
4.96k), WinoGrande-Medium (WG-M, 2.56k), and WinoGrande-Small (WG-S, 640). These
are the same datasets used in Yang et al. (2024) for direct comparison with baselines. ARC-
Challenge, ARC-Easy, and OpenBookQA are multiple-choice tasks, while the rest are binary-
choice tasks. The input to the model is the context followed by a question and the options
(A. ..., B...., etc), the task is to predict the correct label (such as A) as a next token prediction
task. LoRA is applied to the query and value linear modules of attention, with rank set to 8 and
alpha set to 16 (corresponding to an amplification factor of 2).

Implementation Details

We use the official implementation? of the IVON optimizer. For LLA, we rely on the official
implementation of Laplace-LoRA3, which is built on the Laplace  and ASDL? libraries. LoRA
is implemented using the Hugging Face Transformers (Wolf et al., 2020) and PEFT (Mangrulkar
et al., 2022) packages.

Training and Evaluation

All models are trained for 10,000 steps with a batch size of 4 on all tasks. For IVON, we use an
effective sample size A of 107, a Hessian initialization g of 1 x 1073, a weight decay 6 of 1078,
and a learning rate of 0.03 with linear learning rate decay to 0. Setting an effective sample size
much higher than the actual number of training samples reduces the sampling temperature,
which in turn ensures a more stable training process. In contrary, the Hessian initialization has
been set to a relatively small value (which corresponds to a large variance) for the optimizer to
learn a more expressive posterior. For LLA, we train the model using the AdamW optimizer
(Loshchilov and Hutter, 2019) without weight decay (which is identical to Adam without
weight decay) while adopting the same hyperparameters as in the original Laplace-LoRA
implementation. The Hessian estimation is performed using all training samples, followed
by the optimization of prior precision A maximizing marginal likelihood as described in
(Daxberger et al., 2021).

Evaluation is performed on the validation sets of corresponding datasets using accuracy, ECE,
NLL, and Brier score. For IVON, we report results under three settings: predictions at the

2https://github.com/team-approx-bayes/ivon
3https://github.com/adamxyang/laplace-lora
4https://github.com/aleximmer/Laplace
Shttps://github.com/kazukiosawa/asdl
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posterior mean, single-sample Monte Carlo (MC-1), and the average over 8 Monte Carlo
samples (MC-8). All results are averaged over 5 runs with different random seeds. For LLA, we
compare 4 different settings considering the type of the Laplace approximation (diagonal or
KFAC) and the layers to apply (all LoRA adapted layers or last layer).

Results and Analyses

All results are shown in Table 5.1. We elaborate our findings from the following perspectives.
Note that we use LLA to denote linearized Laplace approximation, LA to denote LLA applied
to all LoRA enabled layers, and LLLA to denote LLA applied to the last layer.

Accuracy Among all methods, IVON evaluated at the posterior mean achieves the highest
accuracy on most tasks, outperforming Adam both with and without LLA. Applying LLA can
yield a slight improvement over the MAP solution. In general, KFAC outperforms the diagonal
approximation, especially when applied to all layers. However, applying LLA with diagonal
approximation to all layers (LAgiag) underperforms that applied to the last layer (LLLAgjag),
suggesting the diagonal approximation is not accurate enough to describe the posterior
distribution across the entire model. For IVON, performance drops noticeably when using a
single Monte Carlo sample, compared to predictions at the mean. Increasing the number of
samples to 8 improves accuracy, but a small gap to the mean prediction still remains. These
results suggest that both IVON and LLA enhance downstream performance, with IVON at the
posterior mean offering the best trade-off between accuracy and computational efficiency.

Calibration Overall, LLA outperforms IVON in calibration. Among all LLA configurations,
KFAC applied to all layers (LAxrac) achieves the best calibration, with the lowest ECE and
Brier score, while LAgj,g significantly underperforms LAggac in terms of ECE. This aligns with
expectations as KFAC offers a more expressive posterior approximation compared to the
diagonal covariance. However, the benefit of LLA diminishes when restricted to the last layer,
with LLLAgpac and LLLAgj,g performing similarly however better than MAP. This suggests
that much of the model’s uncertainty originates from intermediate layers, and both KFAC and
diagonal covariance can well model the uncertainty in the last layer. For IVON, predictions at
the posterior mean reduce ECE and Brier score compared to MAP, while using a single Monte
Carlo sample offers no improvement but a slight degradation. Increasing to 8 Monte Carlo
samples improves calibration but still underperforms LAxgac.

Computation and Memory Cost Both methods incur similar computational costs during
training (fine-tuning), with IVON being approximately 1-2% slower than Adam. The key
differences arise in the post-training phase. LLA requires fitting a Laplace approximation on (a
subset of) the training data to estimate the posterior covariance, which entails a computational
cost comparable to an additional pass over the data with full forward and backward computa-
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Table 5.1: Comparison of LLA and IVON applied to fine-tuning Llama-2 7B with LoRA on
commonsense reasoning tasks. The best and the second best results are marked.

Metric Optimizer Method ARC-C ARC-E BoolQ OBQA WG-M WG-S Avg.

MAP 646 848 85 789 742 669 758

LLLAgia; 653 850 856 792 746 668 76.1

Adam LAdiag 651 843 8.7 785 746 668 758
LLLAggac 652 850 856 792 746 668 76.1

ACC1 LAKgAC 660 851 856 79.1 746 669 76.2
Mean 703 876 867 814 766 71.8 79.1

IVON MC-1 621 830 85 766 767 706 757

MC-8 667 8.7 8.4 799 764 716 77.8

MAP 332 142 79 190 243 325 218

LLLAging 205 103 7.8 177 235 173 162

Adam LAdiag 142 145 187 106 7.3 7.8 122

ECE | LLLAggac 224 112 79 179 236 191 17.0
oo LAKEAC 5.1 3.3 45 67 122 71 65
Mean 255 104 56 103 230 278 17.1

IVON MC-1 299 120 53 9.0 230 291 180

MC-8 123 35 2.5 32 215 229 110

MAP 354 146 045 156 181  3.65 2.08

LLLAgiag 129 069 045 132 157 078 1.02

Adam LAdiag 097 054 046 064 058 0.63 0.64
LLLAggac 136 073 045 138 165 080 1.06

NLL | LAkraC 093 049 037 074 081  0.64 0.66
Mean 197 069 035 064 230 334 155

IVON MC-1 213 079 038 070 230 334 161

MC-8 1.00 040 032 053 205 230 110

MAP 671 289 228 394 495 651 455

LLLAgig 553 259 228 379 481 507 40.

Adam LAdiag 514 261 286 327 371 441 367

Brier | LLLAggac 563 263 229 381 483 517 406
o0 LAKEAC 472 222 215 313 395 439 343
Mean 535  22.0 201 293 461 557 37.8

IVON MC-1 660 288 220 342 461 582 425

MC-8 469 202 197 276 443 502 348
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tions. Computation and memory costs depend on the type of the Laplace approximation; as
discussed in Chapter 4, KFAC is significantly more costly than diagonal approximations, which
could be problematic on low-resource devices. At inference time, LLA requires running a
forward and multiple backward passes (number of classes or tokens) to obtain the gradient for
the sampling on the output logits, as shown in Equation 5.10, which makes the inference speed
lower than that of training. In contrast, IVON requires multiple forward passes to compute
averaged predictions without backward passes, with an additional memory cost of loading
optimizer state (two times the number of optimized parameters). Overall, IVON offers a
flexible trade-off between calibration and computational and memory cost at inference, while
LLA incurs a post-training posterior estimation overhead as well as additional computation
and memory cost for the backward passes during inference.

5.1.6 Experiments: Audio Question Answering

Having demonstrated the efficacy of IVON in enhancing predictive accuracy and calibration
on natural language understanding tasks, we further evaluate its effectiveness in fine-tuning a
multimodal LLM for audio understanding and reasoning tasks, thereby assessing its applica-
bility to multimodal data.

Models and Datasets

We fine-tune the Qwen2.5-Omni 3B model (Xu et al., 2025) with LoRA on the DCASE 2025
Audio Question Answering dataset (Yang et al., 2025), which consists of Bioacoustics QA (BQA,
0.7k), Temporal Soundscapes QA (TSQA, 1k), and Complex QA (CQA, 6.4k) (see Chapter 2.4.2).
Qwen2.5-Omni is an end-to-end multimodal LLM designed to perceive diverse modalities,
including text, images, audio, and video, while simultaneously generating text and natural
speech responses in a streaming manner. Similar to previous experiments, the model is
provided with the audio sequence followed by a question and several options, and the task
is to predict the correct option. The experiments are conducted using the LLaMAFactory
framework®. LoRA is applied to all linear layers, with rank set to 8 and alpha set to 16.

Training and Evaluation

All models are trained for 3 epochs with a batch size of 4. For IVON, we use an effective
sample size A of 107, a Hessian initialization kg of 1 x 1073 a learning rate of 0.03 with cosine
learning rate decay to 0, and a weight decay 6 of 0. For Adam, we train the model using the
AdamW optimizer without weight decay and a learning rate of 5 x 10> with cosine learning
rate decay to 0. Evaluation is performed on the development set using previous metrics with
results reported on three subsets respectively. In addition to the averaged results across all
samples (Avg.), the averaged scores across three subsets (Domain Avg.) are also calculated.

6https://github.com/hiyouga/LLaMA- Factory
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For IVON, results are reported under two settings: predictions at the posterior mean, and
the average over 8 Monte Carlo samples (MC-8). All results are averaged over 10 runs with
different random seeds.

Table 5.2: Comparison of IVON and Adam applied to fine-tuning Qwen2.5-Omni 3B with LoRA
on audio question answering tasks. The best results are marked.

Domain

Metric Method BQA TSQA CQA Avg.

Avg.

Adam 88.57 67.39 84.21 80.06 80.45
ACC1 IVON Mean 89.02 67.16 85.02 80.40 80.97
IVONMC-8 88.93 67.16 85.02 80.37 80.97

Adam 9.7 262 127 16.2 15.7
ECE| |[vONMean 7.4 186 9.1 11.7 11.2
(100x)  [VONMC-8 6.6 156 7.9 10.0 9.5
Adam 052 142 071 0.88 0.87

NLL| [VONMean 039 109 055 068  0.67
IVONMC-8 036 099 051  0.62  0.61

. Adam 20.5 57.0 28.0 35.1 34.5
Brier | [yONMean 17.4 50.0 24.3 30.6 30.1
(100x)  IVONMC-8 16.9 47.7 235 29.4 28.9

Results and Analyses

Overall, the results support our previous findings on commonsense reasoning tasks. In terms
of accuracy, IVON evaluated at mean outperforms Adam by 0.52% across all samples and by
0.34% in domain-averaged scores. For reference, directly prompting the base model yields
a domain averaged accuracy of 53.8%. For calibration metrics, IVON consistently surpasses
Adam across all subsets, with particularly notable gains on BQA and TSQA with limited fine-
tuning data. Leveraging 8 MC samples further enhances calibration while maintaining the
accuracy of IVON at mean. These results confirm that IVON can serve as a drop-in replace-
ment for Adam, offering improved predictive accuracy and calibration, even in challenging
multimodal reasoning scenarios. Moreover, it enables further calibration improvements at
test time through multiple inference passes.

5.1.7 Conclusions

In this section, we studied two uncertainty-aware fine-tuning techniques, IVON and LLA, in
the context of parameter-efficient fine-tuning with LoRA. Our empirical results demonstrate
that IVON evaluated at the posterior mean generally delivers the highest predictive accuracy
while offering better-calibrated predictions compared to Adam. In addition, calibration can
be further improved by ensembling with multiple Monte Carlo samples. In contrast, LLA,
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particularly when employing the Kronecker-factored approximation across all LoRA-enabled
layers, achieves the best performance in calibration, albeit at the cost of substantially more
computation and memory, and more complex implementation.

The strengths of the two methods are complementary: IVON is well-suited for scenarios
where high predictive accuracy and inference-time flexibility are priorities, while LLA excels
in settings that require well calibrated predictions and are less sensitive to computation and
memory costs. These findings suggest that the two techniques should be chosen based on
the specific needs of the application: whether it prioritizes predictive accuracy, calibration, or
inference efficiency.

5.2 Parameter Importance Estimation

Motivated by the sensitivity-based importance score of the adaptive low-rank adaptation
(AdaLoRA), we utilize uncertainty-aware metrics, including the signal-to-noise ratio (SNR),
along with the IVON optimizer, for adaptive parameter budget allocation. The resulting
Bayesian counterpart not only has matched or surpassed the performance of using the
sensitivity-based importance metric but is also a faster alternative to AdaLoRA with Adam.
Our theoretical analysis reveals a significant connection between the two metrics, providing a
Bayesian perspective on the efficacy of sensitivity as an importance score. Furthermore, our
findings suggest that the magnitude, rather than the variance, is the primary indicator of the
importance of parameters.

5.2.1 Introduction

In the context of the adaptation of large-scale pre-trained models, it has long been of interest to
fine-tune the model in a parameter-efficient manner. Parameter-efficient fine-tuning (PEFT)
techniques (Ding et al., 2023a) typically optimize a small subset of the model parameters
that are either original or additional ones while leaving the rest unchanged. The low-rank
adaptation (LoRA) (Hu et al., 2022) is one of the most efficient and flexible PEFT techniques.
Based on the assumption that the change of weights during fine-tuning has a low intrinsic rank,
LoRA performs adaptation by optimizing the low-rank approximation of the change of the
original weight matrices. Nevertheless, LoRA has limitations as it pre-defines an identical rank
for all target weight matrices and therefore ignores the varying importance of weights across
modules and layers. This is problematic as adding more trainable parameters to important
weights contributes to better performance, however by contrast, doing so to less important
weights yields marginal improvements or even inferior outcomes (Zhang et al., 2023b).

In light of the limitations, there arises a natural question of how to allocate trainable pa-
rameters to different modules according to their importance to maximize the fine-tuning
performance. To this end, a variety of techniques for LoRA has been proposed to address the
problem, the most representative one of which is AdaLoRA (Zhang et al., 2023b). AdaLoRA
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parameterizes the delta weight mimicking the singular value decomposition (SVD) to enable
dynamic adjustment of the rank: it identifies the importance of each SVD triplet in the entire
model by a sensitivity-based metric and gradually prunes less important triplets during fine-
tuning to reach the parameter budget. It has been demonstrated that AdaLoRA can effectively
improve the model performance and parameter efficiency compared to LoRA.

Motivated by AdaLoRA, we are primarily interested in the importance scoring mechanism as it
can be generically applied to PEFT for parameter selection. The sensitivity-based importance
metric is originally based on the heuristic that the importance of parameters can be quantified
by the error induced by removing them, which in turn can be approximated by the square of
the gradient-weight product (Theis et al., 2018; Molchanov et al., 2019). Meanwhile, there are
importance metrics with strong theoretical support, many of which originate from Bayesian
neural networks (BNNs). A widely recognized metric is the signal-to-noise ratio (SNR) (Graves,
2011; Blundell et al., 2015; Neklyudov et al., 2017), commonly used in BNN pruning and
compression. The interpretation is straightforward: a low SNR makes the neuron’s output too
noisy to be useful, while a high SNR indicates valuable, low-noise output. The SNR could be
a drop-in replacement for the sensitivity-based importance score in AdaLoRA, allowing the
pruning of SVD triplets with low SNRs during fine-tuning for dynamic rank adjustment.

The calculation of SNR requires knowledge of the variance of the parameters, typically assum-
ing they follow a Gaussian distribution; this is closely related to VI. VI tackles the optimization
task of neural networks by approximating complex posterior distributions of the parameters;
this involves selecting a simpler, parameterized distribution and minimizing the Kullback-
Leibler (KL) divergence between this distribution and the true posterior. Recent advances in
VI (Shen et al., 2024) have shown not only superior performance in calibration and predictive
uncertainty estimation compared to traditional optimizers like Adam (Kingma and Ba, 2015),
but also high efficiency and effectiveness in large-scale networks.

In this study, we leverage Bayesian importance metrics alongside the IVON optimizer to
develop a Bayesian counterpart to AdalL.oRA, utilizing SNR as the importance score. By com-
paring its performance with the sensitivity-based importance metric on the GLUE benchmark
(Wang et al., 2019), we demonstrate that the Bayesian approach not only achieves comparable
or superior performance but also offers a 10% speed-up over the original AdaLoRA with Adam.
A closer examination of the underlying theory reveals a strong connection between these
two metrics, providing a Bayesian interpretation of the sensitivity as an importance score.
Additionally, our findings indicate that the magnitude, rather than the variance, is the primary
indicator of the importance of parameters. The source code is available.”

“https://github.com/idiap/vilora
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5.2.2 Adaptive Budget Allocation
Overview

The techniques that enable adaptively allocating trainable parameters across different mod-
ules and layers generally fall into two categories: importance scoring-based methods and
regularization-based methods. For importance scoring-based methods, the key is to find a
proper importance metric and prune less important components accordingly. Whilst some
work (Zhang et al., 2023a; Wang et al., 2024) adopts AdaL.oRA’s sensitivity-based approach,
other heuristic metrics, such as the magnitude of the weight (Mao et al., 2024) and the accu-
mulated gradient (Nikdan et al., 2024), have also been explored. Among regularization-based
approaches, diff pruning (Guo et al., 2021) is representative: it applies Ly regularization to the
delta weight (which shares the same dimensions as the pre-trained weights) and prunes it
element-wise according to the magnitude. Similarly, but based on LoRA, SoRA (Ding et al.,
2023b) introduces a gating unit in-between the two LoRA matrices and applies L; regulariza-
tion to the gate to zero out unimportant ranks. However, regularization-based approaches
cannot guarantee to achieve target parameter budgets since they depend on unpredictable
sparsity regularizations controlled by sparsity-promoting priors and threshold values, and
therefore often require onerous hyperparameter tuning.

Revisiting AdaLoRA

AdaLoRA has the following main components.

SVD-based adaptation AdalLoRA parameterizes the delta weight in the form of singular
value decomposition: W = Wy + AW = Wy + PAQ, where P and Q are singular vectors and the
diagonal matrix A contains singular values. To avoid the intensive computational cost of SVD,
apenalty R(P,Q) = [[PTP-I||2 +]|Q " Q1|2 is added to the loss to enforce the orthogonality of
P and Q so that every rank is independent of each other. During adaptation, only the singular
values are masked out while the singular vectors are maintained so that dropped triplets can
be reactivated later.

Sensitivity-based importance scoring The sensitivity is defined as the magnitude of the
gradient-weight product: I(0) = |0Vg#|, where 6 is a trainable parameter. The authors of
Adal.oRA argue that the sensitivity itself is too variable and uncertain to be estimated due to
the stochasticity of training and therefore propose to use sensitivity smoothing and uncertainty
quantification:

16)= IO+ - BI'6)

5 _ Ft-1 _ tpoy _ Tt (5.12)
UB)=pU""0)+1 =PI (0)-1"(0)]

where I' is the smoothed sensitivity by exponential moving average and U" is the uncertainty
quantification of I. The final importance score is s*(9) = I'(9) - U*(0). The authors compared
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its performance with the magnitude of singular values and the sensitivity without smoothing
and found the proposed metric performed the best.

Global budget scheduler The global budget is defined as the total rank of all delta weights in
the model. AdaLoRA starts from an initial budget b° that is slightly higher (usually 1.5 times)
than the target budget b”, warms up the training for #; steps, and gradually decreases the
budget b’ to reach b’ following a cubic schedule. After this, the budget distribution is fixed
until training finishes after 5 steps.

Bayesian Importance Scores

In this work, we focus on theoretically supported importance metrics that originate from
Bayesian neural networks (BNN). BNNs model weights as probability distributions, enabling
the network to quantify uncertainties in its predictions. The most commonly used distribution
is the Gaussian distribution, therefore the model is parameterized by two sets of parameters:

2

the mean p and the standard deviation o (or the variance o, we also refer to o as variance for

the sake of simplicity).

SNR(0) = |ul/o The signal-to-noise ratio (SNR) (Graves, 2011; Blundell et al., 2015; Neklyudov
etal., 2017) is a commonly used importance metric in BNN that considers both the magnitude
and the variance (also the uncertainty) of the weights. It has a simple interpretation: alow SNR
results in a neuron’s output being too noisy to be useful, while a high SNR signifies meaningful
output with minimal noise. It has been utilized in both in-training and post-training pruning
of BNNs (Li et al., 2024; Graves, 2011).

SNR(|0]) Lietal (Lietal,2024) argue that the random sampling of weights before each
forward pass of BNN needs to be considered. Instead of using |u| which is equal to |E,;0|
(where g is the posterior distribution of parameters), it is more appropriate to use E,4|0| in the
SNR. The resulting metric is:
BY 1) 4 29 exp (-2
p(2e(5)-1)+ 2ﬂexp( )

v2n 207 (5.13)

SNR, (1)) = 2112
\/02+u2‘ [12(5)-1)+ Zexp(~ 4z

2
where ©(x) := f_xoo é exp (— y?) dy is the cumulative distribution function. It has been shown

the new metric outperforms the standard SNR in training sparse BNNs (Li et al., 2024).

|pl and 1/0 We want to identify the key component in the SNR that reflects the importance of
parameters. The absolute value of the mean, or the magnitude, is a straightforward metric that
directly impacts the neuron’s output. This metric is widely used in neural network pruning,
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commonly known as magnitude pruning (Han et al., 2015). Another choice is to use the
variance alone as an importance metric. The intuition is that parameters with a low variance
have less uncertainty, and therefore are more important.

Method

The calculation of SNR requires approximating a Gaussian distribution over parameters,
which is exactly the objective of variational inference. In our experiments, we utilize IVON
to estimate the variance of parameters, enabling the use of SNR as an importance metric
following AdaLoRA’s framework.

5.2.3 Experiments
Models and Datasets

We compare the fine-tuning performance of AdaLoRA using different importance scores on
DeBERTaV3-base (He et al., 2023). The experiments are conducted on the General Language
Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), which includes four natural
language inference tasks, three similarity and paraphrase tasks, and two single-sentence
classification tasks.

Implementation Details

We base our code on the text classification examples of the Hugging Face Transformers library
(Wolf et al., 2020) and the Parameter-Efficient Fine-Tuning (PEFT) library (Mangrulkar et al.,
2022). For IVON, we use the official implementation®. We compare the methods under two
budget configurations where the target rank is set to 2 and 4 respectively, resulting in the total
trainable parameters being 0.3M and 0.6M (of 86M). Full fine-tuning and LoRA applied to all
modules are also added as baselines.

Training and Evaluation

Our experiments are based on the official hyperparameters of AdaLoRA® which are optimal
when training with Adam. For IVON, the learning rate is set to 0.5 for MRPC and RTE and
0.4 for the rest. Same as Adam, a warm-up stage and the linear decay learning rate schedule
are adopted. We found that IVON generally converges slower than Adam at the beginning of
training, therefore requiring a much higher learning rate during warm-up for good results
especially on small datasets. As a result, for COLA, STS-B, MRPC, and RTE, we use a higher
learning rate of 2.0 in the warm-up stage and return to the normal learning rate afterwards. For

8https://github.com/team-approx-bayes/ivon
9https://github.com/QingruZhang/AdaLoRA
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evaluation, we use the best-performing model on the validation set. The results are averaged
across 5 runs with different random seeds.

5.2.4 Results and Analyses

The main results are shown in Table 5.3. For MNLI, the “matched” validation set was used for
evaluation. Note that we sort the tasks according to dataset sizes and divide them into two
groups since we notice that IVON needs extra tricks to ensure good results on small datasets.
In general, all PEFT methods outperform full fine-tuning, and AdaLoRA outperforms LoRA.
Switching the optimizer from Adam to IVON results in comparable performance, demonstrat-
ing that IVON is capable of state-of-the-art performance in PEFT. We further elaborate our
findings from the following perspectives.

Comparison of Importance Scores

Both SNR(8) and SNR(|0]) outperform sensitivity when using IVON, and at least one of the
SNR metrics outperforms or ties with the original Adal.oRA with Adam. However, there is no
clear winner between the two SNR metrics. This could be explained by the fact that the sparsity
level in the AdaL.oRA case is not high (only 1/3 of the initial ranks are pruned), and that it is the
SVD triplet that is pruned as a parameter group, thus the performance difference between the
two metrics is not properly reflected in such a setting. Interestingly, magnitude outperforms
sensitivity and one of the SNR metrics especially on small datasets. Magnitude was not
experimented in Zhang et al. (2023b). On the one hand, this demonstrates the effectiveness of
magnitude pruning; on the other hand, this is probably because the sensitivity or the variance
needs more iterations to be estimated accurately given their smoothing nature. Using the
variance alone performs the worst among all metrics, however, it still outperforms LoRA with
a fixed rank, indicating that the uncertainty of parameters does correlate with the importance.

Visualizing Final Rank Distributions

Figure 5.2 shows the final rank distributions of different methods after fine-tuning the model
on MNLI. An obvious difference between Adam and IVON using the sensitivity can be observed
comparing (a) and (b), indicating a distinction between the training dynamics of the two
optimizers. The distributions of the two SNR metrics (c, d) and the magnitude (e) resemble
that of the sensitivity with IVON, which corroborates with quantified results. Unlike the
magnitude (e), the variance (f) shows an evenly-distributed pattern. This confirms that the
magnitude plays a determining role in reflecting the importance of parameters.
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Chapter 5. Variational Learning for Parameter-Efficient Fine-Tuning
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Figure 5.2: Comparison of rank distributions after fine-tuning DeBERTaV3-base on MNLI,
with deeper colors indicating higher ranks. Results are averaged across five runs with different
random seeds. Wy, Wi, W, W,: weights of the query, key, value, output layers of attention;
Wy, Wy, : weights of the feed-forward layers.
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5.2 Parameter Importance Estimation

Speed

The variance of the parameter is inferred inherently in IVON, thus the SNR does not require
the extra computation of the weight-gradient product of the sensitivity during fine-tuning.
On an NVIDIA H100, using the SNR with IVON brings a 10% speed up compared to using
the sensitivity with Adam, despite the IVON itself being 1-2% slower than Adam with other
conditions kept the same.

A Bayesian Interpretation of Sensitivity

The similarity in performance and the rank distribution between the sensitivity and the SNR
suggests a close relationship between them. A closer examination of the underlying theory
reveals that sensitivity is, in fact, aligned with the principles of SNR. Specifically, in IVON, the
standard deviation o is calculated as & = 1/v/A(h+ §), where h is the diagonal Hessian, A is
the effective sample size, and ¢ is a weight decay term. Notably, h can be approximated by
the expected squared gradient on the training data (Kirkpatrick et al., 2017), h= Ep [(Vg[)z],
also known as the diagonal of the expected Fisher information matrix (FIM). Consequently,
the inverse of the standard deviation, 1/, in the context of SNR, is akin to the root mean
square of the gradient \/Ep[(Vg#)?], and therefore analogous to the magnitude of the gradient
Vg ?|. This implies that the sensitivity |0V #| has the component |[Vg/¢| acting as an uncertainty
measure analogous to 1/0 in SNR, thereby providing a Bayesian interpretation of the sensitivity
as an importance metric. These findings resonate with the comment in Molchanov et al. (2019)
that the sensitivity has connections with the FIM. Note that both methods adopt exponential
moving average smoothing to compute the global value of the corresponding metric during
training. The main difference is that the smoothing is applied to the magnitude of the gradient-
weight product in AdaLoRA, while the SNR is computed using the global Hessian tracked by
IVON.

5.2.5 Conclusions

In this study, we developed a Bayesian alternative to AdaLoRA, leveraging the signal-to-noise
ratio as the importance score with the IVON optimizer. By comparing the performance of
different importance metrics, we demonstrated that this Bayesian approach not only matched
or surpassed the performance of using the sensitivity-based importance metric on the GLUE
benchmark, but was also a faster alternative to the original AdaLoRA with Adam. The theo-
retical analysis uncovered a significant link between these two metrics, offering a Bayesian
perspective on the efficacy of the heuristic sensitivity-based metric as an importance score.
Furthermore, our results suggested that the magnitude, rather than the variance, served as the
key indicator of the importance of parameters.
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Conclusions and Future Work

6.1 Conclusions

This thesis presented three broad contributions across two primary phases, moving from ad
hoc, model-specific adaptation towards more generalized PEFT frameworks.

In the first phase, we investigated the integration of diffusion models into adaptive TTS systems
based on encoder-decoder architectures. Central to this effort was the use of adaptive layer
normalization to condition the diffusion process on text representations, enabling parameter-
efficient adaptation. On standard TTS tasks, the proposed architecture was shown to be
a faster alternative to its convolutional counterpart. In few-shot adaptation scenarios, the
new decoder demonstrated clear improvements in naturalness and speaker similarity over a
transformer-based decoder, while maintaining parameter efficiency. The effectiveness of the
approach was further validated through participation in the Blizzard Challenge 2023, where
our system achieved competitive rankings in synthesis quality and naturalness.

The second phase of the thesis transitioned to exploring more general PEFT frameworks. A
first contribution in this phase addressed the critical issue of catastrophic forgetting during
fine-tuning, which can degrade a pre-trained model’s inherent capabilities and overall gener-
alizability. We demonstrated that Bayesian transfer learning techniques, through estimating a
posterior distribution over pre-trained model parameters using Laplace approximation, can
serve as an effective regularizer within the PEFT paradigm that guides parameter updates
to preserve pre-training knowledge. Through a series of experiments on language modeling
and TTS tasks, we showed that applying established Laplace approximations to regularize
LoRA-based PEFT could overcome catastrophic forgetting without compromising fine-tuning
performance, and the Kronecker-factored approximation provided superior preservation of
pre-training knowledge compared to the diagonal ones.

Finally, we extended our exploration of Bayesian learning by investigating variational infer-
ence as a more flexible and expressive alternative to Laplace-based methods. Using the IVON
optimizer, we first demonstrated improved predictive accuracy and calibration in PEFT and
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compared it with Laplace approximation. Furthermore, we leveraged IVON’s online posterior
estimates to develop a Bayesian approach for identifying and pruning redundant LoRA com-
ponents. This enabled automatic, layer-wise allocation of the parameter budget, leading to
enhanced performance and efficiency while providing a principled Bayesian interpretation of
common importance scoring strategies used in PEFT parameter selection.

6.2 Future Work

The architectural unification across domains has facilitated the widespread adoption of
generic adaptation techniques such as PEFT, leading to a diminished distinction among
different adaptation targets. As a result, adaptation is increasingly framed as a general transfer
learning problem. In light of this trend, we discuss several potential directions for future re-
search to advance current transfer learning and PEFT frameworks, particularly from a Bayesian
perspective.

This thesis has demonstrated the potential of Bayesian learning approaches that estimate
posterior distributions over network parameters for a variety of applications. Specifically,
the Laplace approximation enables efficient estimation of the posterior around a mode us-
ing limited data, providing both a mechanism for preserving pre-trained knowledge during
adaptation and a means for uncertainty quantification to improve calibration. With regard
to the former, transfer learning is in fact closely related to continual learning, as discussed
in Chapter 4. In this context, Laplace-based methods can be applied to support continual
learning of LoRA adapters, enabling modular integration of task-specific knowledge without
mutual interference. For example in TTS, LoRA adapters could be designed as plug-in mod-
ules with disentangled functionalities, such as one encoding speaker identity and another
encoding emotional tone, allowing for compositional control over the same base model. On
the other hand, despite the effectiveness of Laplace-based methods, particularly those em-
ploying Kronecker-factored approximations, they can still incur significant computational
and memory costs even when applied to a subset of parameters and using few data. Thus,
identifying more computationally and memory-efficient Hessian estimations while maintain-
ing precise posterior estimation, is a valuable direction for further investigation. Furthermore,
beyond predictive uncertainty estimation, the Laplace approximation can also be valuable
in generative settings: for example, to detect flawed outputs, filter low-quality samples, or
identify out-of-domain inputs that may lead to unreliable generations.

Variational inference offers a more flexible and expressive framework for posterior estimation
during training. However, its practical adoption is often hindered by the computational over-
head incurred during inference, particularly when multiple samples must be drawn to form
an ensemble prediction, thereby reducing inference speed in proportion to the number of
samples. To address this limitation, future work could explore more efficient sampling strate-
gies that minimize or eliminate the need for repeated forward passes. Additionally, given the
demonstrated effectiveness of last-layer Laplace approximations in mitigating overconfidence
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in predictions, it would be worthwhile to investigate the application of variational inference to
specific model components that perform prediction tasks prone to such issues to improve the
model’s overall performance. Another promising avenue lies in the combination of Laplace
approximation and variational inference techniques for adaptation. One potential approach
is to use the Laplace approximation to estimate the loss landscape around a pre-trained mode
and initializing the variational posterior with the corresponding Hessian approximation. This
would allow prior information from the pre-trained model to be incorporated directly into the
variational fine-tuning process, potentially enhancing performance and generalizability.
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