
Accepted on the jury’s recommendation

for the award of the degree of Docteur ès Sciences (PhD)

by

Modelling cochlea and its interaction with the auditory
path for speech processing

Louise Clothilde COPPIETERS DE GIBSON

Thesis n° 10 908

2025

Presented on 29th July 2025

Prof. J.-Ph. Thiran, jury president
Prof. D. N. A. Van De Ville, Dr Ph. N. Garner, thesis directors
Dr Y. Su, examiner
Prof. D. Kolossa, examiner
Prof. S.-C. Liu, examiner

School of Engineering
Medical Image Processing Laboratory
Doctoral program in Electrical Engineering

A Scout smiles and whistles under all circumstances

— Baden-Powell

To my beloved husband, my family and all friends who supported me during this journey . . .

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Phil Garner,

for your availability, support, and guidance throughout this four-year journey. Your presence

and dedication at every stage of this thesis made a significant difference, and I am sincerely

grateful for the insight, patience, and encouragement you provided.

I would also like to thank the members of the jury for your valuable feedback and constructive

suggestions, which have greatly contributed to refining and strengthening this work.

To the friends I’ve made along the way — thanks to you, Idiap was not only a workplace, but

truly became a second family. Thank you for the shared moments, the laughs, the countless

cakes at lunchtime, the kicker matches, and so much more. To those who were crazy enough

to try ski touring or mountain climbing with me: I hope our adventures continue even beyond

the PhD.

To the friends I’ve known before — thank you for always being there, for reminding me who I

am outside of research, and for your support from both my homeland and Switzerland.

To the flatmates who shared this journey with me — through cooking, playing board games,

and spending countless evenings reinventing the world — Evann, Benoît, and Jonathan — this

experience would not have been the same without you.

To my parents, brothers, and sisters — despite the distance, your love and support have always

felt close. Thank you for your visits, your encouragement, and for believing in me from afar.

To my family-in-law, thank you for the warm welcome you gave me in this new country and

for your support during these past five years.

And finally, to my husband — your love, patience, and steadfast presence have been my

greatest source of strength. Thank you for your support, for your incredible belief in my

abilities, and for simply being yourself. You pulled me out of my comfort zone and into a world

of snow-covered summits, 4000-meter climbs, and winter nights in mountain huts or under a

tent on a glacier. You’ve added life and adventure to every moment we’ve shared.

i

Abstract

This thesis explores the intersection of physiological modelling and computational techniques

in advancing Automatic Speech Recognition (ASR) systems. Contemporary ASR, often driven

by attention models and self-supervised learning, has achieved remarkable accuracy, but

remains decoupled from more recent physiological principles. In the meantime, significant

progress has been made in understanding the function of the cochlea, the auditory system’s

sensory organ. Originally viewed as a passive filter bank, the cochlea is now understood to

function as an active amplifier, well modelled by a Hopf oscillator.

The goal of this thesis is to investigate how the latest understanding of physiology can be

combined and studied within deep learning based ASR models. To this end, the thesis is

organised as two interacting threads.

In a first thread, we investigate modularity, which proposes strategies to integrate and combine

different types of machine learning models, using different experts, or combine new frontend

models with pretrained large transformer models. In a preliminary study, we show that

modularity can be used to optimise an ASR model for different types of environmental noise.

In a second thread, we utilise modularity to investigate how to incorporate improved cochlear

understanding into ASR systems, creating a two-way bridge where insights from computa-

tional approaches inform auditory physiology. After studying established techniques such

as CARFAC and SincNet, we investigate trainable filter banks within a convolutional neural

network (CNN) structure to determine key hyperparameters for ASR performance. This study

also highlights interesting insights filters tend to learn when able to train in an ASR context.

Finally, we combine the threads by embedding a Hopf-based cochlear model within an ASR

system, informed by the learned filter bank parameters. We show that the Hopf mechanism

demonstrates the expected cube root compression and gain control. Moreover, a larger feed-

back loop, modelling the olivocochlear efferent path further enhances the overall performance.

The resulting system, offers valuable insights for future interdisciplinary studies between ASR

and physiological auditory models.

Key words: ASR, cochlear model, Hopf oscillator, SincNet, efferent pathway, active amplifica-

tion mechanism, CARFAC, self-supervised models

iii

Résumé

Cette thèse explore l’intersection entre la modélisation physiologique et les techniques com-

putationnelles pour l’amélioration des systèmes d’ Automatic Speech recognition (ASR). Les

systèmes ASR contemporains, souvent basés sur des modèles d’attention et l’apprentissage

auto-supervisé, ont atteint une précision remarquable, mais restent déconnectés des principes

physiologiques les plus récents.

En parallèle, des avancées significatives ont été réalisées dans la compréhension du fonction-

nement de la cochlée, l’organe sensoriel du système auditif. Longtemps considérée comme

un simple banc de filtres passifs, la cochlée est désormais reconnue comme un amplificateur

actif, modélisé par un oscillateur de Hopf.

L’objectif de cette thèse est d’investiguer comment ces avancées dans la compréhension

physiologique peuvent être étudiées en combinaison avec l’état de l’art des techniques d’ASR.

Pour ce faire, la thèse est organisée en deux axes. Dans un premier axe, nous investiguons la

modularité, qui propose des stratégies pour intégrer et combiner différents types de modèles

de deep learning, en utilisant différents experts, ou combiner de nouveaux modèles de prétrai-

tement acoustique avec des grands modèles de transformeurs pré-entraînés. Dans une étude

préliminaire, nous montrons que la modularité peut être utilisée pour optimiser un modèle

d’ASR face à différents types de bruits environnementaux.

Dans un second axe, nous exploitons la modularité pour explorer comment intégrer une

meilleure compréhension de la cochlée dans les systèmes ASR, créant ainsi un lien bidirection-

nel où les avancées des approches computationnelles peuvent à leur tour inspirer la recherche

dans la compréhension de la physiologie auditive. Après avoir étudié des techniques éta-

blies telles que CARFAC et SincNet, nous analysons ce qu’apprennent des bancs de filtres

entraînables au sein d’une architecture d’un réseau de neurones convolutifs (CNN) afin de

déterminer les hyperparamètres clés qui pourront être transposés à des modèles cochléaires

plus complexes. Cette étude met en évidence des observations intéressantes sur les filtres que

le modèle tend à apprendre lorsqu’ils sont entraînés dans un contexte ASR.

Enfin, nous réunissons ces deux axes en intégrant un modèle cochléaire basé sur les oscil-

lateurs de Hopf au sein d’un système ASR, en nous appuyant sur les paramètres appris par

les bancs de filtres. Nous montrons que le mécanisme de Hopf reproduit la compression en

racine cubique ainsi que le contrôle de gain attendus. De plus, une boucle de rétroaction

plus large, inspirée de la voie efférente olivocochléaire, améliore davantage les performances

v

Chapter 0

globales. Le système résultant offre des perspectives intéressantes pour de futures études

interdisciplinaires entre l’ASR et les modèles physiologiques de l’audition.

Mots clefs : ASR, modèle cochléaire, oscillateur de Hopf, SincNet, voie efférente, méchanisme

d’amplification actif, CARFAC, modèles d’auto-entraînement

vi

Contents
Abstract (English/Français) iii

List of figures xi

List of tables xv

Glossary xvii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem statement, research objectives and limitations 3

1.3 Outline and main contributions . 4

2 Background 7

2.1 The cochlea . 7

2.1.1 Anatomy and tonotopic organisation . 8

2.1.2 High-level working of the cochlea . 9

2.1.3 The active amplification mechanism . 10

2.1.4 Feedback connections in auditory path. 11

2.2 Broad overview of cochlear Models . 12

2.2.1 Gammatone filter . 13

2.2.2 Neurotransmitter based and spiking models 13

2.2.3 Basilar membrane coupled to fluid dynamics 13

2.2.4 Hair cell interaction mechanism . 14

2.3 ASR . 16

2.3.1 Evolution of ASR . 16

2.3.2 ASR structure . 18

2.3.3 Speech components and feature extraction 18

2.3.4 Databases . 19

2.3.5 Metric . 22

3 Modularity 23

3.1 Introduction . 24

3.2 Background . 25

3.2.1 Modular networks . 25

vii

Chapter 0 CONTENTS

3.2.2 Conformer . 26

3.3 Method . 26

3.3.1 Fixed routing . 26

3.3.2 Learned routing . 28

3.4 Experiments . 28

3.4.1 Dataset . 28

3.4.2 Baseline and framework . 28

3.4.3 Fixed Routing . 29

3.4.4 Learned routing . 30

3.5 Conclusion . 33

4 Hopf oscillator 35

4.1 Background . 36

4.1.1 Types of oscillators . 36

4.1.2 Cochlear model equations in the literature 39

4.1.3 Criticality concept . 44

4.1.4 Take aways for building our model . 45

4.2 Bifurcations . 46

4.2.1 Fold bifurcation . 46

4.2.2 Transcritical bifurcation . 47

4.2.3 Pitchfork bifurcation . 48

4.2.4 Hysteresis bifuration . 49

4.2.5 The Hopf oscillator with external input: a combination of hysteresis and

pitchfork bifurcation . 50

4.3 Simulation of oscillators . 51

4.3.1 A single oscillator . 51

4.3.2 Multiple oscillators . 52

4.3.3 Experiment on an artificially built signal 54

4.3.4 Experiment on an audio signal . 57

4.3.5 Limitations of the simulation model . 59

4.4 Precomputed plausible cochlear features in an ASR system 59

4.5 Conclusion . 60

5 Trainable filters 63

5.1 Introduction . 64

5.2 Background . 65

5.3 Initial Analysis . 66

5.3.1 SincNet setup . 66

5.3.2 Method . 66

5.3.3 Baseline . 67

5.3.4 Number of filters . 68

5.3.5 Scale after training . 69

5.3.6 Corollary . 70

viii

CONTENTS Chapter 0

5.4 Wide-band filter analysis . 70

5.4.1 Wide-band initialization . 70

5.4.2 Why wide-band filters? . 71

5.5 Conclusion . 73

6 Trainable filters with self-supervised pretrained model 75

6.1 Introduction . 77

6.2 Background . 78

6.2.1 Self-Supervised Models . 78

6.2.2 Cochlear Models . 80

6.2.3 ASR with Trainable Filters . 81

6.2.4 Speech Features . 82

6.3 Method . 82

6.3.1 Overall Hypothesis . 82

6.3.2 Pre-Trained Model . 83

6.3.3 Experimental setup and training protocol 83

6.3.4 Dataset . 83

6.4 Experiments . 84

6.4.1 Can Trainable Filters Replace the Encoder CNN in an Already Pre-Trained

Model? . 84

6.4.2 Does a Physiologically Adapted Front-End Perform as Well as a CNN in a

Pre-Trained Model? . 89

6.4.3 Can Trainable Filters be Incorporated during Self-Supervision? 91

6.4.4 Do Wide-Band Filters Appear in Some Other Training or Model Configu-

rations? . 93

6.5 Conclusions . 96

7 Integration of Hopf oscillator module into an ASR system 99

7.1 Background . 100

7.2 Learning parameters . 100

7.3 Hopf oscillator module . 101

7.3.1 Mathematical formulation . 101

7.3.2 Implementation of the Hopf module . 102

7.3.3 Characterization of the Hopf Module . 103

7.4 Integration in ASR . 111

7.4.1 Challenges in bigger scale network . 111

7.4.2 Adapting time constant of active amplification loop 112

7.4.3 Method . 113

7.4.4 Integration of Hopf-module in a simple ASR structure 113

7.4.5 Impact of adding recurrence on the CNN frontend 116

7.4.6 Adding the efferent path feedback loop . 118

7.4.7 A more complex implementation . 120

7.5 Noise addition . 121

ix

Chapter 0 CONTENTS

7.6 Hardware implementations of Hopf oscillators 123

7.7 Conclusion . 123

8 Conclusion 125

8.1 Further research and recommendations . 126

A An appendix 129

A.1 Active force: a set of two differential equations . 129

A.2 Equations for simulation of Hopf oscillator . 130

A.2.1 Single oscillator with adaptive frequency 130

A.2.2 A series of Hopf oscillators . 131

Bibliography 133

Curriculum Vitae 145

x

List of Figures
1.1 Overview of the research strategy. Inspired by the human auditory system, this

study explores a plausible cochlear model integrated into a neural network,

aiming to provide insights into both hearing technology and human physiology. 2

1.2 General overview of the thesis. 4

2.1 General overview of the thesis highlighting the background section. 7

2.2 Schematic of the human ear divided into outer, middle and inner ear. 8

2.3 Schematic of the organ of Corti . 8

2.4 Schematic of the cochlear duct, the central membrane is an approximation of

the frequency-selective basilar membrane. The high frequencies are detected

on the beginning of the cochlear duct and the lower frequencies are detected at

the end, near the apex. 9

2.5 Schematic of the working of the cochlea . 10

2.6 Auditory path from cochlea to midbrain with the efferent paths from the auditory

cortex and mibrain. 11

2.7 Schematic of CARFAC from Lyon (2017a). The y-components represent the state

of the basilar membrane and the r -components represent the signals sent to the

brain. 15

2.8 Structure of ASR system. 18

2.9 Frequency rates of different speech components. 19

2.10 Summary of the different noises of the CHiME4 dataset. 20

3.1 General overview of the thesis. 24

3.2 Fixed routing architecture . 27

3.3 Learned routing architecture . 27

3.4 Confusion matrices for the different number of experts: (a) for 2 experts, (b) 3

experts and (c) 5 experts. The x-axis represent the type of domain we have at the

input and the y-axis the output of the network. 31

3.5 Loss function of different experiments: baseline and fixed and learned routing. 32

4.1 General overview of the thesis. 35

4.2 Schematic of the solutions of equation 4.5: the radius obtained in function of

the bifurcation parameter (µ). The bifurcation occurs at µ = 0. 38

4.3 Damping regime . 38

xi

Chapter 0 LIST OF FIGURES

4.4 Hopf bifurcation regime . 39

4.5 Active amplification regime . 39

4.6 Oscillator filterbank after frequency adaptation. 46

4.7 Evolution or ṙ in function of r for different values of F . The solutions of the

differential equation vary between 0,1 and 2 solutions. 47

4.8 Schematic of the solutions on the r -F plane. The stable and unstable nullclines

are indicated in blue and red respectively. 47

4.9 Evolution or ṙ in function of r for different values of µ. The solutions of the

differential equation vary between 1 and 2 solutions. 47

4.10 Schematic of the solutions on the r -µ plane. The stable and unstable nullclines

are indicated in blue and red respectively. 47

4.11 Evolution or ṙ in function of r for different values of µ. The solutions of the

differential equation vary between 1 and 3 solutions. 48

4.12 Schematic of the solutions on the r -µ plane. The stable and unstable nullclines

are indicated in blue and red respectively. 48

4.13 Evolution or ṙ in function of r for different values of F . The solutions of the

differential equation vary between 1,2 and 3 solutions. 49

4.14 Schematic of the solutions on the r -F plane. The stable and unstable nullclines

are indicated in blue and red respectively. 49

4.15 Schematic of the cochlear model bifurcation mechanism for several input signal

amplitudes. 50

4.16 Adaptation of an oscillator to an external signal at different time steps. 52

4.17 Adaptation of an oscillator’s frequency ω (blue line) to the frequency of an exter-

nal signal ω0 (orange line). 52

4.18 Training 4 oscillators on a signal composed out of 4 components with corre-

sponding frequencies. 55

4.19 Training 4 oscillators on a signal composed out of 4 components with non-

corresponding frequencies. 56

4.20 8 oscillators and 4 components, the 4 frequencies are captured by four oscillators

while the four others stand quiet. 57

4.21 40 oscillators and 4 components, the 4 frequencies are clearly appearing on the

image representing the different sine wave of the input signal. 58

4.22 100 oscillators capturing the information of an audio signal. 58

5.1 General overview of the thesis. 63

5.2 Evolution of the baseline implementation of SincNet: the grey graph shows the

initial filter distribution and the blue graph shows the filter distribution after

training. The x-axis represents the frequency range and the y-axis the amplitude

of the filters. The filters themselves are represented by their central frequency

(dot) and their bandwidth (bar). 67

xii

LIST OF FIGURES Chapter 0

5.3 Filter repartition of superimposed filterbanks before (top plot) and after (bottom

plot) training. In the initialization, the red filterbank is a narrow-band filterbank

composed of 30 filters. The rest are filterbanks of 10, 5 and 1 filters capturing

information that could in principle be reconstructed by a combination of the

narrow band filters. 71

6.1 General overview of the thesis. 75

6.2 A schematic overview of the original SincNet implementation model used as

baseline in our previous work, the wav2vec2 fine-tuning path and the proposed

fine-tuning path in this work. Based on compositionality capacity of networks,

we combined the feature extractor of the original SincNet model with the pre-

trained transformer of wav2vec2. 84

6.3 Training curve of the long-run training of 100 k updates. (a) depicts the WER of

the validation set (dev-other), (b) contains the negative log likelihood of the loss,

and (c,d) depict the learning rate evolution of the feature extractor and context

network, respectively. 86

6.4 A more schematical explanation of the behavior of the network training ex-

plained in Figure 6.3. There are 2 training phases: one up to 40 k updates where

the whole model except the feature extractor is frozen, and the second phase,

where everything fine-tunes together. 87

6.5 Comparison of filter distribution for different run lengths and internal SincNet

structure. Using maxpooling within the filter structure makes some wide-band

filters appear in low frequency ranges. 88

6.6 Loss curve during (a) training and (b) validation. 90

6.7 Comparison of the content of the normalized filter sum using SincNet filters and

using a same-size generic CNN. 91

6.8 Filter distribution after the self-supervised (ss) training and fine-tuning (ft) of

the wav2vec2 model. Globally, filters do not tend to move significantly during

fine-tuning when they have been incorporated during pre-training. 93

6.9 Distribution of the different filters in the frequency domain. The dots represent

the central frequencies and the lines represent the bandwidths, similarly to

Figure 5.2. The number of initial filters are (a) 100, (b) 80, (c) 60, and (d) 40. . . 94

6.10 Filter distribution after training for 40 filters. 96

7.1 General overview of the thesis. 99

7.2 Learning mechanism: division of different learning routines over the different

parts of the model according to the physiological equivalent. 100

7.3 Hopf oscillator module schematic the oscillator output corresponds to the real

value of the oscillator r cosθ. 103

7.4 Evolution of the r -value in the oscillator when µ = 1 is fixed 105

7.5 Evolution of the r -value in the oscillator when µ is initialized to 0 and evolves

over time for µmax fixed to 0. 105

xiii

Chapter 0 LIST OF FIGURES

7.6 The evolution of the radius r of an oscillator for different signals tuned at its

central frequency. 106

7.7 Cube root relationship between the input signal amplitude (A) and the oscillator

radius (r). 106

7.8 Evolution of the radius of an oscillator radius for in input signal tuned at a

frequency outside of the frequency bandwidth of the oscillator with a zoom

showing the transient. 107

7.9 Linear relationship between the input signal amplitude (A) and the oscillator

radius (r). 107

7.10 The evolution of the radius r of an oscillator for different signals tuned at its

central frequency with an adaptable bifurcation parameter. 108

7.11 Diverging tendencies from the cube root relationship between the input signal

amplitude (A) and the oscillator radius (r) with µmax fixed to 0.1. 108

7.12 Comparison of the output of SincNet filters and oscillators for composite signals

of multiple sinusoids. 108

7.13 Comparison of frequency separation between Hopf oscillators and SincNet filters.108

7.14 Comparison of the Hopf oscillator output wit mel-distributed SincNet filter

output for a small utterance: ’eight’. 109

7.15 Comparison of output of linearly distributed filters with a DFT computation of a

four digit utterance: ’one, zero, nine, two’, . 110

7.16 Adaptation of µ parameter to a speech input in a noisy environment for a five

digit utterance: ’two, six, five, five, five’. 111

7.17 Computation time needed for different values of the adaptation frequency going

from 8kHz to 100Hz. 112

7.18 Illustration of the oscillator output for different adaptation frequencies for the

utterance: ’nine, nine, zero’. 113

7.19 Integration of Hopf module in a simple ASR baseline. 114

7.20 PER for different adaptation frequencies from 100Hz to 16kHz and a comparison

with fixed filters. 115

7.21 PER vs time consumption when introducing a for loop with CNN adaptation

rates of 5Hz, 10Hz, 20Hz and 50Hz around the CNN. 117

7.22 Attention feedback loop . 118

7.23 PER results when adding a large feedback loop. 119

7.24 Weight and bias of the linear combination module after training. 120

7.25 Attention feedback loop . 120

xiv

List of Tables
2.1 CHiME4 dataset summary with the number of utterances per subset. The noisy

datasets contain the four types of noisy environments: bus, café, street and

pedestrian area. 21

2.2 Summary of LibriSpeech dataset . 21

3.1 Baseline results: the results are computed for two different decoding methods:

’ctc’ for ctc beam search and ’att’ for attention rescoring. Five subsets are chosen:

clean, real dev (RD), simu dev (SD), real eval (RE) and simu eval (SE) according

to table 2.1. 29

3.2 Results of fixed routing with attention rescoring decoding method. 29

3.3 Number of utterances in each category for 2 experts 30

3.4 Number of utterances in each category for 3 experts 30

3.5 Number of utterances in each category for 5 experts 31

3.6 Results of learned routing mechanism . 32

4.1 Phone error rate comparison between MFCC and CARFAC features. 60

5.1 Filter pruning experiment: numbers of narrow band filters and related PER in

function of the initialization. 68

5.2 SincNet experiment: compare the performance of the training with the filters

fixed and the filters that are free to train. 68

5.3 Mean Euclidean distance between narrow bandfilter’s normalized central fre-

quency distribution and different scalings for different amount of filters (Mel

filterbank) and different initial scalings (30 filters). 69

5.4 Summary of experiments using narrow and/or wide-band filters 71

5.5 The effects of modifying the downsampling and pooling schemes. The numbers

in the second column refer to the downsampling rate at each of the pooling

operations in the convolutional layers (1 implies no downsampling). 73

6.1 Comparison between a short and long run using no maxpooling after the filter

layer in the first 2 experiments and with a maxpooling that has a kernelsize of 3

in the third experiment. Thus, the third experiment has a downsampling of a

factor 3 just after the sinc filters via a maxpooling operation in the time domain. 87

xv

Chapter 0 LIST OF TABLES

6.2 Table summarizing the time of each experiment on 4 parallel GPUs and the

number of parameters contained in the feature extractor. Note that this number

of parameters is quite small compared to the rest of the network (90 M parameters). 89

6.3 Performance of the different experiments on the capacity of SincNet (SN) to

replace the initial CNN structure with a 95% confidence interval, assuming the

result is beta distributed. 90

6.4 Comparison of the loss and accuracy of the baseline pre-trained model and the

model after a further pre-training for both frozen and trainable filters. After 10 k

updates, the model already performs well but not as good as the baseline, while

after 100 k, the model reaches the performance of the baseline in terms of loss

and accuracy. 92

6.5 Performance of model using trainable filters in pre-training (100 k updates) and

fine-tuning (10 k updates). 92

6.6 Performance on the dev-clean subset of LibriSpeech for different numbers of

filters. 95

7.1 Input and output size of the CNN for different CNN adaptation rates. 117

7.2 PER for the different SNR levels on the TIMIT dataset with a model trained on

clean speech. 122

7.3 PER for the different SNR levels on the TIMIT dataset with a model trained on

noisy speech . 123

xvi

Glossary

AGC Automatic Gain Control.

ASR Automatic Speech Processing.

CARFAC Cascade of Asymmetric Resonators with Fast-Acting Compression.

CN Cochlear Nucleus.

CNN Convolutional neural network.

CP Critical Point.

DFT Discrete Fourier Transform.

DNN Deep Neural Network.

E2E End-to-end.

fMRI functional Magnetic Resonance Imaging.

GMM Gaussian Mixture Model.

GPU Graphics Processing Unit.

HMM Hidden Markov Model.

IC Inferior Colliculus.

IHC Inner Hair Cell.

LLM Large Language model.

LOC Lateral Olivary complex.

MFCC Mel-Frequency Cepstral Coefficients.

xvii

Chapter 0 Glossary

MGB Medial Geniculate Body.

ML Machine Learning.

MLP Multilayer Perceptron.

MOC Medial Olivary Complex.

NLP Natural Language Processing.

OAE Otoacoustic Emissions.

OC Olivary Complex.

OHC Outer Hair Cell.

PER Phone Error Rate.

PLL Phase Locked Loop.

PLP Perceptual Linear Prediction.

RMS Root Mean Square.

SNR Signal-to-Noise Ratio.

SOC Superior Olivary Complex.

TCNN Transposed Convolutional neural network.

WER Word Error Rate.

WSJ Wall Street Journal.

xviii

1 Introduction

Cochlear models have been a subject of research for a while. The understanding of the

human ear is of great interest both in the neuroscience field for a better understanding

of the underlying neurological processing and in the automatic speech recognition (ASR)

field as a source of inspiration for technology. However, research in those two fields has

evolved separately, linked to the differences in their objectives: neuroscience seeks to better

understand the neurological system for medical applications, while ASR research focuses on

achieving the best accuracy and efficiency. This thesis brings together the latest foundation

models for ASR with the latest understanding of the cochlea, which involves a gain adaptation

mechanism and the efferent pathway.

1.1 Context and Motivation

This thesis lies at the intersection of two fields: the physiological understanding of the cochlea

and auditory system, and ASR. The cochlea, an organ in the inner ear, transforms sound

waveforms into neural signals (Von Békésy, 1960; Webster, 1966). ASR, a technology within

computer science, converts spoken language into written text (Amari, 1993; Baevski, Zhou,

et al., 2020; Collobert et al., 2016; Morgan & Bourlard, 1990; Rabiner, 1989).

Although these fields differ in computational objectives, they share a common underlying

process: transforming human speech into comprehensible signals, be they neural signals,

phonemes, or words. In studies of the human auditory system, researchers aim to understand

the workings of the cochlea, the auditory pathway to the midbrain, and the auditory cortex.

This entire pipeline helps scientists model how the nervous system processes speech signals

and converts them into neural representations that the brain can interpret. On the ASR

side, the primary objective is to develop systems capable of converting spoken language into

phonemes, words, or other lexical units and that are computationally efficient.

ASR technology initially drew significant inspiration from models of the human auditory

system (Von Békésy, 1960). However, as computational resources expanded and model perfor-

1

Chapter 1 Introduction

mance improved, research in these two fields began to diverge. Despite this separation, key

advances have often emerged when the fields draw inspiration from each other. For example,

ASR has evolved to process raw speech input rather than relying solely on precomputed fea-

tures (Palaz et al., 2013a). Meanwhile, in auditory neuroscience, researchers have discovered

correlations between auditory brain signals and outputs from pre-trained ASR systems. This

thesis combines physiological modeling of the cochlea with the use of ASR to improve the

explainability of certain physiological behaviours.

Physiology
Plausible model

of the audi-
tory system

Integration
into ASR

Parameter
evolution analysis

Can we infer something
from the technol-

ogy to physiology?

Infer physiological
aspects to technology

Propose a module or
architectural trainable

implementation.

Training the model

Figure 1.1: Overview of the research strategy. Inspired by the human auditory system, this
study explores a plausible cochlear model integrated into a neural network, aiming to provide
insights into both hearing technology and human physiology.

As illustrated in Figure 1.1, advancements in hearing technology have been inspired by physio-

logical models. These range from simple logarithmic frequency mappings to more complex

representations of cochlear mechanics (Gold, 1948; Kemp, 2002; Von Békésy, 1960). Building

on this knowledge and the performance of existing technologies, this work focuses on the

development of physiologically plausible models.

On the one hand, a basic understanding of the cochlea models it as a filterbank (Ravanelli

& Bengio, 2018a; Zeghidour et al., 2018). On the other hand, a more detailed understanding

involves modelling the organ of Corti as a Hopf oscillator, operating near the Hopf bifurcation

(Camalet et al., 2000; Hudspeth et al., 2010b). This mathematical framework has been shown

to accurately capture key aspects of the cochlear function.

2

Introduction Chapter 1

1.2 Problem statement, research objectives and limitations

On the one hand, our understanding of the human cochlea has evolved significantly over

the years. Initially conceived as a simple filterbank (Von Békésy, 1960), the cochlea’s inner

workings are now recognized as far more intricate (Brownell et al., 1985; Gold, 1948). Moreover,

interactions along the auditory pathway have revealed feedback loops that contribute to the

finer calibration of signals.

On the other hand, ASR models have also undergone substantial development. From early

systems composed of manually designed statistical units (Morgan & Bourlard, 1990; Rabiner,

1989), the advent of deep learning has introduced trainable models of increasing complexity

and scale (Baevski, Zhou, et al., 2020; Baevski et al., 2022; Collobert et al., 2016; Hinton et al.,

2012). While these large models have achieved remarkable improvements in performance,

they have also reduced interpretability and limited comparability to the human auditory

system.

Bridging the gap between these domains offers intriguing possibilities for improving inter-

pretability but comes with trade-offs, such as reduced performance and computational in-

efficiency due to the complexity of such implementations. Addressing these challenges is a

central focus of this thesis. Additionally, advancing ASR research often involves competing

against well-resourced teams with access to extensive computational capacities, making it

unrealistic to aim for state-of-the-art performance under limited resources.

The primary goal of this thesis is, therefore, not to surpass the latest ASR models in terms of

efficiency or performance but to propose novel approaches and insights. These approaches

draw inspiration from the physiological workings of the human cochlea. This is achieved by

integrating a deeper understanding of cochlear mechanisms into the ASR domain. Another

key objective is to analyze performance changes in various experiments to better understand

the learning processes of the human auditory system.

Initially, this thesis sought to combine state-of-the-art ASR models, such as pretrained trans-

former architectures, with a mathematical model of the latest understanding of the cochlea.

However, the inherent complexity of both systems made such integration computationally

prohibitive, requiring resources far beyond reasonable limits. Nevertheless, this work explores

both fields to a feasible extent. Specifically, it investigates:

1. The integration of trainable filters within a state-of-the-art self-supervised model con-

text.

2. The incorporation of active amplification oscillators into a simpler ASR framework.

The pathways and building blocks leading to these objectives are further detailed in Section

1.3.

3

Chapter 1 Introduction

1.3 Outline and main contributions

2. Background

C
o

ch
le

a
A

SR

4. Driven
oscillator

7. Driven oscil-
lator in ASR

5. Trainable
filters in ASR

3. Modularity

6. Trainable filters
with pretrained model

Driven oscillator with
pretrained model

Figure 1.2: General overview of the thesis.

This thesis is built on two main pillars: ASR and the physiology of the cochlea. To provide a

clear understanding of the thesis structure, Figure 1.2 summarizes the overall framework and

illustrates the interconnections between the different chapters.

• Chapter 2 provides background information, presenting the state-of-the-art understand-

ing of cochlear function, existing cochlear models with varying levels of physiological

granularity, and the key advancements made in the field over the past decade. The

chapter highlights the benefits and inherent limitations of these developments.

• Chapter 3 introduces the concept of modularity (Pfeiffer et al., 2023) and explores how

modularity can serve as a bridge between cochlear models and ASR systems. It also

presents an investigation into modularity (Pfeiffer et al., 2023) within a conformer-based

ASR system. Specifically, we demonstrate that incorporating modularity enhances sys-

tem performance. Further analysis explores the deployment of both fixed and learned

routing mechanisms, applied to a noisy dataset containing speech in various noisy

environments. Employing modularity to distinguish between noise types and clean

speech improves the learning curve and overall performance across all dataset subsets.

This investigation laid the groundwork for modularity to play a central role in subse-

quent chapters, bridging the gap between pure ASR systems and physiological cochlear

models.

• Chapter 4 delves into the active amplification mechanisms of the cochlea, demon-

strating how Hopf oscillators effectively mimic these mechanisms through bifurcation

dynamics. This chapter acts as a prior work chunk to demonstrate the effectiveness of

Hopf oscillators to encode speech before integrating an active amplification oscillator

based system into an ASR model in chapter 7.

4

Introduction Chapter 1

• Building on the modularity concept of chapter 3, chapter 5 investigates the integration

of trainable filters into ASR systems. Using SincNet (Ravanelli & Bengio, 2018a, 2018c), as

a foundation, we analyze the characteristics of trainable filters when they adapt within

a small ASR context. The analysis reveals that the filters tend to form a filterbank of

30–40 filters, with some filters capturing wideband information. This behaviour aligns

with neurophysiological observations: at the cochlear level, narrowband filters exhibit

tonotopic organization, capturing frequency-specific information, while higher levels in

the auditory pathway combine neural information in a wideband manner.

• Chapter 6 further builds on the work in chapter 5, extending the concept of trainable

filters to larger ASR systems based on self-supervised pretrained models. Modern

state-of-the-art ASR systems leverage models pretrained on large datasets, which are

subsequently fine-tuned on smaller datasets to achieve superior performance com-

pared to traditional ASR methods. Extending the modularity concept, we combine a

trainable filterbank with a pretrained transformer model. This study reveals that, within

a larger pretraining context, wideband filters no longer emerge. This suggests that in

transformer-based pretrained models, broader combinations of narrowband filters are

constructed at higher layers during pretraining. Notably, the model consistently estab-

lishes a baseline of approximately 40 filters to capture activity across different frequency

ranges.

• Chapter 7 combines the latest understanding of the cochlea as a Hopf oscillator-based

model poised at the Hopf bifurcation with the ASR baseline used in chapter 5. We

propose an implementation using mel-spaced oscillators covering the speech frequency

range. These oscillators exhibit cube-root compression and operate at the Hopf bifur-

cation. We demonstrate the application of this module in an ASR system and propose

the addition of a larger feedback loop, inspired by physiological evidence of an efferent

path involving higher-order nuclei in the auditory pathway. Incorporating this larger

feedback results in a significant performance improvement. The performance of this

approach is evaluated on both clean and noisy datasets.

• The initial objective of this thesis was to integrate a complex cochlear model with a

pretrained ASR system. However, due to computational and time constraints, such

experiments were deemed infeasible.

• Chapter 8 concludes the thesis by summarizing the key findings and offering recom-

mendations for future research.

In order to improve readability, much of the prose in this thesis has been refined by a large

language model (LLM) explicitly prompted to correct grammar I.

IA local instance of Llama 3.2 3B prompted with "Can you correct the following text:"

5

2 Background

In this chapter, we cover the background topics required to understand the general aspects

of the thesis. The thesis is constructed on two main pillars. On the one hand, we have

the understanding of the physiological mechanism of the cochlea and the existing cochlear

models; and on the other hand, the working of ASR. Figure 2.1 highlights the background as

foundations on which the rest of the thesis is built. The understanding of the cochlea lies at

the foundation of the cochlear model we want to build. In contrast the ASR system serves as

the container in which the performance of those models can be tested.

2. Background

C
o

ch
le

a
A

SR

4. Driven
oscillator

7. Driven oscil-
lator in ASR

5. Trainable
filters in ASR

3. Modularity

6. Trainable filters
with pretrained model

Driven oscillator with
pretrained model

Figure 2.1: General overview of the thesis highlighting the background section.

2.1 The cochlea

Research in the neurophysiological field has investigated the intricate relationship between the

cochlea and the brain. This section begins with a broad overview of the general functioning of

the cochlea as understood since the early 20th century. Next, a second subsection delves into

the working of the organ of Corti and the active amplification mechanisms that occur within it.

7

Chapter 2 Background

The organ of Corti’s role in generating oscillations is further supported by an active feedback

loop linked to the hair cells. Additionally, research on the auditory path in the midbrain

suggests that larger feedback loops play a significant role in the hearing process. The presence

of some larger feedback loops as well as the reason of their utility is still a research question in

the auditory field. An overview of the main feedback loops is presented in subsection 2.1.4 .

2.1.1 Anatomy and tonotopic organisation

Figure 2.2: Schematic of the human ear divided into outer, middle and inner ear.

To gain insight into the workings of the cochlea, this section begins with a concise review

of its anatomical structure (Webster, 1966). The human ear is composed of three distinct

parts: the outer ear, middle ear, and inner ear. Figure 2.2 illustrates the overall organization

of these components. The outer and middle ears function as low-pass filters that amplify

sound, while the inner ear is comprised of two main structures: the cochlea and semi-circular

Figure 2.3: Schematic of the organ of Corti

8

Background Chapter 2

Figure 2.4: Schematic of the cochlear duct, the central membrane is an approximation of the
frequency-selective basilar membrane. The high frequencies are detected on the beginning of
the cochlear duct and the lower frequencies are detected at the end, near the apex.

canals. The cochlea, located within the inner ear, serves a critical role in hearing, whereas

the semi-circular canals contribute to balance and equilibrium. The cochlea itself consists

of three distinct channels, defined by the Reissner membrane and Basilar membrane. These

channels are divided into two outer and one inner channel.

The organ of Corti (as shown in Figure 2.3), is a complex sensory apparatus located on the

basilar membrane within the inner channel of the cochlea. The organ of Corti consists of

three primary components: the tectorial membrane, inner hair cells (IHC), and outer hair

cells (OHC). In addition to its structural complexity, the organ of Corti is also innervated

by the cochlear nerve. This nerve serves as a critical conduit for the transmission of neural

information between the cochlea and the rest of the auditory pathway.

2.1.2 High-level working of the cochlea

Acoustic waveforms initially reach the outer ear, where they are transmitted through the

eardrum to the middle ear. The ossicles of the middle ear match the impedance between the

ear drum and the oval window, ultimately causing the acoustic waves to travel to the inner

ear. At this point, a transmission to perilymph occurs. The perilymph is a fluid situated in the

outer channels of the cochlea. This liquid as well as the protein structures and their properties

around the cochlea has a filtering function: it makes the vibrations progress through the

cochlea according to their frequency, the lower the frequencies, the further the waves are

propagated. As a result, the basilar membrane vibrates at specific frequencies that correspond

to particular locations along its length. These vibrations can be detected by the interactions

within the Organ of Corti, allowing for the processing and analysis of sound.

This high-level understanding of the cochlea, as proposed by Von Békésy (1960), can be

approximated using a series of filters: higher frequency signals are detected earlier in the

cochlear duct, while lower frequency signals are detected later near the apex (as shown in

Figure 2.4). Filterbanks have been widely employed to define typical feature computations

and build non-complex models for ASR tasks. However, the earliest studies were limited

because they were conducted on the cochleae of deceased animals, which lack neural feedback,

resulting in passive filterbank behaviours. Subsequent studies on the cochlea revealed that its

9

Chapter 2 Background

actual operation involves an active amplification mechanism (Gold, 1948; Kemp, 1978; Zurek,

1981).

2.1.3 The active amplification mechanism

Speech

Oto-acoustic
emissions

te
ct

o
ri

al
m

em
b

ra
n

e
Inhibition

AGC loop

Active amplification Signal detection

passive
resonance
at specific
frequency

OHC

Variation of
membrane
potential

Fast OHC
contraction

IHC

Action
potential

Nervous
system

Figure 2.5: Schematic of the working of the cochlea

Further research on the organ of Corti by studying living animals revealed a more detailed

understanding of the cochlea. Contrary to initial assumptions that it behaves like a passive

filterbank, studies in the 1980s showed that the cochlea is an active amplification oscillator.

Gold (1948) had the intuition that a passive oscillation of the basilar membrane could not

be enough to detect sound. He then suggested that an active amplification mechanism of

the acoustic signals was present in the cochlea. This hypothesis was later confirmed by the

phenomenon of otoacoustic emissions (OAE). OAEs are vibrations produced by the inner ear

in response to auditory stimuli or even spontaneously, without external stimulation. Measured

in human ears in the late 1970s and early 1980s (Kemp, 1978; Zurek, 1981), OAEs provided

evidence for the existence of nonlinear mechanisms within the cochlea that responded me-

chanically to acoustic stimulations. Further studies revealed that the OHCs possess a unique

electromotile capacity (Brownell et al., 1985), which is responsible for the production of OAEs.

(Geisler, 1986; Neely, 1993) The IHCs are the real sensory receptors that connect the cochlea to

the nervous system through electric pulses (Russell & Sellick, 1977). Figure 2.5 illustrates the

connections between these different elements. The signal is first filtered out by the perilymph

at different frequencies between 20Hz and 20kHz, depending on the location on the cochlear

duct. This induces a vibration of the basilar membrane at different frequencies with a passive

resonance. The OHCs detect these vibrations, leading to changes in their membrane potential

10

Background Chapter 2

and subsequent fast contractions. The input vibration is actively amplified by the OHCs,

generating larger vibrations of the tectorial membrane that can then be detected by the IHC.

This active amplification mechanism is then inhibited by feedback signals, allowing for more

efficient sound detection. Finally, the signal is transmitted to the brain.

2.1.4 Feedback connections in auditory path.

Cochlea CN OC IC MGB

Auditory path

Auditory
cortex

Olivocochlear feedback

Figure 2.6: Auditory path from cochlea to midbrain with the efferent paths from the auditory
cortex and mibrain.

The auditory pathway involves a complex interplay of neurons from the cochlea to the auditory

brain, with multiple feedback mechanisms that refine and optimize sound processing. While

the efferent path in the auditory brain is well established, the various feedback loops that com-

prise it are multifaceted and serve distinct purposes. Those feedback loops are schematized in

Figure 2.6.

The olivocochlear feedback loop is a well-known mechanism connecting the olivary complex

(OC) with the cochlea across different mammals (Rasmussen, 1946). This efferent pathway has

been favoured by evolutionary selection, as evidenced by its widespread presence in various

species (Romero & Trussell, 2022). The olivocochlear feedback loop can be further divided

into two main branches:

1. The medial olivary complex (MOC) to the OHC, which serves to protect against damage

from loud noise and improve speech perception in noisy environments (D. W. Smith &

Keil, 2015).

2. The lateral olivary complex (LOC) to the synapses of the IHC, modulating auditory nerve

sensitivity (Warr et al., 1997).

Additionally, the olivocochlear feedback loop also influences the excitability of the cochlear

nerve, which is essential for slowing cochlear aging (Liberman et al., 2014; Maison et al., 2013).

The descending projections from the auditory cortex form two distinct loops: the colliculo-

thalamic-cortico-collicular loop and the bottom loop (Terreros & Delano, 2015).

11

Chapter 2 Background

• The top loop involves descending projections to the medial geniculate body (MGB)

and inferior colliculus (IC), forming a tonotopic feedback loop that modulates sound

intensity, frequency, and spatial processing.

• The bottom loop comprises descending projections to the cochlear nucleus (CN) and

superior olivary complex (SOC), influencing cochlear responses.

Furthermore, IC, SOC, and CN are interconnected within a bidirectional network that facili-

tates top-down modulation in the auditory pathway (Terreros & Delano, 2015).

2.2 Broad overview of cochlear Models

In both the neurophysiological and technological fields, researchers have developed cochlear

models to gain insights into their functioning and generate plausible outputs.

In the neurophysiological field, the primary goal of these models is to elucidate the intricacies

of the cochlea itself. As such, these models are often more computationally intensive and

strive to capture the physiological reality with greater accuracy. By doing so, researchers can

better understand the complex mechanisms underlying sound processing in the ear.

In contrast, applications of cochlear models in the ASR field have two distinct uses:

1. A separate feature extraction : These models can be used to generate features that

are computationally intensive and detailed. This approach allows for the creation of

high-fidelity representations of speech sounds, which can be particularly useful in

challenging acoustic environments and afterwards be used to train models.

2. Incorporation into ASR systems : However, when it comes to integrating cochlear models

into ASR systems, computational compromises are often necessary, but parameter

training of cochlear models is made possible.

By striking a balance between computational intensity and practicality, researchers can de-

velop cochlear models that not only advance our understanding of sound processing but also

enable more effective applications in ASR.

Existing cochlear models typically concentrate on a particular aspect of the cochlea’s function-

ing and can be implemented based on analyses conducted at various scales. At the macro scale,

filterbank models attempt to simulate the cochlea’s output signals by adapting filters, such as

Gammatone filters. These models aim to capture the overall structure and functionality of the

cochlea, with a focus on its acoustic properties. In contrast, models that delve deeper into the

micro scale focus on specific components of the cochlea, such as: the molecular interactions

at the neurotransmitter level, the fluid dynamics coupled with the basilar membrane motions

and the OHC-IHC interaction. By targeting specific aspects of the cochlea’s functioning at

12

Background Chapter 2

different scales, researchers can develop more nuanced and accurate models that capture the

intricacies of sound processing in the cochlea.

2.2.1 Gammatone filter

Many ASR features are based on filterbanks. Among these, the Gammatone filter is particularly

well-suited to mimic the output of the cochlea. The Gammatone filter (Johannesma, 1972) is a

type of filter that provides a good approximation of the impulse response shape of the auditory

system. This filter combines a gamma-distribution envelope with a polynomial increase and

exponential decrease, along with a cosine function at a specific frequency. The mathematical

representation of the Gammatone filter is given by Equation 2.1:

g t (t) ∝ t n−1 exp(−2πbt)cos(2π f0t +φ) (2.1)

The Gammatone filter has been used as a tool to model the cochlear response to a stimulus

(Russo et al., 2019). One of its key benefits is that it can approximate both the cochlear fluid

filtering and the OHC amplification. In a noisy environment, Gammatones tend to perform

better than the standard ASR features such as MFCCs (see section 2.3.3). Researchers have

also explored using Gammatone filterbanks for cochlear implants, with proposals made by

Karuppuswamy and Arumugam (2013), Ngamkham et al. (2010), and Tabibi et al. (2017).

2.2.2 Neurotransmitter based and spiking models

The physiological function of the cochlea is to transform mechanical vibrations into neural

activity pattern, involving transfer of neurotransmitters to emit a spike. A model based on the

computation on the flow of neurotransmitters through synapses is the Meddis Hair Cell Model

(Meddis, 1986), which focuses on the transduction process in the IHC to convert mechanical

vibrations into neural signals. This model operates at a synaptic level, calculating the amount

of transferred neurotransmitters and determining firing probabilities in the auditory nerve.

This approach is particularly useful for modeling auditory nerve responses or integrating it

into larger auditory systems. In contrast, X. Zhang et al. (2001) proposed an auditory nerve

model that focuses on the transduction of sound vibrations into spikes, combined with a global

understanding of the cochlea to simulate the hearing function. This model is well-established

in the neuroscience domain. Additionally, Cramer et al. (2020) proposed a spike-dataset

production model to utilize spike features as input for speech technologies and (Yang et

al., 2016) proposed a hardware implementation that further has been combined with deep

learning models for ASR (Liu et al., 2013; Wang et al., 2022).

2.2.3 Basilar membrane coupled to fluid dynamics

Hydrodynamic models of the cochlea primarily focus on the sound propagation through the

perilymph (cochlear fluid). Vibrations are introduced into the cochlear fluid through the

13

Chapter 2 Background

ossicles in the middle ear and the oval window, triggering fluid movements that cause the

basilar membrane to vibrate at frequency-dependent locations.

There are several notable examples of hydrodynamic models:

• Allen’s Cochlear Model (Allen, 1980) is characterised by a tonotopic organization of the

cochlea, fluid dynamic equations and a representation of the basilar membrane as an

elastic structure with varying stiffness and damping along the frequency axis.

• Steele and Taber Models (Steele & Taber, 1979) employ the Wentzel-Kramers-Brillouin

(WKB) asymptotic method to simulate the fluid dynamics within the cochlea. These

models are compared to finite difference calculations to validate their accuracy.

• Zweig Cochlear Model (Zweig et al., 1976) focuses on nonlinear basilar membrane

responses in the cochlear tuning.

2.2.4 Hair cell interaction mechanism

Some models focus primarily on the interactions between the OHC and the IHC, as well as

the inhibitory feedback loop between these elements. One notable example is cascade of

asymmetric resonators with fast-acting compression (CARFAC) (Lyon, 2017a), a model that

simulates these interaction using an active gain control (AGC) loop. This mechanism amplifies

sound at specific frequencies, mimicking the behaviour of the cochlea. Another approach

uses Hopf oscillators poised at the Hopf bifurcation. This mechanism reflects mathematically

the working of the cochlea.

The work presented in this thesis builds upon and further explores these interactions, focusing

on the intricate mechanisms that govern the OHC-IHC interaction and the inhibitory feedback

loop.

CARFAC

The CARFAC model is a comprehensive model that incorporates various physiological be-

haviours characteristic of the ear. A general overview of the CARFAC architecture is depicted

in Figure 2.7, providing a visual representation of the interactions between the different com-

ponents. The construction of the CARFAC model is inspired by the physiological workings of

the cochlea, as presented in section 2.1.3. The model proposes an implementation that closely

approximates the output and function of each physiological element. The frequency filtering

by the non-uniform liquid medium is modelled using second-order low-pass filters H with

undamped resonance frequencies. These filter frequencies are distributed according to the

Greenwood distribution (Sridhar D, 2006). The transfer function of the second-order filters

14

Background Chapter 2

x H1 H2 HN−1 HN

OHC OHC OHC OHC

I HC I HC I HC I HC

AGC AGC AGC AGC

y1 y2 yN−1 yN

r1 r2 r3 r4

Figure 2.7: Schematic of CARFAC from Lyon (2017a). The y-components represent the state of
the basilar membrane and the r -components represent the signals sent to the brain.

used in CARFAC is defined by the following equation:

H(z) =
z2 + (−2a0 + c0h)r z + r 2

z2 −2a0r z + r 2 (2.2)

The denominator of this equation defines the poles which determine the resonance frequen-

cies. The numerator defines the zeros, which are coupled to the poles and cause a steeper

response on the high frequency side. This asymmetry gives control over filter shape and gives

a flat high-frequency asymptote. The CARFAC cascade is organized in a manner similar to that

of the cochlea, with the highest frequencies first due to the cascaded structure. The output of

each filter is progressively transferred to the following resonator, which amplifies the signal

at its resonance frequency and filters out higher frequencies. In CARFAC, OHCs can actively

amplify the signal at the resonance frequency of the corresponding resonator. This is achieved

by modifying the radius of the zeros and poles of the second order filters in the z-plane, which

affects the damping of the resonators and the amplitude of the output signal y , representing

the basilar membrane vibration. The movement of the basilar membrane is detected by the

IHCs, which convert these signals into action potentials (neural activity patterns). The IHC

possess the unique property of acting as half-wave rectifiers, transforming vibrations into

spikes. Further, an AGC model fine-tunes the OHC undamping mechanism to adaptively

adjust based on the output of the IHC. The AGC blocks are connected throughout the cascade

of asymmetric resonators.

In the electronics field, a stable and scalable implementation of the CARFAC model has been

realized on an Field Programmable Gate Array (FPGA) by Xu et al. (2018) for cochlear modelling

purposes.

15

Chapter 2 Background

Hopf oscillator model

The Hopf oscillator model, originaly proposed by Hopf (1942) has been further developed

and adapted as a suitable model for cochlear applications by Martin and Hudspeth (1999).

This model employs a mathematical approach that focuses on capturing the intricate inner

behaviour of the interactions, rather than merely simulating the output. The two key features

of this model are the cube root compression and its ability to exhibit a Hopf bifurcation, which

captures the active amplification and damping mechanisms. The complexity of this model

makes it an attractive choice for modeling cochlear dynamics in this thesis. The mathematical

behaviour will be further detailed in Chapter 4.

Furthermore, an electronic implementation a Hopf reservoir, under the form of an electronic

circuit has been proposed for sound recognition (Shougat et al., 2021, 2023), which shows

interesting results for hardware implementations.

2.3 ASR

2.3.1 Evolution of ASR

The first ASR system to Hidden Markov Models (HMMs)

ASR began in the mid-20th century with analog devices capable of recognizing a limited set

of words. One of the first prototypes, called Audrey, was developed by Bell Labs and focused

on automatic digit recognition. As research progressed, ASR systems started handling larger

vocabularies through techniques like template matching. In the 1980s, a stochastic approach

gained popularity, with HMMs becoming widely adopted for ASR (Rabiner, 1989). HMMs

use states to represent entities such as phonemes, with probabilistic transitions allowing

for movement between nodes or staying in the same node. An advancement in HMMs was

the integration of Gaussian Mixture Models (GMMs) into the nodes, enhancing robustness

and enabling the models to better capture complex distributions in acoustic features. This

approach required predefined features to be computed for HMM nodes, based on known

speech features (Rabiner, 1989). Alongside GMM-HMM models, the combination of multilayer

perceptrons (MLPs) with HMMs also demonstrated strong performance in ASR (Morgan &

Bourlard, 1990).

Gradient descent mechanism

Parallel to the ASR first steps, neural networks began in the mid-20th century with the first

MLP. This consisted of layers of neurons computing linear combinations of input units and

followed by non-linear activation functions. Combined with a gradient descent mechanism,

those first networks were able to be trained. The gradient descent mechanism keeps track

of the path through which the signal has progressed when a batch of examples has been

16

Background Chapter 2

forwarded through the system, the difference between the real and predicted targetsknown

as the loss. This loss is then backpropagated through the model and at every node, the

gradient with respect to the obtained loss is computed. The gradient corresponds to the first

order derivative of a given node that gives the direction towards which the value of the node

should evolve. A learning rate then defines the size of the step in the gradient direction. By

repeating this operation several times, the model learns node values that predict the right

targets. Several loss computation mechanisms and different learning rate schedulers exist,

allowing for adjustments to be made to the learning rate and optimization of the subsequent

loss curve according to the specific model and task requirements.

Deep Learning models

Around 2010, several studies demonstrated that the performance of neural networks outper-

formed that of HMM based models (G. E. Dahl et al., 2011; Pan et al., 2012; Seide et al., 2011a).

With the advent of deep neural networks, precomputed nodes are no longer necessary; instead,

stochastic gradient descent allows the system to learn the essential characteristics needed

for ASR through training (Amari, 1993). Initially, models used precomputed features such

as Mel-frequency cepstral coefficients (MFCCs) as input. However, later research proposed

end-to-end approaches that enabled the system to define its own features (Hinton et al., 2012;

Palaz et al., 2013b). To train these models, large datasets are required, typically consisting of

raw speech or preprocessed speech features accompanied by their corresponding transcrip-

tions. The training process typically relies on an encoder-decoder structure that learns to

recognize individual units of language, such as letters, phonemes, words, or other linguistic

elements from raw speech or speech features. This approach is known as supervised learning,

where every input sample has a corresponding target transcription.

Self-supervised models

Self-supervised learning was introduced by Collobert and Weston (2008) in natural language

processing (NLP), and allows models to learn without labeled data. Unlike supervised learning,

which requires labeled data and can be time-consuming to assign labels, self-supervised

learning uses large amounts of unlabeled data to train the model.

Self-supervised models typically follow a two-stage training procedure:

• Pre-training: This is a resource-intensive process that creates a large pre-trained model

creating orthogonal representations in a latent space. The training is based on a similar-

ity measure between signals.

• Fine-tuning: The pre-trained model is then adapted to a specific task using smaller

amounts of labeled or unlabeled data.

Self-supervised learning became particularly popular for transformer-based models. Trans-

17

Chapter 2 Background

formers have shown to outperform classical deep learning modules such as recurrent neural

networks, MLP and convolutional neural networks (CNNs) in a number of tasks such as NLP

and increasingly in ASR and vision. Its mechanism is based on attention, which captures

through keys, queries and values the structure of the different types of input (Vaswani et al.,

2017). This structure is more robust, but is also more computationally demanding.

2.3.2 ASR structure

speech
words,
phonemes,
syllables

Feature
extraction

Encoder Decoder

Latent
space

Forward pass
Gradient back-

propagation

Figure 2.8: Structure of ASR system.

An ASR system typically consists of two main components: a speech or feature encoder and

text decoder as illustrated in Figure 2.8. The encoder takes speech or speech features as input

and maps them to a lower-dimensional latent space. The latent-space is a N-dimensional

space in which speech features corresponding to the same target are grouped together. The

decoder links the latent space representations to the different targets.

In self-supervised model, only the encoder is trained during the pretraining phase. This

pretraining creates orthogonal representations for different inputs based on a predictive

algorithm. During finetuning the decoder is added and groups the different subgroups corre-

sponding to same word entities together.

2.3.3 Speech components and feature extraction

Speech Features

For years, physiology has inspired scientists to improve technology. Two techniques have been

widely used for feature extraction in ASR since the 1980s: MFCCs (Davis & Mermelstein, 1980)

and Perceptual Linear Prediction (PLP) analysis (Hermansky, 1990a).

MFCCs are a type of cepstral coefficient equally distributed on a mel-scale. A cepstrum is

a non-linear transform with decorrelating properties first introduced by Bogert (1963). The

mathematical equation of a cepstrum is described by following equation:

Cp =
∣∣∣F−1

{
log

(
|F { f (t)}|2

)}∣∣∣2
(2.3)

18

Background Chapter 2

audio

frames

phones

syllables

words

16kHz

100Hz

10Hz

4-6Hz

2Hz

ASR TTS

Figure 2.9: Frequency rates of different speech components.

Where f (t) represents the signal and F represents the Fourier transform. The Mel scale is a

subjective scale for the measurement of the pitch (Stevens et al., 1937).

The PLP analysis of speech estimates the auditory spectrum using the critical-band spectral

resolution (by using the Bark scale transformation (J. O. Smith & Abel, 1999)), the equal-

loudness curve (determining the sensitivity of hearing at different frequencies) (Robinson &

Dadson, 1956) and the intensity-loudness power law (the non-linear relation between intensity

and sound that can be estimated with a cubic root) (Stevens & Galanter, 1957). The acoustic

model is approximated by an auto-regressive all-pole model (Hermansky, 1990a).

Speech components

Speech can be divided into different speech components at different frequency rates, as

illustrated in Figure 2.9. The input to an ASR system can either be raw speech or preprocessed

speech features. The output of the ASR system can be one of several options, including

phonemes, syllabels or words. For ASR applications, speech is typically sampled at 16 kHz.

Features are computed at a specific rate; standard MFCCs are computed out of a 25 ms window

every 10 ms, which corresponds to the frame rate of 100Hz. Phonemes are typically sampled

at a rate of 10 Hz, syllables around 4-6 Hz and words around 2 Hz.

The ASR system needs to be designed with these different sampling rates in mind.

2.3.4 Databases

Several databases are used in this thesis, adapted to the different experiments. The main

datasets used are CHiME4, TIMIT, Librispeech and TIDIGITS, which are broadly used speech

datasets for ASR. Besides for tasks that imply noise addition, we use the TIMIT dataset com-

bined with the QUT-noise dataset with different SNR levels.

19

Chapter 2 Background

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

1000

2000

3000

4000

5000

6000

7000

8000
M

el
 Fr

eq
ue

nc
y

(H
z)

BUS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

STREET

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
el

 Fr
eq

ue
nc

y
(H

z)

CAFÉ

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

PEDESTRIAN

Figure 2.10: Summary of the different noises of the CHiME4 dataset.

CHiME4

The CHiME4 (Vincent et al., 2016) dataset is a noisy speech dataset based on the Wall Street

Journal (WSJ) dataset (Paul & Baker, 1992). The clean part of the data consists of a combination

of WSJ0 and WSJ1, which are well-established benchmarks for ASR. The noisy part of the

dataset are divided in two parts: a simulated portion and a real portion. The simulated portion

is created by artificially mixing clean utterances with noisy background noise, while the real

portion consists of speech recordings made in different noisy environments. The noises used

in this dataset for training, validation and testing are drawn from daily life environments

such as buses, cafés, streets and pedestrian areas. The same utterances are recorded in

multiple conditions to create a diverse dataset. A 20-second excerpt of each noise type

used for simulation is shown in Figure 2.10. The bus noise is characterized by a persistent

low-frequency component below 500 Hz, corresponding to the engine background noise.

Similarly, the street noise contains low-frequency energy in the same range, primarily due

to passing vehicles. In both environments, additional transient events, babble noise, and

various everyday acoustic interferences are present. In contrast, the café and pedestrian

area environments exhibit less low-frequency energy and are predominantly characterized by

babble noise produced by surrounding individuals in close proximity to the speaker.

The data distribution is summarized in Table 2.1. In this thesis, we use the CHiME dataset

to evaluate the modular capacity of a conformer-based network on different types of noisy

speech in chapter 3.

20

Background Chapter 2

Table 2.1: CHiME4 dataset summary with the number of utterances per subset. The noisy
datasets contain the four types of noisy environments: bus, café, street and pedestrian area.

clean noisy simu noisy real total
train 37,416 42,828 9,600 89,844
dev - 1,640 1,640 3,280
eval 1,206 1,320 1,320 3,846

TIMIT

The TIMIT dataset (Garofolo, 1993) is a well-established, manually annotated and relatively

small dataset widely used in the ASR field used for phone recognition research (Lopes &

Perdigao, 2011). The dataset contains 6300 utterances, each consisting of 10 sentences spoken

by each of the 630 speakers recorded at a sampling rate 16kHz. The speakers are from eight

major dialect regions of the US. About 33% of the speakers are female and 67% are males.

Despite its relatively small size, TIMIT has been instrumental in supporting research into ASR

systems for over three decades. This dataset is suitable for smaller-scale experiments aimed at

developing or validating models. This dataset is also more suited for supervised learning. In

this thesis, we use the TIMIT dataset on small ASR experiment notably in chapters 5 and 7.

Librispeech

The Librispeech dataset (Panayotov et al., 2015) is a widely used English dataset consisting

of 1000 hours of audio recorded at a sampling rate of 16kHz. The data is derived from read

LibriVox’s audiobooks, with transcripts provided by the corresponding book texts. The dataset

is divided into several subsets. The ’clean’ subsets are particularly notable for their low Word

Error Rates (WER) and closer to American English. The WER is the difference between the

predicted text and transcripted text. In contrast, the ’others’ subsets exhibit higher WER

in preliminary ASR tests conducted by the authors. Librispeech is commonly used in the

speech community for large-scale experiments and self-supervised learning tasks that require

a substantial amount of data. The dataset’s diverse range of speakers, accents, and speaking

styles makes it an interesting choice for researchers seeking to develop or evaluate ASR systems.

In this thesis, we use Librispeech for experiments that use transformer-based pretrained

models in chapter 6.

Table 2.2: Summary of LibriSpeech dataset

Subset h min./spk f m tot. exp.
dev-clean 5.4 8 20 20 40 Evaluation
dev-other 5.3 10 16 17 33 Validation
train-100 100.1 25 125 126 251 SS and FT
train-360 263.6 25 439 482 921 SS
train-500 496.7 30 564 602 1166 SS

21

Chapter 2 Background

TIDIGITS

The TIDIGITS dataset (Leonard & Doddington, 1993) is a small dataset containing english

spoken digit sequences. In this thesis, we use some utterances of TIDIGITS to illustrate the

output of cochlear models on small spoken sequences.

QUT-NOISE

The QUT-NOISE corpus (Dean et al., 2010) is a background-noise dataset consisting of 20

recordings of 30 minutes of noise, recorded in diverse daily living environments: home, café,

street, car, and reverberation areas. In this thesis, we use this corpus mixed with the TIMIT

dataset to assess the noise robustness of our models trained on the TIMIT dataset.

2.3.5 Metric

In ASR, the primary metric used to evaluate the performance of a model is the Word Error Rate

(WER) or Phone Error Rate (PER). WER measures the percentage of words in an utterance that

are correctly predicted by an ASR system. It quantifies the difference between the transcrip-

tions and the ground truth by dividing the sum of insertions (inserted words), substitutions

(incorrectly replaced words) and deletions (missing words) by the total amount of words. A

lower WER indicates a better performance of the model to transcribe spoken language. PER is

a similar metric, but instead of the word-level, the percentage of error is based on phones.

WER is a standard benchmark used to objectively compare ASR systems, assess improvements

due to updates and evaluate the performance on different datasets or different acoustic

conditions.

22

3 Modularity

The concept of modularity in neural networks refers to a design principle that divides a model

into several self-contained modules, each specialised for a specific action or with a specific

structure. It is a concept that came up 30 years ago in neural networks, but recently found

an interesting application area with the advent of large self-supervised pretrained models.

The computation intensity of those models make it quite demanding resource-wise to train

everything from scratch. By using modularity, several structures can be combined to solve

complex problems more efficiently than big monolithic blocs.

Modularity also reflects the way biological systems such as the human neural network are

built. Different regions of the auditory system specialize in distinct tasks: the cochlea extracts

features, the auditory pathway refines these features and downsamples the signal, and the

auditory cortex further processes the signal into interpretable neural signals be they words,

syllables or phonemes. The main advantages of modularity are efficiency by decoupling a

task in smaller modules, interpretability through specialized modules, transfer learning by

importing one or more pretrained modules and scalability.

In the context of deep neural networks, modularity can be applied in three different ways:

• Architectural Modularity: Neural networks can be divided into subnetworks, focussing

on specific functions. The inner architecture of different modules (CNN, recurrent

neural network (RNN), transformers etc.) are chosen in function of the type of task the

subnetwork has to perform. (LeCun et al., 2015)

• Functional Modularity: Inside a neural subnetwork, several modules can be used to

accomplish different tasks. A typical example is multi-task learning. Each module has

its own specialization (for example in ASR, there could be several languages), with the

rest of the network shared. (Pfeiffer et al., 2023)

• Hierarchical modularity: Inside a network, different subnetworks specialize into recog-

nizing specific attributes of the input. For example for speech a first module detects

the activities at different frequencies, a second module combines those information

23

Chapter 3 Modularity

at different frequencies to detect phonemes and a last layer combines those phoneme

information to understand words.

In the context of this thesis, modularity is applied to the ASR context introduced in the

background chapter (Chapter 2) as illustrated in Figure 3.1. Notably, hierarchical modularity

is applied with the idea of combining plausible cochlear models with existing deep learning

structures and models. Hierarchical and architectural modularity will be further used in the

chapters 5, 6 and 7.

2. Background

C
o

ch
le

a
A

SR

4. Driven
oscillator

7. Driven oscil-
lator in ASR

5. Trainable
filters in ASR

3. Modularity

6. Trainable filters
with pretrained model

Driven oscillator with
pretrained model

Figure 3.1: General overview of the thesis.

This chapter proposes a study done on an industrial internship which investigates more

deeply how the concept of modularity has been used in the literature. This study focusses on

functional modularity. A novel approach of applying a routing mechanism on a conformer-

based system for doing ASR on noisy speech signals is proposed.

The majority of the text in this chapter is under revision, but available on arXiv as:

Coppieters de Gibson, L., Garner, P. N., & Honnet, Pierre-Edouard(2024).An in-

vestigation of modularity for noise robustness in conformer-based ASR. arXiv

e-prints

3.1 Introduction

With the advent of ever larger transformer-based architectures, the necessary computing

power to train and infer with state of the art ASR models keeps increasing. Databases also grow

in size and cover more modalities due to an increasing interest for multimodal and multitask

modeling. This leads to an exponential increase of the number of model parameters (Sevilla

et al., 2022) as well as amount of data required to train these models (Villalobos & Ho, 2022).

24

Modularity Chapter 3

These larger models not only require large computational resources to be trained, they can also

suffer from negative interference and catastrophic forgetting (Ramasesh et al., 2021). Inspired

by biological systems (Sporns & Betzel, 2016), modularity has been applied in machine learning

(ML) models for decades (Jacobs et al., 1991; Jordan & Jacobs, 1994). Recently, the concept

of modularity has become popular again, especially for large models. Modularity can be

introduced at different levels of a model and with different approaches, depending on the

task and model structure (Pfeiffer et al., 2023). A modular structure allows to train only task

related experts of a model instead of the whole model. Irrelevant experts for a given task are

thus not trained, which saves computational power and avoids catastrophic forgetting. In the

ASR field, mixture of experts (MoEs) have been shown to improve accuracy for different tasks

by increasing the model size, while keeping the same computation power (K. Hu et al., 2023;

You et al., 2021, 2022).

This work focuses on introducing modularity in conformer-based ASR models to handle

speech in different types of noise environment. By adding modularity at the conformer block

level, we allow the model to learn different conditions and exploit this information to improve

its performance on both noisy and clean speech. We hypothesize that using different experts

for different noisy types of speech will enhance the ASR performance of each type of noisy

speech. Introducing modularity in the beginning of the model would make the model more

robust to different types of noisy speech with fixed routing. We then explore learned routing,

where we observe similar performance but with a model better suited to handle real-life

situations. We demonstrate the effectiveness of the approach on the task of ASR in noisy

environments. Using different experts for clean and noisy speech outperforms the standard

conformer, however adding more granularity inside the noisy data class by separating the

different types of noise does not improve the performance further. Another finding is that our

modular models tend to be trained faster than the baseline conformer model without experts.

This study first reminds the theory behind modularity and conformers in the Section 3.2. Then

Section 3.3 introduces our proposed method to tackle challenging noise environments for

ASR. In Section 3.4, we report our experiments and findings. We conclude in Section 3.5.

3.2 Background

3.2.1 Modular networks

A modular neural network has three specific components: functional blocks or experts, a

routing mechanism to select the right experts, and an aggregator that combines the outputs of

those experts.

Functional blocks can be implemented in different ways:

• It can be a composition of parameters such as sparse subnetworks, where a small

number of parameters are pruned to be trained for each specific task (Ansell et al., 2021)

25

Chapter 3 Modularity

or low-rank modules such as LoRA (E. J. Hu et al., 2021).

• It can be obtained through an input composition where the input is concatenated with

specific parameters (X. L. Li & Liang, 2021).

• It can be a function composition where a whole block is duplicated to act as different

experts. (C. G. Rosenbaum, 2020)

A routing mechanism is needed to select an expert. This routing mechanism can either be

fixed if the expert selection is known from the data (for example in multitask learning (Ruder,

2017)), or it can be learned when the routing information is not available. In case of learned

routing, several challenges arise such as module collapse or training stability (C. Rosenbaum

et al., 2019).

3.2.2 Conformer

The conformer architecture, introduced by Gulati et al. (Gulati et al., 2020), is a stack of

conformer blocks. One such block is composed of two feedforward layers (one at the front and

one at the end), one transformer layer and one convolutional layer. By design, it combines the

advantages of both CNNs (T. N. Sainath et al., 2013) and transformers (Vaswani et al., 2017):

CNNs primarily capture local contextual information and dependencies, while self-attention

captures more global context.

3.3 Method

In this section we describe our two main contributions, namely the introduction of fixed

routing and learned routing in the conformer architecture.

3.3.1 Fixed routing

Using a fixed routing mechanism implies knowing the condition in advance. When this is

possible, a simple routing mechanism dictated by an input parameter can be set in place.

This experimental setup gives us two keys: first it shows if using modularity to distinguish

noisy and clean speech enhances the global performance. Second it can be used as pretrained

model for a learned routing mechanism.

We propose to introduce modularity through experts at the conformer block level as illustrated

in Figure 3.2: every expert in a modular layer is a full conformer block. To keep the same

amount of computations between the baseline and the modular approaches, the router

chooses exactly one expert for each utterance. The aggregator then composes the batch in the

right order after the modular layer.

26

Modularity Chapter 3

SpeechDomain

"Hello world"

Modular layer

Expert

Conformer layer

ExpertExpertExpertExpert

Router

Input

Output

x11

x1

Figure 3.2: Fixed routing architecture

router

router

BUS PED CAF

Speech

STRclean

Classifier

Copy of
pretrained

weights

Speech

"Hello world"

Modular layer

Expert

Conformer layer

ExpertExpertExpertExpert

Router

Input

Output

x11

x1

Figure 3.3: Learned routing architecture

27

Chapter 3 Modularity

3.3.2 Learned routing

The information about noise is not always available with the input. In daily situations, one

can be exposed to outside noise or be in a noise free environment, but the model does not

have access to the information. When this is the case, fixed routing cannot be used and the

routing has to be inferred from the input signal.

Expert modules can only start to differentiate when the router has learned a consistent pattern.

This gives two main paths to train a learned router with an ASR model: train everything

together from scratch, or first pretrain the router before integrating it with the ASR.

Training everything together from scratch implies setting up a constraint to diversify the

choice of the router output in the beginning of the training. This is needed to avoid a routing

system that always picks the same expert, which forces the ASR experts to first learn a general

solution, before starting to have a consistent routing.

The use of a pretrained router offers the advantage to be less computationally intensive, but it

requires to create a parallel classification pipeline to pretrain the router. Pretraining the router

avoids this forced diversification when training the ASR. Moreover, one can decide to freeze

the router for some time while training the ASR and to unfreeze and train it jointly with the

ASR in the next phase. In this paper, we used the second approach, illustrated in Figure 3.3.

3.4 Experiments

3.4.1 Dataset

Our experiments are carried out on the CHiME4 dataset presented in section 2.3.4.

3.4.2 Baseline and framework

Our implementation is based on the WeNet framework, an open-source toolkit used for

streaming and non-streaming end-to-end ASR (Yao et al., 2021; B. Zhang et al., 2022). The

baseline model is a 12-layer conformer encoder with a 6-layer transformer decoder. At every

layer of the encoder, the attention module has 4 attention heads. The WER results of the

baseline experiment are summarised in Table 3.1I. Two different decoders are used in the

baseline experiment: a CTC beam search decoder and an attention rescoring decoder. A

CTC Beam Search Decoder is a decoding algorithm used in end-to-end ASR. This method

outputs a probability distribution out of a set of labels (i.e. characters) plus a special blank

symbol (_) at every time step. The Beam search algorithm keeps track of the top N most

likely word or utterance hypothesis at each time steps to find the most likely transcription

(Graves et al., 2006). The attention rescoring algorithm uses the CTC beam seach decoding

INote that the results reported by the authors on github differ from what we were able to reproduce, especially
for the SE condition.

28

Modularity Chapter 3

algorithm to generate a list of candidate transcriptions. Each transcription is then rescored

using an attention-based decoder, taking into account the context of the sequence and the

language model and picks the candidate transcription with the highes combined score (CTC

and attention) (Chan et al., 2016; S. Kim et al., 2017). For the baseline we report both results,

for the further experiments, we only report the attention rescoring decoder results, due to the

better performance capacity.

Table 3.1: Baseline results: the results are computed for two different decoding methods: ’ctc’
for ctc beam search and ’att’ for attention rescoring. Five subsets are chosen: clean, real dev
(RD), simu dev (SD), real eval (RE) and simu eval (SE) according to table 2.1.

clean RD SD RE SE
ctc 17.73 20.91 22.48 30.85 53.66
att. 16.44 19.76 21.63 29.69 52.98

3.4.3 Fixed Routing

In the fixed routing experiment we explored the impact of modularity when using different

numbers of experts and expert layers: The expert choices are:

For two experts, we also vary the number of layers which become modular: we experimented

with 1, 2 and 3 modular layers. In addition, we also test the network behaviour when intro-

ducing the modularity only on the second or third layer rather than on the first layer of the

network. The routing path is appended to the beginning of the input waveform to provide the

router with the domain information.

Results are reported in Table 3.2. There exists an interesting trade-off between the number

of experts that can be trained on specific data and the amount of data that each expert sees

during training. If the data is diversified over the different experts, the more experts, the better

the model will be adapted to that specific type of data. On the other hand if different types of

data are too similar to be differentiated, the more experts, the less data each expert will receive

Table 3.2: Results of fixed routing with attention rescoring decoding method.

experts mod.
layer

clean RD SD RE SE

Baseline 16.44 19.76 21.63 29.69 52.98
2 1 10.02 16.77 19.93 26.28 27.33
2 1 - 2 10.43 16.98 19.74 26.22 27.25
2 1 - 2 - 3 10.16 17.99 20.30 26.69 28.03
3 1 10.47 18.12 19.63 27.21 27.76
5 1 10.30 17.46 19.89 26.82 28.25
2 2 10.18 16.99 19.59 26.05 26.85
2 3 9.81 16.99 19.63 26.27 26.88

29

Chapter 3 Modularity

Table 3.3: Number of utterances in each category for 2 experts

2 experts clean noise
train 37416 52428
dev 0 3280
test 1206 2640

Table 3.4: Number of utterances in each category for 3 experts

3 experts clean simulated noise real noise
train 37416 42828 9600
dev 0 1640 1640
test 1206 1320 1320

to adapt its weights.

The results show that using modularity at the conformer block level outperforms the baseline

both on clean and noisy speech. For clean speech, we achieve between 36.3% and 40.4%

relative WER reduction, while for noisy speech the improvements lie between 6.1% and 15.1%

for all types of noise except the simulated evaluation test set, where the baseline results differ

from the rest of the results.

This means that specialising one layer to differentiate noise from clean environment enables

the model to handle the two data types within different experts, which improves the general

ASR performance. Going further into the implementation details, the results show that using 2

experts outperforms other settings most of the time on the CHiME4 dataset, which is probably

linked to the trade-off discussed earlier.

3.4.4 Learned routing

The learned routing mechanism is divided into two parts: the router classifier and the ASR

model (see Figure 3.3).

Router classifier

We first train a classifier to predict the target classes, which will become our pretrained router

in the next stage. We opt for a simple architecture which consists of 3 CNN blocks. The goal of

the router classifier is to predict the noise type of an input waveform. Since in the ASR model

the conformer receives the waveform after the feature extraction, the router input can be the

same. The different classes are the same as for our fixed routing experiments. An example for

5 experts is represented on the left side of Figure 3.3.

The confusion matrices obtained for the different classifiers are shown in Figure 3.4. For

each figure, the true classes are given on the x-axis and the prediction is given on the y-axis

30

Modularity Chapter 3

Table 3.5: Number of utterances in each category for 5 experts

5 experts clean pedestrian area bus street café
train 37416 12768 13164 12990 13506
dev 0 820 820 820 820
test 1206 660 660 660 660

cle
an
no

ise

Input noise

clean
noise

Cl
as

sif
ica

tio
n Test set

(a)

cle
an sim

u
rea

l

Input noise

clean
simu
real

Cl
as

sif
ica

tio
n

Test set

(b)
cle

an BUS
CAF

PE
D ST

R

Input noise

clean
BUS
CAF
PED
STRCl

as
sif

ica
tio

n

Test set

0.0

0.2

0.4

0.6

0.8

(c)

Figure 3.4: Confusion matrices for the different number of experts: (a) for 2 experts, (b) 3
experts and (c) 5 experts. The x-axis represent the type of domain we have at the input and the
y-axis the output of the network.

of the matrix. For two experts (Figure 3.4 (a)), the two classes are clearly distinct. For three

experts (Figure 3.4 (c)) the classifier is not able to make the distinction between real and

simulated speech, but clean speech is clearly distinguished from noisy speech. Finally for five

classes (Figure 3.4 (b)), the classifier is able to distinguish some noises, but there is still some

confusion between the different types of noise. This means that the classifier is not able to

separate the 4 different classes based on speech features. Interestingly, it groups some noises

together: on the one hand ’human activities’ (café and pedestrian area) and on the other hand

’car noises’ (bus or street area) adds up as noise to the speech signal.

ASR

For the full ASR model with learned routing, the weights of the router classifier are loaded into

the router part of the model (see Figure 3.3). We then did two different experiments: in the

first one, we kept the weights of the router fixed during the whole ASR training, in the second

one we kept the weights of the router fixed for the first five epochs and let the router then free

to train.

The results, reported in Table 3.6, are similar to the ones obtained in the fixed routing experi-

ments. This is due to the use of number of experts corresponding to what this dataset is able

31

Chapter 3 Modularity

Table 3.6: Results of learned routing mechanism

experts number
of
fixed
epochs

clean RD SD RE SE

Baseline 16.44 19.76 21.63 29.69 52.98
2 80 9.97 17.47 19.93 26.89 28.14
3 80 9.90 16.96 19.46 26.12 26.78
5 80 10.25 17.08 19.63 26.48 27.38
2 5 10.56 17.02 19.34 25.97 26.14
3 5 10.22 17.70 19.34 26.60 27.85
5 5 9.91 17.17 19.66 26.48 26.96

0 10 20 30 40 50 60 70 80
epoch

25

30

35

40

45

50

55

60

Lo
ss

baseline
Fixed routing - 2 experts
Fixed routing - 3 experts
Fixed routing - 5 experts
Learned routing - 2 experts
Learned routing - 3 experts
Learned routing - 5 experts

Figure 3.5: Loss function of different experiments: baseline and fixed and learned routing.

to differentiate amongst the different experts after feature extraction.

We then analysed what the router tended to learn when it is free to train. For 2 and 3 experts,

after we unfreeze it, the router tends to transfer all the incoming data to the noise adapted

expert, while for 5 experts the model keeps the different experts separated. The choice of

the ’noise-robust’ expert is probably due to the fact that this expert is trained to handle noisy

speech and easily adapts to less noisy environments, while the other one only adapts to clean

speech.

Further analysing the loss function (see Figure 3.5) shows that using routing helps the model

to converge faster: after approximately 20 epochs, while the baseline experiment takes more

time (about 25-35 epochs). This is reflected in the final model as we take the average of weights

from the best 10 models, based on the validation loss. The final baseline model uses model

checkpoints from epochs between 21 and 54, while for all the models where we introduce

modularity, the final model is the average of checkpoints between the epochs 10 and 35II. The

IIOne exception was observed for the learned routing with 5 experts, with one outlier checkpoint being epoch
47.

32

Modularity Chapter 3

implication is that we are able to reach better performance in a reduced training time and

therefore less computing power. The loss curve however tends to increase after reaching a

minimum. This can be due to overfitting to the training set or possibly to the dataset that does

only have noisy data to validate the training after each epoch while the half of the training set

consist of clean audio data.

3.5 Conclusion

In this study we examine the effectiveness of modularity on the CHiME4 dataset. We introduce

modularity at the conformer block level and two routing options are explored: fixed and

learned routing.

The fixed routing approach demonstrates that using modularity consistently outperforms the

baseline across all conditions and configurations. However, dividing the data between two

experts yields better results than using three or five. This suggests a trade-off: when input

signals are distinctly different at the point where modularity takes place, using separate experts

for each type improves overall performance. However, if the signals are similar, multiple

experts may end up learning the same task, effectively reducing the data each expert processes.

We explored learned routing via a classifier-based router, which is pretrained before integration

into the ASR system. This classifier shows that noisy speech is more challenging to differentiate

after feature extraction, leading to a final division into two or three experts that distinguish

between clean and noisy speech. This also points that noise distinction better works on

signal-to-noise ratio (SNR) level than on the type of noise.

We also showed that the introduction of modularity allows for faster training, meaning reduced

computational resources.

Future work may explore techniques to use fully learned routing without target classes. This

approach can bring up other distinguishable elements helpful to ASR.

33

4 Hopf oscillator

In this chapter, we further elaborate the more accurate and complex model of the cochlea as

introduced in the background chapter (Chapter 2) as illustrated in figure 4.1. The main goal of

this chapter is to present a broad literature review of oscillator models and to present the prior

work done in order to construct a Hopf module that can be integrated into an ASR structure in

Chapter 7.

2. Background

C
o

ch
le

a
A

SR

4. Driven
oscillator

7. Driven oscil-
lator in ASR

5. Trainable
filters in ASR

3. Modularity

6. Trainable filters
with pretrained model

Driven oscillator with
pretrained model

Figure 4.1: General overview of the thesis.

To a first approximation, the cochlea can be modelled as a filterbank. However, a better

understanding of the underlying biological mechanism rather presents the cochlea as an array

of active amplification oscillators poised at the Hopf bifurcation.

This active amplification mechanism is due to a neural feedback mechanism that actively

amplifies the haircell movements when the acoustic signal amplitude is lower than a given

threshold and damps it down when the amplitude is higher.

This mechanism implies two specific elements:

35

Chapter 4 Hopf oscillator

• There is a cube root compression on the amplitude level between the acoustic amplitude

level and the signal transmitted in the inner ear.

• An active adaptation takes place when switching between different input signal ampli-

tude levels.

This mechanism can be modelled by a set of differential equations which can then be inte-

grated into a recurrent module.

This chapter starts with some background information about oscillators and the Hopf mecha-

nism. Firstly, we give a brief overview of the mathematical expression of harmonic oscillator

and the Hopf oscillator is presented with an explanation of the intricacies of the different

parameters. Then, a broad review of the cochlear models based on oscillators in the literature

is presented, highlighting the diversity of formulation that have emerged through different

papers. A ’take-away’ section summarizes the main key points that we want to integrate into

our own model. The bifurcation being an important notion in the Hopf model, a broad review

of the different types of bifurcations is proposed and the understanding of the Hopf oscillator

is detailed. Further, we present a simulation, demonstrating the adaptation capabilities of

an array of oscillators to external signal. A last section details the results of ASR experiments

we did using classical MFCCs and CARFAC features. The main goal of this section is to com-

pare physiologically plausible features incorporating active gain control with classical MFCC

features in terms of performance.

4.1 Background

This section goes into mathematical details of oscillator-based cochlear models in the litera-

ture, skipping this section would not compromise the understanding of the rest of this chapter.

To understand the main elements that we retain from the literature however, subsection 4.1.1

introduces the Hopf oscillator and the implications of a bifurcation in the context of this

oscillator and subsection 4.1.4 provides a good summary of the takeaways of this section.

4.1.1 Types of oscillators

There exist two main expressions of the oscillators in the context of the cochlea : one based

on the general driven harmonic oscillator form and another based on the normal form of the

Hopf bifurcation equation implying a complex form and a cube root non-linearity.

The harmonic oscillator

The harmonic oscillator is the common second order oscillator. A simple harmonic oscillator

(neither damped or driven) results from a combination of the 2nd Newton Law (F = ma) and

36

Hopf oscillator Chapter 4

Hooke’s law for a mass on a spring (F = kx).

mẍ +kx = 0 (4.1)

In this equation, m corresponds to the mass of an oscillating object, x is its position and k is

the stiffness, a constant related to the spring. In real-world applications, oscillators are often

damped or driven. Mathematically, the damping behaviour can be expressed by adding a

friction component to equation 4.1. This component is proportional to the velocity ẋ and

multiplied by a viscous damping coefficient h. Coupled to an external force F (t), oscillators

can also be driven.

mẍ +hẋ +kx = F (t) (4.2)

Hopf bifurcation

The Hopf bifurcation arises from an oscillator function that naturally has two types of regime:

a damping regime and an active amplification regime. The point where the oscillator switches

from one regime to the other is called the bifurcation point. The normal form of the Hopf

oscillator is given by the following differential equation:

ż = z(a +b|z|2) (4.3)

The variables z, a and b are complex numbers and can be rewritten as z = r e iθ, a = µ+ω0i

and b = β+ iγ where β represents the first Lyapunov coefficient. This coefficient should be

negative to have stable solutions for any real part of a. Equation 4.3 can be written as:

ṙ e iθ+ i θ̇r e iθ = r e iθ(µ+ω0i + (β+ iγ)r 2) (4.4)

Separating the real and imaginary part, we get two differential equations, this system of

equations is the normal form of the complex Hopf oscillator model used throughout this

thesis.{
ṙ = r (µ+βr 2)

θ̇ =ω0 +γr 2 (4.5)

The stable oscillating solution is obtained by setting ṙ = 0. The oscillator stops any oscillation

(r = 0) or converges to a stable limit cycle with a fixed amplitude (r = ±
√−µ

β). For a negative

value for β, the regimes will depend on the value of µ (see Figure 4.2).

• µ ≤ 0: the equation has one solution: a stable fixed point in 0, oscillations will tend

towards 0

• µ> 0: the equations has 3 solutions: one unstable fixed point in 0 and 2 stable solutions

in ±
√−µ

β . If we consider the radius as being strictly positive, the the oscillator will tend

37

Chapter 4 Hopf oscillator

towards a stable limit cycle with a radius equal to
√−µ

β .

The point where the solution switches from a single stable point to a stable limit cycle is

called the bifurcation point. This bifurcation point is the limit between an active amplification

mode (stable limit cycle) and a damping mode. This bifurcation point is a key concept in

understanding of the working of the cochlea.

−1 1

−1

1

µ

r

Figure 4.2: Schematic of the solutions of equation 4.5: the radius obtained in function of the
bifurcation parameter (µ). The bifurcation occurs at µ = 0.

In order to facilitate the understanding of the above literature, figures 4.3, 4.4 and 4.5 can help

understand the purpose of active oscillation.

0 200 400 600 800 1000
Time [s]

−4

−3

−2

−1

0

1

2

3

4

Am
pl

i u
de

Oscilla or ou pu

−4 −2 0 2 4
̇x

−4

−3

−2

−1

0

1

2

3

4

x

Phase por rai
phase por rai
̇x-nullcline

x-nullcline

−2 −1 0 1 2
μ

−4

−3

−2

−1

0

1

2

3

4

Am
pl

itu
de

 ta
rg

et

Bifurcation
stable solution
unstable solution
stable limit amplitude

Figure 4.3: Damping regime

The figures are organized as follows: On the left, the bifurcation plot illustrates the target

amplitude with respect to the bifurcation parameter (µ). In the middle, the real part of the

oscillator (x = r cosθ) output linked to the bifurcation parameter. On the right the phase

portrait of the response with the nullclines of x and ẋ. The phase portrait represents the

orbits of the oscillator output in the phase space. It turns counterclockwise, and its dynamic is

dictated by the nullclines. Nullclines correspond to the points where the associated derivative

is equal to 0, it is vertically oriented when crossing the x-nullcline and horizontally oriented

when crossing the ẋ-nullcline. The x-nullcline, dependent of the bifurcation parameter will

dictate a damping or amplification regime. The oscillator output evolves towards the target

solution of the bifurcation plot. If the bifurcation parameter is below zero, the amplitude is

damped down. This means that the acoustic input is higher than the threshold. In figure 4.4

38

Hopf oscillator Chapter 4

0 200 400 600 800 1000
Time [s]

−4

−3

−2

−1

0

1

2

3

4

Am
pl

i u
de

Oscilla or ou pu

−4 −2 0 2 4
̇x

−4

−3

−2

−1

0

1

2

3

4

x

Phase por rai
phase por rai
̇x-nullcline

x-nullcline

−2 −1 0 1 2
μ

−4

−3

−2

−1

0

1

2

3

4

Am
pl

itu
de

 ta
rg

et

Bifurcation
stable solution
unstable solution
stable limit amplitude

Figure 4.4: Hopf bifurcation regime

0 200 400 600 800 1000
Time [s]

−4

−3

−2

−1

0

1

2

3

4

Am
pl

i u
de

Oscilla or ou pu

−4 −2 0 2 4
̇x

−4

−3

−2

−1

0

1

2

3

4

x

Phase por rai
phase por rai
̇x-nullcline

x-nullcline

−2 −1 0 1 2
μ

−4

−3

−2

−1

0

1

2

3

4

Am
pl

itu
de

 ta
rg

et

Bifurcation
stable
unstable
stable limit amplitude
unstable limit amplitude

Figure 4.5: Active amplification regime

we are at the bifurcation point. The amplitude is still damped down, but to get to zero we

would need an infinite amount of time. The acoustic input is at the threshold. Finally, in figure

4.5, µ is above zero, the amplitude is amplified. This means that the acoustic input is lower

than the threshold, the Hopf mechanism actively tries to amplify the incoming signal.

4.1.2 Cochlear model equations in the literature

There exist several types of differential equations describing the working of the cochlea.

However out of all the proposed mathematical models, two main categories are evident. The

first category proposes to describe the oscillation of the cochlea by means of a harmonic

oscillator. This describes the position of the haircell with respect to its acceleration, velocity

and vibration force (Duke & Jülicher, 2008; Gianoli et al., 2017, 2022; Nobili et al., 1998). The

second category places the bifurcation as central in the equation and proposes a complex-

form differential equation. This approach describes the oscillation in function of the radius

and the frequency of the haircell movement. Further some combinations of the two equations

are proposed by some authors by introducing an active amplification force into the harmonic

oscillator equation.

In order to make the reading easier, we changed some variable names of the equations taken

39

Chapter 4 Hopf oscillator

from the literature in this section to make the notation correspond to the variables introduced

in Section 4.1.1.

Haircell position equation

Fluid-coupled oscillator implementations based on the harmonic oscillator (equation 4.2) are

used in cochlear models to describe oscillations in the cochlea.

Considering an array of oscillator, each oscillator can be described using the harmonic equa-

tion with an index i :

mi ẍi +hi ẋi +kxi = Fi (t) (4.6)

Nobili et al. (1998) proposes to model the cochlea with two oscillator arrays. The first fluid-

coupled harmonic oscillator models the basilar membrane oscillations. Taking the harmonic

oscillator equation (equation 4.6) as baseline, they propose a more complete description in

the physiological sense. The force driven at a specific frequency i , Fi (t) is generated by the

acceleration as(t) of the ossicles in the middle ear when transmitting the sound vibration to

the inner ear. It is transmitted by the cochlear fluid to oscillator i . Which can be written as:

Fi (t) = −Gi as(t) (4.7)

Three terms can be added to the harmonic oscillator equation (4.6):

• The hydrodynamic term (G j
i ẍi) represents the force caused by oscillator j transmitted

to oscillator i .

• The shear viscosity term
(
si (2ẋi − ẋi−1 − ẋi+1)

)
represents the viscous forces acting on

oscillator i which are influenced by the velocity of the neighbouring oscillators

• The force to oppose damping (Ui (yi)) which are generated by the fast OHC contractions.

Combining the harmonic oscillator equation (4.6) with those different component leads to

the following equation:

N∑
j =1

(G j
i +mi∂

i
j)ẍi +hi ẋi + si

(
2ẋi − ẋi−1 − ẋi+1

)+Ui (yi)+kxi = −Gi as(t) (4.8)

The basilar mebrane movements induce a direct movement of the stereocilia. Through

stereocilia displacements yi , the tectorial membrane forms a second array of oscillators that is

sparsely coupled to the basilar membrane xi . The equations of motion of the second oscillator

can also be written as a harmonic oscillator equation with the force being the coupling to the

40

Hopf oscillator Chapter 4

basilar membrane (−Ci ẍi).

m̄i ÿi + h̄i ẏi + k̄ yi = −Ci ẍi (4.9)

Where m̄, h̄i , k̄ and Ci represent mass, damping, stiffness and coupling constant respectively.

At resonance, the first and third terms at the left hand side of the above equations cancel. After

time integration, the relation between the hair cell position and basilar membrane velocity

becomes:

yi = −Ci

h̄i
ẋi (4.10)

Therefore, at resonance, the OHC force term Ui (yi), in the linear approximation, behaves like

a negative viscosity term and undamps cochlear motion.

Gianoli et al. (2017, 2022) propose a modelling of the hair bundle of the OHC by harmonic

oscillator. The force balance on the hair bundle is described as:

mHB ẍ = −hHB ẋ −kSP (x −xSP)−
Nt∑
j =1

F j
t (4.11)

With mHB the hair bundle’s apparent wet mass, hHB the bundle’s viscous drag coefficient, kSP

the combined stiffness of the stereociliary pivots, Nt the number of tip links, x represents the

position of the hair bundle, ẋ and ẍ are it’s first and second order derivatives and xSP stands

for the resting position. For the implementation of the second order equation, (Gianoli et al.,

2022) separates equation 4.11 in two first order equations by setting y = ẋ.

{
ẏ = −hHB y −kSP (x −xSP)−∑Nt

j =1 F j
t

ẋ = y
(4.12)

This way of describing the elongation of the harmonic oscillator is similar in both examples and

this type of equation is mainly used to describe the position of the hair bundle. No bifurcation

is part of those equations. In order to get a bifurcation point, a third-order non-linearity

should be added.

Duke and Jülicher (2008) also propose a harmonic oscillator system to describe hair bundles.

An active force term Fa(x, ẋ) is introduced, which gathers all forces linked to the inner structure

of the hair cells.

mẍ +hẋ = Fs +Fa(x, ẋ) (4.13)

This active force makes the link with the amplification mechanism induced by the outer hair

cells. In all the harmonic oscillator based implementations, an extra term is added to model

41

Chapter 4 Hopf oscillator

this interaction with the OHC. Those terms are non-linear if they want to capture the cube

root compression mechanism present in the cochlea.

Complex Hopf oscillator equation

The other classical implementation of cochlear models is based on Hopf bifurcation imple-

mentations. This implementation rather focuses on integrating the non-linear aspect of the

cochlea: the active amplification by the OHCs resulting in OAEs when the input signal of the

cochlea is below a given threshold. The literature relates to equations 4.3 and 4.5.

Camalet et al. (2000) introduced the concept of self-tuned Hopf bifurcation as model for the

cochlea. He started of with the basic pitchfork bifurcation equation, writing the variables a

and b as complex variables depending on a tuning parameter µ and the frequency ω.

f1 = a(ω,µ)z1 +b(ω,µ)|z1|2z1 + . . . (4.14)

In this paper, a simple self-tuning equation was proposed to tune the µ parameter in function

of the incomming signal:

1

µ
µ̇ =

1

τ

(z2

δ2 −1
)

(4.15)

This equation easily tunes the equation towards the bifurcation point and can also head

away from it. This mechanism reflects in a mathematical way the more complex biochemical

processes in the hair cells involving the dynamics of Ca2+-channels and molecular interaction.

Hudspeth et al. (2010b) further develops the equation from Camalet et al. (2000) by explicitly

using a = µ−µC − iω, where µC stands for the critical value of the Hopf bifurcation (when

µ =µC) and ωC is the frequency at which the oscillator would naturally oscillate when being in

active amplification mode.

ż = −(µ−µC − iω)z −bz|z|2 +F (4.16)

J. C. Kim and Large (2015) considers a version of the Hopf oscillator equation proposed by

Large et al. (2010) to describe the model of the cochlea. This equation takes higher order terms

into account the interaction between oscillators through a connectivity parameter ϵ which is a

small real number. In this equation β is notated as β1 and corresponds to the first Lyapunov

coefficient (l1 =β1). For the extra term β2 is introduced which is directly related to the second

Lyapunov coefficient (l2 = ϵβ2). Those coefficients determine the autonomous behaviour of

the canonical Hopf oscillator: the number of stable solutions and bifurcations.

ż = z
(
µ+ iω+β1|z|2 + ϵβ2|z|4

1−ϵ|z|2
)
+F (t) (4.17)

42

Hopf oscillator Chapter 4

In order to adapt the frequency range of each oscillator to the non-linear range perception

of frequencies in the cochlea, a frequency-scaling factor f is introduced. High frequency

oscillators have a larger bandwidth than low frequency oscillators.

1

f
ż = z

(
µ+ i

ω

f
+β1|z|2 + ϵβ2|z|4

1−ϵ|z|2
)
+F (t)e iω0t (4.18)

Considering the polar form this can be divided in the following set of equations disentangling

the radius and frequency of the oscillators by setting z = r e iθ. The derivation to obtain the

following equation is similar to the development in equation 4.4.{
1
f ṙ =µr +β1r 3 + ϵβ2r 5

1−ϵr 2 +F cosθ
1
f θ̇ = ω

f − F
r sinθ

(4.19)

The frequency-scaling is also used by Stoop et al. (2016), who is mainly interested in under-

standing in combination-Tone Laws with the normal Hopf equation form.

Critics, combinations etc.

Some research studies have aimed to bridge the gap between the harmonic oscillator equations

and Hopf bifurcation theory. By exploring intermediate equations, these studies aim to

integrate insights from both paradigms.

Duifhuis (2011) conducted a mathematical analysis and compared simulations of van der Pol,

Rayleigh, and Hopf oscillators. They concluded that while Hopf-bifurcation critical oscillators

cannot model OAEs, van der Pol oscillators are capable of doing so. Furthermore, their study

found that van der Pol oscillators can exhibit chaotic behavior, whereas critical oscillators

produce a stable response. However, their analysis did consider all parameters were fixed.

Considering the bifurcation parameter (µ) as trainable dependent on the external signal

amplitude, could enable OAEs within a Hopf bifurcation model, as proposed by Camalet et al.

(2000).

Hudspeth et al. (2010b) proposed a link between the Hopf equation 4.2 and the harmonic

oscillator equation 4.3. Starting from the harmonic oscillator form, a non-linear undamping

force Ūn (ẋn) is added, which occurs at resonance.

mn ẍn +hn ẋn +kn xn +Ūn (ẋn) = Fn (4.20)

Ūn (ẋn) ∼= −h′
n ẋn +αn ẋ2

n +βn ẋ3
n (4.21)

When considered at the Hopf bifurcation, the combination of those different equations can be

43

Chapter 4 Hopf oscillator

brought to a general equation of type:

F̄ = ax +b|x|2x (4.22)

Which corresponds to the general Hopf bifurcation equation. By setting:x = x̄e iωt if we con-

sider that x̄ and ω are not dependent on time. Then a and b would be defined as :

a = kn −mnω
2 + i

(
hn −h′

n

)
ω and

b =
(
4α2

nω
4)/

[
kn −4mnω

2 +2i
(
hn −h′

n

)
ω

]+3iβnω
3

(4.23)

This expressions of a and b make the link between the two families of oscillators.

Duke and Jülicher (2008) also manage to draw a link between the harmonic oscillator im-

plementation and the Hopf oscillator equation. They propose the implementation of the

harmonic oscillator with an active force term fa .

mẍ = −λẋ −kx +Fa +F (4.24)

This active force corresponds to the force obtained by the active amplification mechanism of

Hopf oscillators. Several mathematical expressions of this active force are proposed:

• The active force can diminish with amplitude:

Fa = (C −B x2)ẋ (4.25)

• The active force can diminish with velocity:

Fa = (C −B ẋ2)ẋ (4.26)

• The active force can be proportional to the displacement with a given time delay

Fa = C x(t −τ) (4.27)

• If we consider the inertial effects as negligeable (mẍ = 0), the stiffness as nonlinear

(k = k(x)) then, if fa evolves as a first-order differential equation, we end up with the

following equation set (the mathematical details are given in appendix A.1:{
λẋ = −(k −C +B x2)x +Fa +F

τḞa = −Fa − k̄x
(4.28)

4.1.3 Criticality concept

The Hopf bifurcation relates to the criticality concept, this concept refers to the property of

some complex systems to operate near a critical point (CP) between order and chaos. Self-

44

Hopf oscillator Chapter 4

organized criticality was introduced by Bak et al. (1988) which describes how some systems

inherently evolve near this CP.

In physics, critical points are related to phase transitions (Stoop & Gomez, 2022). Typical

examples in nature are the transition phase between liquid-gas phases for liquids, an epidemic

threshold or superconductors. The critical point is the point where a system will be in-between

a diverging and converging state. In the context of the Hopf oscillator, the critical point occurs

when the solution changes from a damping to an active amplification regime.

Systems working near a critical point are characterized by critical exponents, which char-

acterize how a system or physical quantity diverges or vanishes near a critical point. In the

brain this equilibrium is found between excitatory and inhibitory neurons and at the critical

point you can define avalanches of excitatory behaviour, allowing an efficient transmission of

information across different neuron layers.

According to Munoz (2018), life would have evolved around this criticality point. A lot of

physiological elements such as sensory systems, neural connections in the brain, genes and

stem-cells. The main advantages of a critical system are the optimal transmission capacity

(without vanishing or exploding), the optimal information processing, the largest repertoire

for memory storage and the optimal sensitivity and dynamic range to incoming stimuli (at the

critical point, the dynamic range is the most diversified).

There exists a whole zoo of criticality equations, depending on the application (Bedi et al., 2015;

Kinouchi & Copelli, 2006). In this thesis we concentrate on the Hopf bifurcation equation but

understanding that this concept of being poised near the critical point is a common behaviour

in physiological systems.

4.1.4 Take aways for building our model

The mathematical approach that effectively integrates the bifurcation mechanism is the Hopf

equation, which has been shown in several papers to successfully mimic the functioning of

hair cells within the cochlea. From them, two concepts from the literature are also considering

in our model implementation:

1. The frequency scaling introduced in J. C. Kim and Large (2015){
1
f ṙ =µr +β1r 3 + ϵβ2r 5

1−ϵr 2 +F cosθ
1
f θ̇ = ω

f − F
r sinθ

(4.29)

This equation adapts properly to the logarithmic scale of a classic filterbank as shown in

figure 4.6. The oscillator bandwidths are scaled around central frequencies which are

evenly spaced on a logarithmic scale.

45

Chapter 4 Hopf oscillator

101 102 103

Frequency [Hz]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

ψ

101 102 103

Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

r

Figure 4.6: Oscillator filterbank after frequency adaptation.

2. The self-tuning parameter introduced by Camalet et al. (2000):

µ̇ =
µ

τ

(x2

δ2 −1
)

(4.30)

This equation is a simplified version of the real molecular physics that are going on in

the hair cells. It adds a dependency of the bifurcation parameter (µ) with the amplitude

of the incoming signal.

4.2 Bifurcations

The cochlea is tuned on the edge of a Hopf bifurcation (Hudspeth et al., 2010b). A bifurcation is

a change in the number of solutions to a differential equation. This section further delves into

different bifurcations in the literature. We show that the oscillators in the cochlea combine

two types of bifurcations.

4.2.1 Fold bifurcation

The fold bifurcation, also called saddle-node bifurcation, is a bifurcation where the solution

consists of two fixed points (a stable and an unstable fixed point) which collide and annihilate

each other at the bifurcation. The bifurcation is induced by the variation of an external force

or constant variable. The typical example of the fold bifurcation is given by equation:

ṙ = −r 2 +F (4.31)

When varying F , the bifurcation point occurs when F = 0. Figure 4.7 shows how the derivative

evolves in function of F and figure 4.8 illustrates how the stable and unstable solution collide

46

Hopf oscillator Chapter 4

−2 −1 1 2

−2

2

r

ṙ
F = 1

F = 0.5

F = 0

F = −0.5

F = −1

solution

Figure 4.7: Evolution or ṙ in function of r for
different values of F . The solutions of the
differential equation vary between 0,1 and 2
solutions.

−2 −1 1 2

−2

−1

1

2

F

r
ṙ

stable solution

unstable solution

Figure 4.8: Schematic of the solutions on
the r -F plane. The stable and unstable null-
clines are indicated in blue and red respec-
tively.

when F = 0. The solutions are given by:

F < 0 : Ø (4.32)

F ≥ 0 : r = ±
p

F (4.33)

4.2.2 Transcritical bifurcation

−2 −1 1 2

−2

2

r

ṙ
µ = 1
µ = 0.5
µ = 0

µ = −0.5
µ = −1

solution

Figure 4.9: Evolution or ṙ in function of r for
different values of µ. The solutions of the
differential equation vary between 1 and 2
solutions.

−2 −1 1 2

−2

−1

1

2

µ

r
ṙ

stable solution

unstable solution

Figure 4.10: Schematic of the solutions on
the r -µ plane. The stable and unstable null-
clines are indicated in blue and red respec-
tively.

The transcritical bifurcation is a bifurcation with two fixed points as solution where the stability

between the two fixed points is exchanged at the bifurcation. This bifurcation is induced

when varying the µ parameter. The typical example of the transcritical bifurcation is given by

47

Chapter 4 Hopf oscillator

equation:

ṙ =µr − r 2 (4.34)

When varying µ, the bifurcation point occurs when µ = 0. Figure 4.9 shows how the derivative

evolves in function of µ and figure 4.10 illustrates how the stable and unstable solution

exchange their stability at µ = 0. The solutions are:

µ< 0 : r =µ,r = 0 (4.35)

µ = 0 : r = 0 (4.36)

µ> 0 : r = 0,r =µ (4.37)

4.2.3 Pitchfork bifurcation

−2 −1 1 2

−2

2

r

ṙ
µ = 1
µ = 0.5
µ = 0

µ = −0.5
µ = −1

solution

Figure 4.11: Evolution or ṙ in function of r
for different values of µ. The solutions of the
differential equation vary between 1 and 3
solutions.

−2 −1 1 2

−2

−1

1

2

µ

r
ṙ

stable solution

unstable solution

Figure 4.12: Schematic of the solutions on
the r -µ plane. The stable and unstable null-
clines are indicated in blue and red respec-
tively.

The pitchfork bifurcation is a bifurcation with up to three fixed points as solution. This

type of bifurcation combines the phenomena of the fold and transcritical bifurcations. At

the bifurcation point, two solutions collide going from three to one solution, and the stable

solution changes from stable to unstable. The typical example of the pitchfork bifurcation is

given by the following equation:

ṙ =µr − r 3 (4.38)

When varying µ, the bifurcation point occurs when µ = 0. Figure 4.11 shows how the derivative

evolves in function of µ and figure 4.12 illustrates how the stable and unstable solution collide

48

Hopf oscillator Chapter 4

at the bifurcation. The solutions are given by:

µ< 0 : r = 0 (4.39)

µ = 0 : r = 0 (4.40)

µ> 0 : r = 0,r = ±pµ (4.41)

4.2.4 Hysteresis bifuration

−2 −1 1 2

−2

2

r

ṙ
F = 1

F = 0.5

F = 0

F = −0.5

F = −1

solution

Figure 4.13: Evolution or ṙ in function of r
for different values of F . The solutions of the
differential equation vary between 1,2 and 3
solutions.

−2

−1

1

2

−2 −1 1 2 F

r
ṙ

stable solution

unstable solution

Figure 4.14: Schematic of the solutions on
the r -F plane. The stable and unstable null-
clines are indicated in blue and red respec-
tively.

The hysteresis bifurcation is a bifurcation with up to three solutions. It mathematically

combines the fold and transcritical bifurcations by adding the µ and F parameters. However,

only the F parameter is considered as a varying parameter. The hysteresis bifurcation has two

bifurcation points: at each of these points, a stable and unstable solution collide or appear,

while the third solution continues. The typical example of the hysteresis bifurcation is given

by equation:

ṙ = F +µr − r 3 (4.42)

The solutions are defined by an inverted third-order equation, which is mathematically dif-

ficult to invert. Figure 4.13 shows how the derivative evolves in function of F and figure

4.14 illustrates how the stable and unstable solutions collide at the two bifurcation points. A

bifurcation occurs only when µ > 0, switching from one solution to three, so the following

categories can be drawn:

• If µ< 0 : one fixed point, for the whole range of r (there is no bifurcation)

• If µ> 0 :

49

Chapter 4 Hopf oscillator

– r <−pµ : one stable fixed point

– r >p
µ : one stable fixed point

– −pµ< r <p
µ : two stable fixed points and one unstable fixed point

4.2.5 The Hopf oscillator with external input: a combination of hysteresis and
pitchfork bifurcation

The normal form equation of the Hopf bifurcation mechanism (equation 4.3, correspond to the

pitchfork bifurcation equations. As shown in the figures, the Hopf mechanism is dependent of

the bifurcation parameter (µ) tuning that dictates whether the Hopf mechanism is in damping

or amplification mode. Nevertheless, in the context of cochlear modelling, an additional term

F representing the acoustic input is added to the equation. This variable not only changes over

time but also directly impacts the value of µ. Adding this term also adds a second bifurcation

mechanism: the hysteresis bifurcation. The understanding of the Hopf oscillator combined

with an external signal as a combination of two bifurcation has, up to our knowledge, not been

previously reported. The corresponding bifurcation equation is written as:

dr

d t
= F +µ(F)r − r 3 (4.43)

This equation thus combines the dynamics of the pitchfork and the hysteresis bifurcation,

presenting a more complex behaviour.

Intuitively, this dependence between F and µ in equation 4.43 would lead to a behaviour

similar to that depicted in Figure 4.15. The system would tend to choose the solution with

r > 0, as it would dampen high-amplitude signals and amplify low-amplitude signals, which is

consistent with the expected behaviour of a cochlear model.

−2 −1 1 2

−2

2

r

ṙ

Figure 4.15: Schematic of the cochlear model bifurcation mechanism for several input signal
amplitudes.

The impact of the pitchfork bifurcation is present in the signal curve, but when focusing on the

50

Hopf oscillator Chapter 4

solutions of the differential equation, the dominant bifurcation type is a hysteresis bifurcation.

An interesting point of this graph is that we go from a large amplitude range on the y-axis to a

much smaller amplitude range on the x-axis. This compression is beneficial because it allows

the human ear to capture a wide range of sound amplitudes.

4.3 Simulation of oscillators

This section delves into the simulation of an array of oscillators, with the primary objective

being to demonstrate the functionality of the oscillators at various stages of building an array

that takes a speech signal as input. The equations to build the oscillators come from Biswas et

al. (2020), who give a large overview of the oscillator capacities. We use this array of oscillator

to verify its ability to capture speech input and draw some conclusions to build our own

oscillator module.

First, we showcase the operation of a single oscillator, followed by the construction of an array

of coupled oscillators. We then test their behaviour using both a sum of sinusoids and an

actual audio signal.

4.3.1 A single oscillator

For a single oscillator experiment, we use the Hopf oscillator equation combined with an

external signal F (t), which is a simple sine wave.

z = r e iωt (4.44)

ż = z(µ+ iω+β|z|2)+F (t) (4.45)

F (t) = A cos(ω0t +φ) (4.46)

Where:

• r : The radius of the oscillator

• ω : The inner frequency of the oscillator

• ω0 : The frequency of the external signal

• F (t) : The external signal

• µ : The bifurcation parameter (fixed in these simulations

• β : The first Lyapunov coefficient, determines the stability of the system. It should be

smaller than zero.

51

Chapter 4 Hopf oscillator

To enable the oscillator to adapt to an external signal in terms of frequency, a differential

equation acting on the frequency is added.

ω̇ = −F (t)cos(ωt) (4.47)

This adaptation is illustrated in figures 4.16 and 4.17. The oscillator begins at 40Hz and adapts

towards the input frequency, as shown in figure 4.17. Notably, the oscillator can adapt both

to the frequency and phase of the input signal. This adaptive behaviour is crucial for the

cochlear model, as it enables the OHC to adjust their response to match the basilar membrane

movement.

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

−2

−1

0

1

2

Am
pl

itu
de

Oscillator signal
External signal

450.0 450.2 450.4 450.6 450.8 451.0
Time [s]

−2

−1

0

1

2

Am
pl

itu
de

Oscillator signal
External signal

500.0 500.2 500.4 500.6 500.8 501.0
Time [s]

−2

−1

0

1

2

Am
pl

itu
de

Oscillator signal
External signal

Figure 4.16: Adaptation of an oscillator to an external signal at different time steps.

0 200 400 600 800 1000
Time [s]

20

25

30

35

40

45

50

Fr
eq

ue
nc

y

Figure 4.17: Adaptation of an oscillator’s frequencyω (blue line) to the frequency of an external
signal ω0 (orange line).

4.3.2 Multiple oscillators

Oscillator equations

Since the OHCs are coupled to the other closely situated OHCs on the basilar membrane

and the stereocilia are sparcely coupled through the tectorial membrane, we build an array

that takes into account a certain coupling between the oscillators. Each oscillator zi has its

own Hopf bifurcation mechanism, a coupling term from the other oscillators, and an external

52

Hopf oscillator Chapter 4

signal (Biswas et al., 2020).

żi = zi (µ+ iωi +β|zi |2)︸ ︷︷ ︸
oscillator i

+
N∑

j ,i ̸= j
Ai j e

i
θi j
ω j z

ωi
ω j

i︸ ︷︷ ︸
coupling with other osc.

+
ext. signal︷︸︸︷

F (t) (4.48)

where zi is a complex signal that can be decomposed in ri e iθi . The equation for each oscillator

4.48 can be separated into two functions, one expressing the radius and the other expressing

the phase. This results in:

ṙi = ri (µ+βr 2
i)+

N∑
j ,i ̸= j

Ai j r
ωi
ω j

j cos
(
ωi

(θi j

ωiω j
+ θ j

ω j
− θi

ωi

))
+F (t)cos(θi) (4.49)

θ̇i = ωi +
N∑

j ,i ̸= j
Ai j

r
ωi
ω j

j

ri
sin

(
ωi

(θi j

ωiω j
+ θ j

ω j
− θi

ωi

))
− F (t)

ri
sin(θi) (4.50)

The parameters ω, φ and A of this equation can be made trainable. These parameters repre-

sent, respectively, the oscillator frequency, the phase difference between the different oscil-

lators and the interaction weight between the different oscillators. The weight between the

oscillators A is kept fixed, while the other parameters are adjustable.

ω̇i = −ηωe(t)sin(θi) (4.51)

τW θ̇i j =
ω j ri r

ωi
ω j

j

Ai j
sin

(
ωi

[
θi

ωi
− θ j

ω j
− θi j

ωiω j

])
(4.52)

Ȧi j = 0 (4.53)

The external signal and α parameter

To enable the array of oscillators to learn the incoming signal, we introduce a retroactive

system that adjusts the oscillators based on the error between the reconstructed and actual

signals e(t).

The difference between the incoming signal F (t) and the reconstructed signal P (t) is computed

as the error e(t). This error is then fed into the oscillators to update their parameters in an

adaptive manner.

53

Chapter 4 Hopf oscillator

P (t) =
N∑
i

rαi cos(θi) (4.54)

e(t) = D(t)−P (t) (4.55)

The parameter αi learns the amplitudes at different frequencies. Its computation is based on

the radius ri and phase θi of each oscillator and remaining error e(t). Further, a learning rate

ηi controls how quick the oscillators adapt to the incoming signal. The update rule for αi is

given by:

α̇i = ηαe(t)ri sin(θi) (4.56)

The Euler step function

Hopf oscillators can be modelled using differential equations, which can be implemented in

various ways depending on whether we are working with continuous or discrete signals.

For a continuous implementation, classical ordinary differential equations solvers have a

significant limitation: they cannot directly incorporate an external as an argument.

For a discrete-time implementation, we can use the Euler step function, which is given by:

f (ti+1) = f (ti)+ f ′(ti)d t (4.57)

A manual implementation of the Euler function is a simple yet effective method that enables

the integration of an external signal, such as an audio input. The Euler step shares similarities

with an RNN network, commonly used in signal processing applications.

Further, more advanced methods such as the Runge-Kutta method provide a higher accuracy,

but are computationally intensive. Considering the application to an ASR system, the Euler

step seems like a suitable compromise between accuracy and computational requirements.

4.3.3 Experiment on an artificially built signal

A first experiment analyses how oscillators adapt to signals constructed out of a sum of

sine waves. The initial experiment uses as many sine waves as there are oscillators, testing

whether the oscillators can successfully recreate the signal. The second experiment uses

more oscillators than necessary to reconstruct signals, analysing how oscillators interact to

54

Hopf oscillator Chapter 4

0.0 0.1 0.2 0.3 0.4 0.5
−0.5
0.0
0.5

am
pl
itu
de external signal

reconstructed signal
difference

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

α

0.0 0.1 0.2 0.3 0.4 0.5
0

1000

fre
qu

en
cy

 [H
z]

0.0 0.1 0.2 0.3 0.4 0.5
time [s]

0

2

4

fil
te

r n
um

be
r

Figure 4.18: Training 4 oscillators on a signal composed out of 4 components with correspond-
ing frequencies.

reconstruct signals when not all oscillators are needed.

Adapting N oscillators to a signal built out of N components

The first experiment consists in training four oscillators on an external built signal composed

of four summed sine waves. This setup is done twice: once with the signal frequencies

corresponding to the oscillator initial frequencies and again where signals are initialised to

other frequencies. The goal of this experiment is to study how oscillators adapt in a presence

of multiple oscillators and to compare the convergence time at various frequencies. The signal

construction is given by following equation:

F (t) =
N∑
i

Ai cos(ωi t +φi) (4.58)

(4.59)

This experiment’s results are presented in Figures 4.18 and 4.19. The figures are composed of

the following graphs:

• A graph of the external signal F (t), the reconstructed signal P (t) and the difference

e(t) = F (t)−P (t).

• A second plot shows the α parameter adaptation, which illustrates the adjustment of

the different parameters to the input signal.

• The third plot shows how the frequencies of the different oscillators adapt according to

the different components of the input signal.

• The last plot shows the contribution of each oscillator in a two-dimensional space. This

55

Chapter 4 Hopf oscillator

0.0 0.1 0.2 0.3 0.4 0.5
−0.5
0.0
0.5

am
pl
itu
de external signal

reconstructed signal
difference

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

α

0.0 0.1 0.2 0.3 0.4 0.5
0

1000

fre
qu

en
cy

 [H
z]

0.0 0.1 0.2 0.3 0.4 0.5
time [s]

0

2

4

fil
te

r n
um

be
r

Figure 4.19: Training 4 oscillators on a signal composed out of 4 components with non-
corresponding frequencies.

representation is particularly useful when there are many oscillators, as it provides a

clearer overview of which ones are actively contributing to the signal reconstruction.

It is interesting to note that the oscillators tend to adapt at the same speed to incoming signals

when their frequencies match those of the signal components. In contrast when the input

signal does not match the central frequency of the oscillators, for an equivalent difference in

frequency, lower frequency oscillators seem to adapt more quickly than higher frequency.

Adapting M > N oscillators to a signal composed out of N components

The human ear is composed of a large array of oscillators, therefore we need an equivalent

model using multiple Hopf oscillators to approach cochlear modelling. To do this, we increase

the number of oscillators while keeping an input signal composed of the sum of four sine

waves.

The main goal of this experiment is to analyse how an array of coupled oscillators adjust to

an input signal. In a first experiment we double the amount of oscillators and in a second

experiment we increase the amount of oscillators to 40.

In the case of eight oscillators (as shown in Figure 4.20), the oscillators are able to select four

oscillators which are the closest to the signal frequencies and adapt accordingly. In the case of

40 oscillators (as shown in Figure 4.21), the repartition of the oscillators as it can be seen in the

second plot is more chaotic. Since the oscillators are able to move, several oscillators try to

adjust to the input signal. However, on the last plot, we can see four distinct lines representing

56

Hopf oscillator Chapter 4

0.0 0.1 0.2 0.3 0.4 0.5
−0.5
0.0
0.5

am
pl
itu
de external signal

reconstructed signal
difference

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

α

0.0 0.1 0.2 0.3 0.4 0.5
0

1000

fre
qu

en
cy

 [H
z]

0.0 0.1 0.2 0.3 0.4 0.5
time [s]

0

5

fil
te

r n
um

be
r

Figure 4.20: 8 oscillators and 4 components, the 4 frequencies are captured by four oscillators
while the four others stand quiet.

the original sine waves that make up the input signal. Some of these lines are thicker because

multiple oscillators try to adjust to the corresponding frequency component.

4.3.4 Experiment on an audio signal

The final experiment involves applying our oscillator model to an actual audio signal from

the TIDIGITS dataset introduced in section 2.3.4. We select a short audio snippet from this

dataset, which contains recordings of spoken digits. For this experiment, we use 100 oscillators

arranged in a mel-spaced arrayI.

Figure 4.22 shows the adaptation of the oscillators to the audio signal. The reconstructed

signal (on the first plot), shows that the oscillator output doesn’t perfectly match the original

input waveform. This is because our model needs time to adapt to the evolving audio signal as

it continues to play back in real-time. Although some of the oscillators are triggered correctly,

there’s a noticeable delay in their activation, which makes it challenging for them to follow

changes in the speech input. In the second and fourth plot, we see that different oscillators

are activated alternatingly. The selected oscillators correspond to the audio frequencies, but

are not able to keep up with slight changes. Nevertheless, when comparing the oscillator

activation and the mel spectrogram, we clearly see that the oscillators try to adapt to the

incoming signal around the right frequencies.

IThe number of oscillators and their distribution has been chosen arbitrarily for this experiment, in Chapters
5 and 6 we further analyse the number of filters and distribution a system tends to learn when trained with a
gradient descent algorithm.

57

Chapter 4 Hopf oscillator

0.0 0.1 0.2 0.3 0.4 0.5
−0.5
0.0
0.5

am
pl
itu
de external signal

reconstructed signal
difference

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

α

0.0 0.1 0.2 0.3 0.4 0.5
0

1000

fre
qu

en
cy

 [H
z]

0.0 0.1 0.2 0.3 0.4 0.5
time [s]

0

20

40

fil
te

r n
um

be
r

Figure 4.21: 40 oscillators and 4 components, the 4 frequencies are clearly appearing on the
image representing the different sine wave of the input signal.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
−5

0

5

am
pl
itu

de external signal
reconstructed signal
difference

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

rα

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

5000

fre
qu

en
c
 [H

z]

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

fil
te
r n

um
be

r

0 10 20 30 40 50 60
time [s]

0

50

M
el
 sp

ec
tro

gr
am

Figure 4.22: 100 oscillators capturing the information of an audio signal.

58

Hopf oscillator Chapter 4

4.3.5 Limitations of the simulation model

Biswas et al. (2020) propose an implementation of the Hopf oscillator model with an adaptive

frequency and coupling factor for the oscillators. The different experiments demonstrate that

Hopf oscillators are able to capture the input signal information, which was the main goal of

these experiments.

However, this initial simulation model has its limitations. Consisting of four nonlinear differ-

ential equations, it is computationally demanding to integrate into a trainable ASR system. On

the one hand, having a large number of oscillators with a trainable frequency provides interest-

ing insights of how oscillators are adapt and move in response to the input signal. Analysing

those movements into an ASR context could reveal valuable information about the optimal

oscillator distribution. On the other hand, the frequency adaptation mechanism has some

limitations. Oscillators that change frequency do not return to their initial positions, which

means they can switch positions over time, which is physiologically not plausible. Additionally,

introducing another differential equation for frequency adaptation increases computational

demands in a deep learning training context.

For the further research we propose two main direction:

• Simplify the cochlear model : We plan to use a simple cochlear model with trainable

frequency and bandwidth to identify the key trends that filters would learn within an

ASR system while maintaining computational realism.

• Adapt the Hopf oscillator model from section 4.3.2: Building on the insights gained

from the simplified cochlear model, we aim to design a Hopf oscillator module with

fixed central frequencies, using the properties learned by trainable filters to determine

the optimal oscillator distribution.

The coupling mechanism in our model effectively compensates for input signal variations

through interactions between oscillators. However, this mechanism is computationally heavy

and time-consuming to execute. To address this challenge in an ASR module context, we

decide to remove the explicit coupling mechanism and instead use the output of individual

oscillators as input to the ASR system through backpropagation.

4.4 Precomputed plausible cochlear features in an ASR system

An interesting avenue of research is analysing the performance of physiologically plausible

cochlear features in a classical ASR system. For this analysis, we utilize the CARFAC model

proposed by Lyon (2017b) to generate features and compare their ASR performance to that

of MFCC features. CARFAC has the main advantage to contain the different structures of the

organ of Corti in its model. Moreover, it integrates an active gain control inspired from the

active amplification mechanism present in the cochlea. Therefore, CARFAC is the closest

59

Chapter 4 Hopf oscillator

model to the Hopf oscillators which can deliver speech features that can be used for ASR

assessment.

CARFAC features are similar to traditional features commonly used in ASR, with the difference

that they are generated by a plausible cochlear model. Evaluating these features in a classical

ASR system provides insight into how well physiologically plausible features integrate with

such systems. To ensure comparability with standard ASR features, the CARFAC features used

as input to the ASR system are computed as follows:

y[n] = log
[L∑

i =0
(x[n ·w + i] ·h[i])2

]
(4.60)

Where x represents the input signal, L is the length of a 25 ms window, w the 10 ms time shift

for the computation between the different frames and h is a hanning window.

Table 4.1 provides a comparison of the ASR performance between MFCC and CARFAC features

on the TIMIT dataset (Garofolo, 1993). On an MLP network both with and without a context

window and on a Light Gated Recurrent Unit (Li-GRU) which is a recurrent neural network.

MFCC CARFAC
MLP without context window 21.4 23.9
MLP with context window 18.2 20.2
Li-GRU 15.6 16.5

Table 4.1: Phone error rate comparison between MFCC and CARFAC features.

Overall, MFCC features outperform CARFAC features across all configurations. This suggests

that classical ASR systems are less suited to features incorporating cochlear characteristics

compared to MFCC features. However, given the relatively close performance, CARFAC fea-

tures still show their capability to effectively handle ASR tasks.

4.5 Conclusion

The current state-of-the-art understanding of the cochlea is represented by the Hopf oscillator

model, which has been shown to capture some key characteristics of the active amplification

mechanism. The mathematical understanding provided by this model is considered the most

advanced in the literature.

In this chapter, we demonstrated using a simulation model based on Biswas et al. (2020), the

Hopf oscillator model can indeed process audio signals and the activation pattern approxi-

mates the mel spectrogram of the same audio snippet. Nevertheless, there are also limitations

to this approach: the model relies on a series of non-linear differential equations, which makes

60

Hopf oscillator Chapter 4

recurrent implementation computationally demanding.

Moreover, our simple cochlear feature experiment revealed that using more physiologically

plausible features for ASR does not necessarily lead to better performance compared to classi-

cal MFCC features. Studying plausible physiological models gives some interesting constraints

to the core ASR model to compute more physiologically realistic speech recognition capacities,

but will, a priori, not provide performance or computationally competitive solutions.

The research in this thesis is further built in two steps:

• Use a filter implementation with trainable filters to derive the main characteristics a

filterbank would learn to determine the amount of filters and the filter distribution

that are induced within an ASR system. Therefore we use both a simple ASR system in

chapter 5 and a self-supervised model in chapter 6.

• Develop a Hopf oscillator module that can be integrated into an ASR system. For

computational reasons, this module will have fixed central frequencies and the coupling

term will be omitted, knowing that further processing in the ASR system is able to

recombine the different oscillator outputs. This work is presented in chapter 7.

61

5 Trainable filters

Previous chapters 3 and 4 introduced the concept of modularity and the understanding of the

Hopf oscillator as a mathematical approach to model the cochlea as illustrated in Figure 5.1.

In this chapter, we focus on a first approach that combines a simple ASR system with a simple

cochlear model: a trainable filterbank as part of a downsampling CNN. A filterbank is a first

approximation of a cochlear model and is used for feature extraction in ASR mechanisms.

2. Background

C
o

ch
le

a
A

SR

4. Driven
oscillator

7. Driven oscil-
lator in ASR

5. Trainable
filters in ASR

3. Modularity

6. Trainable filters
with pretrained model

Driven oscillator with
pretrained model

Figure 5.1: General overview of the thesis.

Current ASR systems perform very well from a machine learning perspective, this suggests they

are emulating the human hearing system effectively. In this chapter, we are investigating how

an interpretable filter layer evolves in the context of an ASR training mechanism and analyse

the filter distribution with different constraints. Whilst neither the ASR nor the trainable

filterbank are new, the main goals of this chapter are the following:

• Creating a baseline ASR structure that works with a trainable filterbank. This baseline

structure can serve as a starting point for integrating more complex cochlear models,

63

Chapter 5 Trainable filters

allowing individual modules to be replaced while maintaining overall network function-

ality.

• Defining some hyperparameters such as the filter distribution and the number of filters

required for ASR processing. For time and computational purposes, we define these

hyperparameters by analyzing what trainable filterbanks tend to learn in an ASR context.

Besides, we demonstrate results on interpretability of the resulting filters that were not re-

ported by the original authors and provide signal processing adjustments that improve the

overall performance. The majority of the text in this chapter was originally published as:

Coppieters de Gibson, L., & Garner, P. N. (2022). Low-level physiological impli-

cations of end-to-end learning of speech recognition. Interspeech 2022, pages

749–753. doi:/10.21437/Interspeech.2022-10093

5.1 Introduction

Advances in automatic speech recognition (ASR) have led to performance that is very good in

terms of WER, but perhaps at the expense of our own understanding of how they function.

End-to-end (E2E) techniques (Amodei et al., 2016) have removed the need for knowledge of

the hearing mechanism. Self-supervised training (Schneider et al., 2019) has done the same for

phonetics. More generally, large pre-trained models are available (Babu et al., 2021) removing

the need for even the ML know-how. Given that these systems work well, the question arises:

“what have they learned?” This is difficult to answer because their component parts cannot

readily be mapped to biological ones.

In this study, we are interested in the hearing mechanism. The biological mechanism is quite

well understood (Lyon, 2017a), with important parts being the logarithmic response to both

frequency and amplitude. For many years, filterbank approaches were used as models of

this process (Hermansky, 1990a; Juang & Rabiner, 2005). Whilst many variations have been

studied, the authors’ ad-hoc experience suggests that the details do not lead to big changes.

Recent E2E approaches, however, have clearly demonstrated that training the filterbanks can

be beneficial (Collobert et al., 2016). A (1D) convolution layer in the machine learning field

is a filter in the signal processing field. However, the only validations of which we are aware

tend to show that the component convolutions learn filters with a distribution similar to a mel

filterbank. This in turn tends to reinforce the above question rather than answer it.

In SincNet , Ravanelli et al. (Ravanelli & Bengio, 2018b) constrained the convolutions to be a

sinc (sin(x)/x) form, leading to a rectangular band-pass filter. The filter is then defined by two

trainable parameters: the lower frequency and the bandwidth. Whilst not being biologically

accurate, this approach has a distinct attraction of being interpretable.

In the remainder of this mainly experimental paper, we describe SincNet and a modest frame-

64

Trainable filters Chapter 5

based experimental scenario. We confirm that SincNet learns a mel filterbank, but also show

that wider bandwidth filters are important for performance. We argue that such filters arise

because of restrictions of standard ML convolutional architectures, and conclude with what

this infers about how to construct a biologically plausible hearing model.

5.2 Background

The study of the human cochlea has interested many researchers since the beginning of the

20th century. Von Békésy laid the groundwork of the research on this topic in 1960 (Von Békésy,

1960).

The basilar membrane in the cochlea can be interpreted as a natural filterbank (Geisler, 1976;

Zwislocki, 1953). Current understanding of the working of the cochlea is that wave propagation

is an active process (De Boer, 1983) and works as an array of Hopf oscillators (Hudspeth et al.,

2010a; Hudspeth, 2008). However, in this study, we limit ourselves to passive analogues. The

scaling of this natural filterbank has been analysed from different points of view, leading

to several scaling (or warping, spacing) approaches. The Greenwood scaling (Sridhar et al.,

2006) is the one that best represents the scaling of the frequency sensitive hair cells in the

cochlea based on the physical distance on the basilar membrane of the hair cells. The mel

scale (Stevens et al., 1937) is based on frequencies judged to be equally spaced in human

perceptual tests. Bark (J. O. Smith & Abel, 1999; Zwicker, 1961) and ERB (equivalent rectangular

bandwidth) (Moore & Glasberg, 1983) are somewhere between mel and Greenwood, but by

contrast are derived from critical bands of hearing.

ASR frontends take either some preprocessed features as input or, more recently, raw input

waveforms. Filterbanks have been the basis of feature extraction (Shannon & Paliwal, 2003)

for many years. As early as 2001, a study (Burget & Heřmanskỳ, 2001) showed that a filterbank

could be obtained from a mathematical derivation of a data driven design. From the resulting

filterbank, about half of the filters were then kept to represent the filterbank motivated by the

fact that those filters were enough to cover the whole frequency range. For the E2E approaches,

CNNs for ASR were introduced by Hinton et al. (Hinton et al., 2012; Palaz et al., 2013b) and

have been used for a decade. Since 2018 some architectures propose a way to combine both

the filterbanks and the E2E architecture, where the filterbanks are trainable and part of the

convolution layers. Zeghidour et al. (Zeghidour et al., 2018) proposed an implementation

with with Gabor filters and Ravanelli et al. (Ravanelli & Bengio, 2018c) with rectangular filters

(SincNet). Other work on trainable filterbanks includes that of Seki et al. (Seki et al., 2019),

who proposed an architecture based on a filter layer combined with a deep neural network

(DNN) where the filter features were directly computed with a log-compression after the filter

layer. In that study the gain, central frequency, bandwidth and filter shape were free to train,

whilst in SincNet only two parameters are free to train, defining the filters in the first layer.

65

Chapter 5 Trainable filters

5.3 Initial Analysis

In an initial, quite basic analysis, the main motivation was to understand what the trainable

filters learn; i.e., which typical hyperparameters (e.g., the number of filters needed to de-

scribe the signal) can be derived from those trainable filter models, which initializations are

appropriate. For this study, we focus on SincNet.

5.3.1 SincNet setup

The SincNet model (Ravanelli & Bengio, 2018c) is built with a 4-layer CNN followed by a 5-layer

DNN. The first layer of the CNN is constructed with trainable filters. Those filters are initialised

as a rectangular bandwidth mel-scale filterbank, an easily computable type of filter in the time

domain. Since the inverse Fourier transform of a rectangular low-pass filter is a sinc function,

a rectangular bandwidth filter can be written as the difference of two low-pass filters as in

equation 5.1.

h[n] = sinc(2π f2n)− sinc(2π f1n), (5.1)

where h[n] represents a typical filter of the first convolutional layer. The trainable parameters

of the SincNet filters are the lower frequency (f1) and the bandwidth (f2 − f1), i.e., linear

combinations of f1 and f2. Moreover, in the time domain, filtering a signal is mathematically

equivalent to the convolution of this signal with the filter kernel.

Between the different convolution layers the following operations are used: maxpooling for

downsampling, layernorm, ReLU and dropout before passing through a five-layer DNN. The

input of signal is a raw waveform of 200 ms at 16 kHz. For this research the experiments are

performed on TIMIT (Garofolo, 1993) and to verify that the observations are not database re-

lated, the baseline experiments have been double checked with the mini-Librispeech database

(Panayotov et al., 2015).

5.3.2 Method

The experiments in this chapter are conducted using the pytorch-kaldi framework (Ravanelli

et al., 2019). For the baseline experiment, we use the existing SincNet configuration with 128

filters in the Sinc layer, followed by three convolutional layers. The kernel size is set to 129 for

the Sinc filters, and 5, 5, and 3 for the standard convolutional layers. Max-pooling is applied

after each layer with downsampling sizes of 3, 3, 3, and 2, respectively. We use ReLU as the

activation function and layer normalization for regularization.

The SincNet network takes raw speech as input, with utterances segmented into chunks of

200 ms. The system outputs a probability vector over phoneme classes for each frame at the

encoder level. These predictions are compared to the target labels, and the error between

the predicted and actual labels is used to compute the loss. This loss is then backpropagated

66

Trainable filters Chapter 5

through the network to update the weights of the different layers.

The experiments are conducted on the TIMIT dataset (Garofolo, 1993), which is described

in more detail in Section 2.3.4. The training is fixed to 24 epochs, the different results are

reported on a single run.

5.3.3 Baseline

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

102

103

Ba
nd

wi
dt
h
[H
z]

Central frequency of filters after training
Central frequency of filter initialization
Bandwidth of filters after training
Bandwidth of filters before training

Figure 5.2: Evolution of the baseline implementation of SincNet: the grey graph shows the
initial filter distribution and the blue graph shows the filter distribution after training. The
x-axis represents the frequency range and the y-axis the amplitude of the filters. The filters
themselves are represented by their central frequency (dot) and their bandwidth (bar).

In the default implementation, the number of filters is initialised to 128 followed by 3 CNN

layers of 60 filters each. The filter distribution for a similar experiment (60 filters on the

first layer) is illustrated on figure 5.2. We observe that some filters with a comparatively

narrow bandwidth train towards a filterbank. The others train towards wider bandwidth filters.

Concerning the frequency range, the wide-band filters could in principle be reconstructed

with a linear combination of narrow band filters. In this paper, those two types of filters will be

refered to as narrow and wide-band filters. The first part of this study focuses on the narrow

band filters, since a large number of the wide-band filters seem to overfit the data.

67

Chapter 5 Trainable filters

Table 5.1: Filter pruning experiment: numbers of narrow band filters and related PER in
function of the initialization.

Sinc-
Layer
num.
filters

CNN-layers narrow
band
filters

PER (%)

128 60 60 60 39 17.1
100 60 60 60 45 17.1
80 60 60 60 38 17.2
60 60 60 60 32 17.4
40 60 60 60 27 17.5
30 60 60 60 24 17.5

Table 5.2: SincNet experiment: compare the performance of the training with the filters fixed
and the filters that are free to train.

fixed filters trained filters
num. filters loss PER loss PER

40 2.35 18.3 2.31 17.6
30 2.37 18.0 2.33 17.5

.

5.3.4 Number of filters

Some filters in the first convolutional layer stay narrow-band while the others train towards

wider bandwidths. Table 5.1 gives an overview of the number of narrow band filters as well

as the PER on TIMIT. To determine the number of narrow band filters an ad-hoc pruning

operation has been applied after the filter training: the filters with wide bandwidths covering

parts of the spectrum that are already covered by smaller bandwidth filters are discarded and

only one filter is taken into account around the Nyquist frequency.

The number of filters needed by the model to build a filterbank covering the whole frequency

range can be determined by the number of narrow band filters. From table 5.1 we can deduce

that above 30 filters, the number of narrow-band filters that describe the frequency range is

around 30 - 40 filters, this correlates with the results obtained by Zeghidour (Zeghidour et al.,

2018) using Gabor filters.

We also notice that when the first layer is initialized to 30 or 40 filters (corresponding to the

number of narrow-band filters of other layers), some of those filters still train toward larger

band filters. To analyse whether keeping the initilization to the initial scale performs as well

as the combination of narrow and wide-band filters that the model learns, experiments have

been made on 30 and 40 filters for fixed and non-fixed filters, the results are given in table

5.2. This raises the hypothesis that the wide-band filters are bringing some information not

provided by the narrow band filters.

68

Trainable filters Chapter 5

Table 5.3: Mean Euclidean distance between narrow bandfilter’s normalized central frequency
distribution and different scalings for different amount of filters (Mel filterbank) and different
initial scalings (30 filters).

Initialized to Compared to
scale - filters Mel Bark ERB Greenwood
Mel - 128 0.0023 0.0047 0.0070 0.0086
Mel - 60 0.0018 0.0044 0.0070 0.0088
Mel - 40 0.0022 0.0039 0.0065 0.0084
Mel - 30 0.0020 0.0043 0.0071 0.0091
Bark - 30 0.0025 0.0037 0.0062 0.0082
ERB - 30 0.0030 0.0029 0.0055 0.0076
Greenwood -30 0.0037 0.0068 0.0095 0.0116

5.3.5 Scale after training

Given that there are several frequency warpings that can be justified from a physiological point

of view, it is informative (and simple) to investigate which one is preferred by an E2E system.

It is clear by inspection that it is the narrow band filters that learn the warped filterbank. In

(Agrawal & Ganapathy, 2019) a convolutional variational autoencoder (CVAE) architecture that

learns convolutional filters from raw waveforms using unsupervised learning was proposed.

However, the analysis was only based on the central frequencies learned by those filters, not

the narrow/wide-band distinction. In the present paper the central frequencies of only the

narrow band filters are taken into account.

Experiment

The experiment consisted simply of analysing which filterbank the narrow-band filters trained

above were learning. The experiment was repeated for several models with different initializa-

tions. The metric used to compute the distance between the initial and trained scale is the

mean of the Euclidean distance:

d(x, s) =
1

N

√√√√ N∑
i =0

(xi − si)2 (5.2)

The narrow band filters of a filterbank initialized to the mel scale remain mel-scale distributed.

When initializing 30 – 40 filters as starting point to different scalings, other scalings also

train towards mel scale. It follows that the mel scaling is an appropriate choice for filterbank

initializations.

69

Chapter 5 Trainable filters

5.3.6 Corollary

The results so far have reinforced that E2E approaches do indeed learn what has been known

for many years about cochlear models: that 30 to 40 filters are sufficient and that, regardless of

physical measurements, the mel scale is the one that is perceptually important. However, from

figure 5.2 it is clear that SincNet filters train towards a mixture of narrow and wide-band filters.

Moreover from table 5.1, in all the experiments done for this section, the model always learns

wide-band filters. It follows that these wide-band structures are important. Two questions

arise:

1. Can the filters be initialized to wide-band, removing or reducing the need to train them?

2. Why do wide-band filters appear at all given that they are, to a first approximation, just

linear combinations of narrow-band filters?

These are addressed in the following section.

5.4 Wide-band filter analysis

5.4.1 Wide-band initialization

Hypothesis

Wide-band filters are important; it follows that the training can be optimized by initializing

a narrow band filterbank as before and adding wide-band filters in addition of those filters.

This hypothesis can be confirmed by an experiment comprising initializing several frozen

superimposed filterbanks where the wide-band filters are combinations of several narrow

band filters.

Experiment

Figure 5.3 shows the initialization and training of a model built with 4 ranges of filters illus-

trated on the upper plot.

An estimation of the filter distribution after training of this new initialisation is illustrated in

the bottom plot. Four experiments using those filters are summarized in table 5.4:

Using only the narrow band filters gives a final PER of 18%, the combination of narrow and

wide-band filters give for frozen filters a PER of 17.7% and for trained filters a PER of 17.5%. A

combination of narrow and wide-band frozen filters already gives an improvement of 0.3%

PER. The same effect is observed on the loss: the loss for a combination of narrow and wide-

band filters is lower than for only narrow band filters. The new initialization is consequently

closer to what the model learns compared to the baseline initialization. Aside, it is interesting

70

Trainable filters Chapter 5

10−1

100

101

Fil
te
r b
an
d
id
th

Filter distribution at initialization

0 1 2 3 4 5 6 7 8
Frequency [kHz]

10−1

100

101

Fil
te
r b
an
d
id
th

Filter distribution after training

Figure 5.3: Filter repartition of superimposed filterbanks before (top plot) and after (bottom
plot) training. In the initialization, the red filterbank is a narrow-band filterbank composed
of 30 filters. The rest are filterbanks of 10, 5 and 1 filters capturing information that could in
principle be reconstructed by a combination of the narrow band filters.

Table 5.4: Summary of experiments using narrow and/or wide-band filters

filters filter type fixed loss PER
10 - 5 - 1 wide yes 2.410 18.6%
30 narrow yes 2.374 18.0%
30 - 10 - 5 - 1 narrow & wide yes 2.335 17.7%
30 - 10 - 5 - 1 narrow & wide no 2.306 17.5%

to notice from figure 5.3 that when trained most of the narrow band filters stay narrow band

and most of the wide-band filters stay wide-band.

Thus the hypothesis is demonstrated. We conclude that it can indeed be beneficial to provide

a mixture of narrow and wide-band filters in an ASR front-end.

5.4.2 Why wide-band filters?

Wide-band filters are in principle linear combinations of several narrow band filters; the

network should be able to learn such a combination trivially, much as we assume it is learning

the energy feature that was commonly used in HMM-based models. The most plausible

explanation for the network’s failure to do so arises from the interaction of harmonic (voiced)

and aperiodic (unvoiced) components. Harmonic components in the same filter add construc-

71

Chapter 5 Trainable filters

tively in the magnitude domain. Aperiodic components, however, add as random variables; the

variances add leading to a magnitude reduction by a factor of
p

N for N discrete components.

The wider band filters hence tend to favour the voiced components.

In complex narrowband (e.g., Fourier transform based) filters, the squaring operation leads

to both harmonic and aperiodic components adding in the same ratio in the magnitude or

power domain, inhibiting emphasis of the harmonic component. SincNet comprises real-

valued filters; however, the subsequent network architecture can inhibit the behaviour. Each

convolutional layer is followed by four typical operations: max-pooling (downsampling),

layernorm, ReLU (activation function) and dropout that have some influence on the signal. Of

these, the maxpooling function and ReLU activation bring some distortions to the signal.

Hypothesis

It is possible to design a simple experiment to examine whether the above non-linearities in-

hibit simulation of wideband filters. The experiment encompasses three intuitive hypotheses:

1. Using average-pooling instead of maxpooling removes the noise artifacts that are created

by maxpooling on the filtered signal, but since we continue to use a pooling function, aliasing

still happens for the high frequencies. In (Dubey et al., 2019) some experiments showed that

using average pooling reduced the PER but without explaining the possible reasons.

2. Moving the first downsampling factor towards a further layer inhibits downsampling just

after the filtering of the signal, this removes both the effect of aliasing and signal distortion

(although it increases the data size at several convolution layers).

3. By inspection, using a tanh or sigmoid function removes some low frequency artifacts

created by the ReLU function. However, it is well known that the cochlea contains a rectifier

function (De Boer & De Jongh, 1978), implying that ReLU is the right physiologically plausible

solution. It is not clear a-priori which of these properties is more important.

Experiment

Table 5.5 summarises the performance of the experiments implied above after the first con-

volution layer: use average pooling, move the first downsampling factor to a later layer and

check that ReLU is appropriate.

Replacing the max-pooling with average-pooling leads to an improvement in performance.

Displacing the downsampling by one layer, in principle allowing the network to combine

filters, leads to a further improvement. This broadly demonstrates the first two points of our

hypothesis. Changing the activation function to sigmoid deteriorates the PER. This tends to

confirm that the physiologically-implied rectifier — yielding a simple spectral envelope — is

also the right solution in the artificial solution. We note that, even with the best performing

architecture, the system still learns some wide-band filters. This implies that our solution is

72

Trainable filters Chapter 5

Table 5.5: The effects of modifying the downsampling and pooling schemes. The numbers in
the second column refer to the downsampling rate at each of the pooling operations in the
convolutional layers (1 implies no downsampling).

filters downsampling pooling
1st layer

act. function PER

30 3-3-3-2 max ReLU 17.5%
30 3-3-3-2 avg ReLU 17.1%
30 1-3-3-6 - ReLU 16.8%
30 1-3-3-6 - sigmoid 18.1%

not perfect.

5.5 Conclusion

E2E training of filterbanks for ASR leads to filters that resemble a standard filterbank. How-

ever, wider bandwidth filters are learned too, and are important for good ASR performance.

The central frequencies of the narrow-band filters tend to a mel spacing, regardless of the

initialisation. This confirms a well understood mechanism, suggesting that it exists in the

biological system. There appears to be an optimal number of filters — around 30 to 40 — that

also correlates with acknowledged literature.

We suggest that wide-band filters are learned to distinguish voiced (harmonic, coherent)

components from either background noise or unvoiced (aperiodic, stochastic) components.

In principle, a network should be able to learn such wide-band components by combining

narrow-band ones. We argue that this capability is precluded by the (otherwise standard) ML

architecture; in particular the phase will be lost by maxpooling. This argument is borne out by

experiments showing that a structure retaining a more formal down-sampling mechanism

can lead to better performance.

We are not aware of structures in the inner-ear or cochlea that can emulate physical wide-

band filters. However the phase information is retained in our current best understanding of

cochlear operation, retaining also the possibility that such filters are emulated in the auditory

path. Proving this would be difficult, perhaps requiring some combination of selective stimulii

with MRI or EEG sensing. It remains as a hypothesis for the neuroscience community.

Our own future work will focus on more biologically plausible architectures for the cochlea.

This experimental study indicates that any such model will need to retain phase in order for

the subsequent network to take advantage of both narrow-band and wide-band features.

73

6 Trainable filters with self-supervised
pretrained model

Auditory research aims generally to lead to an understanding of physiological processes. By

contrast, the state of the art in ASR (notably recognition) is dominated by large pre-trained

models that are meant to be used as black-boxes. In this chapter we aim to combine state-of-

the-art ASR with a trainable filter model, which have a main interpretability advantage above

classical CNN structures.

As depicted in Figure 6.1, this chapter further builds on Chapter 5, in which we presented

a first study of trainable filters in a simple ASR structure and we analyzed the behaviour of

SincNet filters in a simple ASR network. Further, we use the modularity concept introduced in

chapter 3 to combine the trainable filterbank approach with a pre-trained transformer-based

ASR network .

2. Background

C
o

ch
le

a
A

SR

4. Driven
oscillator

7. Driven oscil-
lator in ASR

5. Trainable
filters in ASR

3. Modularity

6. Trainable filters
with pretrained model

Driven oscillator with
pretrained model

Figure 6.1: General overview of the thesis.

The research in chapter 5, showed two types of filters appearing: narrow-band filters and

wide-band filters. For narrow-band filters, we identified those that more or less followed

the conventional expected frequency bands and covered the whole frequency range. These

75

Chapter 6 Trainable filters with self-supervised pretrained model

narrow-band filters showed characteristics of a typical ASR filterbank: it was composed of 30 to

40 filters, and the scaling of the central frequencies tended to learn is the mel scale. By contrast,

the wide-band filters were filters that learned more unexpected wide-band structures. The

reason for this kind of structure was not clear, especially given that, theoretically, wide-band

structures could be reconstructed by linear combinations of the other filters.

The overall goals of this work are:

• Analyze whether the wide-band structures still appear when SincNet filters are combined

with a large self-supervised network.

• Analyze the number of filters that try to capture the network content.

• Compare the performance of this interpretable approach with the classic CNN structure

in a self-supervised context.

This work also represents a main implementation challenge. Self-supervised networks are

usually combined with a final layer that learns to combine latent space components into

labels (words, phonemes, speakers, or other task-related labels). This can easily be done by

allowing the gradients to backpropagate only through the backend layer without impacting

the weights of the transformers. For longer fine-tuning, once this backend layer has been

trained, the whole model can train together.

In this work, we show that the hybrid system can be trained and evaluated with various

combinations of fine-tuning and self-supervision. To introduce an interpretable frontend,

we replaced the existing frontend layer, which implies backpropagating through the whole

network to be trained. Using separate optimizers for the different modules, we propose

an approach that is capable of first training the frontend and backend modules and then

fine-tuning the whole ASR system.

We conclude that using a hybrid structure is an appropriate way to proceed in auditory

research, more generally allowing the work to take advantage of larger state-of-the-art models

and databases from which it would not otherwise benefit.

The content of this chapter was originally published in the following work. However, some

background material has been omitted to prevent duplication within the thesis.

Coppieters de Gibson, Louise, and Philip N. Garner. "Training a Filter-Based

Model of the Cochlea in the Context of Pre-Trained Acoustic Models." Acoustics.

Vol. 6. No. 2. MDPI, 2024.

76

Trainable filters with self-supervised pretrained model Chapter 6

6.1 Introduction

Since the advent of deep learning, the general field of speech technology has advanced to

a point that would be unrecognizable to proponents working just a decade ago (Hinton et

al., 2012; Seide et al., 2011b). Perhaps the main difference is that the technology is now

driven by the machine learning community rather than the speech processing community.

One visible effect of this change is that physiologically inspired approaches that guided

the topology of hidden Markov models (HMMs, the previous state of the art) have largely

disappeared; they have been replaced by “end-to-end” (E2E) approaches. These in turn learn

the representation that leads to the best performance on the available data, irrespective of

physiological plausibility. For example, HMMs were typically defined at a phoneme level,

but deep architectures have preferred byte-pair encodings (Sennrich et al., 2015) or often

just (orthographic) letters. Spectral features have been replaced by generic outputs from

convolutional layers. The exemplar in these cases is perhaps the “wav2letter” of Collobert et

al. (Collobert et al., 2016).

Self-supervision in particular has been a key recent advance in deep learning, in computer

vision as well as audio processing (Schneider et al., 2019). The “self” supervision arises from

a loss-function that is designed to reveal discriminability at a given granularity of interest.

Crucially, this removes the need for labeled training data, resulting in systems that can be

trained on vast amounts of data. To put this into perspective, the LibriSpeech database of

. (Panayotov et al., 2015) is one of the largest commonly available labeled speech databases at

around 1000 h. By contrast, self supervision is associated with datasets of tens of thousands of

hours; the million hours of (Parthasarathi & Strom, 2019) is roughly a century. The commercial

side of the community has made pre-trained models available (Babu et al., 2021; Ott et al.,

2019). Note that this pre-training implies almost fully trained; it is distinct from the pre-

training that used to be applied to some networks to enable them to respond to conventional

training (G. Dahl et al., 2012). However, subsequent training of the recent models is common

and referred to as fine-tuning.

Given that these recent systems work well, the question arises: “what have they learned?”. This

is difficult to answer because their component parts cannot readily be mapped to biological

ones. A recent study has shown that analogies can be drawn between layers of such systems

and brain function (Millet et al., 2022), suggesting that the two fields are in fact converging.

In general, however, it seems reasonable that in order to make inferences about biological

function, it is necessary to build the deep networks using components that are themselves in-

terpretable. Until quite recently, embedding such components into a deep-learning framework

might have been onerous owing to the need for their being differentiable.

Fortunately, current automatic gradient packages allow networks of arbitrary operations. They

also allow arbitrary parts of a network to be trained. This automatic gradient method is a

technique that automates the calculation of gradients for the model parameters, enabling

stochastic gradient descent computation. It alleviates the need for manual derivation while

77

Chapter 6 Trainable filters with self-supervised pretrained model

enhancing the efficiency and scalability of these gradient-based algorithms.

The innovation of this work lies in the transformative impact that a self-supervision model

brings to the auditory model. Therefore, we combine a current state-of-the-art pre-trained

model with a trainable filter front-end to infer a physiologically plausible function of the

human auditory apparatus. More specifically, we build upon a previous study (Coppieters

de Gibson & Garner, 2022) where we showed that attempting to do this with a smaller model

led to unexpected results. We show that it is possible to use a state-of-the-art model, and that

doing so mitigates the effects of the smaller model. An interesting related work also analyses

the evolution of a filter-based initialization of a filterbank (Vieting et al., 2023). The main

difference from our approach is that we use SincNet filters, which maintain a rectangular

shape, whereas they adopt a classical CNN-based approach.

Section 6.2 first describes the state of the art in both E2E modelling as well as cochlear

modelling for speech technology. Section 6.3 further details how a simple auditory model

can be trained from scratch in the context of a larger model that has been pre-trained.

Section 6.4 contains a logical sequence of experiments showing that:

• Trainable filters can replace the encoder CNN in an already pre-trained model for fine-

tuning.

• A physiologically adaptable front-end performs as well as a CNN in a pre-trained model.

• Trainable filters can be incorporated during self-supervision.

• When trained with a large transformer model, SincNet filters do not tend to learn wide-

band filters as they do with a smaller MLP model.

6.2 Background

6.2.1 Self-Supervised Models

Foundations

Self-supervised learning arose around 2008 in the NLP field with the model of (Collobert &

Weston, 2008). Self-supervision differs from supervised learning in the way the loss function is

computed. Supervised learning necessarily requires labeled data; the output of the network

is directly compared to the labels and the difference is back-propagated through gradients.

Assigning labels can be onerous. By contrast, self-supervised learning has the advantage of

needing no labels to train, meaning it can make use of huge amounts of data. The model is

typically trained either as an auto-encoder (the data are the labels) or by contrastive loss (see

below).

Self-supervised models rely on a two-stage training procedure: pre-training and fine-tuning.

These map onto what might be traditionally called training and adaptation respectively. Pre-

78

Trainable filters with self-supervised pretrained model Chapter 6

training is resource-intensive and the resulting models can be large. A significant recent trend

has been for proponents to make such models available online (Ott et al., 2019). A core goal of

this study is to investigate what can be done in the acoustic research field starting from those

available pre-trained networks.

Wav2vec

Wav2vec (Schneider et al., 2019) was the first attempt at applying self-supervision in the sense

of BERT to the ASR field. It was inspired by wav2letter (Collobert et al., 2016) and unsupervised

machine translation (Lample et al., 2017), a model that translates between languages based on

two unlabeled datasets. The structure of wav2vec (Schneider et al., 2019) comprises two main

blocks: the encoder network and the context network. The encoder consists of a 5-layer CNN

down-sampling the input waveform from 16 kHz to a 100 Hz signal. The context network in

wav2vec is also a CNN with kernel sizes of three and strides of one. In vq-wav2vec, Baevski

et al. (Baevski et al., 2019) proposed to integrate quantization between the encoder and the

context layers. The recent Wav2vec2 (Baevski, Zhou, et al., 2020) parallelizes the quantization

and an enhanced version of the wav2vec structure; the encoder CNN is now seven layers

deep and down-samples the signal to 50 Hz and the CNN-based context layer is replaced by

a transformer. Of those two networks, the transformer stack accounts for 94.4% of the total

number of trainable parameters.

Wav2vec models use contrastive loss as an objective during the self-supervised training phase,

a character-based label classification and connectionist temporal classification (CTC) of

Graves et al. (Graves et al., 2006) during the finetuning phase, and a greedy CTC decoding

algorythm for the test phase.

In the self-supervised training phase, the convolutional frontend and transformer-based

encoder are trained through a contrastive loss mechanism. The original contrastive loss of

wav2vec was formulated to favor predictability for adjacent observations, or “predictors”, with

the opposite for more distant ones, hence “distractors”. Oord et al. (Oord et al., 2018) proposed

another approach to the contrastive loss computation, this time based on the cross entropy

loss. The loss equation in wav2vec2 adopts this more recent approach, being

Lm = − log
exp(si m(ct ,

predictor︷︸︸︷
qt)/κ)∑

q̃∈Qt
exp(sim(ct , q̃︸︷︷︸

distractor

)/κ)
(6.1)

where sim is the cosine similarity, sim(a,b) = aT b/|a||b|, κ is a constant that regulates the entropy

of the cosine similarity, preserving the relative ranks of events. In the machine learning field,

the analogous parameter controlling the smoothness of probability distributions is commonly

referred to as ’temperature’. The parameter ct is the context representation and q ∈ Qt are

vectorized samples of other parts of input waveform in the latent space. The goal of Equation (6.1)

79

Chapter 6 Trainable filters with self-supervised pretrained model

is to find a quantized representation for speech in the latent space, training towards orthogonal

representations of the quantizers in that latent space. The model outputs a context representation

ct that is able to guess the true qt vector quantization (the predictor) of the latent space out of

K +1 candidates (with K distractor quantizers and one closely related target; in wav2vec2, 100

distractors are sampled out of the same utterance).

For finetuning, a projection layer is added on top of the transformer-based encoder. A

character-based classification task then trains this projection layer to recombine the vec-

tors learned in the latent space to predict characters then with CTC the characters are aligned

with the transcripts to compute the loss from the difference between the probability prediction

from the CTC encoding and the ground truth transcripts.

During the test phase, greedy CTC decoding is used to predict the transcripts of the evaluation

speech data. The difference between CTC in the finetuning task and decoding phase is the

output: during finetuning the output is a number which corresponds to the loss while during

decoding the output is the decoded text.

6.2.2 Cochlear Models

Filterbanks

Cochlear models have been studied for many years, with our current understanding perhaps

going back to the work of (Von Békésy, 1960). Simplistic (but functional) approaches consider

the cochlea as a natural filterbank (Geisler, 1976; Zwislocki, 1953).

Comparatively recent studies have continued to seek biological plausibility.

(Lyon, 2011a, 2011b, 2017b), for instance, proposed a model of the complete auditory path where

the cochlea is modeled with a cascade of resonators. This model has since been implemented on

an FPGA (Thakur et al., 2014) and used in applications such as speaker identification (Islam et al.,

2022) and sound localization (Xu et al., 2021).

Of particular interest for speech processing is the filterbank scaling. Probably the best known

frequency distribution is the mel scale (Pedersen, 1965), based on frequencies judged to be

equally spaced in human perceptual tests. This has been ubiquitous in feature extraction

algorithms for ASR, especially in its guise as MFCCs. The PLP of (Hermansky, 1990b) favored

the Bark scale, based on noise bandwidths required to mask tones (Moore & Glasberg, 1983;

J. O. Smith & Abel, 1999; Zwicker, 1961). Physical measurements are also possible; the green-

wood (Sridhar D, 2006) and ERB (equivalent rectangular bandwidth) (Zwicker, 1961) scalings

lead to more extreme warping than mel.

80

Trainable filters with self-supervised pretrained model Chapter 6

Current Understanding

Current explanations of the workings of the cochlea are as processes of wave propagation

through an active oscillator system (De Boer, 1983). According to our current best understand-

ing, the cochlea works as an array of Hopf oscillators (Hudspeth et al., 2010a; Hudspeth, 2008).

These active oscillators incorporate the interaction between the inner and outer hair-cells with

the tectorial and basilar membrane, and explain oto-acoustic emissions (Kemp, 2002; Probst

et al., 1991) as arising from the outer hair cells. Several works have implemented those Hopf

oscillators as models for the cochlea (Ammari & Davies, 2020; Hamilton et al., 2007, 2008).

Notwithstanding, in the present study we limit ourselves to filterbanks, with active systems

being a goal for further research work.

6.2.3 ASR with Trainable Filters

From Cochlear Models to E2E ASR

For many years, ASR front-ends such as MFCC (Davis & Mermelstein, 1980) and PLP (Hermansky,

1990b) were loosely based on models of the cochlea. However, given the large number of choices

within such models, and parallel success with raw images as input (Krizhevsky et al., 2012), E2E

approaches have been investigated for audio processing. Early work involved trainable convolution

layers on raw audio inputs (Hinton et al., 2012; Palaz et al., 2013b, 2015). Although they can

perform well, such black box models lack interpretability, explainability, comprehensibility and

transparency (Chakraborty et al., 2017; Rudin, 2019). Retaining an explicit filterbank structure can

alleviate these issues. Candidates for the filterbank have included Gamma-tone (López-Espejo et al.,

2021; T. Sainath et al., 2015), Gabor (Noé et al., 2020; Zeghidour et al., 2018, 2021), SincNet (Ravanelli

& Bengio, 2018a, 2018b), and Spline filters (Balestriero et al., 2018). Zeghidour et al. (Zeghidour

et al., 2018) in particular showed that using trainable filters consistently increased the performance

of ASR compared to a model where MFCCs were used. Since we do not have a hypothesis that

some trainable filter models would perform better, that this work builds on a previous work using

SincNet filters in a previous study, and that there are computational advantages of doing so (see

Section 6.2.2), we take the SincNet model of (Ravanelli & Bengio, 2018b) as representative of the

above models for the present study.

SincNet

SincNet is characterized by a convolutional filter as the first layer in a larger convolutional front-

end. In the initial SincNet implementation, this convolutional front-end was followed by a

five-layer MLP, whereas in this work, the main idea is to combine this encoder with pre-trained

transformers. The implementation of the filter layer uses the Fourier transform property:

a convolution in the temporal domain corresponds to a multiplication in the frequency

domain. Thus, using a sinc filter as kernel in a convolutional layer gives the filtered signal as

output. The name arises because the Fourier transform of a rectangular filter in the frequency

81

Chapter 6 Trainable filters with self-supervised pretrained model

domain corresponds to sinc(x) = sin(x)
x in the temporal domain. SincNet is implemented as

a combination of two low-pass filters F1 −F2 with cut-off frequencies f1 > f2, giving a band-

pass filter of bandwidth f1 − f2 and a central frequency of f1+ f2

2 . The central frequency and

bandwidth are the two trainable parameters. In the temporal domain, the filter is then given

by:

h[n] = sinc(2π f2n)− sinc(2π f1n) (6.2)

Ravanelli and Bengio (2018b) showed that SincNet outperformed MFCCs. They also showed

that using SincNet filters gave better results than using only CNN layers. A second study by

the same authors showed that the proposed architecture converges faster, performs better,

and is more interpretable than standard CNNs (Ravanelli & Bengio, 2018a). They showed that

such trainable filters could map onto specific speech-related features like formants, while

standard CNNs did not. SincNet was subsequently incorporated into a joint CTC-attention

training scheme by Parcollet et al. (2020). The authors showed that their approach outperforms

previously investigated E2E systems.

Based on these examples in the literature that show the reliability of SincNet as a front-end for

ASR, we use this trainable filterbank in this work.

6.2.4 Speech Features

We are particularly interested in the interpretability of the learned filterbanks. Pitch and

formants are well known important speech features. For human speech, pitch typically lies

between 85 Hz and 300 Hz. Formants are resonances of the vocal tract and define vowel sounds.

The first formant is generally situated between 200 Hz and 800 Hz; the second formant lies

between 500 Hz and 2500 Hz. (Olive et al., 1993)

6.3 Method

6.3.1 Overall Hypothesis

In Chapter 5, we showed that a model of the cochlea trained in an E2E manner behaves unex-

pectedly. The model learns a combination of expected narrow-band structures representative

of the cochlea. However, it also learns wider-band structures that are more representative of

the higher level auditory pathway. The network used was a combination of a SincNet front-end

with a simple MLP as context network and trained in a supervised manner. The state-of-the-art

in neural models for acoustic processing of speech is now associated with pre-trained stacks

of transformers. Such stacks have been shown to exhibit behavior quite similar to that of the

human brain using functional Magnetic Resonance Imaging (fMRI) (Millet et al., 2022).

In the following experiments, we aim to show that a plausible model of the cochlea can be

82

Trainable filters with self-supervised pretrained model Chapter 6

combined with an otherwise black-box pre-trained model to yield a model much closer to

the human auditory pathway. If such a model continues to behave in the same way as our

simplistic one, we could further conclude that something is wrong with our cochlear model;

certainly we have no biological evidence for wide-band structure at such a low level. By

contrast, if the new model behaves differently, we could conclude that our simplistic model is

too simplistic, and that a larger (implying pre-trained) model is necessary for such low level

auditory investigation.

6.3.2 Pre-Trained Model

The model used in this work is based on wav2vec2 (Baevski, Zhou, et al., 2020), presented

in Section 6.2.1. For this study, the encoder CNN of wav2vec2 is replaced with SincNet. The

encoder layer is composed of SincNet filters followed by a classical CNN of 3 layers as in the

SincNet baseline; this CNN down-samples the input signal to 50 Hz, which is then compatible

with the further transformer layers. It is illustrated in Figure 6.2. The training follows the

wav2vec2 method, but is customized to take the SincNet filters into account without starting

the pre-training from scratch.

The framework used is FAIRSEQ (Ott et al., 2019), (which stands for Facebook AI Research in

sequence modeling), a framework developed and used by Meta, which has an implementation

of wav2vec that can be easily modified. The modifications are described in following sections.

Moreover, the code is adapted to run on several Graphics Processing Unit (GPUs) in parallel.

6.3.3 Experimental setup and training protocol

We use the wav2vec2 (Baevski, Zhou, et al., 2020) network of the fairseq framework (Ott et

al., 2019). To be able to adapt separately the different network parts with different learning

rates we use the composite optimizer mechanism with an overall pass_through learning rate

scheduler, since the different networks will have a specific learning rate scheduler assigned.

For the convolutional downsampling part of the network as well as the projection layer, we

use a polynomial_decay scheduler: with a short warmup stage and a long polynomial decay

stage. The convolutional part of the network is initialized wit a learning rate of 6 ·10−4. For the

projection layer, the learning rate is initialized to 3 ·10−6. For the transformer based part we

created a 4-stage scheduler: starting with a freezing stage where the learning rate is set to 0,

then a warmup stage, a plateau and a linear decay stage. The optimizers are for all schedulers

fixed to adam and the learning rate is initialized to 3 ·10−6.

6.3.4 Dataset

We use the LibriSpeech dataset (Panayotov et al., 2015) for all experiments presented in section

2.3.4. We run each experiment either on the subset of 100h or the complete Librispeech

dataset. For every experiment, the final result is computed on a single training run over several

83

Chapter 6 Trainable filters with self-supervised pretrained model

x3

Layer normalization

C
on

te
xt

 n
et

w
or

k

Previous work

MLP

Sinc Filters

Maxpooling

ReLU

Projection layer

Wav2vec2

Transformer

Projection layer

This work: baseline

Transformer

Projection layer

Fe
at

ur
e

Ex
tr

ac
to

r

GeLU

Layer normalization

ReLU

x3
x7

1D Convolution

Layer normalization

Sinc Filters

Maxpooling

ReLU

Maxpooling

1D Convolution

Layer normalization

ReLU

Maxpooling

1D Convolution

Layer normalization

Block kernel
size

Stride

7 2 2
6 2 2
5 3 2
4 3 2
3 3 2
2 3 2
1 10 5

Figure 6.2: A schematic overview of the original SincNet implementation model used as
baseline in our previous work, the wav2vec2 fine-tuning path and the proposed fine-tuning
path in this work. Based on compositionality capacity of networks, we combined the feature
extractor of the original SincNet model with the pre-trained transformer of wav2vec2.

epochs. The variance is computed on the test using a Bayasian approach.

6.4 Experiments

6.4.1 Can Trainable Filters Replace the Encoder CNN in an Already Pre-Trained
Model?

Our first hypothesis posits that the CNN encoder block acquires information learnable through

trainable filters. To validate this, we replace the front-end with a SincNet encoder (see Figure

6.2) and compare post-training ASR performance to the baseline. Secondly, by incorporating

modifications from our previous work, we expect improved results compared to the original

SincNet implementation. Third, the trainable filters in the initial encoder layer should mirror

patterns learned by the pre-trained encoder.

84

Trainable filters with self-supervised pretrained model Chapter 6

Choice of Global Parameters

In order to test this hypothesis, several implementation parameters are adapted: the learning

rate scheduler, the structure of the new encoder, the kernel size of the filter layer and the

number of updates of the model.

Learning Rate Schedulers

If a pre-trained model is used in, say, ASR, there is normally an adapter layer at the output

of the pre-trained model. This layer can be trained whilst keeping the pre-trained model

fixed by simply not back-propagating gradients further than the adapter. By contrast, the

SincNet that we wish to train is an input of the pre-trained model; gradients must be back-

propagated through the pre-trained model. The new weight value is given by the update

parameter learning rule in Equation (6.3).

θt+1 = θt +∆θt (6.3)

where θt is the weight value one time-step before the updated value. ∆θt is dictated by the

equations of optimizer update—in the case of this work, Adam (Kingma & Ba, 2014).

∆θt = − η√
v̂t +ϵ

m̂t (6.4)

where:

• m̂t and v̂t are bias-corrected estimates of the linear combination of the gradient with

first and second moment estimates.

• ϵ is a small constant preventing a division by 0.

• η is the learning rate.

To freeze the model weights, we set the learning rate to zero. According to the gradient descent

update Equation (6.4), if the learning rate η is set to zero, the parameters to which this 0

learning rate is applied are frozen to their initial value, which is a common machine learning

practice.

In this work, we adopt a learning rate scheduler integrating a freezing period. During this

freezing period, the encoder network is able to learn what the previous CNN layers had learned

during the pre-training phase and the context network stays frozen.

The original wav2vec2 implementation uses two types of learning rate schedulers: the poly-

nomial decay and tri-stage learning rate scheduler. The polynomial decay scheduler is used

for non-pre-trained network chunks; in the wav2vec framework, this corresponds to the

85

Chapter 6 Trainable filters with self-supervised pretrained model

self-supervision phase while the tri-stage learning rate scheduler is used for fine-tuning.

For this experiment, the polynomial decay learning rate was assigned to the encoder net-

work (Figure 6.3c), since this part of the network is replaced by a SincNet encoder and con-

sequently trained from scratch in the experiment. For the context network, we created a

hybrid version of the tri-stage learning rate scheduler incorporating a freezing period at

the beginning (Figure 6.3d). The whole training scheme is schematically summarized in

Figure 6.4, clearly depicting the two training phases. Freezing the transformers and projection

layer in the first place avoids catastrophic forgetting of the transformer weights. FAIRSEQ’s

composite optimizer enables distinct learning rate schedulers for different model parts, uti-

lizing a pass-through general optimizer to automatically associate each part with its specific

scheduler and optimizer.

15

20

W
ER

 (v
al
id
at
io
n
se
t)(a)

0.6

0.8

NL
L
lo
ss

(b)

0

5

Fe
at
ur
e

 E
xc
tra

ct
or
 lr (10)4(c)

0 1 2 3 4 5 6 7 8
Number of u dates (104

0.0

2.5

Co
nt
ex
t

 N
et
wo

rk
 lr

(10)6(d)

Figure 6.3: Training curve of the long-run training of 100 k updates. (a) depicts the WER of the
validation set (dev-other), (b) contains the negative log likelihood of the loss, and (c,d) depict
the learning rate evolution of the feature extractor and context network, respectively.

SincNet Modifications

In the previous work (section 2.5), we showed that removing the maxpooling layer after the filters

was physiologically relevant and improved the performance. In this experiment, we compare the

performance of the initial SincNet structure and the adapted structure.

Kernel Size

With the larger model, we observed a saturation effect at lower frequencies in a draft experiment,

linked to the maximum filter precision dictated by the kernel size. We replaced the initial

kernel size of 129 by 400 in the sinc filter initialization; this both corrected the above issue, and

86

Trainable filters with self-supervised pretrained model Chapter 6

First part of training

Transformer

Projection

Feature Extractor

Second part of training

Transformer

Projection

Feature Extractor

Frozen
Trained

Figure 6.4: A more schematical explanation of the behavior of the network training explained
in Figure 6.3. There are 2 training phases: one up to 40 k updates where the whole model
except the feature extractor is frozen, and the second phase, where everything fine-tunes
together.

corresponded to the 25 ms used as window size in classical MFCC computations.

Number of Updates

An update corresponds to a back-propagation of gradients in the model, which updates the

parameters, while an epoch corresponds to passing the whole dataset through the model.

For most of the experiments, the number of updates is fixed to 10 k, which corresponds to

38 epochs with the training set train-clean-100 for the fine-tuning part. For completeness

and comparison, we also report one experiment where the model was able to train for 100 k

updates, with 40 filters and a kernel size of 400.

Results

The results of this first experiment are summarized in Table 6.1 and Figure 6.3. Concerning the

performance, the WER results of Table 6.1 are all below 4%. This means that a SincNet encoder

is capable of replacing the original wav2vec2 encoder when keeping the context network fixed.

Table 6.1: Comparison between a short and long run using no maxpooling after the filter
layer in the first 2 experiments and with a maxpooling that has a kernelsize of 3 in the third
experiment. Thus, the third experiment has a downsampling of a factor 3 just after the sinc
filters via a maxpooling operation in the time domain.

n_filters Maxpooling Kernel Size n_updates WER
40 - 400 100 k 3.31
40 - 400 10 k 3.53
40 3 400 10 k 3.64

The encoding and impact of the learning rate scheduler on the WER and loss curve are

illustrated in Figure 6.3. During the first half of the training updates, the context network is

87

Chapter 6 Trainable filters with self-supervised pretrained model

frozen through the zeroing of learning rate, while the encoder network is able to train. In the

second half of the experiment, the training of the context network is enabled; the transformer

can slightly adapt itself to the trained encoder. In the WER and loss curves, we can see a clear

impact of the transformers when they obtain the ability to train around 40 k updates. However,

when only enabling the SincNet encoder structure to train, the network already shows a decent

performance during the first part of the training.

As summarized in Table 6.1, three different experiments were performed to address this first

hypothesis: two short experiments to analyze the impact of removing the maxpooling layer and

a third experiment where the training time was much longer. As in the previous work (section

2.5), removing the maxpooling function improves the global performance of the ASR. Further,

letting the experiment train for a longer period makes the performance increase.

The shape of the filter distribution for the different runs of Table 6.1 are illustrated in Figure

6.5. When training the network for 100 k updates instead of 10 k, the WER continues decreas-

ing, but the spatial distribution of the filters does not move much anymore. Changing the

network structure by considering the maxpooling layer, however, has a small impact: for lower

frequencies, some wider filters are appearing. This means that using maxpooling precludes

the wide-band filters to be learned higher up in the network; nevertheless, the proportion of

wide-band filters are much lower than what we obtained in the previous work, and the size of

the bandwidth is smaller.

A consistent pattern emerges in the filter distribution shape across various runs within the

spectral content, up to approximately 4 kHz. Below 1 kHz, a bump of very small (and conse-

quently precise) filters occurs in the filterbank between 200 Hz and 800 Hz; this frequency

range corresponds to the first formant (see Section 6.2.4). From 1 kHz to 5 kHz, the bandwidths

of the filters are all around 400 Hz. Above 5 kHz, the filters seem to learn something different

in every run.

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [kHz]

102

103

Ba
nd

wi
dt
h
[H

z]

maxpool = 3, short run
maxpool = 1, short run
maxpool = 1, long run

Figure 6.5: Comparison of filter distribution for different run lengths and internal SincNet structure.
Using maxpooling within the filter structure makes some wide-band filters appear in low frequency
ranges.

88

Trainable filters with self-supervised pretrained model Chapter 6

6.4.2 Does a Physiologically Adapted Front-End Perform as Well as a CNN in a
Pre-Trained Model?

Hypothesis

(Ravanelli & Bengio, 2018a) showed that using the SincNet model instead of simple CNN con-

verged faster, performed better, and was more interpretable. We hypothesize that if we train a

SincNet model and a CNN model with the same number of layers from scratch, combined with a

pre-trained context network, the SincNet model would also show those characteristics.

This can be tested by performing and comparing four experiments: The first experiment retrains

the wav2vec2 encoder network from scratch to gauge its performance without the pre-training

information, setting a baseline for encoder relearning while keeping the pre-training information

of the context network. Second, we use the baseline CNN with a layer of the same size as the

trainable filters to be comparable with (Ravanelli & Bengio, 2018a), but this time combined with a

pre-trained context network. The third experiment consists of training a large SincNet encoder. The

baseline CNN structure is combined with a layer of trainable filters and trained with the pre-trained

transformers. Finally, we compare these experiments with a SincNet structure containing fewer CNN

layers (than the structure used in the experiments of Section 6.4.1).

Results

The convergence speed can be analyzed in the training curve. Figure 6.6 shows that in terms

of training, the SincNet structure converges faster towards an equilibrium compared to a

pure CNN structure.Concerning the validation, this is true in the very beginning, especially

concerning the CNN with the same shape as SincNet (red curve) up to 2000 updates. We based

our analysis of the convergence speed on the update metric to align the loss on the amount

of data that go through a forward–backward pass. However, to be complete, Table 6.2 details

the time that every experiment takes and the number of parameters that are contained in

the front-end for purposes of comparison. The performance of the different experiments is

Table 6.2: Table summarizing the time of each experiment on 4 parallel GPUs and the number
of parameters contained in the feature extractor. Note that this number of parameters is quite
small compared to the rest of the network (90 M parameters).

Model Time N. Parameters
Small CNN 7 h 14 min 0.575 M
Large CNN 9 h 48 min 4.406 M

Relearn CNN (w2v2 shape) 11 h 57 min 4.206 M
Relearn CNN (SN shape) 14 h 7 min 4.422 M

summarized in Table 6.3. Overall, the 95% confidence interval of the large SincNet structure

performance overlaps widely with the baseline experiment; this means that the performance

with SincNet is not significantly better than the baseline CNN. However, between the SincNet

89

Chapter 6 Trainable filters with self-supervised pretrained model

2×102

3×102

Tr
ai

ni
ng

 lo
ss

(a)
SincNet, small CNN structure
SincNet, large CNN structure
CNN relearn from scratch
CNN with SincNet shape

0.0 0.2 0.4 0.6 0.8 1.0
Number of updates ×104

3×101

4×101

5×101

6×101

Va
lid

at
io

n
lo

ss

(b)
SincNet, small CNN structure
SincNet, large CNN structure
CNN relearn from scratch
CNN with SincNet shape

Figure 6.6: Loss curve during (a) training and (b) validation.

shape CNN and the SincNet implementation, which correspond to the experiments performed

in (Ravanelli & Bengio, 2018a), the overlap is less important and SincNet performs slightly

better.

Table 6.3: Performance of the different experiments on the capacity of SincNet (SN) to re-
place the initial CNN structure with a 95% confidence interval, assuming the result is beta
distributed.

Train Loss Valid Loss WER [%]
Relearn CNN (w2v shape) 129.5 28.67 3.35 ± 0.15
Relearn CNN (SN shape) 124.7 28.96 3.45 ± 0.15

SincNet (large CNN) 120.8 28.48 3.33 ± 0.15
SincNet (small CNN) 122.3 30.26 3.53 ± 0.15

Finally, concerning the interpretability, Figure 6.7 illustrates the normalized sum of the filters

in the CNN implementation and SincNet after training.
In both cases, “bumps” occur around 700 Hz and 1.4 kHz, which correspond to typical first-

and second-formant frequencies. In (Ravanelli & Bengio, 2018a), those interpretable elements

in the normalized filter sum were more distinguishable in the SincNet structure than in the

CNN structure. Further, for frequencies above 4 kHz, the SincNet filters more efficiently reduce

the amount of information recorded in that area than the CNN structure.

To summarize, in the context of a self-supervised model with a pre-trained context network,

using a SincNet encoder converges faster and performs as well as the baseline CNN trained

from scratch and better than the similar shape CNN. Concerning the interpretability, despite

90

Trainable filters with self-supervised pretrained model Chapter 6

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al
ize

d
fil
te
r s
um

SincNet (large CNN)
CNN (same shape as SincNet)

Figure 6.7: Comparison of the content of the normalized filter sum using SincNet filters and
using a same-size generic CNN.

being more interpretable by design, the SincNet structure does not seem to better emphasize

interpretable signal components than a CNN using 40 filters.

6.4.3 Can Trainable Filters be Incorporated during Self-Supervision?

Another way to train the filters using wav2vec2 is to incorporate the filters into the model in

the self-supervision phase.

Hypothesis

Although more computationally demanding, using the self-supervision training path is more

faithful to the original wav2vec2 training path and it enables the filters to train on two succes-

sive tasks. We hypothesize that continuing the self-supervision task while keeping the context

network frozen would lead the filters to learn a similar distribution to the first experiment

results. Moreover during self-supervised learning we can either let the filters train or keep

them frozen and let them only train during fine-tuning. In this case, we expect the rest of the

network to adapt itself to the frozen filter distribution and we do not expect the filters to differ

much from what they previously learned during further fine-tuning. However, we expect the

free filters to show slightly better performance since they are able to adapt to the fine structure

in the frequency range.

Self-Supervised Learning

The first step of this experiment consists of further training the model through the contrastive

loss task (see Equation (6.1)). To be consistant with the original self-supervision dataset we

91

Chapter 6 Trainable filters with self-supervised pretrained model

included the two other training subsets of LibriSpeech (see Table 2.2).

An important parameter to fix is the number of updates needed to obtain a comparable perfor-

mance as the baseline pre-trained model. Since self-supervision implies a performance measure

that is not based on labels, the best comparison measures are the loss and the accuracy.

Table 6.4 compares the accuracy and loss of the training and validation curves of the baseline

and the wav2vec2 model integrating the trainable filters. Using 10 k updates, the accuracy and

loss differ from 10–20% from the baseline loss and accuracy. With 100 k updates, the final loss

and accuracy match the baseline results up to 1% of error.

Table 6.4: Comparison of the loss and accuracy of the baseline pre-trained model and the
model after a further pre-training for both frozen and trainable filters. After 10 k updates, the
model already performs well but not as good as the baseline, while after 100 k, the model
reaches the performance of the baseline in terms of loss and accuracy.

Number of Updates
Accuracy [%] Loss
Train Valid Train Valid

Baseline 0 61.1 64.6 2.10 1.96
Frozen filters 10 k 52.2 62.2 2.49 2.13
Trained filters 10 k 56.9 63.0 2.34 2.06
Frozen filters 100 k 60.5 66.5 2.13 1.87
Trained filters 100 k 61.4 67.2 2.09 1.84

Fine-Tuning

The second step consists of fine-tuning this self-supervised model. In this fine-tuning experi-

ment, the learning rates do not have to be disentangled as we did in the first type of training

path, since the whole model has been pre-trained.

Results

The final performance is given in Table 6.5. For a fine-tuning of 10 k updates, the performance

is best when the filters have been through a self-supervision task before fine-tuning (see Table

6.1).

Table 6.5: Performance of model using trainable filters in pre-training (100 k updates) and
fine-tuning (10 k updates).

Pre-Training Phase Fine-Tuning Phase WER [%]
Frozen filters Trainable filters 3.40

Trainable filters Trainable filters 3.37

Since during self-supervised training, the filters are able to train, they can be visualized both after

pre-training and fine-tuning (Figure 6.8). For the trainable filters, below 1 kHz, a couple of filters

92

Trainable filters with self-supervised pretrained model Chapter 6

become very narrow-band, then around 1 kHz, 2 kHz and 3 kHz, the filters show a narrow-band

bump in their structure as if they sought slightly more fine-grained structures at those specific

frequencies. Filters do barely move between during self-supervised training and fine-tuning.

This means that the rest of the model is probably more inclined to move towards a better suited

equilibrium to minimize the loss. Moreover, globally the shape of the filter distribution shows

similar behavior between the two different training paths.

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

102

103

104

Ba
nd
wi
dt
h
[H
z]

Frozen filter distr. after ss
Frozen filter distr. after ft
Trained filter distr. after ss
Trained filter distr. after ft

Figure 6.8: Filter distribution after the self-supervised (ss) training and fine-tuning (ft) of the
wav2vec2 model. Globally, filters do not tend to move significantly during fine-tuning when
they have been incorporated during pre-training.

In summary, using only supervised fine-tuning gives a broader flexibility for experiments

where several parameters have to be changed, since only a fine-tuning run has to be adapted.

Training through both self-supervision pre-training and supervised fine-tuning is more time

and resource consuming, but better corresponds to the general idea of using both self-

supervision and fine-tuning for training a model. Overall, the filters, when able to train

before the transformer adaptation, tend to learn similar patterns.

6.4.4 Do Wide-Band Filters Appear in Some Other Training or Model Configura-
tions?

An observation in conflict with our previous work (section 2.5) is that no wide-band filters

appear within the current implementation. Figure 5.2 showed that some filters learned a very

broad-band structure, while in Figure 6.5, for example, no such wide-band structures appear.

Two hypothesis were apparent to explain why those filters could potentially not appear: the

number of filters could be too low within the context of a self-supervised model and the

freezing of the transformers by decoupling the learning rate scheduler could possibly preclude

those filters from appearing.

93

Chapter 6 Trainable filters with self-supervised pretrained model

The Hypothesis of Too Few Filters

Hypothesis

The first hypothesis suggests that a limited number of filters may hinder the emergence of

wide-band structures. Additionally, the absence of maxpooling precludes the appearance of

wide-band filters. This hypothesis can be tested by increasing the number of filters. If the

number of filters is insufficient for the manifestation of wide-band filters, a larger number of

them should lead to the emergence of these filters.

Results

Figure 6.9 illustrates the structure that the filters learn when initialized to

100, 80, 60, and 40 filters. Globally, below 1 kHz, filters learn a very narrow-band frequency-

specific filters, above 1 kHz, filters have a bandwidth around 400–500 Hz for all the different

numbers of initialized filters. Compared to the previous work, below 1 kHz, the number of

very narrow-band filters is much higher in this experiment.

0 1000 2000 3000 4000 5000 6000 7000 8000

102

103

Ba
nd

wi
dt

h
[H

z]

(a)

100 filters

0 1000 2000 3000 4000 5000 6000 7000 8000

102

103

Ba
nd

wi
dt

h
[H

z]

(b)

80 filters

0 1000 2000 3000 4000 5000 6000 7000 8000

102

103

Ba
nd

wi
dt

h
[H

z]

(c)

60 filters

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

102

103

Ba
nd

wi
dt

h
[H

z]

(d)

40 filters

Figure 6.9: Distribution of the different filters in the frequency domain. The dots represent
the central frequencies and the lines represent the bandwidths, similarly to Figure 5.2. The
number of initial filters are (a) 100, (b) 80, (c) 60, and (d) 40.

A few wide-band filters do appear when the model is initialized with a high number of filters

(80–100), For a smaller number of filters, (40, for example), the wide-band structures as we had

in our previous work (section 2.5) do not appear anymore. Concerning the convenient number

of filters to use based on this filter distribution analysis, 40 filters seem to be a convenient

94

Trainable filters with self-supervised pretrained model Chapter 6

number to describe the whole frequency range. This corresponds with the conclusions of our

previous paper and it is consistent with choices made in the literature, e.g., (Zeghidour et al.,

2018).

To be complete, we also computed the performance for this model with the different numbers of

filters, summarized in Table 6.6. Similarly to the observations made in our previous work (Coppi-

eters de Gibson & Garner, 2022), the performance increases slightly with the number of filters we

initialize.

Table 6.6: Performance on the dev-clean subset of LibriSpeech for different numbers of filters.

n_filters Maxpool Kernel Size WER
40 3 400 3.64
60 3 400 3.61
80 3 400 3.57

100 3 400 3.56

The Transformers Precluding the Filters to Learn Wide-Band

Hypothesis

The second hypothesis for why the wide-band filters do not appear is linked to the training

path: the transformers are first frozen before being able to train in parallel to the filters, while

in the previous work, the whole network trained together. Until now, all experiments have

been conducted by first keeping the transformers frozen for a given amount of time in order

to train only the encoder network while keeping the transformers fixed. In order to verify this

hypothesis, we perform an experiment where all learning rate schedulers start the warm-up

period at the same time.

Results

When filters and transformers are free to train jointly from the pre-trained transformer version,

the filter distribution does not learn wide-band structures and, moreover, it shows a similar

distribution to previous experiments (Figure 6.10). This means that, used with a pre-trained

transformer, the filters do not tend to get a wide-band structure as we had in (section 2.5).
In summary, when incorporating SincNet into a self-supervised model, the obtained filter

distribution does not correspond to the results of our previous work. Only a very small

number of wide-band filters appear when enlarging the total number of filters. Besides, the

experiments confirmed that the number of filters needed to cover the frequency spectrum

in ASR tends to 40. We conclude that a pre-trained context network probably encodes the

combination of those wide-band structures, precluding those structures from appearing on

the trainable filter layer.

95

Chapter 6 Trainable filters with self-supervised pretrained model

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

102

103

Ba
nd
 i
dt
h
[H
z]

transformer lr = 3×10−5
transformer lr = 3×10−4

Figure 6.10: Filter distribution after training for 40 filters.

6.5 Conclusions

This study proposes an integration of two physiologically grounded concepts: trainable filters

and self-supervision. It begins by delineating these concepts in Section 6.2 and subsequently

elaborates on their joint training using a self-supervised context network while concurrently

training a new front-end in Section 6.3. Section 6.4 outlines a logical sequence of experiments

aimed at exploring the behavior of the trainable filters within this framework.

In the first experiment, we demonstrate that a new encoder can be trained while retaining

the information acquired during pre-training in the transformer, avoiding a catastrophic

forgetting of the transformer weights and resulting in performance close to the state of the art.

Additionally, substituting the CNN encoder with a SincNet encoder sheds light on the infor-

mation expectation of the transformer from the CNN, emphasizing the interest in frequency

information at the trainable filter layer.

The second experiment illustrates that, when trained from scratch, the SincNet encoder con-

verges more rapidly than the CNN. However, there is no significant performance improvement,

and interpretability across the entire frequency spectrum does not reveal more speech artifacts

compared to a CNN.

In the third experiment, we observe that the sole fine-tuning training path offers greater

flexibility and is better suited for conducting experiments. While the pre-train–fine-tune

training path aligns more with the original concept of self-supervision, it necessitates a larger

dataset and substantially more time for the pre-training phase.

Lastly, in the fourth experiment, we investigate why wide-band filters cease to emerge. Through

several experiments analyzing behavior with additional filters and employing different training

paths, it appears that the pre-trained context network inhibits the emergence of wide-band

filters in the initial layer.

Overall, this study demonstrates the feasibility of integrating and fine-tuning state-of-the-art

networks with physiologically plausible models. Furthermore, the utilization of decoupled

learning rate schedulers enables the fine-tuning of specific parts of the model. We posit that

implementing more intricate physiological models and leveraging this approach can facilitate

96

Trainable filters with self-supervised pretrained model Chapter 6

a deeper understanding of how physiological mechanisms may evolve to better interpret

external inputs in the encoder network.

97

7 Integration of Hopf oscillator module
into an ASR system

As illustrated on figure 7.1, this chapter brings together the knowledge of cochlear models

and ASR technology. Building on the conclusions presented in Chapter 4, we describe the

implementation of the Hopf oscillator into a module, simplifying the differential equations

system from Section 4.3.2 to make it computationally compatible with ASR training.

2. Background

C
o

ch
le

a
A

SR

4. Driven
oscillator

7. Driven oscil-
lator in ASR

5. Trainable
filters in ASR

3. Modularity

6. Trainable filters
with pretrained model

Driven oscillator with
pretrained model

Figure 7.1: General overview of the thesis.

The primary goal of this chapter is to train an ASR system using a Hopf oscillator module

as its frontend. This is achieved through two main steps: first, a simple integration of the

Hopf module; and second, an integration of the efferent path through a larger feedback

implementation in the encoder module.

Furthermore, we propose a more comprehensive analysis of performance within a noisy

context. The adaptation mechanism of the auditory path exhibits interesting noise robustness

capacities.

99

Chapter 7 Integration of Hopf oscillator module into an ASR system

7.1 Background

The background material for this chapter has been covered in previous chapters.

• Hopf oscillators are known to model the active amplification mechanism of the cochlea.

A broad literature review has been presented in chapter 4.

• ASR systems have evolved from statistical based HMM models to self-supervised models.

This has become possible through the advent of increasing computational capacities of

modern hardware and innovations in neural networks. For computational reasons, we

use the ASR framework of chapter 5.

7.2 Learning parameters

In deep learning, parameters are optimized using the gradient descent algorithm, which

iteratively adjusts model weights to minimize error. This method shares similarities with

neural adaptation: synaptic strengths and types are shaped by neurotransmitter flow, which

can be modelled by the gradient descent mechanism.

However, some parameters need a real-time adaptation even during the testing phase, which

cannot be learned by traditional gradient descent algorithms. Instead, these adaptations

are governed by a gradient computation based on differential equations that dynamically

adjust to the evolution of incoming signals, whereas classical systems compute the gradient

through the loss propagation. The cochlear model, which requires rapid parameter updates to

accommodate dynamic sound waveforms, exemplifies the need for adaptive models that can

learn from experience

In this work we employed the differential equation training for the Hopf implementation

module, mimicking the behaviour of the cochlea with its active gain control loop. For the

rest of the auditory path and the efferent path feedback, we use gradient descent as learning

mechanism. This task division of the learning adaptation is illustrated in figure 7.2.

speech phonemesHopf
Module

Adaptation through
differential equations

Adaptation through
gradient descent

Encoder Decoder

Forward pass
Gradient back-

propagation

Figure 7.2: Learning mechanism: division of different learning routines over the different parts
of the model according to the physiological equivalent.

100

Integration of Hopf oscillator module into an ASR system Chapter 7

7.3 Hopf oscillator module

7.3.1 Mathematical formulation

Our model mainly focuses on the general oscillation of the cochlea with a special focus on its

active amplification characteristics and tuning at the Hopf bifurcation. Therefore, we mainly

build our mathematical model based on literature that utilizes the Hopf equation (which are

presented in section 4.1.4). As a reminder, we use the Hopf equation 4.5 as a baseline and

enhance by adapting the frequency scaling and adding a tuning equation of the bifurcation

parameter µ.

Adapted frequency scaling

The proposed system of equations with a frequency scaling parameter f is given by:{ 1
f ṙ =µr +βr 3 +F cosθ
1
f θ̇ = 2π fc

f − F
r sinθ

(7.1)

The frequency scaling equation proposed by Stoop et al. (2016) relies on a pure logarithmic

scaling, while we are interested in other types of scalings (mel, greenwood, etc.). This reveals

that the f -variable is directly linked to the bandwidth that the oscillator filters will have with a

relationship given by: f ∼ fbw . The global equation thus becomes:{ 1
a fbw

ṙ =µr +βr 3 +F cosθ
1

a fbw
θ̇ = 2π fc

a fbw
− F

r sinθ
(7.2)

Moreover, the separation of fc and fbw in the Hopf equation enables a better control over the

filter distribution.

The different parameters are defined as:

• β : The first Lyapunov coefficient that needs to be negative in order to have a stable

solution over the whole domain.

• fc and fbw : Respectively the central frequencies and bandwidth of the different oscilla-

tors defined based on mel-scale.

• a : a scaling factor between f and fbw

• r , θ and µ: the parameters defining the system respectively the radius, anlge and bifur-

cation parameter of the different oscillators.

• F : The input signal corresponding to speech for our experiments

101

Chapter 7 Integration of Hopf oscillator module into an ASR system

Tuning the bifurcation parameter µ

The tuning of the bifurcation parameter can be implemented in two different ways. One

approach is to use a differential equation with a feedback mechanism, based on the imple-

mentation proposed by Camalet et al. (2000):

µ̇ =
µmax −µ

τ

(
1− F 2

δ2

)
(7.3)

Alternatively, an equivalent feedforward mechanism based on the value of the input signal F

also provide a good estimate of the best suited new value for µ.

µth =µmax

(
1− x2

δ2

)
(7.4)

Where the different parameters are defined as:

• µmax: The maximum value fixed for the bifurcation parameter.

• δ: The bifurcation threshold, defining the limit between the damping and active ampli-

fication mode.

A linear combination of the computed theoretical value and the previous value of µ gives a

smooth transition to the new equilibrium that corresponds to the damping or amplification

value dictated by µth . Another aspect of the ear is the limitation of the damping or active

amplification. Therefore, a tanh is wrapped around this function to limit the mu value between

[-1, 1]. Introducing a smooth variation by keeping track of the previous value of µ leads to

following equation:

µ(t) =µ(t −1)p + tanh(µth(t))(1−p) (7.5)

With p being a fixed value that determine the proportion of the previous value of µ in the

computation of the new value of µ combined with the theoretical computed value.

7.3.2 Implementation of the Hopf module

Figure 7.3 represents the module implementation of the system of equations. The model is

composed of two main blocks: one computation block that computes the first derivative of

the different parameters and applies the update step and one memory block keeps track of

the last computed values of the variables which then generates the oscillator output. The

oscillator is triggered by an incoming waveform and the output is computed based on the

state of these parameters. The values of r , θ and µ are updated at every time step ∆t .

First the first order derivatives of the different parameters with respect to those parameters is

102

Integration of Hopf oscillator module into an ASR system Chapter 7

computed:


ṙ = (µr +βr 3 +F cosθ)π fbw

θ̇ = 2π fc − F
r π fbw sinθ (7.6)

One potential issue with the system is that it may diverge to infinity if r tends to 0. This

problem was mitigated by introducing a small ϵ with the same sign as r .

Hopf oscillator module
E

u
le

r
st

ep r
θ

µ

waveform F oscillator output

Figure 7.3: Hopf oscillator module schematic the oscillator output corresponds to the real
value of the oscillator r cosθ.

A type of module compatible with this implementation is the recurrent neural network (RNN).

Differential equations can be integrated into recurrent neural networks by computing every

next step with the first-order method of Euler:

x[n +1] = x[n]+ ẋ[n] ·∆t (7.7)

Applied to the different parameters results in following system of equations:


r [t +∆t , t +2∆t] = r [t , t +∆t]+ ṙ ·∆t

θ[t +∆t , t +2∆t] = (θ[t , t +∆t]+ θ̇ ·∆t)%2π

µ[t +∆t , t +2∆t] = pµ[t , t +∆t]+ (1−p) tanh(µth[t +∆t , t +2∆t])

(7.8)

7.3.3 Characterization of the Hopf Module

The Hopf model provides a mathematical description of the inner workings of the organ of

Corti. It incorporates both a cube root compression and the active amplification mechanism

that characterizes the interactions between the OHC and IHC by adapting the µ parameter to

the incoming signal.

These characteristics represent a key difference from classical filterbanks. The combination

103

Chapter 7 Integration of Hopf oscillator module into an ASR system

of the cube root compression with the Hopf adaptation mechanism is crucial for explaining

why the human ear has such a large amplitude range, allowing it to perceive a wide range of

sounds. The amplitude of the output of the oscillator is directly related to the value of the

parameter r in the differential equation system, which corresponds to the amplitude of the

OHC.

This parameter r is directly influenced by the gradient ṙ calculated at every step.

ṙ = (µr +βr 3 +F cosθ)π fbw (7.9)

To characterize the model, we analyse the values to which the amplitude r converges in the

following scenarios:

• When there is no external signal (F = 0), which illustrates the active amplification mech-

anism.

• When there is no adaptation (µ = 0), which isolates the cube root compression mecha-

nism.

• Without any constraints on F and µ: under these conditions, the µ parameter tracks the

system’s amplification, diverging from a simple cubic root relationship.

We then compare the output of Hopf oscillators to that of a rectangular filterbank based on

the SincNet implementation.

Active amplification mechanism with no incoming signal

When no signal is coming into the oscillator system, equation 7.9 becomes:

ṙ = (µr +βr 3)π fbw (7.10)

At equilibrium (ṙ = 0) the oscillators should converge towards an amplitude of r =
√

−µ
β , except

if r = 0 and no disturbance noise is added, then the signal stays at the unstable solution point

r = 0. For a system with four Hopf oscillators (with the central frequencies: 365 Hz, 1260 Hz,

2907 Hz and 5937 Hz for oscillators 1, 2, 3 and 4 respectively) and µ = 1, β = −100, the signal

tends to the theoretical value r = 0.1 as shown in Figure 7.4.

When the bifurcation parameter µ is initialized to 0 with no input signal and able to adapt, it

will converge to µmax. The convergence value of the radius of the oscillators is then defined by

r =
√

−µmax

β and the radius takes a longer time to converge to that value as illustrated in Figure

7.5. Besides, we notice that oscillators with a smaller bandwidth take a longer time to learn

this new amplitude than large-bandwidth filters.

104

Integration of Hopf oscillator module into an ASR system Chapter 7

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

r

Evolution of r when μ= 1

x
osc 1
osc 2
osc 3
osc 4

Figure 7.4: Evolution of the r -value in the oscillator when µ = 1 is fixed

0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

r

Evolution of r when μ is not fixed

x
osc 1
osc 2
osc 3
osc 4

Figure 7.5: Evolution of the r -value in the oscillator when µ is initialized to 0 and evolves over
time for µmax fixed to 0.

Cube root compression

When the bifurcation parameter is fixed at the bifurcation point, a cube root relationship be-

tween the amplitude of the input signal F and the oscillator response r appears at equilibrium.

In this configuration, the differential equation of the oscillator amplitude (ṙ) equation be-

comes:

0 =βr 3 +F cosθ (7.11)

The value that r tends to adjust to the value of the incoming signal F = A cosθ′. When the two

105

Chapter 7 Integration of Hopf oscillator module into an ASR system

signals are in phase, θ′ = θ

r 3 = − 1

β
F cosθ (7.12)

r 3 = − 1

β
A cosθ′ cosθ (7.13)

r 3 = − 1

β
A cos2θ (7.14)

This value is not constant due to the cosine, to find the theoretical value this equation tends

to, we need to take the mean value of Acos2(θ).

r 3 = − 1

2π

∫ 2π

0

A

β
cos2θdθ (7.15)

r 3 = − A

2β

1

2π

∫ 2π

0
1+cos(2θi)dθ (7.16)

r = 3

√
− A

2β
(7.17)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

r

Evolution of r when μ= 0 for different amplitudes of the input signal
A = 0.00
A = 0.01
A = 0.02
A = 0.05
A = 0.10
A = 0.20
A = 0.30
A = 0.50
A = 1.00

Figure 7.6: The evolution of the radius r of
an oscillator for different signals tuned at its
central frequency.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

r

Radius of oscillators at equilibrium

0.0 0.2 0.4 0.6 0.8 1.0
A

−0.2

0.0

0.2

μ

Equilibrium value of μ in function of the amplitude of μ

Figure 7.7: Cube root relationship between
the input signal amplitude (A) and the oscil-
lator radius (r).

Figure 7.6 shows the amplitude evolution of an oscillator for inputs signals with different

amplitudes (A) and tuned at the resonance frequency of the oscillators. Figure 7.7 shows the

final mean amplitudes transposed to the r -A plot. This shows that the oscillator output signals

conform to the theoretical cube root relation. In addition, oscillators adapt more rapidly to

signals with higher amplitudes.

For frequencies outside the bandwidth range, the oscillator fails to synchronize with the input

signal frequency, exhibiting passive behaviour instead, which results in oscillations at lower

levels for higher frequencies as illustrated in Figure 7.8. The response of the oscillator exhibits

106

Integration of Hopf oscillator module into an ASR system Chapter 7

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
r

Evolution of r when μ=0 for different amplitudes of the input signal
A = 1.00
A = 0.50
A = 0.30
A = 0.20
A = 0.10
A = 0.05
A = 0.02
A = 0.01
A = 0.00

0.000 0.002 0.004 0.006 0.008 0.010
Time [s]

0.0

0.1

r

Zoomed-in view of first 10 ms

Figure 7.8: Evolution of the radius of an os-
cillator radius for in input signal tuned at
a frequency outside of the frequency band-
width of the oscillator with a zoom showing
the transient.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

r

Radius of oscillators at equilibrium

0.0 0.2 0.4 0.6 0.8 1.0
A

−0.2

0.0

0.2

μ

Equilibrium value of μ in function of the amplitude of μ

Figure 7.9: Linear relationship between the
input signal amplitude (A) and the oscillator
radius (r).

a linear relationship with the input amplitude (see Figure 7.9). The farther the frequency

is from the oscillator’s bandwidth, the less it will influence the oscillator’s radius. This also

reflects the coupling behaviour between neighbouring oscillators on the basilar membrane.

Adaptation of the bifurcation parameter µ to signal amplitude A

When there is no constraint on the input signal and the bifurcation parameter, the relation

between the signal amplitude and the oscillator radius slightly diverges from the cube root

compression due to the adaptation of the µ parameter. This is illustrated in Figures 7.10 and

7.11. For low amplitudes the converging value of r exceeds the theoretical curve, whereas for

high amplitudes the signal is further damped down. The threshold at which the oscillator

transitions from active oscillations to damping is defined by the variable δ in the definition of

µth . This threshold can be expressed in function of the input signal amplitude, it corresponds

to the root mean square (RMS) value of the input signal F :

δ =
Ap
2

(7.18)

The excitatory behaviour transitions towards a damping behaviour occurs at A =
p

2δ, this

corresponds to the pitchfork bifurcation point.

Analysis of Hopf oscillator output to an input composed of several sinusoid functions

This section demonstrates how oscillators adapt to composite signals consisting of multiple

sinusoids, as well as their ability to separate two distinct signals. It also compares the results

107

Chapter 7 Integration of Hopf oscillator module into an ASR system

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

r

Evolution of r when μ= 0 for different amplitudes of the input signal
A = 0.00
A = 0.01
A = 0.02
A = 0.05
A = 0.10
A = 0.20
A = 0.30
A = 0.50
A = 1.00

Figure 7.10: The evolution of the radius r
of an oscillator for different signals tuned
at its central frequency with an adaptable
bifurcation parameter.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

r

Radius of oscillators at equilibrium

0.0 0.2 0.4 0.6 0.8 1.0
Amplitude of x

−1.0

−0.5

0.0

0.5

1.0

μ

Equilibrium value of μ in function of the amplitude of x

Figure 7.11: Diverging tendencies from the
cube root relationship between the input sig-
nal amplitude (A) and the oscillator radius
(r) with µmax fixed to 0.1.

with those obtained from SincNet filters.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

N
os

cil
la

to
rs

Oscillators

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

0

10

20

30

40

N
fil

te
rs

Rectangular filters

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.12: Comparison of the output of
SincNet filters and oscillators for composite
signals of multiple sinusoids.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

N
os

cil
la

to
rs

Oscillators

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

0

10

20

30

40

N
fil

te
rs

Rectangular filters

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.13: Comparison of frequency sepa-
ration between Hopf oscillators and SincNet
filters.

In figures 7.12 and 7.13 we observe interaction between different signals in the contexts of

Hopf oscillators and SincNet filters. Figure 7.12 illustrates the oscillator’s response to a signal

when sweeping its frequency from 0 to f s/2 combined with two signals at a specific frequency.

This experiment demonstrates the oscillator’s response across the considered frequency range,

as well as its activation and deactivation capabilities of each oscillator when a signal appears

and vanishes at all frequencies. Furthermore, the crossing points between signals reveal how

the system responds to an accumulation of multiple signals. Notably, we observe through

the colour intensity contrasts in Figures 7.12 and 7.13 that filters multiply the amplitude

by 2 while oscillators multiply by 3
p

2 due to their inherent cube root relationship between

the signal amplitude and the oscillator’s radius. The places where signals are superimposed

correspond to a yellow colour, whereas the rest is around the middle value for the rest of

the graph in filter responses and inbetween the middle colour and yellow for the oscillator

108

Integration of Hopf oscillator module into an ASR system Chapter 7

response. Furthermore the type of response between filters and oscillators differ, oscillators

have the tendency to keep a given inertia through the active amplification mechanism.

Figure 7.13 represents one signal at a fixed frequency, while another signal has a sweeping fre-

quency starting from the same point and gradually increasing the frequency. This experiment

aims to compare the frequency separation capacity of oscillators with that of SincNet filters.

This experiment yields distinct results, the two signals become distinguishable around 0.65

seconds for the oscillators and 0.9 seconds for the SincNet filters. Generally, the oscillators

better differentiate closely related signals than SincNet filters with the same amount of filters

and equally distributed. However, the oscillator output contains more noisy additions inherent

to its inner mechanism.

0.00 0.25 0.50 0.75 1.00
0

20

40

60

80

N
Fil

te
rs

Sample rate output

0.00 0.25 0.50 0.75 1.00
0

20

40

60

80
Frame rate output

0.00 0.25 0.50 0.75 1.00
Time [s]

0

20

40

60

80

N
Os

cil
la

to
rs

0.00 0.25 0.50 0.75 1.00
Time [s]

0

20

40

60

80

Figure 7.14: Comparison of the Hopf oscillator output wit mel-distributed SincNet filter output
for a small utterance: ’eight’.

Analysis of Hopf oscillator output to an speech signal input

More than a simple sum of sinusoids, oscillators can take speech input signals as input. One

interesting point in the system output performance analysis is the comparison between the

discrete Fourier transform (DFT), the oscillator output and the spectrogram of the waveform.

The DFT computation is defined by:

X [k] =
N−1∑
n=0

x[n]e−i 2π kn
N (7.19)

Where k represents the filter number and n the sample number, N corresponds to the total

number of samples.

To be comparable, the DFT and oscillator output should be computed with frames of the same

size. Therefore, we take the RMS value of the oscillator output for the different oscillators and

we configure the oscillator central frequencies with a linear spacing.

109

Chapter 7 Integration of Hopf oscillator module into an ASR system

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2000

4000
Spectrogram

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

20

40
DFT

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

20

40
Sinc filter output at frame rate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

20

40
Hopf o cillator output at frame rate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time []

−0.5

0.0
Adaptation of variable μ for Hopf o cillator re pon e

Figure 7.15: Comparison of output of linearly distributed filters with a DFT computation of a
four digit utterance: ’one, zero, nine, two’, .

Figure 7.14 shows the output of SincNet filters and Hopf oscillators output both at the sample

rate and frame rate. Figure 7.15 compares the frame rate values on a linear scale with the

DFT computation values. The different signals show a clear resemblance, although some

differences can be noticed: the cube root relationship between the amplitude of the signal

and the output can be seen by comparing more noisy parts of the signal such as between

0.7 and 0.8 seconds. When no signal is present, the oscillators start to oscillate actively, this

phenomenon can be observed between 0.25 and 0.5 seconds for example. The system also

tends to keep the activated oscillators oscillating rather than activating all the oscillators

directly.

Some inherent differences between SincNet and Hopf oscillators reside in the phase estimation.

SincNet filters are iterating over samples without changing the phase of the filter and capture

all possible activity at a given frequency, while the oscillators synchronise to get in phase with

the input signal, some adaptation time is needed when changing phase in the signal.

Figure 7.16 shows how the bifurcation parameter µ adapts itself when the amplitude of the

signal is reduced. In this example, five digits are spoken and the middle one has an amplitude

110

Integration of Hopf oscillator module into an ASR system Chapter 7

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

2000

4000
Spectrogram

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

20

Hopf oscillater output
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

20

Sinc filter output

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

−0.5

0.0
Adaptation of ariable μ for Hopf oscillator response

Figure 7.16: Adaptation of µ parameter to a speech input in a noisy environment for a five
digit utterance: ’two, six, five, five, five’.

divided by 10. When comparing the output of SincNet filters and the output of the Hopf

oscillators, we clearly see the amplification of the low amplitude speech signal. On the µ

parameter plot, we also see that for the third digit, the signal is less damped than the 4 other

digits. Although the middle digit has an amplitude similar to the surrounding noise, the speech

signal better traced than the noise.

7.4 Integration in ASR

7.4.1 Challenges in bigger scale network

The primary challenge in using a recurrent neural network with a physiologically based model

lies in managing time consumption during large-scale training. The cochlea’s functioning is

not optimized for parallel processing, whereas ASR models are designed to be parallelized,

where data can be efficiently processed. To overcome this limitation and enable efficient

training, generalizations and simplifications must be made.

As a first step towards simplification, we have ignored the coupling component in our Hopf

oscillator module implementation, according to the conclusions of section 4.5. Another

trade-off arises from choosing the time constant for the active amplification loop in the Hopf

oscillator module. With a sampling rate of 16 kHz, adopting this as the adaptation rate provides

111

Chapter 7 Integration of Hopf oscillator module into an ASR system

102 103

Adaptation frequency[Hz]

10−1

100

Co
m

pu
ta

tio
n

tim
e

[s
]

Time for the different adaptation frequencies

Figure 7.17: Computation time needed for different values of the adaptation frequency going
from 8kHz to 100Hz.

optimal precision, but at the cost of computational intensity. Choosing a lower adaptation

rate presents an alternative, allowing the recurrent step computation to be applied to a larger

number of samples. However, having a lower adaptation rate introduces signal distortion,

making it essential to select reasonable frequencies. The frame rate frequency serves as a

priori indicator for determining the lower bound of suitable values.

7.4.2 Adapting time constant of active amplification loop

The adaptation of the Hopf module update step implies adapting the mathematical formula-

tion to be mathematically consistent with the original Hopf oscillator expression. To achieve

this consistency, modifications are made to the differential equation update step. Specifically:

• The mean value of samples is used instead of individual values for each sample of µ, θ

and r . This approach helps ensure that the model captures overall trends in the data

rather than focusing on minor variations.

• The initialization of θ is defined by a linear function depending on the central frequency

of the oscillator. In contrast, the initialization of µ and r are constant values for the

entire vector.

• The value of p in the computation of µ is adapted according to the number of samples

N present in each time step. :

pN = pN
1 (7.20)

where N corresponds to the amount of samples in one time step ∆t . N is a parameter

that is set at the beginning of an experiment. In this equation pN represents the value p

for a time step of N samples and p1 represents the value p for a time step of 1 sample.

A resulting example waveform is shown in Figure 7.18. When the adaptation rate is

lowered, the signal becomes distorted. However, visually, the main structures of the

112

Integration of Hopf oscillator module into an ASR system Chapter 7

waveform remain. For a frame rate of f = 100H z, which corresponds to a adaptation

rate equal to the frame rate, the distortion becomes particularly severe.

0.5 1.0 1.5
0

500
1000
1500
2000
2500
3000
3500
4000

Waveform

−100

−90

−80

−70

−60

−50

0.0 0.5 1.0 1.5
0
5

10
15
20
25
30
35
40

Adaptation freq: 8000 Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5
0
5

10
15
20
25
30
35
40

Adaptation freq: 4000 Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5
0
5

10
15
20
25
30
35
40

Adaptation freq: 2000 Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5
0
5

10
15
20
25
30
35
40

Adaptation freq: 1000 Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5
0
5

10
15
20
25
30
35
40

Adaptation freq: 400 Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5
0
5

10
15
20
25
30
35
40

Adaptation freq: 200 Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5
0
5

10
15
20
25
30
35
40

Adaptation freq: 100 Hz

0.00

0.05

0.10

0.15

0.20

0.25

Figure 7.18: Illustration of the oscillator output for different adaptation frequencies for the
utterance: ’nine, nine, zero’.

The computational efficiency of the model exhibits a linear relationship with respect to the

update frequency, as illustrated by Figure 7.17. This relationship highlights the importance of

balancing the trade-off between update frequency and computation time.

The impact of the signal distortion on the performance can be further investigated by using

different adaptation frequencies in an ASR task. The PER metric provides a quantitative

assessment of the model’s performance, allowing to identify the most suitable balance between

update frequency and computation time.

7.4.3 Method

The experiments in the following sections are done using the pytorch-kaldi framework, sim-

ilarly to chapter 5. We used the network structure of SincNet in which we replaced the sinc

filter module by the Hopf oscillator module. This Hopf oscillator module is then followed by 4

convolutional layers with the kernelsizes set to: 5,5,3 and 3, the maxpooling size is respectively

set to 3,3,2 and 2. The training is performed on 24 epochs and the final results computed on a

single run.

7.4.4 Integration of Hopf-module in a simple ASR structure

This section examines the capabilities of the Hopf oscillator module in an ASR context. The

integration of the Hopf module in a simple ASR system is depicted in Figure 7.19. The proposed

architecture uses two distinct training types as presented in section 7.2: the learning through

113

Chapter 7 Integration of Hopf oscillator module into an ASR system

Hopf oscillator module

E
u

le
r

st
ep r

θ

µ
CNN MLP

p
h

o
n

em
es

w
av

ef
o

rm
x

Figure 7.19: Integration of Hopf module in a simple ASR baseline.

gradient descent for the CNN and MLP and the learning through differential equations for the

Hopf module.

The first experiment aims to investigate whether the ASR system can produce meaningful

performance with a Hopf oscillator feature extractor. Furthermore, it examines which is the

optimal adaptation frequency, based on the trade-off between system speed and performance.

Hypothesis

The characterization graphs presented in Section 7.3.3 reveal similarities between SincNet

filter outputs, the DFT, and Hopf oscillator outputs. However, due to their active amplification

mechanism, noise accumulates in silent parts, which can lead to incorrect phoneme clas-

sification in the absence of a proper feedback mechanism. Furthermore, the comparative

performance of CARFAC features versus classical MFCC features (as discussed in Section 4.4)

showed that cochlear-inspired models perform worse yet remain comparable to classical ASR

features in an ASR context. Therefore, we expect to achieve reasonable PER results that demon-

strate the system’s ability to interpret and extract meaningful features from Hopf oscillator

outputs.

Additionally, based on our analysis of the waveform in Figure 7.17, we anticipate that the

system’s processing time will be significantly longer than that of a standard SincNet filter

module. Specifically, while the SincNet filter module processes one utterance in 7.1 ms, the

Hopf oscillator feature extractor, at an adaptation frequency of 100 Hz, requires approximately

60 ms. When reducing the Hopf adaptation rate, signal distortion becomes more pronounced.

We hypothesize that at high adaptation rates (16 kHz), an ASR system using a Hopf oscillator

feature extractor will yield results comparable to those obtained with fixed SincNet filter

outputs. However, at lower adaptation rates, we expect a deterioration in overall performance.

114

Integration of Hopf oscillator module into an ASR system Chapter 7

Experiment

For this experiment, we utilize the baseline Hopf oscillator module integrated into a standard

ASR system, as depicted in Figure 7.19. We then evaluate the performance of the system and

measure the processing time required for each epoch over a period of 24 epochs.

Notably, we perform this evaluation with 40 oscillators and experiment with various adaptation

frequencies, specifically: 16kHz, 8kHz, 4kHz, 2kHz, 1kHz, 500Hz, 200Hz, 100Hz.

Results

-

101 102 103

Time per epoch [min]

25

30

35

40

PE
R

 100Hz

 200Hz

 500Hz

 1kHz

 2kHz

 4kHz 8kHz
 16kHz

 Fixed filters

PER for different Hopf adaptation frequencies

Figure 7.20: PER for different adaptation frequencies from 100Hz to 16kHz and a comparison
with fixed filters.

Figure 7.20 summarises the ASR performance achieved for different adaptation frequencies

of the active amplification mechanism of the Hopf oscillators. The results suggest that Hopf

oscillators generate features that enable effective phoneme recognition within an ASR system

as expected.

Furthermore, these results confirm our hypothesis; they indicate a clear trade-off between per-

formance and efficiency, where lower adaptation frequencies result in reduced computational

time, but come at the cost of increased WER. Notably, experiments with different frequency

settings demonstrate that:

• A 100 Hz adaptation rate offers similar time efficiency to fixed filters, but the perfor-

mance is around 43% PER.

• With an adaptation frequency between 4 and 16 kHz, the performance capacities of ASR

115

Chapter 7 Integration of Hopf oscillator module into an ASR system

models are similar to the performance obtained with fixed filters. The time per epoch

however is multiplied by a factor between 10 and 50.

These findings suggest that using lower adaptation frequencies for optimization purposes

can provide significant computational savings, while sacrificing some accuracy. Conversely,

high-frequency experiments are better suited for testing the robustness and capabilities of

ASR model structures.

7.4.5 Impact of adding recurrence on the CNN frontend

The auditory system features several feedback connections within its pathway, with the olivo-

cochlear pathway from the olivary complex to the cochlea being one of the most well-known

(as described in Section 2.1.4). To adapt the system for the implementation of this efferent

pathway, the CNN must be modified to process smaller input chunks in a recurrent manner,

which implies adding an adaptation rate at the CNN level, which we will refer to as CNN

adaptation rate in this manuscript.

The Hopf features should be transferred to the CNN in a chunk-by-chunk fashion, requiring the

convolutional part of the network to handle smaller input signals. Additionally, these chunks

must be concatenated before being transmitted to the MLP. These structural modifications are

likely to impact ASR performance, and the goal of this experiment is to investigate the effects

of these changes on both PER and efficiency.

Hypothesis

The structural modifications will reorganize the processing flow of the signal through the CNN,

breaking down the operation of passing one signal into N passes in series of smaller chunks

through the same network. We hypothesize that this decomposition will have a direct and

significant impact on computational time.

In terms of performance, we do not a priori expect discernible difference in results between the

original system and the modified system, with neither exhibiting better nor worse performance

in terms of PER.

Experiment

This experiment is a transitional experiment in order to integrate the efferent path and verify

the behaviour of the ASR capacities when structurally changing the CNN. Based on the time

efficiency of the experiment in section 7.4.4, a reasonable choice to perform this experiment

is to use the Hopf adaptation rate of 100Hz, 200Hz, and 500Hz. In the initial experiment, those

configurations took less than 20 minutes per epoch.

The speech signals are composed out of 3200 samples, which correspond to 200 ms or a CNN

116

Integration of Hopf oscillator module into an ASR system Chapter 7

adaptation rate of 5 Hz. The CNN adaptation rate can make sense up to the frame rate, which

corresponds to 100 Hz. However, with downsampling in the CNN system, we are limited

in terms of precision. Table 7.1 summarizes the input and output sizes for different CNN

adaptation rates.

CNN adaptation
rate

Dim at input
of CNN

Dim at out-
put of CNN

100Hz 160 2
50Hz 320 6
20Hz 800 20
10Hz 1600 42
5Hz 3200 86

Table 7.1: Input and output size of the CNN for different CNN adaptation rates.

A trade-off between having the CNN adaptation rate small enough to allow feedback to

influence the input and large enough to be still able to have significant information to transfer

to the MLP after downsampling through the CNN.

For 100 Hz, for example, the output dimension in the time domain is 2, which means that with

normalization, the output loses all information. In this experiment, we try out the following

CNN adaptation rates: 50Hz, 20Hz, 10Hz, 5Hz, with 5 Hz corresponding to the results obtained

in section 7.4.4.

Results

5 10 15 20 25 30
Time per epoch [min]

30

32

34

36

38

40

42

44

46

PE
R
[%

]

 5Hz

 10Hz

 20Hz 50Hz

 5Hz

 10Hz 20Hz

 50Hz

 5Hz

 10Hz 20Hz

 50Hz

PER when adding a second for loop at the CNN level

Hopf adaptation: 100Hz
Hopf adaptation: 200Hz
Hopf adaptation: 500Hz

Figure 7.21: PER vs time consumption when introducing a for loop with CNN adaptation rates
of 5Hz, 10Hz, 20Hz and 50Hz around the CNN.

117

Chapter 7 Integration of Hopf oscillator module into an ASR system

The performance and time taken for the different experiments are shown in Figure 7.21.

Concerning efficiency, increasing the CNN adaptation rate increases the time consumption

which demonstrates our hypothesis. Concerning performance, adding a CNN adaptation rate

degrades the performance for some experiments and improves it for others. The general trend,

however, is that except for the 5Hz to 10Hz transition, the more iterations we have, the more

the performance will be degraded.

7.4.6 Adding the efferent path feedback loop

The most important feedback loop in the auditory path is the olivocochlear feedback as

discussed in section 2.1.4. This feedback is divided into two parts: one from the MOC to the

OHCs and one from the LOC to the synapses of the IHCs.

When translating the efferent pathway to a computational area, a first implementation can

be given by creating a feedback loop from the output of the CNN through a transposed

convolution network (TCNN) as depicted in Figure 7.22. The feedback can then be combined

through a linear module with the next incoming signal portions.

Hopf oscillator module

E
u

le
r

st
ep r

θ

µ
Linear

CNN

TCNN

MLP
p

h
o

n
em

es

w
av

ef
o

rm
x

Figure 7.22: Attention feedback loop

Hypothesis

Since the efferent pathway plays an important role in the auditory path, we hypothesize

that adding a similar feedback loop in the ASR pipeline would have a positive effect on the

performance of the ASR. However, from a computational efficiency perspective, the system

will be less efficient than when we use the baseline ASR configuration described in section

7.4.4.

118

Integration of Hopf oscillator module into an ASR system Chapter 7

Experiment

For this experiment, we select 50Hz as the CNN adaptation rate, since this allows the feedback

signal to have an update every 200ms. We perform the experiments with different Hopf

adaptation frequencies: 100Hz, 200Hz, 500Hz, 1kHz, 2kHz, 4kHz. This allows us to analyze

the performance-efficiency trade-off and compare it to the results of section 7.4.4.

The combination of the feedback signal with the Hopf oscillator output is done through a

linear module, which requires a proper initialization. If the module starts from a random

initialization, it does not converge. Therefore, we start the initialization by concatenating an

identity matrix for the Hopf oscillator output and a matrix of zeros for the feedback part. This

way, the system starts with no influence of the feedback mechanism.

Results

101 102 103

Time per epoch [min]

20

25

30

35

40

45

PE
R

 Fixed filters

 100Hz

 200Hz

 500Hz

 1kHz

 2kHz

 4kHz 8kHz
 16kHz

 100Hz 200Hz

 500Hz
 1kHz

 2kHz
 4kHz 8kHz 16kHz

PER when adding a feedback loop
Fixed filters
Hopf oscillator baseline
Hopf oscillator with feedback mechanism

Figure 7.23: PER results when adding a large feedback loop.

The results are summarized in Figure 7.23. The addition of a large feedback loop is, on the

one hand, computationally more demanding, but on the other hand, it brings a consistent

performance improvement over all the tested configurations as we hypothesised.

For Hopf adaptation frequencies below 500Hz, the baseline implementation provides a better

efficiency-performance trade-off. For higher Hopf adaptation frequencies, however, the

performance beats this trade-off and achieves even better results than the baseline at 16kHz.

This result indicates that the Hopf mechanism on its own does provide an output that requires

an additional feedback mechanism, in the same way as the cochlea is better tuned with the

efferent path.

119

Chapter 7 Integration of Hopf oscillator module into an ASR system

0 100 200 300 400 500 600

0

50

100

150

200

250

300

weights

0 50 100 150 200 250 300

−0.6

−0.4

−0.2

0.0

0.2

0.4

bias

Figure 7.24: Weight and bias of the linear combination module after training.

Furthermore, the weight matrix of the linear module that combines the Hopf oscillator output

with the feedback signal is shown in Figure 7.24. A clear separation is visible: the left side

relates to the Hopf oscillator output and is initialized as an identity matrix. The right side

relates to the feedback component, which is initialized as a matrix of zeros, implying that at

the beginning of the training no feedback is taken into account.

As illustrated in Figure 7.24, the feedback part of the matrix plays an important role in deter-

mining the weights. The combined increase in performance indicates that this feedback loop

is crucial for the ASR system to deal effectively with outputs from a Hopf bifurcation mecha-

nism. This triggers an interesting question towards the neuroscientific field: what would be

the auditory performance without the efferent pathway in terms of speech recognition?

7.4.7 A more complex implementation

Hopf oscillator module

Pa
ra

m
et

er
u

p
d

at
e

µ r θ

Linear

CNN

TCNN

MLP

p
h

o
n

em
es

w
av

ef
o

rm
x

Figure 7.25: Attention feedback loop

Another possible implementation of the efferent path would be to directly integrate the

feedback into the Hopf module. This implementation better integrates the notion of a direct

impact on the OHC, modeling the connection between the MOC and OHC. This approach is

computationally more complex to implement, as the gradients must pass through the µ, r and

θ variables, which are changing at a faster adaptation rate than the large feedback. This causes

120

Integration of Hopf oscillator module into an ASR system Chapter 7

difficulties in backpropagation due to inplace operations during the forward pass. Moreover,

the Hopf oscillator equations require strict regulations to prevent the system from diverging.

The use of a random parameter that trains within a neural network system is though to handle

this differential equation system. Due to the implementation complexity and the thorough

stability issues, we were unable to conduct extensive experiments with this implementation.

However, this model structure can be an interesting starting point for further research in

speech processing with the olivocochlear feedback implementation.

7.5 Noise addition

The fundamental difference in how Hopf oscillators and convolutional filters handle incoming

signals stems from the presence of an active amplification mechanism and cube root com-

pression within the Hopf oscillator. This characteristic, typical of biological processes found in

the human ear, suggests that it may possess valuable properties in terms of noise robustness

(Shougat et al., 2021, 2023).

In the realm of computational signal processing, this phenomenon presents a compelling

research direction. By exploring how these models perform under varying conditions, we

can gain a deeper understanding of their strengths and weaknesses. Specifically, we aim to

investigate the performance differences between Hopf oscillators and convolutional filters

when trained on noisy data versus clean data.

To achieve this goal, we propose two complementary experiments:

• Clean-to-Noise Transfer : We use a model trained on clean speech and then evaluate its

performance under increasingly noisy conditions.

• Training from Scratch : We train a new model using a noisy dataset and evaluate this

model under the same noise conditions.

By examining the performance of these models in both scenarios, we can gain insights into

their ability to generalize from clean data to noisy environments.

Hypothesis

We hypothesise that the integration of the Hopf oscillator mechanism alongside the efferent

path could confer several advantages over a traditional fixed filterbank approach. The incor-

poration of global feedback and an active amplification mechanism may enable the system to

better adapt to complex, noisy environments.

Furthermore, we hypothesise that the performance of oscillators will exhibit reduced degrada-

tion compared to filters when operating within a feedback loop, particularly when only testing

121

Chapter 7 Integration of Hopf oscillator module into an ASR system

on noisy data with a model trained on clean data. This is likely due to the oscillator’s ability to

actively amplify and process signals, allowing it to better cope with the challenges presented

by noise.

In contrast, we hypothesise that the performance of the ASR system, when trained from

scratch, will exhibit relatively little difference between utilizing a Hopf oscillator frontend

versus a convolutional filter frontend. This is because both architectures are expected to

undergo significant adaptation and learning during training, allowing them to effectively

process and generalize from noisy data.

Experiment

In this experiment, we introduce noise on the fly using the ’QUT-Noise’ dataset (presented in

section 2.3.4) on the TIMIT dataset. For each speech portion, a random noise signal is added

in accordance with the chosen Signal-to-Noise Ratio SNR. To capture the main trends, we

conduct all experiments with three different SNR rates: 0 dB, 10dB and 20 dB. This experiment

is performed on the model with an efferent path adaptation rate of 50 Hz and Hopf the

adaptation rates of 100Hz, 200Hz, 500Hz, 1kHz, 2kHz, 4kHz.

Results

The results are presented in Tables 7.2 and 7.3. Notably, performance degrades across all

experiments as the SNR decreases. In the clean-to-noise transfer experiment (Table 7.2), the

results indicate that Hopf oscillators exhibit reduced robustness to noise additions compared

to convolutional filters when trained on a clean dataset. This suggests that while Hopf oscilla-

tors may mathematically capture some aspects of cochlear physiology, they do not necessarily

provide superior noise robustness. In contrast, the second experiment, where all models are

trained from scratch (Table 7.3), reveals that the degradation of Hopf filters is comparable to

that observed with classical filters. This outcome implies that, in terms of noise robustness,

Hopf oscillators do not exhibit an advantage over convolutional filters, which contradicts our

hypothesis.

clean 20 dB 10 dB 0 dB
sinc filters 22.8 26.0 36.1 54.6
100Hz 30.8 36.5 51.4 68.3
200Hz 30.0 36.4 54.2 74.1
500Hz 23.7 30.8 49.4 72.4
1kHz 22.5 29.0 46.8 71.7
2kHz 21.3 26.8 45.1 68.8
4kHz 20.4 23.9 38.1 64.9

Table 7.2: PER for the different SNR levels on the TIMIT dataset with a model trained on clean
speech.

122

Integration of Hopf oscillator module into an ASR system Chapter 7

clean 20 dB 10 dB 0 dB
sinc filters 22.8 22.7 23.4 29.3
100Hz 30.8 32.7 35.5 42.6
200Hz 30.0 31.7 31.9 39.6
500Hz 23.7 24.4 27.6 33.6
1kHz 22.5 22.8 25.5 30.2
2kHz 21.3 21.8 24.2 28.9
4kHz 20.4 20.7 22.8 28.7

Table 7.3: PER for the different SNR levels on the TIMIT dataset with a model trained on noisy
speech

7.6 Hardware implementations of Hopf oscillators

Research has explored the hardware implementation of Hopf oscillators with adaptive fre-

quency mechanisms, as proposed in the literature (X. Li et al., 2021). These studies have

examined the feasibility of leveraging phase-locked loop (PLL) principles to develop an adap-

tive oscillator mechanism.

In this context, a PLL is an electronic circuit that utilizes feedback to adjust its output phase

to match the input frequency. By replicating this behavior, researchers aim to design Hopf

oscillators capable of adapting to changing environmental conditions.

The Hopf oscillator reservoir proposed by (Shougat et al., 2021, 2023) also demonstrated a

computationally efficient electronic implementation. This opens promising research direc-

tions in the field of electronics to further investigate a feasible implementation of cochlear

function, potentially drawing an interesting parallel to this thesis.

7.7 Conclusion

This chapter presents the integration and implementation of a module inspired by the Hopf

oscillator mechanism into an ASR system. The Hopf oscillator, mathematically describing the

OHC-IHC interaction, enables the human auditory system to process a wide range of sound

amplitudes through cube-root compression and active amplification.

Upon incorporation into the ASR system, the module introduces a dual adaptation mechanism:

one driven by differential equations to dynamically adjust the parameters of the Hopf module,

and another governed by an autograd system to optimize the weights of the ASR’s various

components.

Furthermore, this chapter incorporates larger auditory pathway feedback mechanisms into

the ASR system, which parallels the feedback process of the auditory brain. The autograd

mechanism adjusts synaptic weights to enhance the tonotopic mapping of incoming sounds,

while a larger CNN-TCNN architecture models the olivocochlear feedback loop, directly

123

Chapter 7 Integration of Hopf oscillator module into an ASR system

influencing the Hopf module’s output. The results demonstrate that this feedback mechanism

significantly improves experimental performance, highlighting its necessity for adapting Hopf

module signals to phoneme mapping. In physiological terms, the olivocochlear feedback loop

is a well-documented feedback pathway in the auditory system essential for human hearing.

Moreover, previous studies suggest that the feedback mechanisms implied in the ear enhance

noise robustness for human hearing. However, our experiments reveal that this capacity is

not observed compared to convolutional filters in the context of ASR. Nevertheless, we do not

exclude the possibility that other implementations could lead to more robust behaviour, such

as in self-supervised model contexts.

124

8 Conclusion

This thesis lies at the intersection of the ASR field and the physiological understanding of the

cochlea. In ASR, self-supervised pre-trained models are the current state-of-the-art. These

models are pretrained on large amounts of unlabeled data and able to be fine-tuned on labeled

datasets. The latest models use transformer-based modules, which achieve state-of-the-art

performance, but are computationally more expensive compared to the previous vanilla ASR

models. The cochlea can initially be understood to work as a filterbank. However, recent

studies suggest that the cochlea functions more like an array of active amplification oscillators,

driven by a local feedback loop between OHCs and IHCs. The mathematical model that best

approaches this interaction is the Hopf bifurcation model. The bifurcation enables the model

to switch from a damping mode in loud environments to an active amplification mode in

silent environments.

Modularity is a key concept in the combination of different modules. In the context of this

thesis, the modularity concept is particularly interesting for the integration of cochlear models

within ASR systems. Additionally, we investigated the modularity concept for noisy speech in

a conformer-based ASR system. In this study, we implemented a fixed and learned routing

mechanism to route speech in different noise environments and showed that using a modular

network enhanced the overall performance as well as the learning curve.

Building on the modularity concept, we undertook two studies using trainable filters of SincNet

into ASR systems. An initial study was conducted on a small ASR system, highlighting that the

filters tend to learn both narrowband and wideband filters when trained within an ASR system.

Narrowband filters self-organize into a mel-distributed filterbank of 30 to 40 filters. Wideband

filters capture larger frequency range information, which in physiology are found in higher

auditory path nuclei. In a second study, we investigated the trainable filters within a self-

supervised model. This study confirms that a trainable filterbank tends to learn about 40 filters.

This study also shows that wideband filters are precluded to appear by the self-supervised

transformer-based model.

The Hopf oscillator is the state-of-the-art mathematical model that best captures the in-

125

Chapter 8 Conclusion

tricacies of the cochlea. In the first chapter, we presented the Hopf model, explaining the

bifurcation mechanism and demonstrating its ability to process raw speech. This prior work

lays the foundation for a second chapter, presenting our Hopf module implementation and

integration into an ASR frontend. Moreover, we integrated a larger feedback loop, which

models the efferent pathway. This efferent path shows significant performance improvement

over the initial Hopf integration. Further, based on the promising noise robustness hypothesis,

we performed a series of experiments on noisy data. However, in our implementation, these

noise robustness implications did not surpass traditional filter capacities.

Generally, this thesis has investigated modern theories of the cochlea in the context of machine

learning models. It explores the use of machine learning models under the assumption

that they approximate the human auditory pathway when trained on ASR tasks. This gives

interesting insights when combined with more physiologically plausible models, forcing the

model to better adapt to more physiologically plausible inputs. The results obtained with the

efferent path integration shows on the one hand that physiological inspirations can lead to

interesting improvements for the ASR field. On the other hand, using physiologically plausible

models can give insights to neuroscientists. The results obtained in deep learning applications

raise interesting questions about how the physiological system handles different situations,

which was the main purpose of this thesis.

8.1 Further research and recommendations

This thesis acts as a tool for the two communities to mutually inspire each other and contains

several results which pose interesting research questions in the physiological field.

For further research, we suggest investigating new implementation solutions that deal with

the computational limitations, which can allow actual combinations of state-of-the-art or

physiologically plausible ASR models with Hopf-based oscillator frontends. For example,

creating a pretrained model for the CNN encoder, which can then be integrated into a larger

transformer-based model, may yield interesting insights. Another research direction is to

combine physiologically inspired models of the auditory path such as spiking neural networks

with the Hopf oscillator frontend.

Hardware implementations of the Hopf oscillators have shown interesting results on sound

classification. Combining those electronic Hopf reservoirs with other physiologically plausible

circuits could lead to an interesting parallel of this thesis in the electronics field.

Furthermore, the midbrain also employs lateral inhibition to sharpen neural responses by

suppressing the activity of neighbouring neurons. This mechanism enhances contrast and

facilitates feature discrimination. The maxpooling function partially reflects this idea by

selecting only the strongest activations for subsequent layers. However, a more physiologically

plausible approach could involve using Mexican hat filters in the convolutional layers following

the cochlear stage. When combined with a feedback mechanism, this implementation would

126

Conclusion Chapter

more closely resemble the biological auditory pathway, contributing to a more realistic ASR

model.

127

A An appendix

A.1 Active force: a set of two differential equations

We start from the harmonic oscillator equation combined with an active amplification force:

mẍ = −λẋ −kx +Fa +F (A.1)

If we consider the inertial effects as negligeable (mẍ = 0), the stiffness as nonlinear (k = k(x))

then this harmonic oscillator equation becomes:

λẋ = −k(x)x +Fa +F (A.2)

To obtain oscillations, the non-linear stiffness should display a regime of negative elasticity

k(x) = k −C +B x2 where k is the bare stiffness and C a control parameter characterizing a

reduction of stiffness. When C > k the system actively amplifies the oscillations for small

displacements x. The active force fa evolves as a first-order differential equation that generates

a restoring force when the system is displaced which relaxes with a time-constant τ and its

own stiffness k̄.{
λẋ = −(k −C +B x2)x +Fa +F

τḞa = −Fa − k̄x
(A.3)

129

Chapter A An appendix

A.2 Equations for simulation of Hopf oscillator

A.2.1 Single oscillator with adaptive frequency

This appendix explains more in detail how the simulation equations of chapter 4.3 the equa-

tions are derived from Biswas et al., 2020.

The canonical model of the Hopf oscillator without any external input is given by:

ż = z(µ+ iω+β1|z|2) (A.4)

Further developing this expression in polar form gives:

ż = ṙ e iθ+ i r e iθθ̇ = r e iθ(µ+ iω+β1r 2) (A.5)

After separating the real and imaginary parts, the polar coordinates are obtained:

ṙ = r (µ+β1r 2) (A.6)

θ̇ = ω (A.7)

Similarly, the Hopf oscillator equation can be expressed with cartesian coordinates:

ẋ = x(µ−
√

x2 + y2
2

)− yω (A.8)

ẏ = y(µ−
√

x2 + y2
2

)+xω (A.9)

A Hopf oscillator influenced by a real sinusoidal input (F (t) = F cos(ω0t +φ)) signal can adapt

its natural frequency to the frequency of the input signal if it follows the following dynamics

(Righetti et al., 2005). The canonical model of the Hopf oscillator with an external input and

the oscillator adaptation are given by:

ż = z(µ+ iω+β1|z|2)+F (t) (A.10)

ω̇ = −F (t)sinθ (A.11)

130

An appendix Chapter A

The polar coordinates are given by:

ṙ = r (µ− r 2)+F (t)cos(θ) (A.12)

Φ̇ = ω+ F (t)

r
sin(θ) (A.13)

ω̇ = −F (t)sinθ (A.14)

For a complex input(F (t) = Fe i (ω0t+φ)), the frequency adaptation function becomes:

ω̇ = −[r eal (F (t))sin(θ)− i mag (F (t))cos(θ)] (A.15)

= −[F cos(ω0t +φ)sin(θ)−F sin(ω0t +φ)cos(θ)] (A.16)

= −F sin(θ−ω0t −φ) (A.17)

A.2.2 A series of Hopf oscillators

To model a series of Hopf oscillators, we need to take into account the impact of the interaction

between the different oscillators. Therefore the interaction between the oscillators is modelled

through complex coefficients with Hermitian symmetry. For two oscillators i and j with the

same frequency (ω), the Hopf oscillator equation of oscillators becomes:

żi = zi (µ+ iω+β|zi |2)+W z j (A.18)

ż j = z j (µ+ iω+β|z j |2)+W ∗zi (A.19)

Where W = Ai j e iθi j and W ∗ = A j i e iθ j i with Ai j = A j i and θi j = −θ j i .

Oscillators can however have different frequencies, the angular coupling should therefore

be normalized: W = Ai j e
i
θi j
ω j and W ∗ = A j i e

θ j i
ωi . The signal from the other oscillator also

undergoes a coupling frequency adaptation : z j → z

ωi
ω j

j :

żi = zi (µ+ iωi +β|zi |2)+ Ai j e
i
θi j
ω j z

ωi
ω j

j (A.20)

ż j = z j (µ+ iωi +β|z j |2)+ A j i e
i
θ j i
ωi z

ω j
ωi

j (A.21)

(A.22)

131

Chapter A An appendix

Extending this model to a series of N oscillators results in the canonical model given by:

żi = zi (µ+ iωi +β|zi |2)︸ ︷︷ ︸
oscillator i

+
N∑

j ,i ̸= j
Ai j e

i
θi j
ω j z

ωi
ω j

i︸ ︷︷ ︸
coupling with other osc.

+
ext. signal︷︸︸︷

F (t) (A.23)

132

Bibliography

Agrawal, P., & Ganapathy, S. (2019). Unsupervised raw waveform representation learning for

asr. INTERSPEECH, 3451–3455.

Allen, J. B. (1980). Cochlear micromechanics—a physical model of transduction. The Journal

of the Acoustical Society of America, 68(6), 1660–1670.

Amari, S.-i. (1993). Backpropagation and stochastic gradient descent method. Neurocomput-

ing, 5(4-5), 185–196.

Ammari, H., & Davies, B. (2020). Mimicking the active cochlea with a fluid-coupled array of sub-

wavelength hopf resonators. Proceedings of the Royal Society A, 476(2234), 20190870.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J.,

Catanzaro, B., Cheng, Q., Chen, G., et al. (2016). Deep speech 2: end-to-end speech

recognition in English and Mandarin. International conference on machine learning,

173–182.

Ansell, A., Ponti, E. M., Korhonen, A., & Vulić, I. (2021). Composable sparse fine-tuning for

cross-lingual transfer. arXiv preprint arXiv:2110.07560.

Babu, A., Wang, C., Tjandra, A., Lakhotia, K., Xu, Q., Goyal, N., Singh, K., von Platen, P., Saraf,

Y., Pino, J., et al. (2021). Xls-r: self-supervised cross-lingual speech representation

learning at scale. arXiv preprint arXiv:2111.09296.

Baevski, A., Hsu, W.-N., Xu, Q., Babu, A., Gu, J., & Auli, M. (2022, July). Data2vec: a general

framework for self-supervised learning in speech, vision and language. In K. Chaud-

huri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, & S. Sabato (Eds.), Proceedings of the

39th international conference on machine learning (pp. 1298–1312, Vol. 162). PMLR.

Baevski, A., Schneider, S., & Auli, M. (2019). Vq-wav2vec: self-supervised learning of discrete

speech representations. arXiv preprint arXiv:1910.05453.

Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). Wav2vec 2.0: a framework for self-

supervised learning of speech representations. arXiv preprint arXiv:2006.11477.

Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). Wav2vec 2.0: a framework for self-

supervised learning of speech representations. In H. Larochelle, M. Ranzato, R. Had-

sell, M. Balcan, & H. Lin (Eds.), Advances in neural information processing systems

(pp. 12449–12460, Vol. 33). Curran Associates, Inc.

Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical review A, 38(1),

364.

133

Chapter A BIBLIOGRAPHY

Balestriero, R., Cosentino, R., Glotin, H., & Baraniuk, R. (2018). Spline filters for end-to-end

deep learning. Proceedings of the international conference on machine learning, 364–

373.

Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., Ribeiro, S., Javitt, D. C.,

Copelli, M., & Corcoran, C. M. (2015). Automated analysis of free speech predicts

psychosis onset in high-risk youths. npj Schizophrenia, 1(1), 1–7.

Biswas, D., Sooryakiran, P., & Chakravarthy, V. S. (2020). A complex-valued oscillatory neu-

ral network for storage and retrieval of multichannel electroencephalogram signals.

bioRxiv.

Bogert, B. P. (1963). The quefrency alanysis of time series for echoes; cepstrum, pseudo-

autocovariance, cross-cepstrum and saphe cracking. Time series analysis, 209–243.

Brownell, W. E., Bader, C. R., Bertrand, D., & De Ribaupierre, Y. (1985). Evoked mechanical

responses of isolated cochlear outer hair cells. Science, 227(4683), 194–196.

Burget, L., & Heřmanskỳ, H. (2001). Data driven design of filter bank for speech recognition.

International Conference on Text, Speech and Dialogue, 299–304.

Camalet, S., Duke, T., Jülicher, F., & Prost, J. (2000). Auditory sensitivity provided by self-tuned

critical oscillations of hair cells. Proceedings of the national academy of sciences, 97(7),

3183–3188.

Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, F., Srivastava,

M., Preece, A., Julier, S., Rao, R. M., et al. (2017). Interpretability of deep learning

models: a survey of results. Proceedings of the IEEE smartworld, ubiquitous intelligence

& computing, advanced & trusted computed, scalable computing & communications,

cloud & big data computing, Internet of people and smart city innovation, 1–6.

Chan, W., Jaitly, N., Le, Q., & Vinyals, O. (2016). Listen, attend and spell: a neural network

for large vocabulary conversational speech recognition. ICASSP, 4960–4964. https:

//doi.org/10.1109/ICASSP.2016.7472621

Collobert, R., Puhrsch, C., & Synnaeve, G. (2016). Wav2letter: an end-to-end convnet-based

speech recognition system [Presented at NIPS 2016]. https://doi.org/10.48550/ARXIV.

1609.03193

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing:

deep neural networks with multitask learning. Proceedings of the 25th international

conference on Machine learning (ICML), 160–167. https://doi.org/10.1145/1390156.

1390177

Coppieters de Gibson, L., & Garner, P. N. (2022). Low-level physiological implications of end-

to-end learning of speech recognition, 749–753. https://doi.org/10.21437/Interspeech.

2022-10093

Cramer, B., Stradmann, Y., Schemmel, J., & Zenke, F. (2020). The Heidelberg Spiking Data Sets

for the Systematic Evaluation of Spiking Neural Networks. IEEE Transactions on Neural

Networks and Learning Systems, 1–14. https://doi.org/10.1109/TNNLS.2020.3044364

Dahl, G., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent pre-trained deep neural

networks for large vocabulary speech recognition [2013 IEEE SPS Best Paper Award],

20(1), 30–42. https://doi.org/10.1109/TASL.2011.2134090

134

https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.48550/ARXIV.1609.03193
https://doi.org/10.48550/ARXIV.1609.03193
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.21437/Interspeech.2022-10093
https://doi.org/10.21437/Interspeech.2022-10093
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/TASL.2011.2134090

BIBLIOGRAPHY Chapter A

Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2011). Context-dependent pre-trained deep neural

networks for large-vocabulary speech recognition. IEEE Transactions on audio, speech,

and language processing, 20(1), 30–42.

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic

word recognition in continuously spoken sentences. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 28(4), 357–366. https://doi.org/10.1109/TASSP.1980.

1163420

De Boer, E. (1983). On active and passive cochlear models—toward a generalized analysis. The

Journal of the Acoustical Society of America, 73(2), 574–576.

De Boer, E., & De Jongh, H. (1978). On cochlear encoding: potentialities and limitations of the

reverse-correlation technique. The Journal of the Acoustical Society of America, 63(1),

115–135.

Dean, D., Sridharan, S., Vogt, R., & Mason, M. (2010). The qut-noise-timit corpus for evaluation

of voice activity detection algorithms. Proceedings of the 11th annual conference of the

international speech communication association, 3110–3113.

Dubey, H., Sangwan, A., & Hansen, J. H. (2019). Transfer learning using raw waveform sincnet

for robust speaker diarization. ICASSP 2019-2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 6296–6300.

Duifhuis, H. (2011). Hopf-bifurcations and van der pol oscillator models of the mammalian

cochlea. AIP Conference Proceedings, 1403(1), 199–205.

Duke, T. A., & Jülicher, F. (2008). Critical oscillators as active elements in hearing. Active

processes and otoacoustic emissions in hearing, 63–92.

Garofolo, J. S. (1993). Timit acoustic phonetic continuous speech corpus. Linguistic Data

Consortium, 1993.

Geisler, C. D. (1976). Mathematical models of the mechanics of the inner ear. In Auditory

system (pp. 391–415). Springer.

Geisler, C. D. (1986). A model of the effect of outer hair cell motility on cochlear vibrations.

Hearing research, 24(2), 125–131.

Gianoli, F., Hogan, B., Dilly, É., Risler, T., & Kozlov, A. S. (2022). Fast adaptation of coopera-

tive channels engenders hopf bifurcations in auditory hair cells. Biophysical Journal,

121(6), 897–909. https://doi.org/10.1016/j.bpj.2022.02.016

Gianoli, F., Risler, T., & Kozlov, A. S. (2017). Lipid bilayer mediates ion-channel cooperativity in

a model of hair-cell mechanotransduction. Proceedings of the National Academy of

Sciences, 114(51), E11010–E11019.

Gold, T. (1948). Hearing. ii. the physical basis of the action of the cochlea. Proceedings of the

Royal Society of London. Series B-Biological Sciences, 135(881), 492–498.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal classi-

fication: labelling unsegmented sequence data with recurrent neural networks. Pro-

ceedings of the 23rd international conference on Machine learning, 369–376.

Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang, Z., Wu, Y.,

et al. (2020). Conformer: convolution-augmented transformer for speech recognition.

arXiv preprint arXiv:2005.08100.

135

https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1016/j.bpj.2022.02.016

Chapter A BIBLIOGRAPHY

Hamilton, T. J., Jin, C., Tapson, J., & van Schaik, A. (2007). A 2-d cochlea with hopf oscillators.

Proceedings of the IEEE Biomedical Circuits and Systems Conference, 91–94. https:

//doi.org/10.1109/BIOCAS.2007.4463316

Hamilton, T. J., Tapson, J., Jin, C., & Van Schaik, A. (2008). Analogue vlsi implementations of two

dimensional, nonlinear, active cochlea models. Proceedings of the Biomedical Circuits

and Systems Conference, 153–156. https://doi.org/10.1109/BIOCAS.2008.4696897

Hermansky, H. (1990a). Perceptual linear predictive (plp) analysis of speech. the Journal of the

Acoustical Society of America, 87(4), 1738–1752.

Hermansky, H. (1990b). Perceptual linear predictive (PLP) analysis of speech. The Journal of

the Acoustical Society of America (JASA), 87(4), 1738–1752. https://doi.org/10.1121/1.

399423

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V.,

Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic modeling in

speech recognition: the shared views of four research groups. IEEE Signal processing

magazine, 29(6), 82–97.

Hopf, E. (1942). Abzweigung einer periodischen lösung von einer stationären lösung eines

differentialsystems. Ber. Math.-Phys. Kl Sächs. Akad. Wiss. Leipzig, 94, 1–22.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. (2021). LoRA:

low-rank adaptation of large language models. International Conference on Learning

Representations.

Hu, K., Li, B., Sainath, T. N., Zhang, Y., & Beaufays, F. (2023). Mixture-of-expert conformer for

streaming multilingual ASR. arXiv preprint arXiv:2305.15663.

Hudspeth, A., Jülicher, F., & Martin, P. (2010a). A critique of the critical cochlea: hopf–a

bifurcation–is better than none. Journal of neurophysiology, 104 3, 1219–29.

Hudspeth, A. (2008). Making an effort to listen: mechanical amplification in the ear. Neuron,

59(4), 530–545.

Hudspeth, A., Jülicher, F., & Martin, P. (2010b). A critique of the critical cochlea: hopf—a

bifurcation—is better than none. Journal of neurophysiology, 104(3), 1219–1229.

Islam, M. A., Xu, Y., Monk, T., Afshar, S., & van Schaik, A. (2022). Noise-robust text-dependent

speaker identification using cochlear models. The Journal of the Acoustical Society of

America (JASA), 151(1), 500–516. https://doi.org/10.1121/10.0009314

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local

experts. Neural computation, 3(1), 79–87.

Johannesma, P. (1972). The pre-response stimulus ensemble of neurons in the cochlear nu-

cleus. Symposium on Hearing Theory, 1972.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm.

Neural computation, 6(2), 181–214.

Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition–a brief history of the

technology development. Georgia Institute of Technology. Atlanta Rutgers University

and the University of California. Santa Barbara, 1, 67.

Karuppuswamy, R., & Arumugam, K. (2013). Folded architecture for digital gammatone filter

used in speech processor of cochlear implant. ETRI Journal, 35(4), 697–705.

136

https://doi.org/10.1109/BIOCAS.2007.4463316
https://doi.org/10.1109/BIOCAS.2007.4463316
https://doi.org/10.1109/BIOCAS.2008.4696897
https://doi.org/10.1121/1.399423
https://doi.org/10.1121/1.399423
https://doi.org/10.1121/10.0009314

BIBLIOGRAPHY Chapter A

Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory system.

The Journal of the Acoustical Society of America, 64(5), 1386–1391.

Kemp, D. T. (2002). Otoacoustic emissions, their origin in cochlear function, and use. British

medical bulletin, 63(1), 223–241. https://doi.org/10.1093/bmb/63.1.223

Kim, J. C., & Large, E. W. (2015). Signal processing in periodically forced gradient frequency

neural networks. Frontiers in computational neuroscience, 9, 152.

Kim, S., Hori, T., & Watanabe, S. (2017). Joint ctc-attention based end-to-end speech recogni-

tion using multi-task learning. 2017 IEEE international conference on acoustics, speech

and signal processing (ICASSP), 4835–4839.

Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kinouchi, O., & Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality.

Nature physics, 2(5), 348–351.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolu-

tional neural networks. Advances in neural information processing systems, 25.

Lample, G., Conneau, A., Denoyer, L., & Ranzato, M. (2017). Unsupervised machine translation

using monolingual corpora only. https://doi.org/10.48550/ARXIV.1711.00043

Large, E. W., Almonte, F. V., & Velasco, M. J. (2010). A canonical model for gradient frequency

neural networks. Physica D: Nonlinear Phenomena, 239(12), 905–911. https://doi.org/

10.1016/j.physd.2009.11.015

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.

Leonard, R. G., & Doddington, G. R. (1993). Tidigits ldc93s10 [Available from the Linguistic

Data Consortium].

Li, X. L., & Liang, P. (2021). Prefix-tuning: optimizing continuous prompts for generation. arXiv

preprint arXiv:2101.00190.

Li, X., Shougat, M. R. E. U., Kennedy, S., Fendley, C., Dean, R. N., Beal, A. N., & Perkins, E.

(2021). A four-state adaptive hopf oscillator. PLOS ONE, 16(3), 1–14. https://doi.org/

10.1371/journal.pone.0249131

Liberman, M. C., Liberman, L. D., & Maison, S. F. (2014). Efferent feedback slows cochlear

aging. Journal of Neuroscience, 34(13), 4599–4607.

Liu, S.-C., Van Schaik, A., Minch, B. A., & Delbruck, T. (2013). Asynchronous binaural spatial

audition sensor with 2 × 64 × 4 channel output. IEEE transactions on biomedical

circuits and systems, 8(4), 453–464.

Lopes, C., & Perdigao, F. (2011). Phone recognition on the timit database. Speech Technologies/-

Book, 1, 285–302.

López-Espejo, I., Tan, Z.-H., & Jensen, J. (2021). Exploring filterbank learning for keyword

spotting. 2020 28th European Signal Processing Conference (EUSIPCO), 331–335. https:

//doi.org/10.23919/Eusipco47968.2020.9287772

Lyon, R. F. (2011a). Using a cascade of asymmetric resonators with fast-acting compression as

a cochlear model for machine-hearing applications.

137

https://doi.org/10.1093/bmb/63.1.223
https://doi.org/10.48550/ARXIV.1711.00043
https://doi.org/10.1016/j.physd.2009.11.015
https://doi.org/10.1016/j.physd.2009.11.015
https://doi.org/10.1371/journal.pone.0249131
https://doi.org/10.1371/journal.pone.0249131
https://doi.org/10.23919/Eusipco47968.2020.9287772
https://doi.org/10.23919/Eusipco47968.2020.9287772

Chapter A BIBLIOGRAPHY

Lyon, R. F. (2011b). Cascades of two-pole–two-zero asymmetric resonators are good models of

peripheral auditory function. The Journal of the Acoustical Society of America, 130(6),

3893–3904. https://doi.org/10.1121/1.3658470

Lyon, R. F. (2017a). Human and machine hearing: extracting meaning from sound. Cambridge

University Press. https://doi.org/10.1017/9781139051699

Lyon, R. F. (2017b). Human and machine hearing: extracting meaning from sound. Cambridge

University Press.

Maison, S. F., Usubuchi, H., & Liberman, M. C. (2013). Efferent feedback minimizes cochlear

neuropathy from moderate noise exposure. Journal of Neuroscience, 33(13), 5542–

5552.

Martin, P., & Hudspeth, A. (1999). Active hair-bundle movements can amplify a hair cell’s

response to oscillatory mechanical stimuli. Proceedings of the National Academy of

Sciences, 96(25), 14306–14311.

Meddis, R. (1986). Simulation of mechanical to neural transduction in the auditory receptor.

The Journal of the Acoustical Society of America, 79(3), 702–711.

Millet, J., Caucheteux, C., Orhan, P., Boubenec, Y., Gramfort, A., Dunbar, E., Pallier, C., &

King, J.-R. (2022). Toward a realistic model of speech processing in the brain with

self-supervised learning. https://doi.org/10.48550/ARXIV.2206.01685

Moore, B. C., & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-filter

bandwidths and excitation patterns. The journal of the acoustical society of America,

74(3), 750–753.

Morgan, N., & Bourlard, H. (1990). Continuous speech recognition using multilayer percep-

trons with hidden markov models. International conference on acoustics, speech, and

signal processing, 413–416.

Munoz, M. A. (2018). Colloquium: criticality and dynamical scaling in living systems. Reviews

of Modern Physics, 90(3), 031001.

Neely, S. T. (1993). A model of cochlear mechanics with outer hair cell motility. The journal of

the acoustical society of America, 94(1), 137–146.

Ngamkham, W., Sawigun, C., Hiseni, S., & Serdijn, W. A. (2010). Analog complex gammatone

filter for cochlear implant channels. Proceedings of 2010 IEEE International Symposium

on Circuits and Systems, 969–972. https://doi.org/10.1109/ISCAS.2010.5537383

Nobili, R., Mammano, F., & Ashmore, J. (1998). How well do we understand the cochlea? Trends

in neurosciences, 21(4), 159–167.

Noé, P.-G., Parcollet, T., & Morchid, M. (2020). Cgcnn: complex gabor convolutional neural

network on raw speech. Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 7724–7728.

Olive, J. P., Greenwood, A., & Coleman, J. (1993). Acoustics of american english speech: a

dynamic approach. Springer Science & Business Media.

Oord, A. v. d., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive

coding. https://doi.org/10.48550/ARXIV.1807.03748

138

https://doi.org/10.1121/1.3658470
https://doi.org/10.1017/9781139051699
https://doi.org/10.48550/ARXIV.2206.01685
https://doi.org/10.1109/ISCAS.2010.5537383
https://doi.org/10.48550/ARXIV.1807.03748

BIBLIOGRAPHY Chapter A

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., & Auli, M. (2019).

Fairseq: a fast, extensible toolkit for sequence modeling. Proceedings of NAACL-HLT:

Demonstrations. https://doi.org/10.48550/ARXIV.1904.01038

Palaz, D., Collobert, R., & Doss, M. M. (2013a). End-to-end phoneme sequence recognition

using convolutional neural networks. arXiv preprint arXiv:1312.2137.

Palaz, D., Collobert, R., & Doss, M. M. (2013b). Estimating phoneme class conditional proba-

bilities from raw speech signal using convolutional neural networks. arXiv preprint

arXiv:1304.1018.

Palaz, D., Doss, M. M., & Collobert, R. (2015). Convolutional neural networks-based continuous

speech recognition using raw speech signal. Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 4295–4299.

Pan, J., Liu, C., Wang, Z., Hu, Y., & Jiang, H. (2012). Investigation of deep neural networks

(dnn) for large vocabulary continuous speech recognition: why dnn surpasses gmms

in acoustic modeling. 2012 8th International Symposium on Chinese Spoken Language

Processing, 301–305.

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: an asr corpus based on

public domain audio books. 2015 IEEE international conference on acoustics, speech

and signal processing (ICASSP), 5206–5210.

Parcollet, T., Morchid, M., & Linares, G. (2020). E2e-sincnet: toward fully end-to-end speech

recognition. Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 7714–7718.

Parthasarathi, S. H. K., & Strom, N. (2019). Lessons from building acoustic models with a

million hours of speech. Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 6670–6674. https://doi.org/10.1109/ICASSP.

2019.8683690

Paul, D. B., & Baker, J. (1992). The design for the wall street journal-based csr corpus. Speech and

Natural Language: Proceedings of a Workshop Held at Harriman, New York, February

23-26, 1992.

Pedersen, P. (1965). The mel scale. Journal of Music Theory, 9(2), 295–308.

Pfeiffer, J., Ruder, S., Vulić, I., & Ponti, E. M. (2023). Modular deep learning. arXiv preprint

arXiv:2302.11529.

Probst, R., Lonsbury-Martin, B. L., & Martin, G. K. (1991). A review of otoacoustic emissions.

The Journal of the Acoustical Society of America (JASA), 89(5), 2027–2067. https://doi.

org/10.1121/1.400897

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2), 257–286.

Ramasesh, V. V., Lewkowycz, A., & Dyer, E. (2021). Effect of scale on catastrophic forgetting in

neural networks. International Conference on Learning Representations.

Rasmussen, G. L. (1946). The olivary peduncle and other fiber projections of the superior

olivary complex. Journal of Comparative Neurology, 84(2), 141–219.

139

https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.1109/ICASSP.2019.8683690
https://doi.org/10.1109/ICASSP.2019.8683690
https://doi.org/10.1121/1.400897
https://doi.org/10.1121/1.400897

Chapter A BIBLIOGRAPHY

Ravanelli, M., Parcollet, T., & Bengio, Y. (2019). The pytorch-kaldi speech recognition toolkit.

Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 6465–6469. https://doi.org/10.1109/ICASSP.2019.8683713

Ravanelli, M., & Bengio, Y. (2018a). Interpretable convolutional filters with sincnet. https:

//doi.org/10.48550/ARXIV.1811.09725

Ravanelli, M., & Bengio, Y. (2018b). Speaker recognition from raw waveform with sincnet.

Proceedings of the IEEE Spoken Language Technology Workshop (SLT), 1021–1028.

https://doi.org/10.1109/SLT.2018.8639585

Ravanelli, M., & Bengio, Y. (2018c). Speech and speaker recognition from raw waveform with

sincnet. arXiv preprint arXiv:1812.05920.

Righetti, L., Buchli, J., & Ijspeert, A. J. (2005). From dynamic hebbian learning for oscillators to

adaptive central pattern generators. Proceedings of 3rd International Symposium on

Adaptive Motion in Animals and Machines–AMAM 2005.

Robinson, D. W., & Dadson, R. S. (1956). A re-determination of the equal-loudness relations

for pure tones. British Journal of Applied Physics, 7(5), 166.

Romero, G. E., & Trussell, L. O. (2022). Central circuitry and function of the cochlear efferent

systems. Hearing research, 425, 108516.

Rosenbaum, C., Cases, I., Riemer, M., & Klinger, T. (2019). Routing networks and the challenges

of modular and compositional computation. arXiv preprint arXiv:1904.12774.

Rosenbaum, C. G. (2020). Dynamic composition of functions for modular learning.

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv preprint

arXiv:1706.05098.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead. Nature machine intelligence, 1(5), 206–215.

Russell, I., & Sellick, P. (1977). Tuning properties of cochlear hair cells. Nature, 267(5614),

858–860.

Russo, M., Stella, M., Sikora, M., & Pekić, V. (2019). Robust cochlear-model-based speech

recognition. Computers, 8(1), 5.

Sainath, T., Weiss, R. J., Wilson, K., Senior, A. W., & Vinyals, O. (2015). Learning the speech

front-end with raw waveform cldnns.

Sainath, T. N., Kingsbury, B., Mohamed, A.-r., Dahl, G. E., Saon, G., Soltau, H., Beran, T., Aravkin,

A. Y., & Ramabhadran, B. (2013). Improvements to deep convolutional neural networks

for LVCSR. 2013 IEEE workshop on automatic speech recognition and understanding,

315–320.

Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). Wav2vec: unsupervised pre-training

for speech recognition. arXiv preprint arXiv:1904.05862.

Seide, F., Li, G., Yu, D., et al. (2011a). Conversational speech transcription using context-

dependent deep neural networks. Interspeech, 437–440.

Seide, F., Li, G., & Yu, D. (2011b). Conversational speech transcription using context-dependent

deep neural networks. Proceedings of the Interspeech Conference, 437–440.

Seki, H., Yamamoto, K., Akiba, T., & Nakagawa, S. (2019). Discriminative learning of filterbank

layer within deep neural network based speech recognition for speaker adaptation.

140

https://doi.org/10.1109/ICASSP.2019.8683713
https://doi.org/10.48550/ARXIV.1811.09725
https://doi.org/10.48550/ARXIV.1811.09725
https://doi.org/10.1109/SLT.2018.8639585

BIBLIOGRAPHY Chapter A

IEICE TRANSACTIONS on Information and Systems, 102(2), 364–374. https://doi.org/

10.1587/transinf.2018EDP7252

Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare words with

subword units. Proceedings of the 54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), 1715–1725. https://doi.org/10.48550/

ARXIV.1508.07909

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., & Villalobos, P. (2022). Compute trends

across three eras of machine learning. 2022 International Joint Conference on Neural

Networks (IJCNN), 1–8.

Shannon, B. J., & Paliwal, K. K. (2003). A comparative study of filter bank spacing for speech

recognition. Microelectronic engineering research conference, 41, 310–12.

Shougat, M. R. E. U., Li, X., Mollik, T., & Perkins, E. (2021). A hopf physical reservoir computer.

Scientific Reports, 11(1), 19465.

Shougat, M. R. E. U., Li, X., Shao, S., McGarvey, K., & Perkins, E. (2023). Hopf physical reservoir

computer for reconfigurable sound recognition. Scientific Reports, 13(1), 8719.

Smith, D. W., & Keil, A. (2015). The biological role of the medial olivocochlear efferents in hear-

ing: separating evolved function from exaptation. Frontiers in systems neuroscience, 9,

12.

Smith, J. O., & Abel, J. S. (1999). Bark and erb bilinear transforms. IEEE Transactions on speech

and Audio Processing, 7(6), 697–708.

Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annual review of psychology, 67(1),

613–640.

Sridhar, D., Stakhovskaya, O., & Leake, P. A. (2006). A frequency-position function for the

human cochlear spiral ganglion. Audiology and Neurotology, 11(Suppl. 1), 16–20.

Sridhar D, L. P., Stakhovskaya O. (2006). A frequency-position function for the human cochlear

spiral ganglion. Audiol Neurotol, 16–20. https://doi.org/10.1159/000095609

Steele, C. R., & Taber, L. A. (1979). Comparison of wkb and finite difference calculations for

a two-dimensional cochlear model. The Journal of the Acoustical Society of America,

65(4), 1001–1006.

Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and category scales for a dozen perceptual

continua. Journal of experimental psychology, 54(6), 377.

Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the

psychological magnitude pitch. The journal of the acoustical society of america, 8(3),

185–190.

Stoop, R., & Gomez, F. (2022). The analysis of mammalian hearing systems supports the hypoth-

esis that criticality favors neuronal information representation but not computation.

Entropy, 24(4), 540.

Stoop, R., Kanders, K., Novelli, L., & Gomez, F. (2016). Novel insights into cochlear information

processing. Proceedings of the 2016 International Symposium on Nonlinear Theory

and its Applications (NOLTA2016), 497–500.

141

https://doi.org/10.1587/transinf.2018EDP7252
https://doi.org/10.1587/transinf.2018EDP7252
https://doi.org/10.48550/ARXIV.1508.07909
https://doi.org/10.48550/ARXIV.1508.07909
https://doi.org/10.1159/000095609

Chapter A BIBLIOGRAPHY

Tabibi, S., Kegel, A., Lai, W. K., & Dillier, N. (2017). Investigating the use of a gammatone

filterbank for a cochlear implant coding strategy. Journal of Neuroscience Methods,

277, 63–74. https://doi.org/10.1016/j.jneumeth.2016.12.004

Terreros, G., & Delano, P. (2015). Corticofugal modulation of peripheral auditory responses.

Frontiers in Systems Neuroscience, 9. https://doi.org/10.3389/fnsys.2015.00134

Thakur, C. S., Hamilton, T. J., Tapson, J., van Schaik, A., & Lyon, R. F. (2014). Fpga implementa-

tion of the car model of the cochlea, 1853–1856. https://doi.org/10.1109/ISCAS.2014.

6865519

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-

sukhin, I. (2017). Attention is all you need. Advances in neural information processing

systems, 30.

Vieting, P., Schlüter, R., & Ney, H. (2023). Comparative analysis of the wav2vec 2.0 feature

extractor. Speech Communication; 15th ITG Conference, 131–135.

Villalobos, P., & Ho, A. (2022). Trends in training dataset sizes [Accessed: 2024-05-31]. https:

//epochai.org/blog/trends-in-training-dataset-sizes

Vincent, E., Watanabe, S., Barker, J., & Marxer, R. (2016). The 4th CHiME speech separation

and recognition challenge. URL: http://spandh. dcs. shef. ac. uk/chime challenge {Last

Accessed on 1 August, 2018}.

Von Békésy, G. (1960). Experiments in hearing. McGraw-Hill.

Wang, S., Hu, Y., & Liu, S.-C. (2022). T-nga: temporal network grafting algorithm for learning to

process spiking audio sensor events. ICASSP 2022-2022 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 3273–3277.

Warr, W. B., Boche, J. B., & Neely, S. T. (1997). Efferent innervation of the inner hair cell region:

origins and terminations of two lateral olivocochlear systems. Hearing research, 108(1-

2), 89–111.

Webster, D. B. (1966). Ear structure and function in modern mammals. American Zoologist,

6(3), 451–466. https://doi.org/10.1093/icb/6.3.451

Xu, Y., Afshar, S., Wang, R., Cohen, G., Singh Thakur, C., Hamilton, T. J., & van Schaik, A. (2021).

A biologically inspired sound localisation system using a silicon cochlea pair. Applied

Sciences, 11(4), 1519. https://doi.org/10.3390/app11041519

Xu, Y., Thakur, C. S., Singh, R. K., Hamilton, T. J., Wang, R. M., & van Schaik, A. (2018). A fpga

implementation of the car-fac cochlear model. Frontiers in neuroscience, 12, 198.

Yang, M., Chien, C.-H., Delbruck, T., & Liu, S.-C. (2016). A 0.5 v 55 µw 64 × 2 channel binaural

silicon cochlea for event-driven stereo-audio sensing. IEEE Journal of Solid-State

Circuits, 51(11), 2554–2569.

Yao, Z., Wu, D., Wang, X., Zhang, B., Yu, F., Yang, C., Peng, Z., Chen, X., Xie, L., & Lei, X.

(2021). Wenet: production oriented streaming and non-streaming end-to-end speech

recognition toolkit. arXiv preprint arXiv:2102.01547.

You, Z., Feng, S., Su, D., & Yu, D. (2021). Speechmoe: scaling to large acoustic models with

dynamic routing mixture of experts. arXiv preprint arXiv:2105.03036.

142

https://doi.org/10.1016/j.jneumeth.2016.12.004
https://doi.org/10.3389/fnsys.2015.00134
https://doi.org/10.1109/ISCAS.2014.6865519
https://doi.org/10.1109/ISCAS.2014.6865519
https://epochai.org/blog/trends-in-training-dataset-sizes
https://epochai.org/blog/trends-in-training-dataset-sizes
https://doi.org/10.1093/icb/6.3.451
https://doi.org/10.3390/app11041519

BIBLIOGRAPHY Chapter A

You, Z., Feng, S., Su, D., & Yu, D. (2022). Speechmoe2: mixture-of-experts model with improved

routing. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 7217–7221.

Zeghidour, N., Teboul, O., Quitry, F. d. C., & Tagliasacchi, M. (2021). Leaf: a learnable frontend

for audio classification. arXiv preprint arXiv:2101.08596.

Zeghidour, N., Usunier, N., Kokkinos, I., Schaiz, T., Synnaeve, G., & Dupoux, E. (2018). Learning

filterbanks from raw speech for phone recognition. 2018 IEEE international conference

on acoustics, speech and signal Processing (ICASSP), 5509–5513.

Zhang, B., Wu, D., Peng, Z., Song, X., Yao, Z., Lv, H., Xie, L., Yang, C., Pan, F., & Niu, J. (2022).

Wenet 2.0: more productive end-to-end speech recognition toolkit. arXiv preprint

arXiv:2203.15455.

Zhang, X., Heinz, M. G., Bruce, I. C., & Carney, L. H. (2001). A phenomenological model for

the responses of auditory-nerve fibers: i. nonlinear tuning with compression and

suppression. The Journal of the Acoustical Society of America, 109(2), 648–670.

Zurek, P. (1981). Spontaneous narrowband acoustic signals emitted by human ears. The Journal

of the Acoustical Society of America, 69(2), 514–523.

Zweig, G., Lipes, R., & Pierce, J. (1976). The cochlear compromise. The Journal of the Acoustical

Society of America, 59(4), 975–982.

Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (frequen-

zgruppen). The Journal of the Acoustical Society of America (JASA), 33(2), 248. https:

//doi.org/10.1121/1.1908630

Zwislocki, J. (1953). Review of recent mathematical theories of cochlear dynamics. The Journal

of the Acoustical Society of America, 25(4), 743–751.

143

https://doi.org/10.1121/1.1908630
https://doi.org/10.1121/1.1908630

START
Louise Coppieters

PhD Research Assistant

Areas of specialization

Automatic speech
recognition (ASR) • Signal
processing • Biomedical

applications

Languages

French mother tongue

Dutch ○ ○ ○ ○ ○

English ○ ○ ○ ○ ○

Programming

python ○ ○ ○ ○ ○ ○ ○ ○

Latex ○ ○ ○ ○ ○ ○

bash ○ ○ ○ ○

matlab ○ ○ ○ ○

c++ ○ ○ ○ ○

Labview ○ ○ ○ ○

java ○ ○ ○ ○

modelsim ○ ○ ○ ○

CURRENT POSITION
Oct 2020–Ongoing Research Assistant at Idiap, PhD candidate at EPFL

IDIAP RESEARCH INSTITUTE ·Martigny, SWITZERLAND
Our research group aims to usemachine learning to make inference about
biological systems as well as vice-versa. To do this we develop trainable
models that match current understanding of physiology. My work involves
integrating our best understanding of the cochlea, a bank of Hopf oscilla-
tors, into state of the art pre-trained speech recognition models.

EXPERIENCE
Jan 2024 - June 2024 Internship

TELEPATHY LABS · Zurich, SWITZERLAND

EDUCATION
2018–2020 Master degree in Electricity

UCLOUVAIN · Louvain-la-Neuve, BELGIUM
Main interests: electronics, signal processing and biomedical applications.
Master thesis: ’Ultra-low-powerminiaturized vagus nerve sensing platform
for treating refractory epilepsy’

Sep 2019–Feb 2020 Student exchange
EPFL · Lausanne, Switzerland
Faculty: Electricity

2015–2018 Bachelor degree
UCLOUVAIN · Louvain-la-Neuve, BELGIUM
Major: Electricity, Minor: Biomedical

2009–2015 Sint-Jan Berchmanscollege
CESS · Brussels, BELGIUM
Option: Mathematics and ancient Greek

PUBLICATIONS
Sep 2022 Low-Level Physiological Implications of End-to-End Learning of

Speech Recognition.
INTERSPEECH · Seoul, South Corea

May 2024 Training a Filter-Based Model of the Cochlea in the Context of
Pre-Trained Acoustic Models.
ACOUSTICS ·

VOLUNTEERING
2015–Ongoing Scouting

· Brussels, BELGIUM
2015 - 2017: Scout leader assistant
2017 - 2018: Scout leader

· Lausanne, SWITZERLAND
2019 - 2021: Scout leader
2021 - 2024: Assistant to the National Commissioner of Girl Scouts

Ó 0041 76 214 44 81 � louise.coppieters@gmail.com � https://www.idiap.ch/~lcoppieters/

145

	Abstract (English/Français)
	List of figures
	List of tables
	Glossary
	Introduction
	Context and Motivation
	Problem statement, research objectives and limitations
	Outline and main contributions

	Background
	The cochlea
	Anatomy and tonotopic organisation
	High-level working of the cochlea
	The active amplification mechanism
	Feedback connections in auditory path.

	Broad overview of cochlear Models
	Gammatone filter
	Neurotransmitter based and spiking models
	Basilar membrane coupled to fluid dynamics
	Hair cell interaction mechanism

	ASR
	Evolution of ASR
	ASR structure
	Speech components and feature extraction
	Databases
	Metric

	Modularity
	Introduction
	Background
	Modular networks
	Conformer

	Method
	Fixed routing
	Learned routing

	Experiments
	Dataset
	Baseline and framework
	Fixed Routing
	Learned routing

	Conclusion

	Hopf oscillator
	Background
	Types of oscillators
	Cochlear model equations in the literature
	Criticality concept
	Take aways for building our model

	Bifurcations
	Fold bifurcation
	Transcritical bifurcation
	Pitchfork bifurcation
	Hysteresis bifuration
	The Hopf oscillator with external input: a combination of hysteresis and pitchfork bifurcation

	Simulation of oscillators
	A single oscillator
	Multiple oscillators
	Experiment on an artificially built signal
	Experiment on an audio signal
	Limitations of the simulation model

	Precomputed plausible cochlear features in an ASR system
	Conclusion

	Trainable filters
	Introduction
	Background
	Initial Analysis
	SincNet setup
	Method
	Baseline
	Number of filters
	Scale after training
	Corollary

	Wide-band filter analysis
	Wide-band initialization
	Why wide-band filters?

	Conclusion

	Trainable filters with self-supervised pretrained model
	Introduction
	Background
	Self-Supervised Models
	Cochlear Models
	ASR with Trainable Filters
	Speech Features

	Method
	Overall Hypothesis
	Pre-Trained Model
	Experimental setup and training protocol
	Dataset

	Experiments
	Can Trainable Filters Replace the Encoder CNN in an Already Pre-Trained Model?
	Does a Physiologically Adapted Front-End Perform as Well as a CNN in a Pre-Trained Model?
	Can Trainable Filters be Incorporated during Self-Supervision?
	Do Wide-Band Filters Appear in Some Other Training or Model Configurations?

	Conclusions

	Integration of Hopf oscillator module into an ASR system
	Background
	Learning parameters
	Hopf oscillator module
	Mathematical formulation
	Implementation of the Hopf module
	Characterization of the Hopf Module

	Integration in ASR
	Challenges in bigger scale network
	Adapting time constant of active amplification loop
	Method
	Integration of Hopf-module in a simple ASR structure
	Impact of adding recurrence on the CNN frontend
	Adding the efferent path feedback loop
	A more complex implementation

	Noise addition
	Hardware implementations of Hopf oscillators
	Conclusion

	Conclusion
	Further research and recommendations

	An appendix
	Active force: a set of two differential equations
	Equations for simulation of Hopf oscillator
	Single oscillator with adaptive frequency
	A series of Hopf oscillators

	Bibliography
	Curriculum Vitae

