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Abstract

This thesis explores the intersection of physiological modelling and computational techniques
in advancing Automatic Speech Recognition (ASR) systems. Contemporary ASR, often driven
by attention models and self-supervised learning, has achieved remarkable accuracy, but
remains decoupled from more recent physiological principles. In the meantime, significant
progress has been made in understanding the function of the cochlea, the auditory system’s
sensory organ. Originally viewed as a passive filter bank, the cochlea is now understood to
function as an active amplifier, well modelled by a Hopf oscillator.

The goal of this thesis is to investigate how the latest understanding of physiology can be
combined and studied within deep learning based ASR models. To this end, the thesis is
organised as two interacting threads.

In a first thread, we investigate modularity, which proposes strategies to integrate and combine
different types of machine learning models, using different experts, or combine new frontend
models with pretrained large transformer models. In a preliminary study, we show that
modularity can be used to optimise an ASR model for different types of environmental noise.
In a second thread, we utilise modularity to investigate how to incorporate improved cochlear
understanding into ASR systems, creating a two-way bridge where insights from computa-
tional approaches inform auditory physiology. After studying established techniques such
as CARFAC and SincNet, we investigate trainable filter banks within a convolutional neural
network (CNN) structure to determine key hyperparameters for ASR performance. This study
also highlights interesting insights filters tend to learn when able to train in an ASR context.
Finally, we combine the threads by embedding a Hopf-based cochlear model within an ASR
system, informed by the learned filter bank parameters. We show that the Hopf mechanism
demonstrates the expected cube root compression and gain control. Moreover, a larger feed-
back loop, modelling the olivocochlear efferent path further enhances the overall performance.
The resulting system, offers valuable insights for future interdisciplinary studies between ASR
and physiological auditory models.

Key words: ASR, cochlear model, Hopf oscillator, SincNet, efferent pathway, active amplifica-
tion mechanism, CARFAC, self-supervised models
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Résumé

Cette these explore I'intersection entre la modélisation physiologique et les techniques com-
putationnelles pour 'amélioration des systemes d’ Automatic Speech recognition (ASR). Les
systémes ASR contemporains, souvent basés sur des modeles d’attention et 'apprentissage
auto-supervisé, ont atteint une précision remarquable, mais restent déconnectés des principes
physiologiques les plus récents.

En parallele, des avancées significatives ont été réalisées dans la compréhension du fonction-
nement de la cochlée, I'organe sensoriel du systéme auditif. Longtemps considérée comme
un simple banc de filtres passifs, la cochlée est désormais reconnue comme un amplificateur
actif, modélisé par un oscillateur de Hopf.

Lobjectif de cette thése est d'investiguer comment ces avancées dans la compréhension
physiologique peuvent étre étudiées en combinaison avec 'état de I'art des techniques d’ASR.
Pour ce faire, la these est organisée en deux axes. Dans un premier axe, nous investiguons la
modularité, qui propose des stratégies pour intégrer et combiner différents types de modeéles
de deep learning, en utilisant différents experts, ou combiner de nouveaux modeles de prétrai-
tement acoustique avec des grands modeles de transformeurs pré-entrainés. Dans une étude
préliminaire, nous montrons que la modularité peut étre utilisée pour optimiser un modele
d’ASR face a différents types de bruits environnementaux.

Dans un second axe, nous exploitons la modularité pour explorer comment intégrer une
meilleure compréhension de la cochlée dans les systemes ASR, créant ainsi un lien bidirection-
nel o1 les avancées des approches computationnelles peuvent a leur tour inspirer la recherche
dans la compréhension de la physiologie auditive. Apres avoir étudié des techniques éta-
blies telles que CARFAC et SincNet, nous analysons ce qu’apprennent des bancs de filtres
entrainables au sein d’une architecture d’'un réseau de neurones convolutifs (CNN) afin de
déterminer les hyperparametres clés qui pourront étre transposés a des modeles cochléaires
plus complexes. Cette étude met en évidence des observations intéressantes sur les filtres que
le modele tend a apprendre lorsqu’ils sont entrainés dans un contexte ASR.

Enfin, nous réunissons ces deux axes en intégrant un modéle cochléaire basé sur les oscil-
lateurs de Hopf au sein d'un systéme ASR, en nous appuyant sur les parametres appris par
les bancs de filtres. Nous montrons que le mécanisme de Hopf reproduit la compression en
racine cubique ainsi que le controle de gain attendus. De plus, une boucle de rétroaction
plus large, inspirée de la voie efférente olivocochléaire, améliore davantage les performances
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Chapter 0

globales. Le systéeme résultant offre des perspectives intéressantes pour de futures études
interdisciplinaires entre I'’ASR et les modeéles physiologiques de 'audition.

Mots clefs : ASR, modele cochléaire, oscillateur de Hopf, SincNet, voie efférente, méchanisme
d’amplification actif, CARFAC, modeles d’auto-entrainement
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|§ Introduction

Cochlear models have been a subject of research for a while. The understanding of the
human ear is of great interest both in the neuroscience field for a better understanding
of the underlying neurological processing and in the automatic speech recognition (ASR)
field as a source of inspiration for technology. However, research in those two fields has
evolved separately, linked to the differences in their objectives: neuroscience seeks to better
understand the neurological system for medical applications, while ASR research focuses on
achieving the best accuracy and efficiency. This thesis brings together the latest foundation
models for ASR with the latest understanding of the cochlea, which involves a gain adaptation
mechanism and the efferent pathway.

1.1 Context and Motivation

This thesis lies at the intersection of two fields: the physiological understanding of the cochlea
and auditory system, and ASR. The cochlea, an organ in the inner ear, transforms sound
waveforms into neural signals (Von Békésy, 1960; Webster, 1966). ASR, a technology within
computer science, converts spoken language into written text (Amari, 1993; Baevski, Zhou,
et al., 2020; Collobert et al., 2016; Morgan & Bourlard, 1990; Rabiner, 1989).

Although these fields differ in computational objectives, they share a common underlying
process: transforming human speech into comprehensible signals, be they neural signals,
phonemes, or words. In studies of the human auditory system, researchers aim to understand
the workings of the cochlea, the auditory pathway to the midbrain, and the auditory cortex.
This entire pipeline helps scientists model how the nervous system processes speech signals
and converts them into neural representations that the brain can interpret. On the ASR
side, the primary objective is to develop systems capable of converting spoken language into
phonemes, words, or other lexical units and that are computationally efficient.

ASR technology initially drew significant inspiration from models of the human auditory
system (Von Békésy, 1960). However, as computational resources expanded and model perfor-
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mance improved, research in these two fields began to diverge. Despite this separation, key
advances have often emerged when the fields draw inspiration from each other. For example,
ASR has evolved to process raw speech input rather than relying solely on precomputed fea-
tures (Palaz et al., 2013a). Meanwhile, in auditory neuroscience, researchers have discovered
correlations between auditory brain signals and outputs from pre-trained ASR systems. This
thesis combines physiological modeling of the cochlea with the use of ASR to improve the
explainability of certain physiological behaviours.

Plausible model
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tory system
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implementation.
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Figure 1.1: Overview of the research strategy. Inspired by the human auditory system, this
study explores a plausible cochlear model integrated into a neural network, aiming to provide
insights into both hearing technology and human physiology.

As illustrated in Figure 1.1, advancements in hearing technology have been inspired by physio-
logical models. These range from simple logarithmic frequency mappings to more complex
representations of cochlear mechanics (Gold, 1948; Kemp, 2002; Von Békésy, 1960). Building
on this knowledge and the performance of existing technologies, this work focuses on the
development of physiologically plausible models.

On the one hand, a basic understanding of the cochlea models it as a filterbank (Ravanelli
& Bengio, 2018a; Zeghidour et al., 2018). On the other hand, a more detailed understanding
involves modelling the organ of Corti as a Hopf oscillator, operating near the Hopf bifurcation
(Camalet et al., 2000; Hudspeth et al., 2010b). This mathematical framework has been shown
to accurately capture key aspects of the cochlear function.
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1.2 Problem statement, research objectives and limitations

On the one hand, our understanding of the human cochlea has evolved significantly over
the years. Initially conceived as a simple filterbank (Von Békésy, 1960), the cochlea’s inner
workings are now recognized as far more intricate (Brownell et al., 1985; Gold, 1948). Moreover,
interactions along the auditory pathway have revealed feedback loops that contribute to the
finer calibration of signals.

On the other hand, ASR models have also undergone substantial development. From early
systems composed of manually designed statistical units (Morgan & Bourlard, 1990; Rabiner,
1989), the advent of deep learning has introduced trainable models of increasing complexity
and scale (Baevski, Zhou, et al., 2020; Baevski et al., 2022; Collobert et al., 2016; Hinton et al.,
2012). While these large models have achieved remarkable improvements in performance,
they have also reduced interpretability and limited comparability to the human auditory
system.

Bridging the gap between these domains offers intriguing possibilities for improving inter-
pretability but comes with trade-offs, such as reduced performance and computational in-
efficiency due to the complexity of such implementations. Addressing these challenges is a
central focus of this thesis. Additionally, advancing ASR research often involves competing
against well-resourced teams with access to extensive computational capacities, making it
unrealistic to aim for state-of-the-art performance under limited resources.

The primary goal of this thesis is, therefore, not to surpass the latest ASR models in terms of
efficiency or performance but to propose novel approaches and insights. These approaches
draw inspiration from the physiological workings of the human cochlea. This is achieved by
integrating a deeper understanding of cochlear mechanisms into the ASR domain. Another
key objective is to analyze performance changes in various experiments to better understand
the learning processes of the human auditory system.

Initially, this thesis sought to combine state-of-the-art ASR models, such as pretrained trans-
former architectures, with a mathematical model of the latest understanding of the cochlea.
However, the inherent complexity of both systems made such integration computationally
prohibitive, requiring resources far beyond reasonable limits. Nevertheless, this work explores
both fields to a feasible extent. Specifically, it investigates:

1. The integration of trainable filters within a state-of-the-art self-supervised model con-
text.

2. The incorporation of active amplification oscillators into a simpler ASR framework.

The pathways and building blocks leading to these objectives are further detailed in Section
1.3.
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1.3 Outline and main contributions

2. Background
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Figure 1.2: General overview of the thesis.

This thesis is built on two main pillars: ASR and the physiology of the cochlea. To provide a
clear understanding of the thesis structure, Figure 1.2 summarizes the overall framework and
illustrates the interconnections between the different chapters.

¢ Chapter 2 provides background information, presenting the state-of-the-art understand-
ing of cochlear function, existing cochlear models with varying levels of physiological
granularity, and the key advancements made in the field over the past decade. The
chapter highlights the benefits and inherent limitations of these developments.

¢ Chapter 3 introduces the concept of modularity (Pfeiffer et al., 2023) and explores how
modularity can serve as a bridge between cochlear models and ASR systems. It also
presents an investigation into modularity (Pfeiffer et al., 2023) within a conformer-based
ASR system. Specifically, we demonstrate that incorporating modularity enhances sys-
tem performance. Further analysis explores the deployment of both fixed and learned
routing mechanisms, applied to a noisy dataset containing speech in various noisy
environments. Employing modularity to distinguish between noise types and clean
speech improves the learning curve and overall performance across all dataset subsets.
This investigation laid the groundwork for modularity to play a central role in subse-
quent chapters, bridging the gap between pure ASR systems and physiological cochlear
models.

e Chapter 4 delves into the active amplification mechanisms of the cochlea, demon-
strating how Hopf oscillators effectively mimic these mechanisms through bifurcation
dynamics. This chapter acts as a prior work chunk to demonstrate the effectiveness of
Hopf oscillators to encode speech before integrating an active amplification oscillator
based system into an ASR model in chapter 7.
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* Building on the modularity concept of chapter 3, chapter 5 investigates the integration
of trainable filters into ASR systems. Using SincNet (Ravanelli & Bengio, 2018a, 2018c¢), as
a foundation, we analyze the characteristics of trainable filters when they adapt within
a small ASR context. The analysis reveals that the filters tend to form a filterbank of
30-40 filters, with some filters capturing wideband information. This behaviour aligns
with neurophysiological observations: at the cochlear level, narrowband filters exhibit
tonotopic organization, capturing frequency-specific information, while higher levels in
the auditory pathway combine neural information in a wideband manner.

* Chapter 6 further builds on the work in chapter 5, extending the concept of trainable
filters to larger ASR systems based on self-supervised pretrained models. Modern
state-of-the-art ASR systems leverage models pretrained on large datasets, which are
subsequently fine-tuned on smaller datasets to achieve superior performance com-
pared to traditional ASR methods. Extending the modularity concept, we combine a
trainable filterbank with a pretrained transformer model. This study reveals that, within
a larger pretraining context, wideband filters no longer emerge. This suggests that in
transformer-based pretrained models, broader combinations of narrowband filters are
constructed at higher layers during pretraining. Notably, the model consistently estab-
lishes a baseline of approximately 40 filters to capture activity across different frequency
ranges.

* Chapter 7 combines the latest understanding of the cochlea as a Hopf oscillator-based
model poised at the Hopf bifurcation with the ASR baseline used in chapter 5. We
propose an implementation using mel-spaced oscillators covering the speech frequency
range. These oscillators exhibit cube-root compression and operate at the Hopf bifur-
cation. We demonstrate the application of this module in an ASR system and propose
the addition of a larger feedback loop, inspired by physiological evidence of an efferent
path involving higher-order nuclei in the auditory pathway. Incorporating this larger
feedback results in a significant performance improvement. The performance of this
approach is evaluated on both clean and noisy datasets.

* The initial objective of this thesis was to integrate a complex cochlear model with a
pretrained ASR system. However, due to computational and time constraints, such
experiments were deemed infeasible.

* Chapter 8 concludes the thesis by summarizing the key findings and offering recom-
mendations for future research.

In order to improve readability, much of the prose in this thesis has been refined by a large

language model (LLM) explicitly prompted to correct grammar !,

TA Jocal instance of Llama 3.2 3B prompted with "Can you correct the following text:"






4 Background

In this chapter, we cover the background topics required to understand the general aspects
of the thesis. The thesis is constructed on two main pillars. On the one hand, we have
the understanding of the physiological mechanism of the cochlea and the existing cochlear
models; and on the other hand, the working of ASR. Figure 2.1 highlights the background as
foundations on which the rest of the thesis is built. The understanding of the cochlea lies at
the foundation of the cochlear model we want to build. In contrast the ASR system serves as
the container in which the performance of those models can be tested.

2. Background
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4. Driven 7. Driven oscil- N |
oscillator lator in ASR | pretrained model |
/ o ST
5. Trainable 6. Trainable filters
filters in ASR with pretrained model

3. Modularity /

Figure 2.1: General overview of the thesis highlighting the background section.

2.1 The cochlea

Research in the neurophysiological field has investigated the intricate relationship between the
cochlea and the brain. This section begins with a broad overview of the general functioning of
the cochlea as understood since the early 20th century. Next, a second subsection delves into
the working of the organ of Corti and the active amplification mechanisms that occur within it.
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The organ of Corti’s role in generating oscillations is further supported by an active feedback
loop linked to the hair cells. Additionally, research on the auditory path in the midbrain
suggests that larger feedback loops play a significant role in the hearing process. The presence
of some larger feedback loops as well as the reason of their utility is still a research question in
the auditory field. An overview of the main feedback loops is presented in subsection 2.1.4 .

2.1.1 Anatomy and tonotopic organisation

INNER EAR

—
SEMICIRCULAR COCHLEA
CANALS

AUDITORY
NERVE

'

OUTEREAR MIDDLE
EAR

Figure 2.2: Schematic of the human ear divided into outer, middle and inner ear.

To gain insight into the workings of the cochlea, this section begins with a concise review
of its anatomical structure (Webster, 1966). The human ear is composed of three distinct
parts: the outer ear, middle ear, and inner ear. Figure 2.2 illustrates the overall organization
of these components. The outer and middle ears function as low-pass filters that amplify
sound, while the inner ear is comprised of two main structures: the cochlea and semi-circular
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Figure 2.3: Schematic of the organ of Corti
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HIGH FREQUENCY LOW FREQUENCY
DETECTION DETECTION

Figure 2.4: Schematic of the cochlear duct, the central membrane is an approximation of the
frequency-selective basilar membrane. The high frequencies are detected on the beginning of
the cochlear duct and the lower frequencies are detected at the end, near the apex.

canals. The cochlea, located within the inner ear, serves a critical role in hearing, whereas
the semi-circular canals contribute to balance and equilibrium. The cochlea itself consists
of three distinct channels, defined by the Reissner membrane and Basilar membrane. These
channels are divided into two outer and one inner channel.

The organ of Corti (as shown in Figure 2.3), is a complex sensory apparatus located on the
basilar membrane within the inner channel of the cochlea. The organ of Corti consists of
three primary components: the tectorial membrane, inner hair cells (IHC), and outer hair
cells (OHC). In addition to its structural complexity, the organ of Corti is also innervated
by the cochlear nerve. This nerve serves as a critical conduit for the transmission of neural
information between the cochlea and the rest of the auditory pathway.

2.1.2 High-level working of the cochlea

Acoustic waveforms initially reach the outer ear, where they are transmitted through the
eardrum to the middle ear. The ossicles of the middle ear match the impedance between the
ear drum and the oval window, ultimately causing the acoustic waves to travel to the inner
ear. At this point, a transmission to perilymph occurs. The perilymph is a fluid situated in the
outer channels of the cochlea. This liquid as well as the protein structures and their properties
around the cochlea has a filtering function: it makes the vibrations progress through the
cochlea according to their frequency, the lower the frequencies, the further the waves are
propagated. As a result, the basilar membrane vibrates at specific frequencies that correspond
to particular locations along its length. These vibrations can be detected by the interactions
within the Organ of Corti, allowing for the processing and analysis of sound.

This high-level understanding of the cochlea, as proposed by Von Békésy (1960), can be
approximated using a series of filters: higher frequency signals are detected earlier in the
cochlear duct, while lower frequency signals are detected later near the apex (as shown in
Figure 2.4). Filterbanks have been widely employed to define typical feature computations
and build non-complex models for ASR tasks. However, the earliest studies were limited
because they were conducted on the cochleae of deceased animals, which lack neural feedback,
resulting in passive filterbank behaviours. Subsequent studies on the cochlea revealed that its

9
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actual operation involves an active amplification mechanism (Gold, 1948; Kemp, 1978; Zurek,
1981).

2.1.3 The active amplification mechanism

Active amplification Signal detection
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Further research on the organ of Corti by studying living animals revealed a more detailed

Figure 2.5: Schematic of the working of the cochlea

understanding of the cochlea. Contrary to initial assumptions that it behaves like a passive
filterbank, studies in the 1980s showed that the cochlea is an active amplification oscillator.
Gold (1948) had the intuition that a passive oscillation of the basilar membrane could not
be enough to detect sound. He then suggested that an active amplification mechanism of
the acoustic signals was present in the cochlea. This hypothesis was later confirmed by the
phenomenon of otoacoustic emissions (OAE). OAEs are vibrations produced by the inner ear
in response to auditory stimuli or even spontaneously, without external stimulation. Measured
in human ears in the late 1970s and early 1980s (Kemp, 1978; Zurek, 1981), OAEs provided
evidence for the existence of nonlinear mechanisms within the cochlea that responded me-
chanically to acoustic stimulations. Further studies revealed that the OHCs possess a unique
electromotile capacity (Brownell et al., 1985), which is responsible for the production of OAEs.
(Geisler, 1986; Neely, 1993) The IHCs are the real sensory receptors that connect the cochlea to
the nervous system through electric pulses (Russell & Sellick, 1977). Figure 2.5 illustrates the
connections between these different elements. The signal is first filtered out by the perilymph
at different frequencies between 20Hz and 20kHz, depending on the location on the cochlear
duct. This induces a vibration of the basilar membrane at different frequencies with a passive
resonance. The OHCs detect these vibrations, leading to changes in their membrane potential

10
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and subsequent fast contractions. The input vibration is actively amplified by the OHCs,
generating larger vibrations of the tectorial membrane that can then be detected by the IHC.
This active amplification mechanism is then inhibited by feedback signals, allowing for more
efficient sound detection. Finally, the signal is transmitted to the brain.

2.1.4 Feedback connections in auditory path.

Olivocochlear feedback

,,,,,, 1. ] ... Audiorypath

Cochlea CN oC IC H MGB | Auditory
| cortex

Figure 2.6: Auditory path from cochlea to midbrain with the efferent paths from the auditory
cortex and mibrain.

The auditory pathway involves a complex interplay of neurons from the cochlea to the auditory
brain, with multiple feedback mechanisms that refine and optimize sound processing. While
the efferent path in the auditory brain is well established, the various feedback loops that com-
prise it are multifaceted and serve distinct purposes. Those feedback loops are schematized in
Figure 2.6.

The olivocochlear feedback loop is a well-known mechanism connecting the olivary complex
(OC) with the cochlea across different mammals (Rasmussen, 1946). This efferent pathway has
been favoured by evolutionary selection, as evidenced by its widespread presence in various
species (Romero & Trussell, 2022). The olivocochlear feedback loop can be further divided
into two main branches:

1. The medial olivary complex (MOC) to the OHC, which serves to protect against damage
from loud noise and improve speech perception in noisy environments (D. W. Smith &
Keil, 2015).

2. The lateral olivary complex (LOC) to the synapses of the IHC, modulating auditory nerve
sensitivity (Warr et al., 1997).

Additionally, the olivocochlear feedback loop also influences the excitability of the cochlear

nerve, which is essential for slowing cochlear aging (Liberman et al., 2014; Maison et al., 2013).

The descending projections from the auditory cortex form two distinct loops: the colliculo-
thalamic-cortico-collicular loop and the bottom loop (Terreros & Delano, 2015).

11
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¢ The top loop involves descending projections to the medial geniculate body (MGB)
and inferior colliculus (IC), forming a tonotopic feedback loop that modulates sound
intensity, frequency, and spatial processing.

¢ The bottom loop comprises descending projections to the cochlear nucleus (CN) and
superior olivary complex (SOC), influencing cochlear responses.

Furthermore, IC, SOC, and CN are interconnected within a bidirectional network that facili-
tates top-down modulation in the auditory pathway (Terreros & Delano, 2015).

2.2 Broad overview of cochlear Models

In both the neurophysiological and technological fields, researchers have developed cochlear
models to gain insights into their functioning and generate plausible outputs.

In the neurophysiological field, the primary goal of these models is to elucidate the intricacies
of the cochlea itself. As such, these models are often more computationally intensive and
strive to capture the physiological reality with greater accuracy. By doing so, researchers can
better understand the complex mechanisms underlying sound processing in the ear.

In contrast, applications of cochlear models in the ASR field have two distinct uses:

1. A separate feature extraction : These models can be used to generate features that
are computationally intensive and detailed. This approach allows for the creation of
high-fidelity representations of speech sounds, which can be particularly useful in
challenging acoustic environments and afterwards be used to train models.

2. Incorporation into ASR systems : However, when it comes to integrating cochlear models
into ASR systems, computational compromises are often necessary, but parameter
training of cochlear models is made possible.

By striking a balance between computational intensity and practicality, researchers can de-
velop cochlear models that not only advance our understanding of sound processing but also
enable more effective applications in ASR.

Existing cochlear models typically concentrate on a particular aspect of the cochlea’s function-
ing and can be implemented based on analyses conducted at various scales. At the macro scale,
filterbank models attempt to simulate the cochlea’s output signals by adapting filters, such as
Gammatone filters. These models aim to capture the overall structure and functionality of the
cochlea, with a focus on its acoustic properties. In contrast, models that delve deeper into the
micro scale focus on specific components of the cochlea, such as: the molecular interactions
at the neurotransmitter level, the fluid dynamics coupled with the basilar membrane motions
and the OHC-IHC interaction. By targeting specific aspects of the cochlea’s functioning at
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different scales, researchers can develop more nuanced and accurate models that capture the
intricacies of sound processing in the cochlea.

2.2.1 Gammatone filter

Many ASR features are based on filterbanks. Among these, the Gammatone filter is particularly
well-suited to mimic the output of the cochlea. The Gammatone filter (Johannesma, 1972) is a
type of filter that provides a good approximation of the impulse response shape of the auditory
system. This filter combines a gamma-distribution envelope with a polynomial increase and
exponential decrease, along with a cosine function at a specific frequency. The mathematical
representation of the Gammatone filter is given by Equation 2.1:

gt(t) x t" Lexp(—2mbt) cos2n fyt + ) 2.1)

The Gammatone filter has been used as a tool to model the cochlear response to a stimulus
(Russo et al., 2019). One of its key benefits is that it can approximate both the cochlear fluid
filtering and the OHC amplification. In a noisy environment, Gammatones tend to perform
better than the standard ASR features such as MFCCs (see section 2.3.3). Researchers have
also explored using Gammatone filterbanks for cochlear implants, with proposals made by
Karuppuswamy and Arumugam (2013), Ngamkham et al. (2010), and Tabibi et al. (2017).

2.2.2 Neurotransmitter based and spiking models

The physiological function of the cochlea is to transform mechanical vibrations into neural
activity pattern, involving transfer of neurotransmitters to emit a spike. A model based on the
computation on the flow of neurotransmitters through synapses is the Meddis Hair Cell Model
(Meddis, 1986), which focuses on the transduction process in the IHC to convert mechanical
vibrations into neural signals. This model operates at a synaptic level, calculating the amount
of transferred neurotransmitters and determining firing probabilities in the auditory nerve.
This approach is particularly useful for modeling auditory nerve responses or integrating it
into larger auditory systems. In contrast, X. Zhang et al. (2001) proposed an auditory nerve
model that focuses on the transduction of sound vibrations into spikes, combined with a global
understanding of the cochlea to simulate the hearing function. This model is well-established
in the neuroscience domain. Additionally, Cramer et al. (2020) proposed a spike-dataset
production model to utilize spike features as input for speech technologies and (Yang et
al., 2016) proposed a hardware implementation that further has been combined with deep
learning models for ASR (Liu et al., 2013; Wang et al., 2022).

2.2.3 Basilar membrane coupled to fluid dynamics

Hydrodynamic models of the cochlea primarily focus on the sound propagation through the
perilymph (cochlear fluid). Vibrations are introduced into the cochlear fluid through the
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ossicles in the middle ear and the oval window, triggering fluid movements that cause the
basilar membrane to vibrate at frequency-dependent locations.

There are several notable examples of hydrodynamic models:

¢ Allen’s Cochlear Model (Allen, 1980) is characterised by a tonotopic organization of the
cochlea, fluid dynamic equations and a representation of the basilar membrane as an
elastic structure with varying stiffness and damping along the frequency axis.

* Steele and Taber Models (Steele & Taber, 1979) employ the Wentzel-Kramers-Brillouin
(WKB) asymptotic method to simulate the fluid dynamics within the cochlea. These
models are compared to finite difference calculations to validate their accuracy.

* Zweig Cochlear Model (Zweig et al., 1976) focuses on nonlinear basilar membrane
responses in the cochlear tuning.

2.2.4 Hair cell interaction mechanism

Some models focus primarily on the interactions between the OHC and the IHC, as well as
the inhibitory feedback loop between these elements. One notable example is cascade of
asymmetric resonators with fast-acting compression (CARFAC) (Lyon, 2017a), a model that
simulates these interaction using an active gain control (AGC) loop. This mechanism amplifies
sound at specific frequencies, mimicking the behaviour of the cochlea. Another approach
uses Hopf oscillators poised at the Hopf bifurcation. This mechanism reflects mathematically
the working of the cochlea.

The work presented in this thesis builds upon and further explores these interactions, focusing
on the intricate mechanisms that govern the OHC-IHC interaction and the inhibitory feedback
loop.

CARFAC

The CARFAC model is a comprehensive model that incorporates various physiological be-
haviours characteristic of the ear. A general overview of the CARFAC architecture is depicted
in Figure 2.7, providing a visual representation of the interactions between the different com-
ponents. The construction of the CARFAC model is inspired by the physiological workings of
the cochlea, as presented in section 2.1.3. The model proposes an implementation that closely
approximates the output and function of each physiological element. The frequency filtering
by the non-uniform liquid medium is modelled using second-order low-pass filters H with
undamped resonance frequencies. These filter frequencies are distributed according to the
Greenwood distribution (Sridhar D, 2006). The transfer function of the second-order filters
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Figure 2.7: Schematic of CARFAC from Lyon (2017a). The y-components represent the state of
the basilar membrane and the r-components represent the signals sent to the brain.

used in CARFAC is defined by the following equation:

22+ (=2ag + coh)rz+ 12
H(z) = 5 3 (2.2)
z=—=2aprz+r

The denominator of this equation defines the poles which determine the resonance frequen-
cies. The numerator defines the zeros, which are coupled to the poles and cause a steeper
response on the high frequency side. This asymmetry gives control over filter shape and gives
a flat high-frequency asymptote. The CARFAC cascade is organized in a manner similar to that
of the cochlea, with the highest frequencies first due to the cascaded structure. The output of
each filter is progressively transferred to the following resonator, which amplifies the signal
at its resonance frequency and filters out higher frequencies. In CARFAC, OHCs can actively
amplify the signal at the resonance frequency of the corresponding resonator. This is achieved
by modifying the radius of the zeros and poles of the second order filters in the z-plane, which
affects the damping of the resonators and the amplitude of the output signal y, representing
the basilar membrane vibration. The movement of the basilar membrane is detected by the
IHCs, which convert these signals into action potentials (neural activity patterns). The IHC
possess the unique property of acting as half-wave rectifiers, transforming vibrations into
spikes. Further, an AGC model fine-tunes the OHC undamping mechanism to adaptively
adjust based on the output of the IHC. The AGC blocks are connected throughout the cascade
of asymmetric resonators.

In the electronics field, a stable and scalable implementation of the CARFAC model has been
realized on an Field Programmable Gate Array (FPGA) by Xu et al. (2018) for cochlear modelling
purposes.
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Hopf oscillator model

The Hopf oscillator model, originaly proposed by Hopf (1942) has been further developed
and adapted as a suitable model for cochlear applications by Martin and Hudspeth (1999).
This model employs a mathematical approach that focuses on capturing the intricate inner
behaviour of the interactions, rather than merely simulating the output. The two key features
of this model are the cube root compression and its ability to exhibit a Hopf bifurcation, which
captures the active amplification and damping mechanisms. The complexity of this model
makes it an attractive choice for modeling cochlear dynamics in this thesis. The mathematical
behaviour will be further detailed in Chapter 4.

Furthermore, an electronic implementation a Hopf reservoir, under the form of an electronic
circuit has been proposed for sound recognition (Shougat et al., 2021, 2023), which shows
interesting results for hardware implementations.

2.3 ASR

2.3.1 Evolution of ASR
The first ASR system to Hidden Markov Models (HMMs)

ASR began in the mid-20th century with analog devices capable of recognizing a limited set
of words. One of the first prototypes, called Audrey, was developed by Bell Labs and focused
on automatic digit recognition. As research progressed, ASR systems started handling larger
vocabularies through techniques like template matching. In the 1980s, a stochastic approach
gained popularity, with HMMs becoming widely adopted for ASR (Rabiner, 1989). HMMs
use states to represent entities such as phonemes, with probabilistic transitions allowing
for movement between nodes or staying in the same node. An advancement in HMMs was
the integration of Gaussian Mixture Models (GMMs) into the nodes, enhancing robustness
and enabling the models to better capture complex distributions in acoustic features. This
approach required predefined features to be computed for HMM nodes, based on known
speech features (Rabiner, 1989). Alongside GMM-HMM models, the combination of multilayer
perceptrons (MLPs) with HMMs also demonstrated strong performance in ASR (Morgan &
Bourlard, 1990).

Gradient descent mechanism

Parallel to the ASR first steps, neural networks began in the mid-20th century with the first
MLP. This consisted of layers of neurons computing linear combinations of input units and
followed by non-linear activation functions. Combined with a gradient descent mechanism,
those first networks were able to be trained. The gradient descent mechanism keeps track
of the path through which the signal has progressed when a batch of examples has been
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forwarded through the system, the difference between the real and predicted targetsknown
as the loss. This loss is then backpropagated through the model and at every node, the
gradient with respect to the obtained loss is computed. The gradient corresponds to the first
order derivative of a given node that gives the direction towards which the value of the node
should evolve. A learning rate then defines the size of the step in the gradient direction. By
repeating this operation several times, the model learns node values that predict the right
targets. Several loss computation mechanisms and different learning rate schedulers exist,
allowing for adjustments to be made to the learning rate and optimization of the subsequent
loss curve according to the specific model and task requirements.

Deep Learning models

Around 2010, several studies demonstrated that the performance of neural networks outper-
formed that of HMM based models (G. E. Dahl et al., 2011; Pan et al., 2012; Seide et al., 2011a).
With the advent of deep neural networks, precomputed nodes are no longer necessary; instead,
stochastic gradient descent allows the system to learn the essential characteristics needed
for ASR through training (Amari, 1993). Initially, models used precomputed features such
as Mel-frequency cepstral coefficients (MFCCs) as input. However, later research proposed
end-to-end approaches that enabled the system to define its own features (Hinton et al., 2012;
Palaz et al., 2013b). To train these models, large datasets are required, typically consisting of
raw speech or preprocessed speech features accompanied by their corresponding transcrip-
tions. The training process typically relies on an encoder-decoder structure that learns to
recognize individual units of language, such as letters, phonemes, words, or other linguistic
elements from raw speech or speech features. This approach is known as supervised learning,
where every input sample has a corresponding target transcription.

Self-supervised models

Self-supervised learning was introduced by Collobert and Weston (2008) in natural language
processing (NLP), and allows models to learn without labeled data. Unlike supervised learning,
which requires labeled data and can be time-consuming to assign labels, self-supervised
learning uses large amounts of unlabeled data to train the model.

Self-supervised models typically follow a two-stage training procedure:

* Pre-training: This is a resource-intensive process that creates a large pre-trained model
creating orthogonal representations in a latent space. The training is based on a similar-
ity measure between signals.

* Fine-tuning: The pre-trained model is then adapted to a specific task using smaller
amounts of labeled or unlabeled data.

Self-supervised learning became particularly popular for transformer-based models. Trans-
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formers have shown to outperform classical deep learning modules such as recurrent neural
networks, MLP and convolutional neural networks (CNNs) in a number of tasks such as NLP
and increasingly in ASR and vision. Its mechanism is based on attention, which captures
through keys, queries and values the structure of the different types of input (Vaswani et al.,
2017). This structure is more robust, but is also more computationally demanding.

2.3.2 ASRstructure

Latent —— Forward pass
,,,,,,,,, - Gradient back-
=

| Feature propagation
i extraction !
e ‘ words,
speech Decoder phonemes,
syllables

Figure 2.8: Structure of ASR system.

An ASR system typically consists of two main components: a speech or feature encoder and
text decoder as illustrated in Figure 2.8. The encoder takes speech or speech features as input
and maps them to a lower-dimensional latent space. The latent-space is a N-dimensional
space in which speech features corresponding to the same target are grouped together. The
decoder links the latent space representations to the different targets.

In self-supervised model, only the encoder is trained during the pretraining phase. This
pretraining creates orthogonal representations for different inputs based on a predictive
algorithm. During finetuning the decoder is added and groups the different subgroups corre-
sponding to same word entities together.

2.3.3 Speech components and feature extraction

Speech Features

For years, physiology has inspired scientists to improve technology. Two techniques have been
widely used for feature extraction in ASR since the 1980s: MFCCs (Davis & Mermelstein, 1980)
and Perceptual Linear Prediction (PLP) analysis (Hermansky, 1990a).

MFCCs are a type of cepstral coefficient equally distributed on a mel-scale. A cepstrum is
anon-linear transform with decorrelating properties first introduced by Bogert (1963). The
mathematical equation of a cepstrum is described by following equation:

Cp= |9‘1{1og(|9{f(t)}|2)}(2 2.3)
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Figure 2.9: Frequency rates of different speech components.

Where f(#) represents the signal and & represents the Fourier transform. The Mel scale is a
subjective scale for the measurement of the pitch (Stevens et al., 1937).

The PLP analysis of speech estimates the auditory spectrum using the critical-band spectral
resolution (by using the Bark scale transformation (J. O. Smith & Abel, 1999)), the equal-
loudness curve (determining the sensitivity of hearing at different frequencies) (Robinson &
Dadson, 1956) and the intensity-loudness power law (the non-linear relation between intensity
and sound that can be estimated with a cubic root) (Stevens & Galanter, 1957). The acoustic
model is approximated by an auto-regressive all-pole model (Hermansky, 1990a).

Speech components

Speech can be divided into different speech components at different frequency rates, as
illustrated in Figure 2.9. The input to an ASR system can either be raw speech or preprocessed
speech features. The output of the ASR system can be one of several options, including
phonemes, syllabels or words. For ASR applications, speech is typically sampled at 16 kHz.
Features are computed at a specific rate; standard MFCCs are computed out of a 25 ms window
every 10 ms, which corresponds to the frame rate of 100Hz. Phonemes are typically sampled
at a rate of 10 Hz, syllables around 4-6 Hz and words around 2 Hz.

The ASR system needs to be designed with these different sampling rates in mind.

2.3.4 Databases

Several databases are used in this thesis, adapted to the different experiments. The main
datasets used are CHiME4, TIMIT, Librispeech and TIDIGITS, which are broadly used speech
datasets for ASR. Besides for tasks that imply noise addition, we use the TIMIT dataset com-
bined with the QUT-noise dataset with different SNR levels.
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Figure 2.10: Summary of the different noises of the CHiME4 dataset.

CHiME4

The CHiME4 (Vincent et al., 2016) dataset is a noisy speech dataset based on the Wall Street
Journal (WSJ) dataset (Paul & Baker, 1992). The clean part of the data consists of a combination
of WSJO and WSJ1, which are well-established benchmarks for ASR. The noisy part of the
dataset are divided in two parts: a simulated portion and a real portion. The simulated portion
is created by artificially mixing clean utterances with noisy background noise, while the real
portion consists of speech recordings made in different noisy environments. The noises used
in this dataset for training, validation and testing are drawn from daily life environments
such as buses, cafés, streets and pedestrian areas. The same utterances are recorded in
multiple conditions to create a diverse dataset. A 20-second excerpt of each noise type
used for simulation is shown in Figure 2.10. The bus noise is characterized by a persistent
low-frequency component below 500 Hz, corresponding to the engine background noise.
Similarly, the street noise contains low-frequency energy in the same range, primarily due
to passing vehicles. In both environments, additional transient events, babble noise, and
various everyday acoustic interferences are present. In contrast, the café and pedestrian
area environments exhibit less low-frequency energy and are predominantly characterized by
babble noise produced by surrounding individuals in close proximity to the speaker.

The data distribution is summarized in Table 2.1. In this thesis, we use the CHiME dataset
to evaluate the modular capacity of a conformer-based network on different types of noisy
speech in chapter 3.
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Table 2.1: CHiME4 dataset summary with the number of utterances per subset. The noisy
datasets contain the four types of noisy environments: bus, café, street and pedestrian area.

clean noisysimu noisyreal total

train 37,416 42,828 9,600 89,844
dev - 1,640 1,640 3,280
eval 1,206 1,320 1,320 3,846

TIMIT

The TIMIT dataset (Garofolo, 1993) is a well-established, manually annotated and relatively
small dataset widely used in the ASR field used for phone recognition research (Lopes &
Perdigao, 2011). The dataset contains 6300 utterances, each consisting of 10 sentences spoken
by each of the 630 speakers recorded at a sampling rate 16kHz. The speakers are from eight
major dialect regions of the US. About 33% of the speakers are female and 67% are males.
Despite its relatively small size, TIMIT has been instrumental in supporting research into ASR
systems for over three decades. This dataset is suitable for smaller-scale experiments aimed at
developing or validating models. This dataset is also more suited for supervised learning. In
this thesis, we use the TIMIT dataset on small ASR experiment notably in chapters 5 and 7.

Librispeech

The Librispeech dataset (Panayotov et al., 2015) is a widely used English dataset consisting
of 1000 hours of audio recorded at a sampling rate of 16kHz. The data is derived from read
LibriVox’s audiobooks, with transcripts provided by the corresponding book texts. The dataset
is divided into several subsets. The ’clean’ subsets are particularly notable for their low Word
Error Rates (WER) and closer to American English. The WER is the difference between the
predicted text and transcripted text. In contrast, the 'others’ subsets exhibit higher WER
in preliminary ASR tests conducted by the authors. Librispeech is commonly used in the
speech community for large-scale experiments and self-supervised learning tasks that require
a substantial amount of data. The dataset’s diverse range of speakers, accents, and speaking
styles makes it an interesting choice for researchers seeking to develop or evaluate ASR systems.
In this thesis, we use Librispeech for experiments that use transformer-based pretrained
models in chapter 6.

Table 2.2: Summary of LibriSpeech dataset

Subset h min./spk f m tot. exp.
dev-clean 5.4 8 20 20 40  Evaluation
dev-other 5.3 10 16 17 33 Validation
train-100  100.1 25 125 126 251 SSand FT
train-360  263.6 25 439 482 921 SS
train-500 496.7 30 564 602 1166 SS
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TIDIGITS

The TIDIGITS dataset (Leonard & Doddington, 1993) is a small dataset containing english
spoken digit sequences. In this thesis, we use some utterances of TIDIGITS to illustrate the
output of cochlear models on small spoken sequences.

QUT-NOISE

The QUT-NOISE corpus (Dean et al., 2010) is a background-noise dataset consisting of 20
recordings of 30 minutes of noise, recorded in diverse daily living environments: home, café,
street, car, and reverberation areas. In this thesis, we use this corpus mixed with the TIMIT
dataset to assess the noise robustness of our models trained on the TIMIT dataset.

2.3.5 Metric

In ASR, the primary metric used to evaluate the performance of a model is the Word Error Rate
(WER) or Phone Error Rate (PER). WER measures the percentage of words in an utterance that
are correctly predicted by an ASR system. It quantifies the difference between the transcrip-
tions and the ground truth by dividing the sum of insertions (inserted words), substitutions
(incorrectly replaced words) and deletions (missing words) by the total amount of words. A
lower WER indicates a better performance of the model to transcribe spoken language. PER is
a similar metric, but instead of the word-level, the percentage of error is based on phones.

WER is a standard benchmark used to objectively compare ASR systems, assess improvements
due to updates and evaluate the performance on different datasets or different acoustic
conditions.
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The concept of modularity in neural networks refers to a design principle that divides a model
into several self-contained modules, each specialised for a specific action or with a specific
structure. It is a concept that came up 30 years ago in neural networks, but recently found
an interesting application area with the advent of large self-supervised pretrained models.
The computation intensity of those models make it quite demanding resource-wise to train
everything from scratch. By using modularity, several structures can be combined to solve
complex problems more efficiently than big monolithic blocs.

Modularity also reflects the way biological systems such as the human neural network are
built. Different regions of the auditory system specialize in distinct tasks: the cochlea extracts
features, the auditory pathway refines these features and downsamples the signal, and the
auditory cortex further processes the signal into interpretable neural signals be they words,
syllables or phonemes. The main advantages of modularity are efficiency by decoupling a
task in smaller modules, interpretability through specialized modules, transfer learning by
importing one or more pretrained modules and scalability.

In the context of deep neural networks, modularity can be applied in three different ways:

e Architectural Modularity: Neural networks can be divided into subnetworks, focussing
on specific functions. The inner architecture of different modules (CNN, recurrent
neural network (RNN), transformers etc.) are chosen in function of the type of task the
subnetwork has to perform. (LeCun et al., 2015)

* Functional Modularity: Inside a neural subnetwork, several modules can be used to
accomplish different tasks. A typical example is multi-task learning. Each module has
its own specialization (for example in ASR, there could be several languages), with the
rest of the network shared. (Pfeiffer et al., 2023)

e Hierarchical modularity: Inside a network, different subnetworks specialize into recog-
nizing specific attributes of the input. For example for speech a first module detects
the activities at different frequencies, a second module combines those information
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at different frequencies to detect phonemes and a last layer combines those phoneme
information to understand words.

In the context of this thesis, modularity is applied to the ASR context introduced in the
background chapter (Chapter 2) as illustrated in Figure 3.1. Notably, hierarchical modularity
is applied with the idea of combining plausible cochlear models with existing deep learning
structures and models. Hierarchical and architectural modularity will be further used in the
chapters 5,6 and 7.

2. Background

4. Driven 7. Driven oscil- _ o Driven oscillator with !
oscillator lator in ASR \  pretrained model !
/ o ST
5. Trainable 6. Trainable filters
filters in ASR with pretrained model

3. Modularity /

Figure 3.1: General overview of the thesis.

This chapter proposes a study done on an industrial internship which investigates more
deeply how the concept of modularity has been used in the literature. This study focusses on
functional modularity. A novel approach of applying a routing mechanism on a conformer-
based system for doing ASR on noisy speech signals is proposed.

The majority of the text in this chapter is under revision, but available on arXiv as:

Coppieters de Gibson, L., Garner, P. N., & Honnet, Pierre-Edouard(2024).An in-
vestigation of modularity for noise robustness in conformer-based ASR. arXiv
e-prints

3.1 Introduction

With the advent of ever larger transformer-based architectures, the necessary computing
power to train and infer with state of the art ASR models keeps increasing. Databases also grow
in size and cover more modalities due to an increasing interest for multimodal and multitask
modeling. This leads to an exponential increase of the number of model parameters (Sevilla
et al., 2022) as well as amount of data required to train these models (Villalobos & Ho, 2022).
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These larger models not only require large computational resources to be trained, they can also
suffer from negative interference and catastrophic forgetting (Ramasesh et al., 2021). Inspired
by biological systems (Sporns & Betzel, 2016), modularity has been applied in machine learning
(ML) models for decades (Jacobs et al., 1991; Jordan & Jacobs, 1994). Recently, the concept
of modularity has become popular again, especially for large models. Modularity can be
introduced at different levels of a model and with different approaches, depending on the
task and model structure (Pfeiffer et al., 2023). A modular structure allows to train only task
related experts of a model instead of the whole model. Irrelevant experts for a given task are
thus not trained, which saves computational power and avoids catastrophic forgetting. In the
ASR field, mixture of experts (MoEs) have been shown to improve accuracy for different tasks
by increasing the model size, while keeping the same computation power (K. Hu et al., 2023;
You et al., 2021, 2022).

This work focuses on introducing modularity in conformer-based ASR models to handle
speech in different types of noise environment. By adding modularity at the conformer block
level, we allow the model to learn different conditions and exploit this information to improve
its performance on both noisy and clean speech. We hypothesize that using different experts
for different noisy types of speech will enhance the ASR performance of each type of noisy
speech. Introducing modularity in the beginning of the model would make the model more
robust to different types of noisy speech with fixed routing. We then explore learned routing,
where we observe similar performance but with a model better suited to handle real-life
situations. We demonstrate the effectiveness of the approach on the task of ASR in noisy
environments. Using different experts for clean and noisy speech outperforms the standard
conformer, however adding more granularity inside the noisy data class by separating the
different types of noise does not improve the performance further. Another finding is that our
modular models tend to be trained faster than the baseline conformer model without experts.

This study first reminds the theory behind modularity and conformers in the Section 3.2. Then
Section 3.3 introduces our proposed method to tackle challenging noise environments for
ASR. In Section 3.4, we report our experiments and findings. We conclude in Section 3.5.

3.2 Background

3.2.1 Modular networks

A modular neural network has three specific components: functional blocks or experts, a
routing mechanism to select the right experts, and an aggregator that combines the outputs of
those experts.

Functional blocks can be implemented in different ways:

* It can be a composition of parameters such as sparse subnetworks, where a small
number of parameters are pruned to be trained for each specific task (Ansell et al., 2021)
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or low-rank modules such as LoRA (E.J. Hu et al., 2021).

¢ It can be obtained through an input composition where the input is concatenated with
specific parameters (X. L. Li & Liang, 2021).

e It can be a function composition where a whole block is duplicated to act as different
experts. (C. G. Rosenbaum, 2020)

A routing mechanism is needed to select an expert. This routing mechanism can either be
fixed if the expert selection is known from the data (for example in multitask learning (Ruder,
2017)), or it can be learned when the routing information is not available. In case of learned
routing, several challenges arise such as module collapse or training stability (C. Rosenbaum
etal., 2019).

3.2.2 Conformer

The conformer architecture, introduced by Gulati et al. (Gulati et al., 2020), is a stack of
conformer blocks. One such block is composed of two feedforward layers (one at the front and
one at the end), one transformer layer and one convolutional layer. By design, it combines the
advantages of both CNNs (T. N. Sainath et al., 2013) and transformers (Vaswani et al., 2017):
CNNs primarily capture local contextual information and dependencies, while self-attention
captures more global context.

3.3 Method

In this section we describe our two main contributions, namely the introduction of fixed
routing and learned routing in the conformer architecture.

3.3.1 Fixed routing

Using a fixed routing mechanism implies knowing the condition in advance. When this is
possible, a simple routing mechanism dictated by an input parameter can be set in place.
This experimental setup gives us two keys: first it shows if using modularity to distinguish
noisy and clean speech enhances the global performance. Second it can be used as pretrained
model for a learned routing mechanism.

We propose to introduce modularity through experts at the conformer block level as illustrated
in Figure 3.2: every expert in a modular layer is a full conformer block. To keep the same
amount of computations between the baseline and the modular approaches, the router
chooses exactly one expert for each utterance. The aggregator then composes the batch in the
right order after the modular layer.
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3.3.2 Learned routing

The information about noise is not always available with the input. In daily situations, one
can be exposed to outside noise or be in a noise free environment, but the model does not
have access to the information. When this is the case, fixed routing cannot be used and the
routing has to be inferred from the input signal.

Expert modules can only start to differentiate when the router has learned a consistent pattern.
This gives two main paths to train a learned router with an ASR model: train everything
together from scratch, or first pretrain the router before integrating it with the ASR.

Training everything together from scratch implies setting up a constraint to diversify the
choice of the router output in the beginning of the training. This is needed to avoid a routing
system that always picks the same expert, which forces the ASR experts to first learn a general
solution, before starting to have a consistent routing.

The use of a pretrained router offers the advantage to be less computationally intensive, but it
requires to create a parallel classification pipeline to pretrain the router. Pretraining the router
avoids this forced diversification when training the ASR. Moreover, one can decide to freeze
the router for some time while training the ASR and to unfreeze and train it jointly with the
ASR in the next phase. In this paper, we used the second approach, illustrated in Figure 3.3.

3.4 Experiments

3.4.1 Dataset

Our experiments are carried out on the CHiME4 dataset presented in section 2.3.4.

3.4.2 Baseline and framework

Our implementation is based on the WeNet framework, an open-source toolkit used for
streaming and non-streaming end-to-end ASR (Yao et al., 2021; B. Zhang et al., 2022). The
baseline model is a 12-layer conformer encoder with a 6-layer transformer decoder. At every
layer of the encoder, the attention module has 4 attention heads. The WER results of the
baseline experiment are summarised in Table 3.1'. Two different decoders are used in the
baseline experiment: a CTC beam search decoder and an attention rescoring decoder. A
CTC Beam Search Decoder is a decoding algorithm used in end-to-end ASR. This method
outputs a probability distribution out of a set of labels (i.e. characters) plus a special blank
symbol () at every time step. The Beam search algorithm keeps track of the top N most
likely word or utterance hypothesis at each time steps to find the most likely transcription
(Graves et al., 2006). The attention rescoring algorithm uses the CTC beam seach decoding

INote that the results reported by the authors on github differ from what we were able to reproduce, especially
for the SE condition.
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algorithm to generate a list of candidate transcriptions. Each transcription is then rescored
using an attention-based decoder, taking into account the context of the sequence and the
language model and picks the candidate transcription with the highes combined score (CTC
and attention) (Chan et al., 2016; S. Kim et al., 2017). For the baseline we report both results,
for the further experiments, we only report the attention rescoring decoder results, due to the
better performance capacity.

Table 3.1: Baseline results: the results are computed for two different decoding methods: 'ctc’
for ctc beam search and ’att’ for attention rescoring. Five subsets are chosen: clean, real dev
(RD), simu dev (SD), real eval (RE) and simu eval (SE) according to table 2.1.

clean RD SD RE SE
ctc 17.73 2091 22.48 30.85 53.66
att. 16.44 19.76 21.63 29.69 52.98

3.4.3 Fixed Routing

In the fixed routing experiment we explored the impact of modularity when using different
numbers of experts and expert layers: The expert choices are:

For two experts, we also vary the number of layers which become modular: we experimented
with 1, 2 and 3 modular layers. In addition, we also test the network behaviour when intro-
ducing the modularity only on the second or third layer rather than on the first layer of the
network. The routing path is appended to the beginning of the input waveform to provide the
router with the domain information.

Results are reported in Table 3.2. There exists an interesting trade-off between the number
of experts that can be trained on specific data and the amount of data that each expert sees
during training. If the data is diversified over the different experts, the more experts, the better
the model will be adapted to that specific type of data. On the other hand if different types of
data are too similar to be differentiated, the more experts, the less data each expert will receive

Table 3.2: Results of fixed routing with attention rescoring decoding method.

experts mod. clean RD SD RE SE
layer

Baseline 16.44 19.76 21.63 29.69 52.98
1 10.02 16.77 19.93 26.28 27.33
1-2 10.43 16.98 19.74 26.22 27.25
1-2-3 10.16 17.99 2030 26.69 28.03
1 1047 18.12 19.63 27.21 27.76
1
2
3

10.30 17.46 19.89 26.82 28.25
10.18 16.99 19.59 26.05 26.85
9.81 16.99 19.63 26.27 26.88

[NCIN \CIS) BRGCUR \CI G \S]
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Table 3.3: Number of utterances in each category for 2 experts

2experts clean noise

train 37416 52428
dev 0 3280
test 1206 2640

Table 3.4: Number of utterances in each category for 3 experts

3experts clean simulated noise real noise

train 37416 42828 9600
dev 0 1640 1640
test 1206 1320 1320

to adapt its weights.

The results show that using modularity at the conformer block level outperforms the baseline
both on clean and noisy speech. For clean speech, we achieve between 36.3% and 40.4%
relative WER reduction, while for noisy speech the improvements lie between 6.1% and 15.1%
for all types of noise except the simulated evaluation test set, where the baseline results differ
from the rest of the results.

This means that specialising one layer to differentiate noise from clean environment enables
the model to handle the two data types within different experts, which improves the general
ASR performance. Going further into the implementation details, the results show that using 2
experts outperforms other settings most of the time on the CHiME4 dataset, which is probably
linked to the trade-off discussed earlier.

3.4.4 Learned routing

The learned routing mechanism is divided into two parts: the router classifier and the ASR
model (see Figure 3.3).

Router classifier

We first train a classifier to predict the target classes, which will become our pretrained router
in the next stage. We opt for a simple architecture which consists of 3 CNN blocks. The goal of
the router classifier is to predict the noise type of an input waveform. Since in the ASR model
the conformer receives the waveform after the feature extraction, the router input can be the
same. The different classes are the same as for our fixed routing experiments. An example for
5 experts is represented on the left side of Figure 3.3.

The confusion matrices obtained for the different classifiers are shown in Figure 3.4. For
each figure, the true classes are given on the x-axis and the prediction is given on the y-axis
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Table 3.5: Number of utterances in each category for 5 experts

5experts clean pedestrianarea bus street café
train 37416 12768 13164 12990 13506
dev 0 820 820 820 820
test 1206 660 660 660 660
Test set 0.8
c c Test set g Clean
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Figure 3.4: Confusion matrices for the different number of experts: (a) for 2 experts, (b) 3
experts and (c) 5 experts. The x-axis represent the type of domain we have at the input and the
y-axis the output of the network.

of the matrix. For two experts (Figure 3.4 (a)), the two classes are clearly distinct. For three
experts (Figure 3.4 (c)) the classifier is not able to make the distinction between real and
simulated speech, but clean speech is clearly distinguished from noisy speech. Finally for five
classes (Figure 3.4 (b)), the classifier is able to distinguish some noises, but there is still some
confusion between the different types of noise. This means that the classifier is not able to
separate the 4 different classes based on speech features. Interestingly, it groups some noises
together: on the one hand '’human activities’ (café and pedestrian area) and on the other hand
‘car noises’ (bus or street area) adds up as noise to the speech signal.

ASR

For the full ASR model with learned routing, the weights of the router classifier are loaded into
the router part of the model (see Figure 3.3). We then did two different experiments: in the
first one, we kept the weights of the router fixed during the whole ASR training, in the second
one we kept the weights of the router fixed for the first five epochs and let the router then free
to train.

The results, reported in Table 3.6, are similar to the ones obtained in the fixed routing experi-
ments. This is due to the use of number of experts corresponding to what this dataset is able
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Table 3.6: Results of learned routing mechanism

experts number clean RD SD RE SE

of
fixed
epochs
Baseline 16.44 19.76 21.63 29.69 52.98
2 80 9.97 17.47 19.93 26.89 28.14
3 80 9.90 16.96 19.46 26.12 26.78
5 80 10.25 17.08 19.63 26.48 27.38
2 5 10.56 17.02 19.34 25.97 26.14
3 5 10.22 17.70 19.34 26.60 27.85
5 5 9.91 17.17 19.66 26.48 26.96
60
—— baseline
551 —— Fixed routing - 2 experts
50 Fixed routing - 3 experts
—— Fixed routing - 5 experts
o 45 1 —— Learned routing - 2 experts
S 40 - —— Learned routing - 3 experts
Learned routing - 5 experts
35 A
30
25 T T : T T T T T T T
0 10 20 30 40 50 60 70 80
epoch

Figure 3.5: Loss function of different experiments: baseline and fixed and learned routing.

to differentiate amongst the different experts after feature extraction.

We then analysed what the router tended to learn when it is free to train. For 2 and 3 experts,
after we unfreeze it, the router tends to transfer all the incoming data to the noise adapted
expert, while for 5 experts the model keeps the different experts separated. The choice of
the 'noise-robust’ expert is probably due to the fact that this expert is trained to handle noisy
speech and easily adapts to less noisy environments, while the other one only adapts to clean
speech.

Further analysing the loss function (see Figure 3.5) shows that using routing helps the model
to converge faster: after approximately 20 epochs, while the baseline experiment takes more
time (about 25-35 epochs). This is reflected in the final model as we take the average of weights
from the best 10 models, based on the validation loss. The final baseline model uses model
checkpoints from epochs between 21 and 54, while for all the models where we introduce
modularity, the final model is the average of checkpoints between the epochs 10 and 35". The

TOne exception was observed for the learned routing with 5 experts, with one outlier checkpoint being epoch
47.
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implication is that we are able to reach better performance in a reduced training time and
therefore less computing power. The loss curve however tends to increase after reaching a
minimum. This can be due to overfitting to the training set or possibly to the dataset that does
only have noisy data to validate the training after each epoch while the half of the training set
consist of clean audio data.

3.5 Conclusion

In this study we examine the effectiveness of modularity on the CHiME4 dataset. We introduce
modularity at the conformer block level and two routing options are explored: fixed and
learned routing.

The fixed routing approach demonstrates that using modularity consistently outperforms the
baseline across all conditions and configurations. However, dividing the data between two
experts yields better results than using three or five. This suggests a trade-off: when input
signals are distinctly different at the point where modularity takes place, using separate experts
for each type improves overall performance. However, if the signals are similar, multiple
experts may end up learning the same task, effectively reducing the data each expert processes.

We explored learned routing via a classifier-based router, which is pretrained before integration
into the ASR system. This classifier shows that noisy speech is more challenging to differentiate
after feature extraction, leading to a final division into two or three experts that distinguish
between clean and noisy speech. This also points that noise distinction better works on
signal-to-noise ratio (SNR) level than on the type of noise.

We also showed that the introduction of modularity allows for faster training, meaning reduced
computational resources.

Future work may explore techniques to use fully learned routing without target classes. This
approach can bring up other distinguishable elements helpful to ASR.
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Hopf oscillator

In this chapter, we further elaborate the more accurate and complex model of the cochlea as
introduced in the background chapter (Chapter 2) as illustrated in figure 4.1. The main goal of
this chapter is to present a broad literature review of oscillator models and to present the prior
work done in order to construct a Hopf module that can be integrated into an ASR structure in
Chapter 7.

2. Background

1
|

4. Driven 7. Driven oscil- o J Driven oscillator with !
oscillator lator in ASR \  pretrained model |
/ o S i
5. Trainable 6. Trainable filters
filters in ASR with pretrained model

3. Modularity /

Figure 4.1: General overview of the thesis.

To a first approximation, the cochlea can be modelled as a filterbank. However, a better
understanding of the underlying biological mechanism rather presents the cochlea as an array
of active amplification oscillators poised at the Hopf bifurcation.

This active amplification mechanism is due to a neural feedback mechanism that actively
amplifies the haircell movements when the acoustic signal amplitude is lower than a given
threshold and damps it down when the amplitude is higher.

This mechanism implies two specific elements:
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¢ There is a cube root compression on the amplitude level between the acoustic amplitude
level and the signal transmitted in the inner ear.

¢ An active adaptation takes place when switching between different input signal ampli-
tude levels.

This mechanism can be modelled by a set of differential equations which can then be inte-
grated into a recurrent module.

This chapter starts with some background information about oscillators and the Hopf mecha-
nism. Firstly, we give a brief overview of the mathematical expression of harmonic oscillator
and the Hopf oscillator is presented with an explanation of the intricacies of the different
parameters. Then, a broad review of the cochlear models based on oscillators in the literature
is presented, highlighting the diversity of formulation that have emerged through different
papers. A 'take-away’ section summarizes the main key points that we want to integrate into
our own model. The bifurcation being an important notion in the Hopf model, a broad review
of the different types of bifurcations is proposed and the understanding of the Hopf oscillator
is detailed. Further, we present a simulation, demonstrating the adaptation capabilities of
an array of oscillators to external signal. A last section details the results of ASR experiments
we did using classical MFCCs and CARFAC features. The main goal of this section is to com-
pare physiologically plausible features incorporating active gain control with classical MFCC
features in terms of performance.

4.1 Background

This section goes into mathematical details of oscillator-based cochlear models in the litera-
ture, skipping this section would not compromise the understanding of the rest of this chapter.
To understand the main elements that we retain from the literature however, subsection 4.1.1
introduces the Hopf oscillator and the implications of a bifurcation in the context of this
oscillator and subsection 4.1.4 provides a good summary of the takeaways of this section.

4.1.1 Types of oscillators

There exist two main expressions of the oscillators in the context of the cochlea : one based
on the general driven harmonic oscillator form and another based on the normal form of the
Hopf bifurcation equation implying a complex form and a cube root non-linearity.

The harmonic oscillator

The harmonic oscillator is the common second order oscillator. A simple harmonic oscillator
(neither damped or driven) results from a combination of the 2nd Newton Law (F = ma) and
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Hooke’s law for a mass on a spring (F = kx).
mi+kx=0 (4.1)

In this equation, m corresponds to the mass of an oscillating object, x is its position and k is
the stiffness, a constant related to the spring. In real-world applications, oscillators are often
damped or driven. Mathematically, the damping behaviour can be expressed by adding a
friction component to equation 4.1. This component is proportional to the velocity x and
multiplied by a viscous damping coefficient 4. Coupled to an external force F(¢), oscillators
can also be driven.

mi+ hx+kx=F(t) 4.2)

Hopf bifurcation

The Hopf bifurcation arises from an oscillator function that naturally has two types of regime:
a damping regime and an active amplification regime. The point where the oscillator switches
from one regime to the other is called the bifurcation point. The normal form of the Hopf
oscillator is given by the following differential equation:

z=2z(a+b|z|?) (4.3)

The variables z, a and b are complex numbers and can be rewritten as z = ret? a= U+ woi
and b = B + i’y where 3 represents the first Lyapunov coefficient. This coefficient should be

negative to have stable solutions for any real part of a. Equation 4.3 can be written as:
e +ifre'® = reie(p+woi+(,6+ iy)r?) (4.4)

Separating the real and imaginary part, we get two differential equations, this system of
equations is the normal form of the complex Hopf oscillator model used throughout this
thesis.

{ F=r(u+pr?)

. 4.5
0=wg+yr? (45

The stable oscillating solution is obtained by setting i = 0. The oscillator stops any oscillation
(r =0) or converges to a stable limit cycle with a fixed amplitude (r = +,/ %). For a negative
value for §, the regimes will depend on the value of u (see Figure 4.2).

* 1 < 0: the equation has one solution: a stable fixed point in 0, oscillations will tend
towards 0

* 1> 0: the equations has 3 solutions: one unstable fixed point in 0 and 2 stable solutions
in+,/ %“ If we consider the radius as being strictly positive, the the oscillator will tend
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towards a stable limit cycle with a radius equal to %u

The point where the solution switches from a single stable point to a stable limit cycle is
called the bifurcation point. This bifurcation point is the limit between an active amplification

mode (stable limit cycle) and a damping mode. This bifurcation point is a key concept in
understanding of the working of the cochlea.

-1+

Figure 4.2: Schematic of the solutions of equation 4.5: the radius obtained in function of the
bifurcation parameter (u). The bifurcation occurs at p=0.

In order to facilitate the understanding of the above literature, figures 4.3, 4.4 and 4.5 can help
understand the purpose of active oscillation.
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Figure 4.3: Damping regime

The figures are organized as follows: On the left, the bifurcation plot illustrates the target
amplitude with respect to the bifurcation parameter (y). In the middle, the real part of the
oscillator (x = r cos8) output linked to the bifurcation parameter. On the right the phase
portrait of the response with the nullclines of x and x. The phase portrait represents the
orbits of the oscillator output in the phase space. It turns counterclockwise, and its dynamic is
dictated by the nullclines. Nullclines correspond to the points where the associated derivative
is equal to 0, it is vertically oriented when crossing the x-nullcline and horizontally oriented
when crossing the x-nullcline. The x-nullcline, dependent of the bifurcation parameter will
dictate a damping or amplification regime. The oscillator output evolves towards the target
solution of the bifurcation plot. If the bifurcation parameter is below zero, the amplitude is
damped down. This means that the acoustic input is higher than the threshold. In figure 4.4
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Figure 4.4: Hopf bifurcation regime
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Figure 4.5: Active amplification regime

we are at the bifurcation point. The amplitude is still damped down, but to get to zero we
would need an infinite amount of time. The acoustic input is at the threshold. Finally, in figure
4.5, p is above zero, the amplitude is amplified. This means that the acoustic input is lower
than the threshold, the Hopf mechanism actively tries to amplify the incoming signal.

4.1.2 Cochlear model equations in the literature

There exist several types of differential equations describing the working of the cochlea.
However out of all the proposed mathematical models, two main categories are evident. The
first category proposes to describe the oscillation of the cochlea by means of a harmonic
oscillator. This describes the position of the haircell with respect to its acceleration, velocity
and vibration force (Duke & Julicher, 2008; Gianoli et al., 2017, 2022; Nobili et al., 1998). The
second category places the bifurcation as central in the equation and proposes a complex-
form differential equation. This approach describes the oscillation in function of the radius
and the frequency of the haircell movement. Further some combinations of the two equations
are proposed by some authors by introducing an active amplification force into the harmonic
oscillator equation.

In order to make the reading easier, we changed some variable names of the equations taken
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from the literature in this section to make the notation correspond to the variables introduced
in Section 4.1.1.

Haircell position equation

Fluid-coupled oscillator implementations based on the harmonic oscillator (equation 4.2) are
used in cochlear models to describe oscillations in the cochlea.

Considering an array of oscillator, each oscillator can be described using the harmonic equa-
tion with an index i:

m;X; + hix; + kx; = F; (1) (4.6)

Nobili et al. (1998) proposes to model the cochlea with two oscillator arrays. The first fluid-
coupled harmonic oscillator models the basilar membrane oscillations. Taking the harmonic
oscillator equation (equation 4.6) as baseline, they propose a more complete description in
the physiological sense. The force driven at a specific frequency i, F;(t) is generated by the
acceleration a;(t) of the ossicles in the middle ear when transmitting the sound vibration to
the inner ear. It is transmitted by the cochlear fluid to oscillator i. Which can be written as:

Fi(t) =—-Gias(1) 4.7)

Three terms can be added to the harmonic oscillator equation (4.6):

¢ The hydrodynamic term (Glj X;) represents the force caused by oscillator j transmitted
to oscillator i.

¢ The shear viscosity term (s,- @x;—xi_1— xm)) represents the viscous forces acting on
oscillator i which are influenced by the velocity of the neighbouring oscillators

¢ The force to oppose damping (U;(y;)) which are generated by the fast OHC contractions.

Combining the harmonic oscillator equation (4.6) with those different component leads to
the following equation:

N . .
Z(G{ + mlﬁ;)x, +h;X; + Si(zxi —Xj_1— Xi+1) + Ui (yi) + kx; = —G;as(t) (4.8)
=1

The basilar mebrane movements induce a direct movement of the stereocilia. Through
stereocilia displacements y;, the tectorial membrane forms a second array of oscillators that is
sparsely coupled to the basilar membrane x;. The equations of motion of the second oscillator
can also be written as a harmonic oscillator equation with the force being the coupling to the
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basilar membrane (—C; ;).
ﬁ’tij)i+ljli}'/i+l_cyi=—ci55i (4.9)

Where 711, h;, k and C;represent mass, damping, stiffness and coupling constant respectively.
At resonance, the first and third terms at the left hand side of the above equations cancel. After
time integration, the relation between the hair cell position and basilar membrane velocity
becomes:

yiz=—Zi (4.10)

Therefore, at resonance, the OHC force term Uj;(y;), in the linear approximation, behaves like
a negative viscosity term and undamps cochlear motion.

Gianoli et al. (2017, 2022) propose a modelling of the hair bundle of the OHC by harmonic
oscillator. The force balance on the hair bundle is described as:

Ny .
mppi=—hppx—ksp(x—xsp)— Y F! (4.11)

j=1

With myp the hair bundle’s apparent wet mass, hyp the bundle’s viscous drag coefficient, ksp
the combined stiffness of the stereociliary pivots, N; the number of tip links, x represents the
position of the hair bundle, x and i are it’s first and second order derivatives and xsp stands
for the resting position. For the implementation of the second order equation, (Gianoli et al.,
2022) separates equation 4.11 in two first order equations by setting y = .

{ yz_hHBy_kSP(X—xSP)_Z;-\QIFZ 4.12)

X=y

This way of describing the elongation of the harmonic oscillator is similar in both examples and
this type of equation is mainly used to describe the position of the hair bundle. No bifurcation
is part of those equations. In order to get a bifurcation point, a third-order non-linearity
should be added.

Duke and Jiilicher (2008) also propose a harmonic oscillator system to describe hair bundles.
An active force term F,(x, X) is introduced, which gathers all forces linked to the inner structure
of the hair cells.

mx+ hx=Fs+ F,(x, %) (4.13)

This active force makes the link with the amplification mechanism induced by the outer hair
cells. In all the harmonic oscillator based implementations, an extra term is added to model
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this interaction with the OHC. Those terms are non-linear if they want to capture the cube
root compression mechanism present in the cochlea.

Complex Hopf oscillator equation

The other classical implementation of cochlear models is based on Hopf bifurcation imple-
mentations. This implementation rather focuses on integrating the non-linear aspect of the
cochlea: the active amplification by the OHCs resulting in OAEs when the input signal of the
cochlea is below a given threshold. The literature relates to equations 4.3 and 4.5.

Camalet et al. (2000) introduced the concept of self-tuned Hopf bifurcation as model for the
cochlea. He started of with the basic pitchfork bifurcation equation, writing the variables a
and b as complex variables depending on a tuning parameter p and the frequency w.

fi=a(w, Wz +bw,wlzi1?z +... (4.14)

In this paper, a simple self-tuning equation was proposed to tune the p parameter in function
of the incomming signal:

,u'u AL '
This equation easily tunes the equation towards the bifurcation point and can also head
away from it. This mechanism reflects in a mathematical way the more complex biochemical
processes in the hair cells involving the dynamics of Ca?*-channels and molecular interaction.

Hudspeth et al. (2010b) further develops the equation from Camalet et al. (2000) by explicitly
using a = i — uc — iw, where ¢ stands for the critical value of the Hopf bifurcation (when
U= pc) and wc is the frequency at which the oscillator would naturally oscillate when being in
active amplification mode.

z=—(u—pc —iw)z—bzlz|> + F (4.16)

J. C. Kim and Large (2015) considers a version of the Hopf oscillator equation proposed by
Large et al. (2010) to describe the model of the cochlea. This equation takes higher order terms
into account the interaction between oscillators through a connectivity parameter € which is a
small real number. In this equation f is notated as ; and corresponds to the first Lyapunov
coefficient (I; = ;). For the extra term S, is introduced which is directly related to the second
Lyapunov coefficient (I, = €f32). Those coefficients determine the autonomous behaviour of
the canonical Hopf oscillator: the number of stable solutions and bifurcations.

€Balzl?

. . 2
z:z( +iw+ Pilz|”+
# p 1—elz2

) +F(D) 4.17)
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In order to adapt the frequency range of each oscillator to the non-linear range perception
of frequencies in the cochlea, a frequency-scaling factor f is introduced. High frequency
oscillators have a larger bandwidth than low frequency oscillators.

€Balzl*

T ela + F(p)el“! (4.18)
—€|Z

1. ( LW 2
—z=z|p+i=+p1lzI” +
f f
Considering the polar form this can be divided in the following set of equations disentangling
the radius and frequency of the oscillators by setting z = re’?. The derivation to obtain the
following equation is similar to the development in equation 4.4.

1. 3, €Ber®
=F=ur+ pB1r°+ +—== + Fcosf

{ T P e (4.19)
7

The frequency-scaling is also used by Stoop et al. (2016), who is mainly interested in under-
standing in combination-Tone Laws with the normal Hopf equation form.

Critics, combinations etc.

Some research studies have aimed to bridge the gap between the harmonic oscillator equations
and Hopf bifurcation theory. By exploring intermediate equations, these studies aim to
integrate insights from both paradigms.

Duifhuis (2011) conducted a mathematical analysis and compared simulations of van der Pol,
Rayleigh, and Hopf oscillators. They concluded that while Hopf-bifurcation critical oscillators
cannot model OAEs, van der Pol oscillators are capable of doing so. Furthermore, their study
found that van der Pol oscillators can exhibit chaotic behavior, whereas critical oscillators
produce a stable response. However, their analysis did consider all parameters were fixed.
Considering the bifurcation parameter (u) as trainable dependent on the external signal
amplitude, could enable OAEs within a Hopf bifurcation model, as proposed by Camalet et al.
(2000).

Hudspeth et al. (2010b) proposed a link between the Hopf equation 4.2 and the harmonic
oscillator equation 4.3. Starting from the harmonic oscillator form, a non-linear undamping
force U,, (%,,) is added, which occurs at resonance.

MpXy+ hpiy+knx, + Un (xp) = Fy (4.20)

Up(Xn) = —hLip+ayi’+pnis 4.21)

When considered at the Hopf bifurcation, the combination of those different equations can be
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brought to a general equation of type:
F=ax+b|x|*x (4.22)

Which corresponds to the general Hopf bifurcation equation. By setting:x = xe'“’ if we con-
sider that ¥ and w are not dependent on time. Then a and b would be defined as :

a=ky—muw*+i(h,—h,)oand 123)
b=(4a%w?) ! [k —4muw® +2i (hy - h)) 0] +3i B0 .

This expressions of a and b make the link between the two families of oscillators.

Duke and Jiilicher (2008) also manage to draw a link between the harmonic oscillator im-
plementation and the Hopf oscillator equation. They propose the implementation of the
harmonic oscillator with an active force term f,.

mi=—-Ax—kx+F,+F (4.24)

This active force corresponds to the force obtained by the active amplification mechanism of
Hopf oscillators. Several mathematical expressions of this active force are proposed:

The active force can diminish with amplitude:

F,=(C-Bx)x (4.25)

The active force can diminish with velocity:

F,=(C-Bi*)x (4.26)

The active force can be proportional to the displacement with a given time delay

F,=Cx(t—1) 4.27)

If we consider the inertial effects as negligeable (mX = 0), the stiffness as nonlinear
(k = k(x)) then, if f, evolves as a first-order differential equation, we end up with the
following equation set (the mathematical details are given in appendix A.1:

(1 2
{Ax_ (k—C+Bx*)x+F,+F (4.28)

1F,=—F,—kx
4.1.3 Criticality concept

The Hopf bifurcation relates to the criticality concept, this concept refers to the property of
some complex systems to operate near a critical point (CP) between order and chaos. Self-
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organized criticality was introduced by Bak et al. (1988) which describes how some systems
inherently evolve near this CP.

In physics, critical points are related to phase transitions (Stoop & Gomez, 2022). Typical
examples in nature are the transition phase between liquid-gas phases for liquids, an epidemic
threshold or superconductors. The critical point is the point where a system will be in-between
a diverging and converging state. In the context of the Hopf oscillator, the critical point occurs
when the solution changes from a damping to an active amplification regime.

Systems working near a critical point are characterized by critical exponents, which char-
acterize how a system or physical quantity diverges or vanishes near a critical point. In the
brain this equilibrium is found between excitatory and inhibitory neurons and at the critical
point you can define avalanches of excitatory behaviour, allowing an efficient transmission of
information across different neuron layers.

According to Munoz (2018), life would have evolved around this criticality point. A lot of
physiological elements such as sensory systems, neural connections in the brain, genes and
stem-cells. The main advantages of a critical system are the optimal transmission capacity
(without vanishing or exploding), the optimal information processing, the largest repertoire
for memory storage and the optimal sensitivity and dynamic range to incoming stimuli (at the
critical point, the dynamic range is the most diversified).

There exists a whole zoo of criticality equations, depending on the application (Bedi et al., 2015;
Kinouchi & Copelli, 2006). In this thesis we concentrate on the Hopf bifurcation equation but
understanding that this concept of being poised near the critical point is a common behaviour
in physiological systems.

4.1.4 Take aways for building our model

The mathematical approach that effectively integrates the bifurcation mechanism is the Hopf
equation, which has been shown in several papers to successfully mimic the functioning of
hair cells within the cochlea. From them, two concepts from the literature are also considering
in our model implementation:

1. The frequency scaling introduced in J. C. Kim and Large (2015)

. Gﬁg r5

Fr=pr+pir’ +1
70 Esin6

>+ Fcos0
—er (4.29)

This equation adapts properly to the logarithmic scale of a classic filterbank as shown in
figure 4.6. The oscillator bandwidths are scaled around central frequencies which are
evenly spaced on a logarithmic scale.
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Figure 4.6: Oscillator filterbank after frequency adaptation.

2. The self-tuning parameter introduced by Camalet et al. (2000):

2

e A

p=s ( 5 1) (4.30)
This equation is a simplified version of the real molecular physics that are going on in
the hair cells. It adds a dependency of the bifurcation parameter (u) with the amplitude
of the incoming signal.

4.2 Bifurcations

The cochlea is tuned on the edge of a Hopf bifurcation (Hudspeth et al., 2010b). A bifurcation is
a change in the number of solutions to a differential equation. This section further delves into
different bifurcations in the literature. We show that the oscillators in the cochlea combine
two types of bifurcations.

4.2.1 Fold bifurcation

The fold bifurcation, also called saddle-node bifurcation, is a bifurcation where the solution
consists of two fixed points (a stable and an unstable fixed point) which collide and annihilate
each other at the bifurcation. The bifurcation is induced by the variation of an external force
or constant variable. The typical example of the fold bifurcation is given by equation:

F=—r>+F (4.31)

When varying F, the bifurcation point occurs when F = 0. Figure 4.7 shows how the derivative
evolves in function of F and figure 4.8 illustrates how the stable and unstable solution collide
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Figure 4.7: Evolution or 7 in function of r for =~ Figure 4.8: Schematic of the solutions on
different values of F. The solutions of the  the r-F plane. The stable and unstable null-
differential equation vary between 0,1 and 2 clines are indicated in blue and red respec-
solutions. tively.

when F = 0. The solutions are given by:

F<0 : O (4.32)
F>0 : r=+VF (4.33)

4.2.2 Transcritical bifurcation
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Figure 4.9: Evolution or 7 in function of r for ~ Figure 4.10: Schematic of the solutions on
different values of y. The solutions of the  the r-u plane. The stable and unstable null-
differential equation vary between 1 and 2 clines are indicated in blue and red respec-
solutions. tively.

The transcritical bifurcation is a bifurcation with two fixed points as solution where the stability
between the two fixed points is exchanged at the bifurcation. This bifurcation is induced
when varying the p parameter. The typical example of the transcritical bifurcation is given by
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equation:

F=ur—r?

(4.34)
When varying p, the bifurcation point occurs when p = 0. Figure 4.9 shows how the derivative
evolves in function of p and figure 4.10 illustrates how the stable and unstable solution
exchange their stability at i = 0. The solutions are:

u<0 : r=ur=0 (4.35)
u=0 : r=0 (4.36)
u>0 : r=0r=pn (4.37)

4.2.3 Pitchfork bifurcation

r = stable solution
= Unstable solution

=

A

A A A A

Figure 4.11: Evolution or 7 in function of r ~ Figure 4.12: Schematic of the solutions on
for different values of u. The solutions ofthe  the r-u plane. The stable and unstable null-
differential equation vary between 1 and 3  clines are indicated in blue and red respec-
solutions. tively.

The pitchfork bifurcation is a bifurcation with up to three fixed points as solution. This
type of bifurcation combines the phenomena of the fold and transcritical bifurcations. At
the bifurcation point, two solutions collide going from three to one solution, and the stable
solution changes from stable to unstable. The typical example of the pitchfork bifurcation is
given by the following equation:

=13 (4.38)

When varying y, the bifurcation point occurs when p = 0. Figure 4.11 shows how the derivative
evolves in function of u and figure 4.12 illustrates how the stable and unstable solution collide
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at the bifurcation. The solutions are given by:

u<0 : r=0 (4.39)
u=0 : r=0 (4.40)
u>0 : r=0,r=+/ (4.41)

4.2.4 Hysteresis bifuration

— 7
r = stable solution
= Unstable solution
l l ? 1;’#-—}-—'—-
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Figure 4.13: Evolution or 7 in function of r ~ Figure 4.14: Schematic of the solutions on
for different values of F. The solutions of the  the r-F plane. The stable and unstable null-
differential equation vary between 1,2 and 3 clines are indicated in blue and red respec-
solutions. tively.

The hysteresis bifurcation is a bifurcation with up to three solutions. It mathematically
combines the fold and transcritical bifurcations by adding the u and F parameters. However,
only the F parameter is considered as a varying parameter. The hysteresis bifurcation has two
bifurcation points: at each of these points, a stable and unstable solution collide or appear,
while the third solution continues. The typical example of the hysteresis bifurcation is given
by equation:

f=F+ur—r (4.42)
The solutions are defined by an inverted third-order equation, which is mathematically dif-
ficult to invert. Figure 4.13 shows how the derivative evolves in function of F and figure
4.14 illustrates how the stable and unstable solutions collide at the two bifurcation points. A

bifurcation occurs only when p > 0, switching from one solution to three, so the following
categories can be drawn:

e If u < 0: one fixed point, for the whole range of r (there is no bifurcation)
e Ifu>0:
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- r <-—,/fi:one stable fixed point
— r >,/ : one stable fixed point

- —VE<r<,/u:two stable fixed points and one unstable fixed point

4.2.5 The Hopf oscillator with external input: a combination of hysteresis and
pitchfork bifurcation

The normal form equation of the Hopf bifurcation mechanism (equation 4.3, correspond to the
pitchfork bifurcation equations. As shown in the figures, the Hopf mechanism is dependent of
the bifurcation parameter (1) tuning that dictates whether the Hopf mechanism is in damping
or amplification mode. Nevertheless, in the context of cochlear modelling, an additional term
F representing the acoustic input is added to the equation. This variable not only changes over
time but also directly impacts the value of y. Adding this term also adds a second bifurcation
mechanism: the hysteresis bifurcation. The understanding of the Hopf oscillator combined
with an external signal as a combination of two bifurcation has, up to our knowledge, not been
previously reported. The corresponding bifurcation equation is written as:

dr_

T =FruE)r- r (4.43)

This equation thus combines the dynamics of the pitchfork and the hysteresis bifurcation,
presenting a more complex behaviour.

Intuitively, this dependence between F and p in equation 4.43 would lead to a behaviour
similar to that depicted in Figure 4.15. The system would tend to choose the solution with
r >0, as it would dampen high-amplitude signals and amplify low-amplitude signals, which is
consistent with the expected behaviour of a cochlear model.

Nz
S\

Figure 4.15: Schematic of the cochlear model bifurcation mechanism for several input signal
amplitudes.

The impact of the pitchfork bifurcation is present in the signal curve, but when focusing on the
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solutions of the differential equation, the dominant bifurcation type is a hysteresis bifurcation.
An interesting point of this graph is that we go from a large amplitude range on the y-axis to a
much smaller amplitude range on the x-axis. This compression is beneficial because it allows
the human ear to capture a wide range of sound amplitudes.

4.3 Simulation of oscillators

This section delves into the simulation of an array of oscillators, with the primary objective
being to demonstrate the functionality of the oscillators at various stages of building an array
that takes a speech signal as input. The equations to build the oscillators come from Biswas et
al. (2020), who give a large overview of the oscillator capacities. We use this array of oscillator
to verify its ability to capture speech input and draw some conclusions to build our own
oscillator module.

First, we showcase the operation of a single oscillator, followed by the construction of an array
of coupled oscillators. We then test their behaviour using both a sum of sinusoids and an
actual audio signal.

4.3.1 Asingle oscillator

For a single oscillator experiment, we use the Hopf oscillator equation combined with an
external signal F(#), which is a simple sine wave.

z = re't (4.44)
z = z(u+iw+Plzl*) + F(1) (4.45)
F(t) = Acos(wot+¢) (4.46)

Where:

* r: The radius of the oscillator
* w: The inner frequency of the oscillator

* wg : The frequency of the external signal

F(t) : The external signal
e u: The bifurcation parameter (fixed in these simulations

* f: The first Lyapunov coefficient, determines the stability of the system. It should be
smaller than zero.
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To enable the oscillator to adapt to an external signal in terms of frequency, a differential
equation acting on the frequency is added.

w=—-F(t)cos(wt) (4.47)

This adaptation is illustrated in figures 4.16 and 4.17. The oscillator begins at 40Hz and adapts
towards the input frequency, as shown in figure 4.17. Notably, the oscillator can adapt both
to the frequency and phase of the input signal. This adaptive behaviour is crucial for the
cochlear model, as it enables the OHC to adjust their response to match the basilar membrane
movement.

—— oscillator signal — oOscillator signal —— Oscillator signal
External signal External signal External signal

: f\/\/\/\/ AN NN

VEAVAVAVA T VAVAVAVAY

T T T T -2 T T T T -2 T T T T
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Figure 4.16: Adaptation of an oscillator to an external signal at different time steps.
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Figure 4.17: Adaptation of an oscillator’s frequency w (blue line) to the frequency of an external
signal wg (orange line).

4.3.2 Multiple oscillators

Oscillator equations

Since the OHCs are coupled to the other closely situated OHCs on the basilar membrane
and the stereocilia are sparcely coupled through the tectorial membrane, we build an array
that takes into account a certain coupling between the oscillators. Each oscillator z; has its
own Hopf bifurcation mechanism, a coupling term from the other oscillators, and an external
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signal (Biswas et al., 2020).

0 ext. signal

) ) ) N il o ——
Zi = zi(u+iw;+Plzil9)+ E Ajje i z,' + F(1) (4.48)
h ’ i

oscillator i
coupling with other osc.

where z; is a complex signal that can be decomposed in r;e’%". The equation for each oscillator
4.48 can be separated into two functions, one expressing the radius and the other expressing
the phase. This results in:

. . U o 0ij 0; 0;
Foo= nilprpriye Y Ay cos(wi(—-+ =L - =L})+ F(r)cos(0)) (4.49)
iFi wiwj O 0
0; = w;+ Z Aij]—sin(a),-( vy —l))— ( )sin(H,-) (4.50)
ji#j ri wiwj wj w; ri

The parameters w, ¢p and A of this equation can be made trainable. These parameters repre-
sent, respectively, the oscillator frequency, the phase difference between the different oscil-
lators and the interaction weight between the different oscillators. The weight between the
oscillators A is kept fixed, while the other parameters are adjustable.

Wi = -nee(d)sin@;) 4.51)
-
a)]rlrj

ij
Aij = 0 (4.53)

) (4.52)

=
=
.
Z
|
2.
=
—_——
&

The external signal and a parameter

To enable the array of oscillators to learn the incoming signal, we introduce a retroactive
system that adjusts the oscillators based on the error between the reconstructed and actual
signals e(?).

The difference between the incoming signal F(#) and the reconstructed signal P(¢) is computed
as the error e(t). This error is then fed into the oscillators to update their parameters in an
adaptive manner.

53



Chapter 4 Hopf oscillator

P(1)

N
Z ra;cos(8;) (4.54)

e(r) D(t) - P(¥) (4.55)

The parameter «; learns the amplitudes at different frequencies. Its computation is based on
the radius r; and phase 8; of each oscillator and remaining error e(t). Further, a learning rate
7n; controls how quick the oscillators adapt to the incoming signal. The update rule for «a; is
given by:

a; = mnge()r;isin(0;) (4.56)

The Euler step function

Hopf oscillators can be modelled using differential equations, which can be implemented in
various ways depending on whether we are working with continuous or discrete signals.

For a continuous implementation, classical ordinary differential equations solvers have a
significant limitation: they cannot directly incorporate an external as an argument.

For a discrete-time implementation, we can use the Euler step function, which is given by:

ftir) = f) + fl(e)dre (4.57)

A manual implementation of the Euler function is a simple yet effective method that enables
the integration of an external signal, such as an audio input. The Euler step shares similarities
with an RNN network, commonly used in signal processing applications.

Further, more advanced methods such as the Runge-Kutta method provide a higher accuracy,
but are computationally intensive. Considering the application to an ASR system, the Euler
step seems like a suitable compromise between accuracy and computational requirements.

4.3.3 Experiment on an artificially built signal

A first experiment analyses how oscillators adapt to signals constructed out of a sum of
sine waves. The initial experiment uses as many sine waves as there are oscillators, testing
whether the oscillators can successfully recreate the signal. The second experiment uses
more oscillators than necessary to reconstruct signals, analysing how oscillators interact to
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Figure 4.18: Training 4 oscillators on a signal composed out of 4 components with correspond-
ing frequencies.

reconstruct signals when not all oscillators are needed.

Adapting N oscillators to a signal built out of N components

The first experiment consists in training four oscillators on an external built signal composed
of four summed sine waves. This setup is done twice: once with the signal frequencies
corresponding to the oscillator initial frequencies and again where signals are initialised to
other frequencies. The goal of this experiment is to study how oscillators adapt in a presence
of multiple oscillators and to compare the convergence time at various frequencies. The signal
construction is given by following equation:

N
F(t) = ) Ajcos(w;t+¢;) (4.58)

(4.59)

This experiment’s results are presented in Figures 4.18 and 4.19. The figures are composed of
the following graphs:

* A graph of the external signal F(t), the reconstructed signal P(t) and the difference
e(t)=F(t)—-P(1).

* A second plot shows the a parameter adaptation, which illustrates the adjustment of
the different parameters to the input signal.

The third plot shows how the frequencies of the different oscillators adapt according to
the different components of the input signal.

* The last plot shows the contribution of each oscillator in a two-dimensional space. This
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Figure 4.19: Training 4 oscillators on a signal composed out of 4 components with non-
corresponding frequencies.

representation is particularly useful when there are many oscillators, as it provides a
clearer overview of which ones are actively contributing to the signal reconstruction.

It is interesting to note that the oscillators tend to adapt at the same speed to incoming signals
when their frequencies match those of the signal components. In contrast when the input
signal does not match the central frequency of the oscillators, for an equivalent difference in
frequency, lower frequency oscillators seem to adapt more quickly than higher frequency.

Adapting M > N oscillators to a signal composed out of N components

The human ear is composed of a large array of oscillators, therefore we need an equivalent
model using multiple Hopf oscillators to approach cochlear modelling. To do this, we increase
the number of oscillators while keeping an input signal composed of the sum of four sine
waves.

The main goal of this experiment is to analyse how an array of coupled oscillators adjust to
an input signal. In a first experiment we double the amount of oscillators and in a second
experiment we increase the amount of oscillators to 40.

In the case of eight oscillators (as shown in Figure 4.20), the oscillators are able to select four
oscillators which are the closest to the signal frequencies and adapt accordingly. In the case of
40 oscillators (as shown in Figure 4.21), the repartition of the oscillators as it can be seen in the
second plot is more chaotic. Since the oscillators are able to move, several oscillators try to
adjust to the input signal. However, on the last plot, we can see four distinct lines representing
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Figure 4.20: 8 oscillators and 4 components, the 4 frequencies are captured by four oscillators
while the four others stand quiet.

the original sine waves that make up the input signal. Some of these lines are thicker because
multiple oscillators try to adjust to the corresponding frequency component.

4.3.4 Experimenton an audio signal

The final experiment involves applying our oscillator model to an actual audio signal from
the TIDIGITS dataset introduced in section 2.3.4. We select a short audio snippet from this
dataset, which contains recordings of spoken digits. For this experiment, we use 100 oscillators
arranged in a mel-spaced array'.

Figure 4.22 shows the adaptation of the oscillators to the audio signal. The reconstructed
signal (on the first plot), shows that the oscillator output doesn’t perfectly match the original
input waveform. This is because our model needs time to adapt to the evolving audio signal as
it continues to play back in real-time. Although some of the oscillators are triggered correctly,
there’s a noticeable delay in their activation, which makes it challenging for them to follow
changes in the speech input. In the second and fourth plot, we see that different oscillators
are activated alternatingly. The selected oscillators correspond to the audio frequencies, but
are not able to keep up with slight changes. Nevertheless, when comparing the oscillator
activation and the mel spectrogram, we clearly see that the oscillators try to adapt to the
incoming signal around the right frequencies.

IThe number of oscillators and their distribution has been chosen arbitrarily for this experiment, in Chapters
5 and 6 we further analyse the number of filters and distribution a system tends to learn when trained with a
gradient descent algorithm.
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Figure 4.21: 40 oscillators and 4 components, the 4 frequencies are clearly appearing on the
image representing the different sine wave of the input signal.
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Figure 4.22: 100 oscillators capturing the information of an audio signal.
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4.3.5 Limitations of the simulation model

Biswas et al. (2020) propose an implementation of the Hopf oscillator model with an adaptive
frequency and coupling factor for the oscillators. The different experiments demonstrate that
Hopf oscillators are able to capture the input signal information, which was the main goal of
these experiments.

However, this initial simulation model has its limitations. Consisting of four nonlinear differ-
ential equations, it is computationally demanding to integrate into a trainable ASR system. On
the one hand, having a large number of oscillators with a trainable frequency provides interest-
ing insights of how oscillators are adapt and move in response to the input signal. Analysing
those movements into an ASR context could reveal valuable information about the optimal
oscillator distribution. On the other hand, the frequency adaptation mechanism has some
limitations. Oscillators that change frequency do not return to their initial positions, which
means they can switch positions over time, which is physiologically not plausible. Additionally,
introducing another differential equation for frequency adaptation increases computational
demands in a deep learning training context.

For the further research we propose two main direction:

» Simplify the cochlear model : We plan to use a simple cochlear model with trainable
frequency and bandwidth to identify the key trends that filters would learn within an
ASR system while maintaining computational realism.

* Adapt the Hopf oscillator model from section 4.3.2: Building on the insights gained
from the simplified cochlear model, we aim to design a Hopf oscillator module with
fixed central frequencies, using the properties learned by trainable filters to determine
the optimal oscillator distribution.

The coupling mechanism in our model effectively compensates for input signal variations
through interactions between oscillators. However, this mechanism is computationally heavy
and time-consuming to execute. To address this challenge in an ASR module context, we
decide to remove the explicit coupling mechanism and instead use the output of individual
oscillators as input to the ASR system through backpropagation.

4.4 Precomputed plausible cochlear features in an ASR system

An interesting avenue of research is analysing the performance of physiologically plausible
cochlear features in a classical ASR system. For this analysis, we utilize the CARFAC model
proposed by Lyon (2017b) to generate features and compare their ASR performance to that
of MFCC features. CARFAC has the main advantage to contain the different structures of the
organ of Corti in its model. Moreover, it integrates an active gain control inspired from the
active amplification mechanism present in the cochlea. Therefore, CARFAC is the closest

59



Chapter 4 Hopf oscillator

model to the Hopf oscillators which can deliver speech features that can be used for ASR
assessment.

CARFAC features are similar to traditional features commonly used in ASR, with the difference
that they are generated by a plausible cochlear model. Evaluating these features in a classical
ASR system provides insight into how well physiologically plausible features integrate with
such systems. To ensure comparability with standard ASR features, the CARFAC features used
as input to the ASR system are computed as follows:

L
yin) =log| Y- (xln-w+i] - hli))? (4.60)
i=0

Where x represents the input signal, L is the length of a 25 ms window, w the 10 ms time shift
for the computation between the different frames and # is a hanning window.

Table 4.1 provides a comparison of the ASR performance between MFCC and CARFAC features
on the TIMIT dataset (Garofolo, 1993). On an MLP network both with and without a context
window and on a Light Gated Recurrent Unit (Li-GRU) which is a recurrent neural network.

MFCC CARFAC
MLP without context window 21.4 23.9
MLP with context window 18.2 20.2
Li-GRU 15.6 16.5

Table 4.1: Phone error rate comparison between MFCC and CARFAC features.

Overall, MFCC features outperform CARFAC features across all configurations. This suggests
that classical ASR systems are less suited to features incorporating cochlear characteristics
compared to MFCC features. However, given the relatively close performance, CARFAC fea-
tures still show their capability to effectively handle ASR tasks.

4.5 Conclusion

The current state-of-the-art understanding of the cochlea is represented by the Hopf oscillator
model, which has been shown to capture some key characteristics of the active amplification
mechanism. The mathematical understanding provided by this model is considered the most
advanced in the literature.

In this chapter, we demonstrated using a simulation model based on Biswas et al. (2020), the
Hopf oscillator model can indeed process audio signals and the activation pattern approxi-
mates the mel spectrogram of the same audio snippet. Nevertheless, there are also limitations
to this approach: the model relies on a series of non-linear differential equations, which makes
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recurrent implementation computationally demanding.

Moreover, our simple cochlear feature experiment revealed that using more physiologically
plausible features for ASR does not necessarily lead to better performance compared to classi-
cal MFCC features. Studying plausible physiological models gives some interesting constraints
to the core ASR model to compute more physiologically realistic speech recognition capacities,
but will, a priori, not provide performance or computationally competitive solutions.

The research in this thesis is further built in two steps:

» Use a filter implementation with trainable filters to derive the main characteristics a
filterbank would learn to determine the amount of filters and the filter distribution
that are induced within an ASR system. Therefore we use both a simple ASR system in
chapter 5 and a self-supervised model in chapter 6.

* Develop a Hopf oscillator module that can be integrated into an ASR system. For
computational reasons, this module will have fixed central frequencies and the coupling
term will be omitted, knowing that further processing in the ASR system is able to
recombine the different oscillator outputs. This work is presented in chapter 7.
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Previous chapters 3 and 4 introduced the concept of modularity and the understanding of the
Hopf oscillator as a mathematical approach to model the cochlea as illustrated in Figure 5.1.
In this chapter, we focus on a first approach that combines a simple ASR system with a simple
cochlear model: a trainable filterbank as part of a downsampling CNN. A filterbank is a first
approximation of a cochlear model and is used for feature extraction in ASR mechanisms.

2. Background

4. Driven 7. Driven oscil- L 7: Driven oscillator with !
oscillator lator in ASR | pretrained model |
/ o ST
5. Trainable 6. Trainable filters
filters in ASR with pretrained model

3. Modularity /

Figure 5.1: General overview of the thesis.

Current ASR systems perform very well from a machine learning perspective, this suggests they
are emulating the human hearing system effectively. In this chapter, we are investigating how
an interpretable filter layer evolves in the context of an ASR training mechanism and analyse
the filter distribution with different constraints. Whilst neither the ASR nor the trainable
filterbank are new, the main goals of this chapter are the following:

* Creating a baseline ASR structure that works with a trainable filterbank. This baseline
structure can serve as a starting point for integrating more complex cochlear models,
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allowing individual modules to be replaced while maintaining overall network function-

ality.

* Defining some hyperparameters such as the filter distribution and the number of filters
required for ASR processing. For time and computational purposes, we define these
hyperparameters by analyzing what trainable filterbanks tend to learn in an ASR context.

Besides, we demonstrate results on interpretability of the resulting filters that were not re-
ported by the original authors and provide signal processing adjustments that improve the
overall performance. The majority of the text in this chapter was originally published as:

Coppieters de Gibson, L., & Garner, P. N. (2022). Low-level physiological impli-
cations of end-to-end learning of speech recognition. Interspeech 2022, pages
749-753. doi:/10.21437/Interspeech.2022-10093

5.1 Introduction

Advances in automatic speech recognition (ASR) have led to performance that is very good in
terms of WER, but perhaps at the expense of our own understanding of how they function.
End-to-end (E2E) techniques (Amodei et al., 2016) have removed the need for knowledge of
the hearing mechanism. Self-supervised training (Schneider et al., 2019) has done the same for
phonetics. More generally, large pre-trained models are available (Babu et al., 2021) removing
the need for even the ML know-how. Given that these systems work well, the question arises:
“what have they learned?” This is difficult to answer because their component parts cannot
readily be mapped to biological ones.

In this study, we are interested in the hearing mechanism. The biological mechanism is quite
well understood (Lyon, 2017a), with important parts being the logarithmic response to both
frequency and amplitude. For many years, filterbank approaches were used as models of
this process (Hermansky, 1990a; Juang & Rabiner, 2005). Whilst many variations have been
studied, the authors’ ad-hoc experience suggests that the details do not lead to big changes.
Recent E2E approaches, however, have clearly demonstrated that training the filterbanks can
be beneficial (Collobert et al., 2016). A (1D) convolution layer in the machine learning field
is a filter in the signal processing field. However, the only validations of which we are aware
tend to show that the component convolutions learn filters with a distribution similar to a mel
filterbank. This in turn tends to reinforce the above question rather than answer it.

In SincNet, Ravanelli et al. (Ravanelli & Bengio, 2018b) constrained the convolutions to be a
sinc (sin(x)/x) form, leading to a rectangular band-pass filter. The filter is then defined by two
trainable parameters: the lower frequency and the bandwidth. Whilst not being biologically
accurate, this approach has a distinct attraction of being interpretable.

In the remainder of this mainly experimental paper, we describe SincNet and a modest frame-
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based experimental scenario. We confirm that SincNet learns a mel filterbank, but also show
that wider bandwidth filters are important for performance. We argue that such filters arise
because of restrictions of standard ML convolutional architectures, and conclude with what
this infers about how to construct a biologically plausible hearing model.

5.2 Background

The study of the human cochlea has interested many researchers since the beginning of the
20th century. Von Békésy laid the groundwork of the research on this topic in 1960 (Von Békésy,
1960).

The basilar membrane in the cochlea can be interpreted as a natural filterbank (Geisler, 1976;
Zwislocki, 1953). Current understanding of the working of the cochlea is that wave propagation
is an active process (De Boer, 1983) and works as an array of Hopf oscillators (Hudspeth et al.,
2010a; Hudspeth, 2008). However, in this study, we limit ourselves to passive analogues. The
scaling of this natural filterbank has been analysed from different points of view, leading
to several scaling (or warping, spacing) approaches. The Greenwood scaling (Sridhar et al.,
2006) is the one that best represents the scaling of the frequency sensitive hair cells in the
cochlea based on the physical distance on the basilar membrane of the hair cells. The mel
scale (Stevens et al., 1937) is based on frequencies judged to be equally spaced in human
perceptual tests. Bark (J. O. Smith & Abel, 1999; Zwicker, 1961) and ERB (equivalent rectangular
bandwidth) (Moore & Glasberg, 1983) are somewhere between mel and Greenwood, but by
contrast are derived from critical bands of hearing.

ASR frontends take either some preprocessed features as input or, more recently, raw input
waveforms. Filterbanks have been the basis of feature extraction (Shannon & Paliwal, 2003)
for many years. As early as 2001, a study (Burget & Hefmansky, 2001) showed that a filterbank
could be obtained from a mathematical derivation of a data driven design. From the resulting
filterbank, about half of the filters were then kept to represent the filterbank motivated by the
fact that those filters were enough to cover the whole frequency range. For the E2E approaches,
CNNs for ASR were introduced by Hinton et al. (Hinton et al., 2012; Palaz et al., 2013b) and
have been used for a decade. Since 2018 some architectures propose a way to combine both
the filterbanks and the E2E architecture, where the filterbanks are trainable and part of the
convolution layers. Zeghidour et al. (Zeghidour et al., 2018) proposed an implementation
with with Gabor filters and Ravanelli et al. (Ravanelli & Bengio, 2018c) with rectangular filters
(SincNet). Other work on trainable filterbanks includes that of Seki et al. (Seki et al., 2019),
who proposed an architecture based on a filter layer combined with a deep neural network
(DNN) where the filter features were directly computed with a log-compression after the filter
layer. In that study the gain, central frequency, bandwidth and filter shape were free to train,
whilst in SincNet only two parameters are free to train, defining the filters in the first layer.
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5.3 Initial Analysis

In an initial, quite basic analysis, the main motivation was to understand what the trainable
filters learn; i.e., which typical hyperparameters (e.g., the number of filters needed to de-
scribe the signal) can be derived from those trainable filter models, which initializations are
appropriate. For this study, we focus on SincNet.

5.3.1 SincNet setup

The SincNet model (Ravanelli & Bengio, 2018c) is built with a 4-layer CNN followed by a 5-layer
DNN. The first layer of the CNN is constructed with trainable filters. Those filters are initialised
as a rectangular bandwidth mel-scale filterbank, an easily computable type of filter in the time
domain. Since the inverse Fourier transform of a rectangular low-pass filter is a sinc function,
a rectangular bandwidth filter can be written as the difference of two low-pass filters as in
equation 5.1.

h[n] =sinc(2x fon) — sinc2x fi n), (5.1)

where h[n] represents a typical filter of the first convolutional layer. The trainable parameters
of the SincNet filters are the lower frequency (f;) and the bandwidth (f; — f1), i.e., linear
combinations of fj and f,. Moreover, in the time domain, filtering a signal is mathematically
equivalent to the convolution of this signal with the filter kernel.

Between the different convolution layers the following operations are used: maxpooling for
downsampling, layernorm, ReLU and dropout before passing through a five-layer DNN. The
input of signal is a raw waveform of 200 ms at 16 kHz. For this research the experiments are
performed on TIMIT (Garofolo, 1993) and to verify that the observations are not database re-
lated, the baseline experiments have been double checked with the mini-Librispeech database
(Panayotov et al., 2015).

5.3.2 Method

The experiments in this chapter are conducted using the pytorch-kaldi framework (Ravanelli
etal., 2019). For the baseline experiment, we use the existing SincNet configuration with 128
filters in the Sinc layer, followed by three convolutional layers. The kernel size is set to 129 for
the Sinc filters, and 5, 5, and 3 for the standard convolutional layers. Max-pooling is applied
after each layer with downsampling sizes of 3, 3, 3, and 2, respectively. We use ReLU as the
activation function and layer normalization for regularization.

The SincNet network takes raw speech as input, with utterances segmented into chunks of
200 ms. The system outputs a probability vector over phoneme classes for each frame at the
encoder level. These predictions are compared to the target labels, and the error between
the predicted and actual labels is used to compute the loss. This loss is then backpropagated

66



Trainable filters Chapter 5

through the network to update the weights of the different layers.

The experiments are conducted on the TIMIT dataset (Garofolo, 1993), which is described
in more detail in Section 2.3.4. The training is fixed to 24 epochs, the different results are
reported on a single run.

5.3.3 Baseline
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Figure 5.2: Evolution of the baseline implementation of SincNet: the grey graph shows the
initial filter distribution and the blue graph shows the filter distribution after training. The
x-axis represents the frequency range and the y-axis the amplitude of the filters. The filters
themselves are represented by their central frequency (dot) and their bandwidth (bar).

In the default implementation, the number of filters is initialised to 128 followed by 3 CNN
layers of 60 filters each. The filter distribution for a similar experiment (60 filters on the
first layer) is illustrated on figure 5.2. We observe that some filters with a comparatively
narrow bandwidth train towards a filterbank. The others train towards wider bandwidth filters.
Concerning the frequency range, the wide-band filters could in principle be reconstructed
with a linear combination of narrow band filters. In this paper, those two types of filters will be
refered to as narrow and wide-band filters. The first part of this study focuses on the narrow
band filters, since a large number of the wide-band filters seem to overfit the data.
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Table 5.1: Filter pruning experiment: numbers of narrow band filters and related PER in
function of the initialization.

Sinc- CNN-layers narrow PER (%)
Layer band

num. filters

filters

128 60 60 60 39 17.1
100 60 60 60 45 17.1
80 60 60 60 38 17.2
60 60 60 60 32 17.4
40 60 60 60 27 17.5
30 60 60 60 24 17.5

Table 5.2: SincNet experiment: compare the performance of the training with the filters fixed
and the filters that are free to train.

fixed filters trained filters

num. filters | loss PER loss PER
40 2.35 18.3 2.31 17.6

30 2.37 18.0 2.33 17.5

5.3.4 Number of filters

Some filters in the first convolutional layer stay narrow-band while the others train towards
wider bandwidths. Table 5.1 gives an overview of the number of narrow band filters as well
as the PER on TIMIT. To determine the number of narrow band filters an ad-hoc pruning
operation has been applied after the filter training: the filters with wide bandwidths covering
parts of the spectrum that are already covered by smaller bandwidth filters are discarded and
only one filter is taken into account around the Nyquist frequency.

The number of filters needed by the model to build a filterbank covering the whole frequency
range can be determined by the number of narrow band filters. From table 5.1 we can deduce
that above 30 filters, the number of narrow-band filters that describe the frequency range is
around 30 - 40 filters, this correlates with the results obtained by Zeghidour (Zeghidour et al.,
2018) using Gabor filters.

We also notice that when the first layer is initialized to 30 or 40 filters (corresponding to the
number of narrow-band filters of other layers), some of those filters still train toward larger
band filters. To analyse whether keeping the initilization to the initial scale performs as well
as the combination of narrow and wide-band filters that the model learns, experiments have
been made on 30 and 40 filters for fixed and non-fixed filters, the results are given in table
5.2. This raises the hypothesis that the wide-band filters are bringing some information not
provided by the narrow band filters.
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Table 5.3: Mean Euclidean distance between narrow bandfilter’s normalized central frequency
distribution and different scalings for different amount of filters (Mel filterbank) and different
initial scalings (30 filters).

Initialized to Compared to

scale - filters Mel Bark ERB Greenwood
Mel - 128 0.0023 0.0047 0.0070 0.0086

Mel - 60 0.0018 0.0044 0.0070 0.0088

Mel - 40 0.0022 0.0039 0.0065 0.0084

Mel - 30 0.0020 0.0043 0.0071 0.0091

Bark - 30 0.0025 0.0037 0.0062 0.0082

ERB - 30 0.0030 0.0029 0.0055 0.0076
Greenwood -30 | 0.0037 0.0068 0.0095 0.0116

5.3.5 Scale after training

Given that there are several frequency warpings that can be justified from a physiological point
of view, it is informative (and simple) to investigate which one is preferred by an E2E system.
It is clear by inspection that it is the narrow band filters that learn the warped filterbank. In
(Agrawal & Ganapathy, 2019) a convolutional variational autoencoder (CVAE) architecture that
learns convolutional filters from raw waveforms using unsupervised learning was proposed.
However, the analysis was only based on the central frequencies learned by those filters, not
the narrow/wide-band distinction. In the present paper the central frequencies of only the
narrow band filters are taken into account.

Experiment

The experiment consisted simply of analysing which filterbank the narrow-band filters trained
above were learning. The experiment was repeated for several models with different initializa-
tions. The metric used to compute the distance between the initial and trained scale is the
mean of the Euclidean distance:

d(x,s) = (5.2)

2|~

The narrow band filters of a filterbank initialized to the mel scale remain mel-scale distributed.
When initializing 30 — 40 filters as starting point to different scalings, other scalings also
train towards mel scale. It follows that the mel scaling is an appropriate choice for filterbank
initializations.
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5.3.6 Corollary

The results so far have reinforced that E2E approaches do indeed learn what has been known
for many years about cochlear models: that 30 to 40 filters are sufficient and that, regardless of
physical measurements, the mel scale is the one that is perceptually important. However, from
figure 5.2 it is clear that SincNet filters train towards a mixture of narrow and wide-band filters.
Moreover from table 5.1, in all the experiments done for this section, the model always learns
wide-band filters. It follows that these wide-band structures are important. Two questions
arise:

1. Can the filters be initialized to wide-band, removing or reducing the need to train them?
2. Why do wide-band filters appear at all given that they are, to a first approximation, just

linear combinations of narrow-band filters?

These are addressed in the following section.

5.4 Wide-band filter analysis
5.4.1 Wide-band initialization

Hypothesis

Wide-band filters are important; it follows that the training can be optimized by initializing
a narrow band filterbank as before and adding wide-band filters in addition of those filters.
This hypothesis can be confirmed by an experiment comprising initializing several frozen
superimposed filterbanks where the wide-band filters are combinations of several narrow
band filters.

Experiment

Figure 5.3 shows the initialization and training of a model built with 4 ranges of filters illus-
trated on the upper plot.

An estimation of the filter distribution after training of this new initialisation is illustrated in
the bottom plot. Four experiments using those filters are summarized in table 5.4:

Using only the narrow band filters gives a final PER of 18%, the combination of narrow and
wide-band filters give for frozen filters a PER of 17.7% and for trained filters a PER of 17.5%. A
combination of narrow and wide-band frozen filters already gives an improvement of 0.3%
PER. The same effect is observed on the loss: the loss for a combination of narrow and wide-
band filters is lower than for only narrow band filters. The new initialization is consequently
closer to what the model learns compared to the baseline initialization. Aside, it is interesting
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Figure 5.3: Filter repartition of superimposed filterbanks before (top plot) and after (bottom
plot) training. In the initialization, the red filterbank is a narrow-band filterbank composed
of 30 filters. The rest are filterbanks of 10, 5 and 1 filters capturing information that could in
principle be reconstructed by a combination of the narrow band filters.

Table 5.4: Summary of experiments using narrow and/or wide-band filters

filters filter type fixed loss  PER
10-5-1 wide yes 2410 18.6%
30 narrow yes 2374 18.0%

30-10-5-1 narrow &wide yes 2335 17.7%
30-10-5-1 narrow & wide no 2.306 17.5%

to notice from figure 5.3 that when trained most of the narrow band filters stay narrow band
and most of the wide-band filters stay wide-band.

Thus the hypothesis is demonstrated. We conclude that it can indeed be beneficial to provide
a mixture of narrow and wide-band filters in an ASR front-end.

5.4.2 Why wide-band filters?

Wide-band filters are in principle linear combinations of several narrow band filters; the
network should be able to learn such a combination trivially, much as we assume it is learning
the energy feature that was commonly used in HMM-based models. The most plausible
explanation for the network’s failure to do so arises from the interaction of harmonic (voiced)
and aperiodic (unvoiced) components. Harmonic components in the same filter add construc-
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tively in the magnitude domain. Aperiodic components, however, add as random variables; the
variances add leading to a magnitude reduction by a factor of v N for N discrete components.
The wider band filters hence tend to favour the voiced components.

In complex narrowband (e.g., Fourier transform based) filters, the squaring operation leads
to both harmonic and aperiodic components adding in the same ratio in the magnitude or
power domain, inhibiting emphasis of the harmonic component. SincNet comprises real-
valued filters; however, the subsequent network architecture can inhibit the behaviour. Each
convolutional layer is followed by four typical operations: max-pooling (downsampling),
layernorm, ReLU (activation function) and dropout that have some influence on the signal. Of
these, the maxpooling function and ReLU activation bring some distortions to the signal.

Hypothesis

It is possible to design a simple experiment to examine whether the above non-linearities in-
hibit simulation of wideband filters. The experiment encompasses three intuitive hypotheses:

1. Using average-pooling instead of maxpooling removes the noise artifacts that are created
by maxpooling on the filtered signal, but since we continue to use a pooling function, aliasing
still happens for the high frequencies. In (Dubey et al., 2019) some experiments showed that
using average pooling reduced the PER but without explaining the possible reasons.

2. Moving the first downsampling factor towards a further layer inhibits downsampling just
after the filtering of the signal, this removes both the effect of aliasing and signal distortion
(although it increases the data size at several convolution layers).

3. By inspection, using a tanh or sigmoid function removes some low frequency artifacts
created by the ReLU function. However, it is well known that the cochlea contains a rectifier
function (De Boer & De Jongh, 1978), implying that ReLU is the right physiologically plausible
solution. It is not clear a-priori which of these properties is more important.

Experiment

Table 5.5 summarises the performance of the experiments implied above after the first con-
volution layer: use average pooling, move the first downsampling factor to a later layer and
check that ReLU is appropriate.

Replacing the max-pooling with average-pooling leads to an improvement in performance.
Displacing the downsampling by one layer, in principle allowing the network to combine
filters, leads to a further improvement. This broadly demonstrates the first two points of our
hypothesis. Changing the activation function to sigmoid deteriorates the PER. This tends to
confirm that the physiologically-implied rectifier — yielding a simple spectral envelope — is
also the right solution in the artificial solution. We note that, even with the best performing
architecture, the system still learns some wide-band filters. This implies that our solution is
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Table 5.5: The effects of modifying the downsampling and pooling schemes. The numbers in
the second column refer to the downsampling rate at each of the pooling operations in the
convolutional layers (1 implies no downsampling).

filters downsampling pooling act. function PER

1st layer
30 3-3-3-2 max RelLU 17.5%
30 3-3-3-2 avg ReLU 17.1%
30 1-3-3-6 - RelLU 16.8%
30 1-3-3-6 - sigmoid 18.1%

not perfect.

5.5 Conclusion

E2E training of filterbanks for ASR leads to filters that resemble a standard filterbank. How-
ever, wider bandwidth filters are learned too, and are important for good ASR performance.
The central frequencies of the narrow-band filters tend to a mel spacing, regardless of the
initialisation. This confirms a well understood mechanism, suggesting that it exists in the
biological system. There appears to be an optimal number of filters — around 30 to 40 — that
also correlates with acknowledged literature.

We suggest that wide-band filters are learned to distinguish voiced (harmonic, coherent)
components from either background noise or unvoiced (aperiodic, stochastic) components.
In principle, a network should be able to learn such wide-band components by combining
narrow-band ones. We argue that this capability is precluded by the (otherwise standard) ML
architecture; in particular the phase will be lost by maxpooling. This argument is borne out by
experiments showing that a structure retaining a more formal down-sampling mechanism
can lead to better performance.

We are not aware of structures in the inner-ear or cochlea that can emulate physical wide-
band filters. However the phase information is retained in our current best understanding of
cochlear operation, retaining also the possibility that such filters are emulated in the auditory
path. Proving this would be difficult, perhaps requiring some combination of selective stimulii
with MRI or EEG sensing. It remains as a hypothesis for the neuroscience community.

Our own future work will focus on more biologically plausible architectures for the cochlea.
This experimental study indicates that any such model will need to retain phase in order for
the subsequent network to take advantage of both narrow-band and wide-band features.
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Trainable filters with self-supervised
pretrained model

Auditory research aims generally to lead to an understanding of physiological processes. By
contrast, the state of the art in ASR (notably recognition) is dominated by large pre-trained
models that are meant to be used as black-boxes. In this chapter we aim to combine state-of-
the-art ASR with a trainable filter model, which have a main interpretability advantage above
classical CNN structures.

As depicted in Figure 6.1, this chapter further builds on Chapter 5, in which we presented
a first study of trainable filters in a simple ASR structure and we analyzed the behaviour of
SincNet filters in a simple ASR network. Further, we use the modularity concept introduced in
chapter 3 to combine the trainable filterbank approach with a pre-trained transformer-based
ASR network .
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Figure 6.1: General overview of the thesis.

The research in chapter 5, showed two types of filters appearing: narrow-band filters and
wide-band filters. For narrow-band filters, we identified those that more or less followed
the conventional expected frequency bands and covered the whole frequency range. These
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narrow-band filters showed characteristics of a typical ASR filterbank: it was composed of 30 to
40 filters, and the scaling of the central frequencies tended to learn is the mel scale. By contrast,
the wide-band filters were filters that learned more unexpected wide-band structures. The
reason for this kind of structure was not clear, especially given that, theoretically, wide-band
structures could be reconstructed by linear combinations of the other filters.

The overall goals of this work are:

* Analyze whether the wide-band structures still appear when SincNet filters are combined
with a large self-supervised network.

¢ Analyze the number of filters that try to capture the network content.

¢ Compare the performance of this interpretable approach with the classic CNN structure
in a self-supervised context.

This work also represents a main implementation challenge. Self-supervised networks are
usually combined with a final layer that learns to combine latent space components into
labels (words, phonemes, speakers, or other task-related labels). This can easily be done by
allowing the gradients to backpropagate only through the backend layer without impacting
the weights of the transformers. For longer fine-tuning, once this backend layer has been
trained, the whole model can train together.

In this work, we show that the hybrid system can be trained and evaluated with various
combinations of fine-tuning and self-supervision. To introduce an interpretable frontend,
we replaced the existing frontend layer, which implies backpropagating through the whole
network to be trained. Using separate optimizers for the different modules, we propose
an approach that is capable of first training the frontend and backend modules and then
fine-tuning the whole ASR system.

We conclude that using a hybrid structure is an appropriate way to proceed in auditory
research, more generally allowing the work to take advantage of larger state-of-the-art models
and databases from which it would not otherwise benefit.

The content of this chapter was originally published in the following work. However, some
background material has been omitted to prevent duplication within the thesis.

Coppieters de Gibson, Louise, and Philip N. Garner. "Training a Filter-Based
Model of the Cochlea in the Context of Pre-Trained Acoustic Models." Acoustics.
Vol. 6. No. 2. MDPI, 2024.
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6.1 Introduction

Since the advent of deep learning, the general field of speech technology has advanced to
a point that would be unrecognizable to proponents working just a decade ago (Hinton et
al., 2012; Seide et al., 2011b). Perhaps the main difference is that the technology is now
driven by the machine learning community rather than the speech processing community.
One visible effect of this change is that physiologically inspired approaches that guided
the topology of hidden Markov models (HMMs, the previous state of the art) have largely
disappeared; they have been replaced by “end-to-end” (E2E) approaches. These in turn learn
the representation that leads to the best performance on the available data, irrespective of
physiological plausibility. For example, HMMs were typically defined at a phoneme level,
but deep architectures have preferred byte-pair encodings (Sennrich et al., 2015) or often
just (orthographic) letters. Spectral features have been replaced by generic outputs from
convolutional layers. The exemplar in these cases is perhaps the “wav2letter” of Collobert et
al. (Collobert et al., 2016).

Self-supervision in particular has been a key recent advance in deep learning, in computer
vision as well as audio processing (Schneider et al., 2019). The “self” supervision arises from
a loss-function that is designed to reveal discriminability at a given granularity of interest.
Crucially, this removes the need for labeled training data, resulting in systems that can be
trained on vast amounts of data. To put this into perspective, the LibriSpeech database of
. (Panayotov et al., 2015) is one of the largest commonly available labeled speech databases at
around 1000 h. By contrast, self supervision is associated with datasets of tens of thousands of
hours; the million hours of (Parthasarathi & Strom, 2019) is roughly a century. The commercial
side of the community has made pre-trained models available (Babu et al., 2021; Ott et al.,
2019). Note that this pre-training implies almost fully trained; it is distinct from the pre-
training that used to be applied to some networks to enable them to respond to conventional
training (G. Dahl et al., 2012). However, subsequent training of the recent models is common
and referred to as fine-tuning.

Given that these recent systems work well, the question arises: “what have they learned?”. This
is difficult to answer because their component parts cannot readily be mapped to biological
ones. A recent study has shown that analogies can be drawn between layers of such systems
and brain function (Millet et al., 2022), suggesting that the two fields are in fact converging.
In general, however, it seems reasonable that in order to make inferences about biological
function, it is necessary to build the deep networks using components that are themselves in-
terpretable. Until quite recently, embedding such components into a deep-learning framework
might have been onerous owing to the need for their being differentiable.

Fortunately, current automatic gradient packages allow networks of arbitrary operations. They
also allow arbitrary parts of a network to be trained. This automatic gradient method is a
technique that automates the calculation of gradients for the model parameters, enabling
stochastic gradient descent computation. It alleviates the need for manual derivation while
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enhancing the efficiency and scalability of these gradient-based algorithms.

The innovation of this work lies in the transformative impact that a self-supervision model
brings to the auditory model. Therefore, we combine a current state-of-the-art pre-trained
model with a trainable filter front-end to infer a physiologically plausible function of the
human auditory apparatus. More specifically, we build upon a previous study (Coppieters
de Gibson & Garner, 2022) where we showed that attempting to do this with a smaller model
led to unexpected results. We show that it is possible to use a state-of-the-art model, and that
doing so mitigates the effects of the smaller model. An interesting related work also analyses
the evolution of a filter-based initialization of a filterbank (Vieting et al., 2023). The main
difference from our approach is that we use SincNet filters, which maintain a rectangular
shape, whereas they adopt a classical CNN-based approach.

Section 6.2 first describes the state of the art in both E2E modelling as well as cochlear
modelling for speech technology. Section 6.3 further details how a simple auditory model
can be trained from scratch in the context of a larger model that has been pre-trained.
Section 6.4 contains a logical sequence of experiments showing that:

Trainable filters can replace the encoder CNN in an already pre-trained model for fine-
tuning.

A physiologically adaptable front-end performs as well as a CNN in a pre-trained model.

Trainable filters can be incorporated during self-supervision.

¢ When trained with a large transformer model, SincNet filters do not tend to learn wide-
band filters as they do with a smaller MLP model.

6.2 Background

6.2.1 Self-Supervised Models
Foundations

Self-supervised learning arose around 2008 in the NLP field with the model of (Collobert &
Weston, 2008). Self-supervision differs from supervised learning in the way the loss function is
computed. Supervised learning necessarily requires labeled data; the output of the network
is directly compared to the labels and the difference is back-propagated through gradients.
Assigning labels can be onerous. By contrast, self-supervised learning has the advantage of
needing no labels to train, meaning it can make use of huge amounts of data. The model is
typically trained either as an auto-encoder (the data are the labels) or by contrastive loss (see
below).

Self-supervised models rely on a two-stage training procedure: pre-training and fine-tuning.
These map onto what might be traditionally called training and adaptation respectively. Pre-
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training is resource-intensive and the resulting models can be large. A significant recent trend
has been for proponents to make such models available online (Ott et al., 2019). A core goal of
this study is to investigate what can be done in the acoustic research field starting from those
available pre-trained networks.

Wav2vec

Wav2vec (Schneider et al., 2019) was the first attempt at applying self-supervision in the sense
of BERT to the ASR field. It was inspired by wav2letter (Collobert et al., 2016) and unsupervised
machine translation (Lample et al., 2017), a model that translates between languages based on
two unlabeled datasets. The structure of wav2vec (Schneider et al., 2019) comprises two main
blocks: the encoder network and the context network. The encoder consists of a 5-layer CNN
down-sampling the input waveform from 16 kHz to a 100 Hz signal. The context network in
wav2vec is also a CNN with kernel sizes of three and strides of one. In vq-wav2vec, Baevski
et al. (Baevski et al., 2019) proposed to integrate quantization between the encoder and the
context layers. The recent Wav2vec2 (Baevski, Zhou, et al., 2020) parallelizes the quantization
and an enhanced version of the wav2vec structure; the encoder CNN is now seven layers
deep and down-samples the signal to 50 Hz and the CNN-based context layer is replaced by
a transformer. Of those two networks, the transformer stack accounts for 94.4% of the total
number of trainable parameters.

Wav2vec models use contrastive loss as an objective during the self-supervised training phase,
a character-based label classification and connectionist temporal classification (CTC) of
Graves et al. (Graves et al., 2006) during the finetuning phase, and a greedy CTC decoding
algorythm for the test phase.

In the self-supervised training phase, the convolutional frontend and transformer-based
encoder are trained through a contrastive loss mechanism. The original contrastive loss of
wav2vec was formulated to favor predictability for adjacent observations, or “predictors”, with
the opposite for more distant ones, hence “distractors”. Oord et al. (Oord et al., 2018) proposed
another approach to the contrastive loss computation, this time based on the cross entropy
loss. The loss equation in wav2vec2 adopts this more recent approach, being

predictor

. ~ =
P =—log exp(sim(c;, "q; )/x) 6.1)
" Y geq, exp(sim(c;, q )/x) )
~—~

distractor

where sim is the cosine similarity, sim(a,b) =a’b/|a||bl, x is a constant that regulates the entropy
of the cosine similarity, preserving the relative ranks of events. In the machine learning field,
the analogous parameter controlling the smoothness of probability distributions is commonly
referred to as 'temperature’. The parameter c; is the context representation and g € Q; are
vectorized samples of other parts of input waveform in the latent space. The goal of Equation (6.1)
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is to find a quantized representation for speech in the latent space, training towards orthogonal
representations of the quantizers in that latent space. The model outputs a context representation
c; that is able to guess the true q; vector quantization (the predictor) of the latent space out of
K +1 candidates (with K distractor quantizers and one closely related target; in wav2vec2, 100
distractors are sampled out of the same utterance).

For finetuning, a projection layer is added on top of the transformer-based encoder. A
character-based classification task then trains this projection layer to recombine the vec-
tors learned in the latent space to predict characters then with CTC the characters are aligned
with the transcripts to compute the loss from the difference between the probability prediction
from the CTC encoding and the ground truth transcripts.

During the test phase, greedy CTC decoding is used to predict the transcripts of the evaluation
speech data. The difference between CTC in the finetuning task and decoding phase is the
output: during finetuning the output is a number which corresponds to the loss while during
decoding the output is the decoded text.

6.2.2 Cochlear Models
Filterbanks

Cochlear models have been studied for many years, with our current understanding perhaps
going back to the work of (Von Békésy, 1960). Simplistic (but functional) approaches consider
the cochlea as a natural filterbank (Geisler, 1976; Zwislocki, 1953).

Comparatively recent studies have continued to seek biological plausibility.
(Lyon, 20114, 2011b, 2017b), for instance, proposed a model of the complete auditory path where
the cochlea is modeled with a cascade of resonators. This model has since been implemented on
an FPGA (Thakur et al., 2014) and used in applications such as speaker identification (Islam et al.,
2022) and sound localization Xu et al., 2021).

Of particular interest for speech processing is the filterbank scaling. Probably the best known
frequency distribution is the mel scale (Pedersen, 1965), based on frequencies judged to be
equally spaced in human perceptual tests. This has been ubiquitous in feature extraction
algorithms for ASR, especially in its guise as MFCCs. The PLP of (Hermansky, 1990b) favored
the Bark scale, based on noise bandwidths required to mask tones (Moore & Glasberg, 1983;
J. O. Smith & Abel, 1999; Zwicker, 1961). Physical measurements are also possible; the green-
wood (Sridhar D, 2006) and ERB (equivalent rectangular bandwidth) (Zwicker, 1961) scalings
lead to more extreme warping than mel.
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Current Understanding

Current explanations of the workings of the cochlea are as processes of wave propagation
through an active oscillator system (De Boer, 1983). According to our current best understand-
ing, the cochlea works as an array of Hopf oscillators (Hudspeth et al., 2010a; Hudspeth, 2008).
These active oscillators incorporate the interaction between the inner and outer hair-cells with
the tectorial and basilar membrane, and explain oto-acoustic emissions (Kemp, 2002; Probst
etal., 1991) as arising from the outer hair cells. Several works have implemented those Hopf
oscillators as models for the cochlea (Ammari & Davies, 2020; Hamilton et al., 2007, 2008).

Notwithstanding, in the present study we limit ourselves to filterbanks, with active systems
being a goal for further research work.

6.2.3 ASR with Trainable Filters
From Cochlear Models to E2E ASR

For many years, ASR front-ends such as MFCC (Davis & Mermelstein, 1980) and PLP (Hermansky,
1990b) were loosely based on models of the cochlea. However, given the large number of choices
within such models, and parallel success with raw images as input (Krizhevsky et al., 2012), E2E
approaches have been investigated for audio processing. Early work involved trainable convolution
layers on raw audio inputs (Hinton et al., 2012; Palaz et al., 2013b, 2015). Although they can
perform well, such black box models lack interpretability, explainability, comprehensibility and
transparency (Chakraborty et al., 2017; Rudin, 2019). Retaining an explicit filterbank structure can
alleviate these issues. Candidates for the filterbank have included Gamma-tone (L6pez-Espejo et al.,
2021; T. Sainath et al., 2015), Gabor (Noé et al., 2020; Zeghidour et al., 2018, 2021), SincNet (Ravanelli
& Bengio, 2018a, 2018b), and Spline filters (Balestriero et al., 2018). Zeghidour et al. (Zeghidour
et al., 2018) in particular showed that using trainable filters consistently increased the performance
of ASR compared to a model where MFCCs were used. Since we do not have a hypothesis that
some trainable filter models would perform better, that this work builds on a previous work using
SincNet filters in a previous study, and that there are computational advantages of doing so (see
Section 6.2.2), we take the SincNet model of (Ravanelli & Bengio, 2018b) as representative of the
above models for the present study.

SincNet

SincNet is characterized by a convolutional filter as the first layer in a larger convolutional front-
end. In the initial SincNet implementation, this convolutional front-end was followed by a
five-layer MLP, whereas in this work, the main idea is to combine this encoder with pre-trained
transformers. The implementation of the filter layer uses the Fourier transform property:
a convolution in the temporal domain corresponds to a multiplication in the frequency
domain. Thus, using a sinc filter as kernel in a convolutional layer gives the filtered signal as
output. The name arises because the Fourier transform of a rectangular filter in the frequency
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sin(x)
X
a combination of two low-pass filters F} — F» with cut-off frequencies f; > f5, giving a band-
pass filter of bandwidth fi — f, and a central frequency of % The central frequency and
bandwidth are the two trainable parameters. In the temporal domain, the filter is then given

by:

domain corresponds to sinc(x) = in the temporal domain. SincNet is implemented as

h[n] =sinc(2x fon) —sinc(2x fi n) (6.2)

Ravanelli and Bengio (2018b) showed that SincNet outperformed MFCCs. They also showed
that using SincNet filters gave better results than using only CNN layers. A second study by
the same authors showed that the proposed architecture converges faster, performs better,
and is more interpretable than standard CNNs (Ravanelli & Bengio, 2018a). They showed that
such trainable filters could map onto specific speech-related features like formants, while
standard CNNs did not. SincNet was subsequently incorporated into a joint CTC-attention
training scheme by Parcollet et al. (2020). The authors showed that their approach outperforms
previously investigated E2E systems.

Based on these examples in the literature that show the reliability of SincNet as a front-end for
ASR, we use this trainable filterbank in this work.

6.2.4 Speech Features

We are particularly interested in the interpretability of the learned filterbanks. Pitch and
formants are well known important speech features. For human speech, pitch typically lies
between 85 Hz and 300 Hz. Formants are resonances of the vocal tract and define vowel sounds.
The first formant is generally situated between 200 Hz and 800 Hz; the second formant lies
between 500 Hz and 2500 Hz. (Olive et al., 1993)

6.3 Method

6.3.1 Overall Hypothesis

In Chapter 5, we showed that a model of the cochlea trained in an E2E manner behaves unex-
pectedly. The model learns a combination of expected narrow-band structures representative
of the cochlea. However, it also learns wider-band structures that are more representative of
the higher level auditory pathway. The network used was a combination of a SincNet front-end
with a simple MLP as context network and trained in a supervised manner. The state-of-the-art
in neural models for acoustic processing of speech is now associated with pre-trained stacks
of transformers. Such stacks have been shown to exhibit behavior quite similar to that of the
human brain using functional Magnetic Resonance Imaging (fMRI) (Millet et al., 2022).

In the following experiments, we aim to show that a plausible model of the cochlea can be
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combined with an otherwise black-box pre-trained model to yield a model much closer to
the human auditory pathway. If such a model continues to behave in the same way as our
simplistic one, we could further conclude that something is wrong with our cochlear model;
certainly we have no biological evidence for wide-band structure at such a low level. By
contrast, if the new model behaves differently, we could conclude that our simplistic model is
too simplistic, and that a larger (implying pre-trained) model is necessary for such low level
auditory investigation.

6.3.2 Pre-Trained Model

The model used in this work is based on wav2vec2 (Baevski, Zhou, et al., 2020), presented
in Section 6.2.1. For this study, the encoder CNN of wav2vec? is replaced with SincNet. The
encoder layer is composed of SincNet filters followed by a classical CNN of 3 layers as in the
SincNet baseline; this CNN down-samples the input signal to 50 Hz, which is then compatible
with the further transformer layers. It is illustrated in Figure 6.2. The training follows the
wav2vec2 method, but is customized to take the SincNet filters into account without starting
the pre-training from scratch.

The framework used is FAIRSEQ (Ott et al., 2019), (which stands for Facebook Al Research in
sequence modeling), a framework developed and used by Meta, which has an implementation
of wav2vec that can be easily modified. The modifications are described in following sections.
Moreover, the code is adapted to run on several Graphics Processing Unit (GPUs) in parallel.

6.3.3 Experimental setup and training protocol

We use the wav2vec2 (Baevski, Zhou, et al., 2020) network of the fairseq framework (Ott et
al., 2019). To be able to adapt separately the different network parts with different learning
rates we use the composite optimizer mechanism with an overall pass_through learning rate
scheduler, since the different networks will have a specific learning rate scheduler assigned.
For the convolutional downsampling part of the network as well as the projection layer, we
use a polynomial_decay scheduler: with a short warmup stage and a long polynomial decay
stage. The convolutional part of the network is initialized wit a learning rate of 6- 10~%. For the
projection layer, the learning rate is initialized to 3 - 107°. For the transformer based part we
created a 4-stage scheduler: starting with a freezing stage where the learning rate is set to 0,
then a warmup stage, a plateau and a linear decay stage. The optimizers are for all schedulers
fixed to adam and the learning rate is initialized to 3-107°.

6.3.4 Dataset

We use the LibriSpeech dataset (Panayotov et al., 2015) for all experiments presented in section
2.3.4. We run each experiment either on the subset of 100h or the complete Librispeech
dataset. For every experiment, the final result is computed on a single training run over several
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Figure 6.2: A schematic overview of the original SincNet implementation model used as
baseline in our previous work, the wav2vec2 fine-tuning path and the proposed fine-tuning
path in this work. Based on compositionality capacity of networks, we combined the feature
extractor of the original SincNet model with the pre-trained transformer of wav2vec2.

epochs. The variance is computed on the test using a Bayasian approach.

6.4 Experiments

6.4.1 Can Trainable Filters Replace the Encoder CNN in an Already Pre-Trained
Model?

Our first hypothesis posits that the CNN encoder block acquires information learnable through
trainable filters. To validate this, we replace the front-end with a SincNet encoder (see Figure
6.2) and compare post-training ASR performance to the baseline. Secondly, by incorporating
modifications from our previous work, we expect improved results compared to the original
SincNet implementation. Third, the trainable filters in the initial encoder layer should mirror
patterns learned by the pre-trained encoder.
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Choice of Global Parameters

In order to test this hypothesis, several implementation parameters are adapted: the learning
rate scheduler, the structure of the new encoder, the kernel size of the filter layer and the
number of updates of the model.

Learning Rate Schedulers

If a pre-trained model is used in, say, ASR, there is normally an adapter layer at the output
of the pre-trained model. This layer can be trained whilst keeping the pre-trained model
fixed by simply not back-propagating gradients further than the adapter. By contrast, the
SincNet that we wish to train is an input of the pre-trained model; gradients must be back-
propagated through the pre-trained model. The new weight value is given by the update
parameter learning rule in Equation (6.3).

0t+1=9t+A9t (63)

where 6; is the weight value one time-step before the updated value. A6, is dictated by the
equations of optimizer update—in the case of this work, Adam (Kingma & Ba, 2014).

AH[ = - 77 ﬁ’lt (64)

Vi +e

where:

* 11, and D; are bias-corrected estimates of the linear combination of the gradient with
first and second moment estimates.

* ¢is asmall constant preventing a division by 0.

* 7nis the learning rate.

To freeze the model weights, we set the learning rate to zero. According to the gradient descent
update Equation (6.4), if the learning rate 7 is set to zero, the parameters to which this 0
learning rate is applied are frozen to their initial value, which is a common machine learning
practice.

In this work, we adopt a learning rate scheduler integrating a freezing period. During this
freezing period, the encoder network is able to learn what the previous CNN layers had learned
during the pre-training phase and the context network stays frozen.

The original wav2vec2 implementation uses two types of learning rate schedulers: the poly-
nomial decay and tri-stage learning rate scheduler. The polynomial decay scheduler is used
for non-pre-trained network chunks; in the wav2vec framework, this corresponds to the
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self-supervision phase while the tri-stage learning rate scheduler is used for fine-tuning.
For this experiment, the polynomial decay learning rate was assigned to the encoder net-
work (Figure 6.3c), since this part of the network is replaced by a SincNet encoder and con-
sequently trained from scratch in the experiment. For the context network, we created a
hybrid version of the tri-stage learning rate scheduler incorporating a freezing period at
the beginning (Figure 6.3d). The whole training scheme is schematically summarized in
Figure 6.4, clearly depicting the two training phases. Freezing the transformers and projection
layer in the first place avoids catastrophic forgetting of the transformer weights. FAIRSEQ’s
composite optimizer enables distinct learning rate schedulers for different model parts, uti-
lizing a pass-through general optimizer to automatically associate each part with its specific

scheduler and optimizer.
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Figure 6.3: Training curve of the long-run training of 100 k updates. (a) depicts the WER of the
validation set (dev-other), (b) contains the negative log likelihood of the loss, and (c¢,d) depict
the learning rate evolution of the feature extractor and context network, respectively.

SincNet Modifications

In the previous work (section 2.5), we showed that removing the maxpooling layer after the filters
was physiologically relevant and improved the performance. In this experiment, we compare the
performance of the initial SincNet structure and the adapted structure.

Kernel Size

With the larger model, we observed a saturation effect at lower frequencies in a draft experiment,
linked to the maximum filter precision dictated by the kernel size. We replaced the initial
kernel size of 129 by 400 in the sinc filter initialization; this both corrected the above issue, and
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Figure 6.4: A more schematical explanation of the behavior of the network training explained
in Figure 6.3. There are 2 training phases: one up to 40 k updates where the whole model
except the feature extractor is frozen, and the second phase, where everything fine-tunes
together.

corresponded to the 25 ms used as window size in classical MFCC computations.

Number of Updates

An update corresponds to a back-propagation of gradients in the model, which updates the
parameters, while an epoch corresponds to passing the whole dataset through the model.
For most of the experiments, the number of updates is fixed to 10 k, which corresponds to
38 epochs with the training set train-clean-100 for the fine-tuning part. For completeness
and comparison, we also report one experiment where the model was able to train for 100 k
updates, with 40 filters and a kernel size of 400.

Results

The results of this first experiment are summarized in Table 6.1 and Figure 6.3. Concerning the
performance, the WER results of Table 6.1 are all below 4%. This means that a SincNet encoder
is capable of replacing the original wav2vec2 encoder when keeping the context network fixed.

Table 6.1: Comparison between a short and long run using no maxpooling after the filter
layer in the first 2 experiments and with a maxpooling that has a kernelsize of 3 in the third
experiment. Thus, the third experiment has a downsampling of a factor 3 just after the sinc
filters via a maxpooling operation in the time domain.

n_filters Maxpooling KernelSize n_updates WER

40 - 400 100k 3.31
40 - 400 10k 3.53
40 3 400 10k 3.64

The encoding and impact of the learning rate scheduler on the WER and loss curve are
illustrated in Figure 6.3. During the first half of the training updates, the context network is
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frozen through the zeroing of learning rate, while the encoder network is able to train. In the
second half of the experiment, the training of the context network is enabled; the transformer
can slightly adapt itself to the trained encoder. In the WER and loss curves, we can see a clear
impact of the transformers when they obtain the ability to train around 40 k updates. However,
when only enabling the SincNet encoder structure to train, the network already shows a decent
performance during the first part of the training.

As summarized in Table 6.1, three different experiments were performed to address this first
hypothesis: two short experiments to analyze the impact of removing the maxpooling layer and
a third experiment where the training time was much longer. As in the previous work (section
2.5), removing the maxpooling function improves the global performance of the ASR. Further,
letting the experiment train for a longer period makes the performance increase.

The shape of the filter distribution for the different runs of Table 6.1 are illustrated in Figure
6.5. When training the network for 100 k updates instead of 10 k, the WER continues decreas-
ing, but the spatial distribution of the filters does not move much anymore. Changing the
network structure by considering the maxpooling layer, however, has a small impact: for lower
frequencies, some wider filters are appearing. This means that using maxpooling precludes
the wide-band filters to be learned higher up in the network; nevertheless, the proportion of
wide-band filters are much lower than what we obtained in the previous work, and the size of
the bandwidth is smaller.

A consistent pattern emerges in the filter distribution shape across various runs within the
spectral content, up to approximately 4 kHz. Below 1 kHz, a bump of very small (and conse-
quently precise) filters occurs in the filterbank between 200 Hz and 800 Hz; this frequency
range corresponds to the first formant (see Section 6.2.4). From 1 kHz to 5 kHz, the bandwidths
of the filters are all around 400 Hz. Above 5 kHz, the filters seem to learn something different
in every run.
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Figure 6.5: Comparison of filter distribution for different run lengths and internal SincNet structure.
Using maxpooling within the filter structure makes some wide-band filters appear in low frequency
ranges.
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6.4.2 Does a Physiologically Adapted Front-End Perform as Well as a CNN in a
Pre-Trained Model?

Hypothesis

(Ravanelli & Bengio, 2018a) showed that using the SincNet model instead of simple CNN con-
verged faster, performed better, and was more interpretable. We hypothesize that if we train a
SincNet model and a CNN model with the same number of layers from scratch, combined with a
pre-trained context network, the SincNet model would also show those characteristics.

This can be tested by performing and comparing four experiments: The first experiment retrains
the wav2vec2 encoder network from scratch to gauge its performance without the pre-training
information, setting a baseline for encoder relearning while keeping the pre-training information
of the context network. Second, we use the baseline CNN with a layer of the same size as the
trainable filters to be comparable with (Ravanelli & Bengio, 2018a), but this time combined with a
pre-trained context network. The third experiment consists of training a large SincNet encoder. The
baseline CNN structure is combined with a layer of trainable filters and trained with the pre-trained
transformers. Finally, we compare these experiments with a SincNet structure containing fewer CNN
layers (than the structure used in the experiments of Section 6.4.1).

Results

The convergence speed can be analyzed in the training curve. Figure 6.6 shows that in terms
of training, the SincNet structure converges faster towards an equilibrium compared to a
pure CNN structure.Concerning the validation, this is true in the very beginning, especially
concerning the CNN with the same shape as SincNet (red curve) up to 2000 updates. We based
our analysis of the convergence speed on the update metric to align the loss on the amount
of data that go through a forward-backward pass. However, to be complete, Table 6.2 details
the time that every experiment takes and the number of parameters that are contained in
the front-end for purposes of comparison. The performance of the different experiments is

Table 6.2: Table summarizing the time of each experiment on 4 parallel GPUs and the number
of parameters contained in the feature extractor. Note that this number of parameters is quite
small compared to the rest of the network (90 M parameters).

Model Time N. Parameters
Small CNN 7h 14 min 0.575M
Large CNN 9h 48 min 4.406 M
Relearn CNN (w2v2 shape) 11 h 57 min 4.206 M
Relearn CNN (SN shape) 14 h 7 min 4.422M

summarized in Table 6.3. Overall, the 95% confidence interval of the large SincNet structure
performance overlaps widely with the baseline experiment; this means that the performance
with SincNet is not significantly better than the baseline CNN. However, between the SincNet
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Figure 6.6: Loss curve during (a) training and (b) validation.

shape CNN and the SincNet implementation, which correspond to the experiments performed
in (Ravanelli & Bengio, 2018a), the overlap is less important and SincNet performs slightly
better.

Table 6.3: Performance of the different experiments on the capacity of SincNet (SN) to re-
place the initial CNN structure with a 95% confidence interval, assuming the result is beta
distributed.

Train Loss Valid Loss = WER [%]
Relearn CNN (w2v shape) 129.5 28.67 3.35+0.15
Relearn CNN (SN shape) 124.7 28.96 3.45+0.15
SincNet (large CNN) 120.8 28.48 3.33 £0.15
SincNet (small CNN) 122.3 30.26 3.53+0.15

Finally, concerning the interpretability, Figure 6.7 illustrates the normalized sum of the filters

in the CNN implementation and SincNet after training.
In both cases, “bumps” occur around 700 Hz and 1.4 kHz, which correspond to typical first-

and second-formant frequencies. In (Ravanelli & Bengio, 2018a), those interpretable elements
in the normalized filter sum were more distinguishable in the SincNet structure than in the
CNN structure. Further, for frequencies above 4 kHz, the SincNet filters more efficiently reduce
the amount of information recorded in that area than the CNN structure.

To summarize, in the context of a self-supervised model with a pre-trained context network,
using a SincNet encoder converges faster and performs as well as the baseline CNN trained
from scratch and better than the similar shape CNN. Concerning the interpretability, despite
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Figure 6.7: Comparison of the content of the normalized filter sum using SincNet filters and
using a same-size generic CNN.

being more interpretable by design, the SincNet structure does not seem to better emphasize
interpretable signal components than a CNN using 40 filters.

6.4.3 Can Trainable Filters be Incorporated during Self-Supervision?

Another way to train the filters using wav2vec2 is to incorporate the filters into the model in
the self-supervision phase.

Hypothesis

Although more computationally demanding, using the self-supervision training path is more
faithful to the original wav2vec2 training path and it enables the filters to train on two succes-
sive tasks. We hypothesize that continuing the self-supervision task while keeping the context
network frozen would lead the filters to learn a similar distribution to the first experiment
results. Moreover during self-supervised learning we can either let the filters train or keep
them frozen and let them only train during fine-tuning. In this case, we expect the rest of the
network to adapt itself to the frozen filter distribution and we do not expect the filters to differ
much from what they previously learned during further fine-tuning. However, we expect the
free filters to show slightly better performance since they are able to adapt to the fine structure
in the frequency range.

Self-Supervised Learning

The first step of this experiment consists of further training the model through the contrastive
loss task (see Equation (6.1)). To be consistant with the original self-supervision dataset we
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included the two other training subsets of LibriSpeech (see Table 2.2).

An important parameter to fix is the number of updates needed to obtain a comparable perfor-
mance as the baseline pre-trained model. Since self-supervision implies a performance measure
that is not based on labels, the best comparison measures are the loss and the accuracy.

Table 6.4 compares the accuracy and loss of the training and validation curves of the baseline
and the wav2vec2 model integrating the trainable filters. Using 10 k updates, the accuracy and
loss differ from 10-20% from the baseline loss and accuracy. With 100 k updates, the final loss
and accuracy match the baseline results up to 1% of error.

Table 6.4: Comparison of the loss and accuracy of the baseline pre-trained model and the
model after a further pre-training for both frozen and trainable filters. After 10 k updates, the
model already performs well but not as good as the baseline, while after 100 k, the model
reaches the performance of the baseline in terms of loss and accuracy.

Accuracy [%] Loss
Number of Updates Train Valid Train Valid
Baseline 0 61.1 64.6  2.10 1.96
Frozen filters 10k 52.2 62.2 249  2.13
Trained filters 10k 569 63.0 234 2.06
Frozen filters 100 k 60.5 66.5 2.13 1.87
Trained filters 100 k 61.4 67.2 2.09 1.84

Fine-Tuning

The second step consists of fine-tuning this self-supervised model. In this fine-tuning experi-
ment, the learning rates do not have to be disentangled as we did in the first type of training
path, since the whole model has been pre-trained.

Results

The final performance is given in Table 6.5. For a fine-tuning of 10 k updates, the performance
is best when the filters have been through a self-supervision task before fine-tuning (see Table
6.1).

Table 6.5: Performance of model using trainable filters in pre-training (100 k updates) and
fine-tuning (10 k updates).

Pre-Training Phase Fine-Tuning Phase WER [%]
Frozen filters Trainable filters 3.40
Trainable filters Trainable filters 3.37

Since during self-supervised training, the filters are able to train, they can be visualized both after
pre-training and fine-tuning (Figure 6.8). For the trainable filters, below 1 kHz, a couple of filters
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become very narrow-band, then around 1 kHz, 2 kHz and 3 kHz, the filters show a narrow-band
bump in their structure as if they sought slightly more fine-grained structures at those specific
frequencies. Filters do barely move between during self-supervised training and fine-tuning.
This means that the rest of the model is probably more inclined to move towards a better suited
equilibrium to minimize the loss. Moreover, globally the shape of the filter distribution shows
similar behavior between the two different training paths.

104
- Frozen filter distr. after ss
Frozen filter distr. after ft

i~ -~ Trained filter distr. after ss
X 103 | Trained filter distr. after ft —
e
=) —_——
° —_———
; . 7(-“'_-4_":9- == D=
'g ﬂ#‘ [
g .

102 {¢

u‘l: (.

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

Figure 6.8: Filter distribution after the self-supervised (ss) training and fine-tuning (ft) of the
wav2vec2 model. Globally, filters do not tend to move significantly during fine-tuning when
they have been incorporated during pre-training.

In summary, using only supervised fine-tuning gives a broader flexibility for experiments
where several parameters have to be changed, since only a fine-tuning run has to be adapted.
Training through both self-supervision pre-training and supervised fine-tuning is more time
and resource consuming, but better corresponds to the general idea of using both self-
supervision and fine-tuning for training a model. Overall, the filters, when able to train
before the transformer adaptation, tend to learn similar patterns.

6.4.4 Do Wide-Band Filters Appear in Some Other Training or Model Configura-
tions?

An observation in conflict with our previous work (section 2.5) is that no wide-band filters
appear within the current implementation. Figure 5.2 showed that some filters learned a very
broad-band structure, while in Figure 6.5, for example, no such wide-band structures appear.
Two hypothesis were apparent to explain why those filters could potentially not appear: the
number of filters could be too low within the context of a self-supervised model and the
freezing of the transformers by decoupling the learning rate scheduler could possibly preclude
those filters from appearing.
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The Hypothesis of Too Few Filters
Hypothesis

The first hypothesis suggests that a limited number of filters may hinder the emergence of
wide-band structures. Additionally, the absence of maxpooling precludes the appearance of
wide-band filters. This hypothesis can be tested by increasing the number of filters. If the
number of filters is insufficient for the manifestation of wide-band filters, a larger number of
them should lead to the emergence of these filters.

Results

Figure 6.9 illustrates the structure that the filters learn when initialized to
100, 80, 60, and 40 filters. Globally, below 1 kHz, filters learn a very narrow-band frequency-
specific filters, above 1 kHz, filters have a bandwidth around 400-500 Hz for all the different
numbers of initialized filters. Compared to the previous work, below 1 kHz, the number of
very narrow-band filters is much higher in this experiment.
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Figure 6.9: Distribution of the different filters in the frequency domain. The dots represent
the central frequencies and the lines represent the bandwidths, similarly to Figure 5.2. The
number of initial filters are (a) 100, (b) 80, (c) 60, and (d) 40.

A few wide-band filters do appear when the model is initialized with a high number of filters
(80-100), For a smaller number of filters, (40, for example), the wide-band structures as we had
in our previous work (section 2.5) do not appear anymore. Concerning the convenient number
of filters to use based on this filter distribution analysis, 40 filters seem to be a convenient
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number to describe the whole frequency range. This corresponds with the conclusions of our
previous paper and it is consistent with choices made in the literature, e.g., (Zeghidour et al.,
2018).

To be complete, we also computed the performance for this model with the different numbers of
filters, summarized in Table 6.6. Similarly to the observations made in our previous work (Coppi-
eters de Gibson & Garner, 2022), the performance increases slightly with the number of filters we
initialize.

Table 6.6: Performance on the dev-clean subset of LibriSpeech for different numbers of filters.

n_filters Maxpool KernelSize WER

40 3 400 3.64
60 3 400 3.61
80 3 400 3.57
100 3 400 3.56

The Transformers Precluding the Filters to Learn Wide-Band
Hypothesis

The second hypothesis for why the wide-band filters do not appear is linked to the training
path: the transformers are first frozen before being able to train in parallel to the filters, while
in the previous work, the whole network trained together. Until now, all experiments have
been conducted by first keeping the transformers frozen for a given amount of time in order
to train only the encoder network while keeping the transformers fixed. In order to verify this
hypothesis, we perform an experiment where all learning rate schedulers start the warm-up
period at the same time.

Results

When filters and transformers are free to train jointly from the pre-trained transformer version,
the filter distribution does not learn wide-band structures and, moreover, it shows a similar
distribution to previous experiments (Figure 6.10). This means that, used with a pre-trained

transformer, the filters do not tend to get a wide-band structure as we had in (section 2.5).
In summary, when incorporating SincNet into a self-supervised model, the obtained filter

distribution does not correspond to the results of our previous work. Only a very small
number of wide-band filters appear when enlarging the total number of filters. Besides, the
experiments confirmed that the number of filters needed to cover the frequency spectrum
in ASR tends to 40. We conclude that a pre-trained context network probably encodes the
combination of those wide-band structures, precluding those structures from appearing on
the trainable filter layer.
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Figure 6.10: Filter distribution after training for 40 filters.

6.5 Conclusions

This study proposes an integration of two physiologically grounded concepts: trainable filters
and self-supervision. It begins by delineating these concepts in Section 6.2 and subsequently
elaborates on their joint training using a self-supervised context network while concurrently
training a new front-end in Section 6.3. Section 6.4 outlines a logical sequence of experiments
aimed at exploring the behavior of the trainable filters within this framework.

In the first experiment, we demonstrate that a new encoder can be trained while retaining
the information acquired during pre-training in the transformer, avoiding a catastrophic
forgetting of the transformer weights and resulting in performance close to the state of the art.
Additionally, substituting the CNN encoder with a SincNet encoder sheds light on the infor-
mation expectation of the transformer from the CNN, emphasizing the interest in frequency
information at the trainable filter layer.

The second experiment illustrates that, when trained from scratch, the SincNet encoder con-
verges more rapidly than the CNN. However, there is no significant performance improvement,
and interpretability across the entire frequency spectrum does not reveal more speech artifacts
compared to a CNN.

In the third experiment, we observe that the sole fine-tuning training path offers greater
flexibility and is better suited for conducting experiments. While the pre-train—fine-tune
training path aligns more with the original concept of self-supervision, it necessitates a larger
dataset and substantially more time for the pre-training phase.

Lastly, in the fourth experiment, we investigate why wide-band filters cease to emerge. Through
several experiments analyzing behavior with additional filters and employing different training
paths, it appears that the pre-trained context network inhibits the emergence of wide-band
filters in the initial layer.

Overall, this study demonstrates the feasibility of integrating and fine-tuning state-of-the-art
networks with physiologically plausible models. Furthermore, the utilization of decoupled
learning rate schedulers enables the fine-tuning of specific parts of the model. We posit that
implementing more intricate physiological models and leveraging this approach can facilitate
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a deeper understanding of how physiological mechanisms may evolve to better interpret
external inputs in the encoder network.
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4 Integration of Hopf oscillator module
into an ASR system

As illustrated on figure 7.1, this chapter brings together the knowledge of cochlear models
and ASR technology. Building on the conclusions presented in Chapter 4, we describe the
implementation of the Hopf oscillator into a module, simplifying the differential equations
system from Section 4.3.2 to make it computationally compatible with ASR training.

2. Background
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Figure 7.1: General overview of the thesis.

The primary goal of this chapter is to train an ASR system using a Hopf oscillator module
as its frontend. This is achieved through two main steps: first, a simple integration of the
Hopf module; and second, an integration of the efferent path through a larger feedback
implementation in the encoder module.

Furthermore, we propose a more comprehensive analysis of performance within a noisy
context. The adaptation mechanism of the auditory path exhibits interesting noise robustness
capacities.
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7.1 Background

The background material for this chapter has been covered in previous chapters.

* Hopf oscillators are known to model the active amplification mechanism of the cochlea.
A broad literature review has been presented in chapter 4.

* ASR systems have evolved from statistical based HMM models to self-supervised models.
This has become possible through the advent of increasing computational capacities of
modern hardware and innovations in neural networks. For computational reasons, we
use the ASR framework of chapter 5.

7.2 Learning parameters

In deep learning, parameters are optimized using the gradient descent algorithm, which
iteratively adjusts model weights to minimize error. This method shares similarities with
neural adaptation: synaptic strengths and types are shaped by neurotransmitter flow, which
can be modelled by the gradient descent mechanism.

However, some parameters need a real-time adaptation even during the testing phase, which
cannot be learned by traditional gradient descent algorithms. Instead, these adaptations
are governed by a gradient computation based on differential equations that dynamically
adjust to the evolution of incoming signals, whereas classical systems compute the gradient
through the loss propagation. The cochlear model, which requires rapid parameter updates to
accommodate dynamic sound waveforms, exemplifies the need for adaptive models that can
learn from experience

In this work we employed the differential equation training for the Hopf implementation
module, mimicking the behaviour of the cochlea with its active gain control loop. For the
rest of the auditory path and the efferent path feedback, we use gradient descent as learning
mechanism. This task division of the learning adaptation is illustrated in figure 7.2.

— Forward pass
Adaptation through Adaptation through :Gradient back-
differential equations gradient descent propagation

Encoder Decoder phonemes

Figure 7.2: Learning mechanism: division of different learning routines over the different parts
of the model according to the physiological equivalent.
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7.3 Hopf oscillator module

7.3.1 Mathematical formulation

Our model mainly focuses on the general oscillation of the cochlea with a special focus on its
active amplification characteristics and tuning at the Hopf bifurcation. Therefore, we mainly
build our mathematical model based on literature that utilizes the Hopf equation (which are
presented in section 4.1.4). As a reminder, we use the Hopf equation 4.5 as a baseline and
enhance by adapting the frequency scaling and adding a tuning equation of the bifurcation
parameter y.

Adapted frequency scaling

The proposed system of equations with a frequency scaling parameter f is given by:

1. 3

+F=ur+ pr°+ Fcos6

jlc' 2nfe F _: (7.1)
79:7—7sm0

The frequency scaling equation proposed by Stoop et al. (2016) relies on a pure logarithmic
scaling, while we are interested in other types of scalings (mel, greenwood, etc.). This reveals
that the f-variable is directly linked to the bandwidth that the oscillator filters will have with a
relationship given by: f ~ f3,,. The global equation thus becomes:

afbw
1 g_2nf _F
afhw afbw r

7.2
sin® (7.2)

{ L_j— yur+ Br3+Fcos6

Moreover, the separation of f; and f3,, in the Hopf equation enables a better control over the
filter distribution.

The different parameters are defined as:

* [ : The first Lyapunov coefficient that needs to be negative in order to have a stable
solution over the whole domain.

e f.and f3,: Respectively the central frequencies and bandwidth of the different oscilla-
tors defined based on mel-scale.

* a: ascaling factor between f and f3,,,

e 1,60 and u: the parameters defining the system respectively the radius, anlge and bifur-
cation parameter of the different oscillators.

e F:The input signal corresponding to speech for our experiments
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Tuning the bifurcation parameter u

The tuning of the bifurcation parameter can be implemented in two different ways. One
approach is to use a differential equation with a feedback mechanism, based on the imple-
mentation proposed by Camalet et al. (2000):

p=tre=h(y Fz) (7.3)

T 82
Alternatively, an equivalent feedforward mechanism based on the value of the input signal F
also provide a good estimate of the best suited new value for p.

2

Mip = ,Umax(l - %) (7.4)

Where the different parameters are defined as:

* Umax: The maximum value fixed for the bifurcation parameter.

¢ §: The bifurcation threshold, defining the limit between the damping and active ampli-
fication mode.

A linear combination of the computed theoretical value and the previous value of y gives a
smooth transition to the new equilibrium that corresponds to the damping or amplification
value dictated by y;,. Another aspect of the ear is the limitation of the damping or active
amplification. Therefore, a tanh is wrapped around this function to limit the mu value between
[-1, 1]. Introducing a smooth variation by keeping track of the previous value of u leads to
following equation:

p(t)=p(t—1)p+tanh(up(0))A - p) (7.5)

With p being a fixed value that determine the proportion of the previous value of u in the
computation of the new value of i combined with the theoretical computed value.

7.3.2 Implementation of the Hopf module

Figure 7.3 represents the module implementation of the system of equations. The model is
composed of two main blocks: one computation block that computes the first derivative of
the different parameters and applies the update step and one memory block keeps track of
the last computed values of the variables which then generates the oscillator output. The
oscillator is triggered by an incoming waveform and the output is computed based on the
state of these parameters. The values of r, 6 and p are updated at every time step A¢.

First the first order derivatives of the different parameters with respect to those parameters is
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computed:

F = (ur + Bri + FcosO)7 fi,
0=2nf—Lnfy,sind (7.6)

One potential issue with the system is that it may diverge to infinity if r tends to 0. This
problem was mitigated by introducing a small € with the same sign as r.

Hopf oscillator module

]

Euler step

U

waveform F T T | | » oscillator output

Figure 7.3: Hopf oscillator module schematic the oscillator output corresponds to the real
value of the oscillator r cos#.

A type of module compatible with this implementation is the recurrent neural network (RNN).
Differential equations can be integrated into recurrent neural networks by computing every
next step with the first-order method of Euler:

x[n+1]=x[n] +x[n]- At (7.7

Applied to the different parameters results in following system of equations:

rit+ At t+2A80 =r(t, t + At] +7- At
Olt+ At, t+2A1 = 0[t, t+ At] +0 - A %27n (7.8)
ult+ At, t+2At = pult, t + At] + (1 — p) tanh(up [t + At, t + 2A¢1])

7.3.3 Characterization of the Hopf Module

The Hopf model provides a mathematical description of the inner workings of the organ of
Corti. It incorporates both a cube root compression and the active amplification mechanism
that characterizes the interactions between the OHC and IHC by adapting the u parameter to
the incoming signal.

These characteristics represent a key difference from classical filterbanks. The combination
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of the cube root compression with the Hopf adaptation mechanism is crucial for explaining
why the human ear has such a large amplitude range, allowing it to perceive a wide range of
sounds. The amplitude of the output of the oscillator is directly related to the value of the
parameter r in the differential equation system, which corresponds to the amplitude of the
OHC.

This parameter r is directly influenced by the gradient 7 calculated at every step.
i = (ur+ Bri+ FcosO)n fyy (7.9)

To characterize the model, we analyse the values to which the amplitude r converges in the
following scenarios:

* When there is no external signal (F = 0), which illustrates the active amplification mech-
anism.

¢ When there is no adaptation (u = 0), which isolates the cube root compression mecha-
nism.

¢ Without any constraints on F and u: under these conditions, the u parameter tracks the
system’s amplification, diverging from a simple cubic root relationship.

We then compare the output of Hopf oscillators to that of a rectangular filterbank based on
the SincNet implementation.

Active amplification mechanism with no incoming signal

When no signal is coming into the oscillator system, equation 7.9 becomes:

F=(ur+Bria fow (7.10)

At equilibrium (7 = 0) the oscillators should converge towards an amplitude of r = \/T% , except
if r =0 and no disturbance noise is added, then the signal stays at the unstable solution point
r =0. For a system with four Hopf oscillators (with the central frequencies: 365 Hz, 1260 Hz,
2907 Hz and 5937 Hz for oscillators 1, 2, 3 and 4 respectively) and u =1, f =—100, the signal
tends to the theoretical value r = 0.1 as shown in Figure 7.4.

When the bifurcation parameter y is initialized to 0 with no input signal and able to adapt, it
will converge to umax. The convergence value of the radius of the oscillators is then defined by
r=4/- ”“‘T“" and the radius takes a longer time to converge to that value as illustrated in Figure
7.5. Besides, we notice that oscillators with a smaller bandwidth take a longer time to learn
this new amplitude than large-bandwidth filters.
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Evolution of rwhen u=1
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Figure 7.4: Evolution of the r-value in the oscillator when p =1 is fixed

Evolution of r when u is not fixed
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Figure 7.5: Evolution of the r-value in the oscillator when p is initialized to 0 and evolves over
time for 4 fixed to 0.

Cube root compression

When the bifurcation parameter is fixed at the bifurcation point, a cube root relationship be-
tween the amplitude of the input signal F and the oscillator response r appears at equilibrium.

In this configuration, the differential equation of the oscillator amplitude (#) equation be-
comes:

0=pr%+Fcosf (7.11)

The value that r tends to adjust to the value of the incoming signal F = Acos’. When the two
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signals are in phase, 6’ =60

1

3 = —ZFcosO (7.12)
p
1

3= —EACOSG'COSG (7.13)
1

= —BACOSZH (7.14)

This value is not constant due to the cosine, to find the theoretical value this equation tends
to, we need to take the mean value of Acos?(0).

1 (27 A
= 5 Ecoszede (7.15)
T Jo
A1l 2m
o= _ﬁz_f 1+ cos(260;)d6 (7.16)
T Jo
A
oo o8 A (7.17)
2p
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Figure 7.6: The evolution of the radius r of Figure 7.7: Cube root relationship between
an oscillator for different signals tuned at its the input signal amplitude (A) and the oscil-
central frequency. lator radius (r).

Figure 7.6 shows the amplitude evolution of an oscillator for inputs signals with different
amplitudes (A) and tuned at the resonance frequency of the oscillators. Figure 7.7 shows the
final mean amplitudes transposed to the r- A plot. This shows that the oscillator output signals
conform to the theoretical cube root relation. In addition, oscillators adapt more rapidly to
signals with higher amplitudes.

For frequencies outside the bandwidth range, the oscillator fails to synchronize with the input
signal frequency, exhibiting passive behaviour instead, which results in oscillations at lower
levels for higher frequencies as illustrated in Figure 7.8. The response of the oscillator exhibits
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Figure 7.8: Evolution of the radius of an os-
cillator radius for in input signal tuned at
a frequency outside of the frequency band-
width of the oscillator with a zoom showing
the transient.

Figure 7.9: Linear relationship between the
input signal amplitude (A) and the oscillator
radius (r).

a linear relationship with the input amplitude (see Figure 7.9). The farther the frequency
is from the oscillator’s bandwidth, the less it will influence the oscillator’s radius. This also
reflects the coupling behaviour between neighbouring oscillators on the basilar membrane.

Adaptation of the bifurcation parameter u to signal amplitude A

When there is no constraint on the input signal and the bifurcation parameter, the relation
between the signal amplitude and the oscillator radius slightly diverges from the cube root
compression due to the adaptation of the u parameter. This is illustrated in Figures 7.10 and
7.11. For low amplitudes the converging value of r exceeds the theoretical curve, whereas for
high amplitudes the signal is further damped down. The threshold at which the oscillator
transitions from active oscillations to damping is defined by the variable § in the definition of
U¢n- This threshold can be expressed in function of the input signal amplitude, it corresponds
to the root mean square (RMS) value of the input signal F:

5 = i (7.18)
= % )

The excitatory behaviour transitions towards a damping behaviour occurs at A = /26, this
corresponds to the pitchfork bifurcation point.

Analysis of Hopf oscillator output to an input composed of several sinusoid functions

This section demonstrates how oscillators adapt to composite signals consisting of multiple
sinusoids, as well as their ability to separate two distinct signals. It also compares the results
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Evolution of r when u = 0 for different amplitudes of the input signal
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Figure 7.10: The evolution of the radius r
of an oscillator for different signals tuned
at its central frequency with an adaptable
bifurcation parameter.

with those obtained from SincNet filters.
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Figure 7.11: Diverging tendencies from the
cube root relationship between the input sig-
nal amplitude (A) and the oscillator radius
(r) with 4y fixed to 0.1.
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Figure 7.12: Comparison of the output of Figure 7.13: Comparison of frequency sepa-
SincNet filters and oscillators for composite ration between Hopf oscillators and SincNet
signals of multiple sinusoids. filters.

In figures 7.12 and 7.13 we observe interaction between different signals in the contexts of
Hopf oscillators and SincNet filters. Figure 7.12 illustrates the oscillator’s response to a signal
when sweeping its frequency from 0 to fs/2 combined with two signals at a specific frequency.
This experiment demonstrates the oscillator’s response across the considered frequency range,
as well as its activation and deactivation capabilities of each oscillator when a signal appears
and vanishes at all frequencies. Furthermore, the crossing points between signals reveal how
the system responds to an accumulation of multiple signals. Notably, we observe through
the colour intensity contrasts in Figures 7.12 and 7.13 that filters multiply the amplitude
by 2 while oscillators multiply by v/2 due to their inherent cube root relationship between
the signal amplitude and the oscillator’s radius. The places where signals are superimposed
correspond to a yellow colour, whereas the rest is around the middle value for the rest of
the graph in filter responses and inbetween the middle colour and yellow for the oscillator
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response. Furthermore the type of response between filters and oscillators differ, oscillators
have the tendency to keep a given inertia through the active amplification mechanism.

Figure 7.13 represents one signal at a fixed frequency, while another signal has a sweeping fre-
quency starting from the same point and gradually increasing the frequency. This experiment
aims to compare the frequency separation capacity of oscillators with that of SincNet filters.
This experiment yields distinct results, the two signals become distinguishable around 0.65
seconds for the oscillators and 0.9 seconds for the SincNet filters. Generally, the oscillators
better differentiate closely related signals than SincNet filters with the same amount of filters
and equally distributed. However, the oscillator output contains more noisy additions inherent
to its inner mechanism.

Sample rate output Frame rate output
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Figure 7.14: Comparison of the Hopf oscillator output wit mel-distributed SincNet filter output
for a small utterance: 'eight’.

Analysis of Hopf oscillator output to an speech signal input

More than a simple sum of sinusoids, oscillators can take speech input signals as input. One
interesting point in the system output performance analysis is the comparison between the
discrete Fourier transform (DFT), the oscillator output and the spectrogram of the waveform.
The DFT computation is defined by:
N-1 o
X[kl= ) x[nle ™"~ (7.19)
n=0
Where k represents the filter number and n the sample number, N corresponds to the total
number of samples.

To be comparable, the DFT and oscillator output should be computed with frames of the same
size. Therefore, we take the RMS value of the oscillator output for the different oscillators and
we configure the oscillator central frequencies with a linear spacing.
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Figure 7.15: Comparison of output of linearly distributed filters with a DFT computation of a
four digit utterance: 'one, zero, nine, two), .

Figure 7.14 shows the output of SincNet filters and Hopf oscillators output both at the sample
rate and frame rate. Figure 7.15 compares the frame rate values on a linear scale with the
DFT computation values. The different signals show a clear resemblance, although some
differences can be noticed: the cube root relationship between the amplitude of the signal
and the output can be seen by comparing more noisy parts of the signal such as between
0.7 and 0.8 seconds. When no signal is present, the oscillators start to oscillate actively, this
phenomenon can be observed between 0.25 and 0.5 seconds for example. The system also
tends to keep the activated oscillators oscillating rather than activating all the oscillators
directly.

Some inherent differences between SincNet and Hopf oscillators reside in the phase estimation.
SincNet filters are iterating over samples without changing the phase of the filter and capture
all possible activity at a given frequency, while the oscillators synchronise to get in phase with
the input signal, some adaptation time is needed when changing phase in the signal.

Figure 7.16 shows how the bifurcation parameter u adapts itself when the amplitude of the
signal is reduced. In this example, five digits are spoken and the middle one has an amplitude
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Figure 7.16: Adaptation of u parameter to a speech input in a noisy environment for a five
digit utterance: 'two, six, five, five, five'.

divided by 10. When comparing the output of SincNet filters and the output of the Hopf
oscillators, we clearly see the amplification of the low amplitude speech signal. On the
parameter plot, we also see that for the third digit, the signal is less damped than the 4 other
digits. Although the middle digit has an amplitude similar to the surrounding noise, the speech
signal better traced than the noise.

7.4 Integration in ASR

7.4.1 Challenges in bigger scale network

The primary challenge in using a recurrent neural network with a physiologically based model
lies in managing time consumption during large-scale training. The cochlea’s functioning is
not optimized for parallel processing, whereas ASR models are designed to be parallelized,
where data can be efficiently processed. To overcome this limitation and enable efficient
training, generalizations and simplifications must be made.

As a first step towards simplification, we have ignored the coupling component in our Hopf
oscillator module implementation, according to the conclusions of section 4.5. Another
trade-off arises from choosing the time constant for the active amplification loop in the Hopf
oscillator module. With a sampling rate of 16 kHz, adopting this as the adaptation rate provides
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Figure 7.17: Computation time needed for different values of the adaptation frequency going
from 8kHz to 100Hz.

optimal precision, but at the cost of computational intensity. Choosing a lower adaptation
rate presents an alternative, allowing the recurrent step computation to be applied to a larger
number of samples. However, having a lower adaptation rate introduces signal distortion,
making it essential to select reasonable frequencies. The frame rate frequency serves as a
priori indicator for determining the lower bound of suitable values.

7.4.2 Adapting time constant of active amplification loop

The adaptation of the Hopf module update step implies adapting the mathematical formula-
tion to be mathematically consistent with the original Hopf oscillator expression. To achieve
this consistency, modifications are made to the differential equation update step. Specifically:

¢ The mean value of samples is used instead of individual values for each sample of y, 6
and r. This approach helps ensure that the model captures overall trends in the data
rather than focusing on minor variations.

* The initialization of 6 is defined by a linear function depending on the central frequency
of the oscillator. In contrast, the initialization of y and r are constant values for the
entire vector.

* The value of p in the computation of i is adapted according to the number of samples
N present in each time step. :

pn=pY (7.20)

where N corresponds to the amount of samples in one time step A¢. N is a parameter
that is set at the beginning of an experiment. In this equation p represents the value p
for a time step of N samples and p; represents the value p for a time step of 1 sample.

A resulting example waveform is shown in Figure 7.18. When the adaptation rate is
lowered, the signal becomes distorted. However, visually, the main structures of the
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waveform remain. For a frame rate of f = 100 Hz, which corresponds to a adaptation
rate equal to the frame rate, the distortion becomes particularly severe.

Waveform 2 Adaptation freq: 8000 Hz 025 a Adaptation freq: 4000 Hz a Adaptation freq: 2000 Hz
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Figure 7.18: Illustration of the oscillator output for different adaptation frequencies for the
utterance: 'nine, nine, zero’.

The computational efficiency of the model exhibits a linear relationship with respect to the
update frequency, as illustrated by Figure 7.17. This relationship highlights the importance of
balancing the trade-off between update frequency and computation time.

The impact of the signal distortion on the performance can be further investigated by using
different adaptation frequencies in an ASR task. The PER metric provides a quantitative
assessment of the model’s performance, allowing to identify the most suitable balance between
update frequency and computation time.

7.4.3 Method

The experiments in the following sections are done using the pytorch-kaldi framework, sim-
ilarly to chapter 5. We used the network structure of SincNet in which we replaced the sinc
filter module by the Hopf oscillator module. This Hopf oscillator module is then followed by 4
convolutional layers with the kernelsizes set to: 5,5,3 and 3, the maxpooling size is respectively
set to 3,3,2 and 2. The training is performed on 24 epochs and the final results computed on a
single run.

7.4.4 Integration of Hopf-module in a simple ASR structure

This section examines the capabilities of the Hopf oscillator module in an ASR context. The
integration of the Hopf module in a simple ASR system is depicted in Figure 7.19. The proposed
architecture uses two distinct training types as presented in section 7.2: the learning through
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Figure 7.19: Integration of Hopf module in a simple ASR baseline.

gradient descent for the CNN and MLP and the learning through differential equations for the
Hopf module.

The first experiment aims to investigate whether the ASR system can produce meaningful
performance with a Hopf oscillator feature extractor. Furthermore, it examines which is the
optimal adaptation frequency, based on the trade-off between system speed and performance.

Hypothesis

The characterization graphs presented in Section 7.3.3 reveal similarities between SincNet
filter outputs, the DFT, and Hopf oscillator outputs. However, due to their active amplification
mechanism, noise accumulates in silent parts, which can lead to incorrect phoneme clas-
sification in the absence of a proper feedback mechanism. Furthermore, the comparative
performance of CARFAC features versus classical MFCC features (as discussed in Section 4.4)
showed that cochlear-inspired models perform worse yet remain comparable to classical ASR
features in an ASR context. Therefore, we expect to achieve reasonable PER results that demon-
strate the system’s ability to interpret and extract meaningful features from Hopf oscillator
outputs.

Additionally, based on our analysis of the waveform in Figure 7.17, we anticipate that the
system’s processing time will be significantly longer than that of a standard SincNet filter
module. Specifically, while the SincNet filter module processes one utterance in 7.1 ms, the
Hopf oscillator feature extractor, at an adaptation frequency of 100 Hz, requires approximately
60 ms. When reducing the Hopf adaptation rate, signal distortion becomes more pronounced.

We hypothesize that at high adaptation rates (16 kHz), an ASR system using a Hopf oscillator
feature extractor will yield results comparable to those obtained with fixed SincNet filter
outputs. However, at lower adaptation rates, we expect a deterioration in overall performance.

114



Integration of Hopf oscillator module into an ASR system Chapter 7

Experiment

For this experiment, we utilize the baseline Hopf oscillator module integrated into a standard
ASR system, as depicted in Figure 7.19. We then evaluate the performance of the system and
measure the processing time required for each epoch over a period of 24 epochs.

Notably, we perform this evaluation with 40 oscillators and experiment with various adaptation

frequencies, specifically: 16kHz, 8kHz, 4kHz, 2kHz, 1kHz, 500Hz, 200Hz, 100Hz.

Results
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Figure 7.20: PER for different adaptation frequencies from 100Hz to 16kHz and a comparison
with fixed filters.

Figure 7.20 summarises the ASR performance achieved for different adaptation frequencies
of the active amplification mechanism of the Hopf oscillators. The results suggest that Hopf
oscillators generate features that enable effective phoneme recognition within an ASR system
as expected.

Furthermore, these results confirm our hypothesis; they indicate a clear trade-off between per-
formance and efficiency, where lower adaptation frequencies result in reduced computational
time, but come at the cost of increased WER. Notably, experiments with different frequency
settings demonstrate that:

* A 100 Hz adaptation rate offers similar time efficiency to fixed filters, but the perfor-
mance is around 43% PER.

» With an adaptation frequency between 4 and 16 kHz, the performance capacities of ASR
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models are similar to the performance obtained with fixed filters. The time per epoch
however is multiplied by a factor between 10 and 50.

These findings suggest that using lower adaptation frequencies for optimization purposes
can provide significant computational savings, while sacrificing some accuracy. Conversely,
high-frequency experiments are better suited for testing the robustness and capabilities of
ASR model structures.

7.4.5 Impact of adding recurrence on the CNN frontend

The auditory system features several feedback connections within its pathway, with the olivo-
cochlear pathway from the olivary complex to the cochlea being one of the most well-known
(as described in Section 2.1.4). To adapt the system for the implementation of this efferent
pathway, the CNN must be modified to process smaller input chunks in a recurrent manner,
which implies adding an adaptation rate at the CNN level, which we will refer to as CNN
adaptation rate in this manuscript.

The Hopf features should be transferred to the CNN in a chunk-by-chunk fashion, requiring the
convolutional part of the network to handle smaller input signals. Additionally, these chunks
must be concatenated before being transmitted to the MLP. These structural modifications are
likely to impact ASR performance, and the goal of this experiment is to investigate the effects
of these changes on both PER and efficiency.

Hypothesis

The structural modifications will reorganize the processing flow of the signal through the CNN,
breaking down the operation of passing one signal into N passes in series of smaller chunks
through the same network. We hypothesize that this decomposition will have a direct and
significant impact on computational time.

In terms of performance, we do not a priori expect discernible difference in results between the
original system and the modified system, with neither exhibiting better nor worse performance
in terms of PER.

Experiment

This experiment is a transitional experiment in order to integrate the efferent path and verify
the behaviour of the ASR capacities when structurally changing the CNN. Based on the time
efficiency of the experiment in section 7.4.4, a reasonable choice to perform this experiment
is to use the Hopf adaptation rate of 100Hz, 200Hz, and 500Hz. In the initial experiment, those
configurations took less than 20 minutes per epoch.

The speech signals are composed out of 3200 samples, which correspond to 200 ms or a CNN
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adaptation rate of 5 Hz. The CNN adaptation rate can make sense up to the frame rate, which
corresponds to 100 Hz. However, with downsampling in the CNN system, we are limited
in terms of precision. Table 7.1 summarizes the input and output sizes for different CNN

adaptation rates.

CNN adaptation | Dim atinput | Dim at out-
rate of CNN put of CNN
100Hz 160 2

50Hz 320 6

20Hz 800 20

10Hz 1600 42

5Hz 3200 86

Table 7.1: Input and output size of the CNN for different CNN adaptation rates.

A trade-off between having the CNN adaptation rate small enough to allow feedback to
influence the input and large enough to be still able to have significant information to transfer
to the MLP after downsampling through the CNN.

For 100 Hz, for example, the output dimension in the time domain is 2, which means that with
normalization, the output loses all information. In this experiment, we try out the following
CNN adaptation rates: 50Hz, 20Hz, 10Hz, 5Hz, with 5 Hz corresponding to the results obtained
in section 7.4.4.

Results

PER when adding a second for loop at the CNN level
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Figure 7.21: PER vs time consumption when introducing a for loop with CNN adaptation rates
of 5Hz, 10Hz, 20Hz and 50Hz around the CNN.
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The performance and time taken for the different experiments are shown in Figure 7.21.
Concerning efficiency, increasing the CNN adaptation rate increases the time consumption
which demonstrates our hypothesis. Concerning performance, adding a CNN adaptation rate
degrades the performance for some experiments and improves it for others. The general trend,
however, is that except for the 5Hz to 10Hz transition, the more iterations we have, the more
the performance will be degraded.

7.4.6 Adding the efferent path feedback loop

The most important feedback loop in the auditory path is the olivocochlear feedback as
discussed in section 2.1.4. This feedback is divided into two parts: one from the MOC to the
OHCs and one from the LOC to the synapses of the IHCs.

When translating the efferent pathway to a computational area, a first implementation can
be given by creating a feedback loop from the output of the CNN through a transposed
convolution network (TCNN) as depicted in Figure 7.22. The feedback can then be combined
through a linear module with the next incoming signal portions.

Hopf oscillator module

Iﬁ TCNN ¢
@ r N é
H 0 » Linear MLP — &
2 5]
. LS g =
S
c% T T » CNN
>
3]
=
Figure 7.22: Attention feedback loop
Hypothesis

Since the efferent pathway plays an important role in the auditory path, we hypothesize
that adding a similar feedback loop in the ASR pipeline would have a positive effect on the
performance of the ASR. However, from a computational efficiency perspective, the system
will be less efficient than when we use the baseline ASR configuration described in section
7.4.4.
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Experiment

For this experiment, we select 50Hz as the CNN adaptation rate, since this allows the feedback
signal to have an update every 200ms. We perform the experiments with different Hopf
adaptation frequencies: 100Hz, 200Hz, 500Hz, 1kHz, 2kHz, 4kHz. This allows us to analyze
the performance-efficiency trade-off and compare it to the results of section 7.4.4.

The combination of the feedback signal with the Hopf oscillator output is done through a
linear module, which requires a proper initialization. If the module starts from a random
initialization, it does not converge. Therefore, we start the initialization by concatenating an
identity matrix for the Hopf oscillator output and a matrix of zeros for the feedback part. This
way, the system starts with no influence of the feedback mechanism.

Results
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Figure 7.23: PER results when adding a large feedback loop.

The results are summarized in Figure 7.23. The addition of a large feedback loop is, on the
one hand, computationally more demanding, but on the other hand, it brings a consistent
performance improvement over all the tested configurations as we hypothesised.

For Hopf adaptation frequencies below 500Hz, the baseline implementation provides a better
efficiency-performance trade-off. For higher Hopf adaptation frequencies, however, the
performance beats this trade-off and achieves even better results than the baseline at 16kHz.

This result indicates that the Hopf mechanism on its own does provide an output that requires
an additional feedback mechanism, in the same way as the cochlea is better tuned with the
efferent path.
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Figure 7.24: Weight and bias of the linear combination module after training.

Furthermore, the weight matrix of the linear module that combines the Hopf oscillator output
with the feedback signal is shown in Figure 7.24. A clear separation is visible: the left side
relates to the Hopf oscillator output and is initialized as an identity matrix. The right side
relates to the feedback component, which is initialized as a matrix of zeros, implying that at
the beginning of the training no feedback is taken into account.

As illustrated in Figure 7.24, the feedback part of the matrix plays an important role in deter-
mining the weights. The combined increase in performance indicates that this feedback loop
is crucial for the ASR system to deal effectively with outputs from a Hopf bifurcation mecha-
nism. This triggers an interesting question towards the neuroscientific field: what would be
the auditory performance without the efferent pathway in terms of speech recognition?

7.4.7 A more complex implementation
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Figure 7.25: Attention feedback loop

Another possible implementation of the efferent path would be to directly integrate the
feedback into the Hopf module. This implementation better integrates the notion of a direct
impact on the OHC, modeling the connection between the MOC and OHC. This approach is
computationally more complex to implement, as the gradients must pass through the g, r and
0 variables, which are changing at a faster adaptation rate than the large feedback. This causes
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difficulties in backpropagation due to inplace operations during the forward pass. Moreover,
the Hopf oscillator equations require strict regulations to prevent the system from diverging.
The use of a random parameter that trains within a neural network system is though to handle
this differential equation system. Due to the implementation complexity and the thorough
stability issues, we were unable to conduct extensive experiments with this implementation.
However, this model structure can be an interesting starting point for further research in
speech processing with the olivocochlear feedback implementation.

7.5 Noise addition

The fundamental difference in how Hopf oscillators and convolutional filters handle incoming
signals stems from the presence of an active amplification mechanism and cube root com-
pression within the Hopf oscillator. This characteristic, typical of biological processes found in
the human ear, suggests that it may possess valuable properties in terms of noise robustness
(Shougat et al., 2021, 2023).

In the realm of computational signal processing, this phenomenon presents a compelling
research direction. By exploring how these models perform under varying conditions, we
can gain a deeper understanding of their strengths and weaknesses. Specifically, we aim to
investigate the performance differences between Hopf oscillators and convolutional filters
when trained on noisy data versus clean data.

To achieve this goal, we propose two complementary experiments:

* Clean-to-Noise Transfer : We use a model trained on clean speech and then evaluate its
performance under increasingly noisy conditions.

e Training from Scratch : We train a new model using a noisy dataset and evaluate this
model under the same noise conditions.

By examining the performance of these models in both scenarios, we can gain insights into
their ability to generalize from clean data to noisy environments.

Hypothesis

We hypothesise that the integration of the Hopf oscillator mechanism alongside the efferent
path could confer several advantages over a traditional fixed filterbank approach. The incor-
poration of global feedback and an active amplification mechanism may enable the system to
better adapt to complex, noisy environments.

Furthermore, we hypothesise that the performance of oscillators will exhibit reduced degrada-
tion compared to filters when operating within a feedback loop, particularly when only testing
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on noisy data with a model trained on clean data. This is likely due to the oscillator’s ability to
actively amplify and process signals, allowing it to better cope with the challenges presented
by noise.

In contrast, we hypothesise that the performance of the ASR system, when trained from
scratch, will exhibit relatively little difference between utilizing a Hopf oscillator frontend
versus a convolutional filter frontend. This is because both architectures are expected to
undergo significant adaptation and learning during training, allowing them to effectively
process and generalize from noisy data.

Experiment

In this experiment, we introduce noise on the fly using the 'QUT-Noise’ dataset (presented in
section 2.3.4) on the TIMIT dataset. For each speech portion, a random noise signal is added
in accordance with the chosen Signal-to-Noise Ratio SNR. To capture the main trends, we
conduct all experiments with three different SNR rates: 0 dB, 10dB and 20 dB. This experiment
is performed on the model with an efferent path adaptation rate of 50 Hz and Hopf the
adaptation rates of 100Hz, 200Hz, 500Hz, 1kHz, 2kHz, 4kHz.

Results

The results are presented in Tables 7.2 and 7.3. Notably, performance degrades across all
experiments as the SNR decreases. In the clean-to-noise transfer experiment (Table 7.2), the
results indicate that Hopf oscillators exhibit reduced robustness to noise additions compared
to convolutional filters when trained on a clean dataset. This suggests that while Hopf oscilla-
tors may mathematically capture some aspects of cochlear physiology, they do not necessarily
provide superior noise robustness. In contrast, the second experiment, where all models are
trained from scratch (Table 7.3), reveals that the degradation of Hopf filters is comparable to
that observed with classical filters. This outcome implies that, in terms of noise robustness,
Hopf oscillators do not exhibit an advantage over convolutional filters, which contradicts our

hypothesis.

clean 20dB 10dB 0dB
sinc filters | 22.8 26.0 36.1 54.6
100Hz 30.8 36.5 51.4 68.3
200Hz 30.0 36.4 54.2 74.1
500Hz 23.7 30.8 494 72.4
1kHz 225  29.0 46.8 71.7
2kHz 21.3  26.8 45.1 68.8
4kHz 204 239 38.1 64.9

Table 7.2: PER for the different SNR levels on the TIMIT dataset with a model trained on clean
speech.
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clean 20dB 10dB 0dB
sinc filters | 22.8  22.7 23.4 29.3
100Hz 30.8 32.7 35.5 42.6
200Hz 30.0 317 31.9 39.6
500Hz 237 244 27.6 33.6
1kHz 225 228 25.5 30.2
2kHz 21.3 21.8 24.2 28.9
4kHz 204  20.7 22.8 28.7

Table 7.3: PER for the different SNR levels on the TIMIT dataset with a model trained on noisy
speech

7.6 Hardware implementations of Hopf oscillators

Research has explored the hardware implementation of Hopf oscillators with adaptive fre-
quency mechanisms, as proposed in the literature (X. Li et al., 2021). These studies have
examined the feasibility of leveraging phase-locked loop (PLL) principles to develop an adap-
tive oscillator mechanism.

In this context, a PLL is an electronic circuit that utilizes feedback to adjust its output phase
to match the input frequency. By replicating this behavior, researchers aim to design Hopf
oscillators capable of adapting to changing environmental conditions.

The Hopf oscillator reservoir proposed by (Shougat et al., 2021, 2023) also demonstrated a
computationally efficient electronic implementation. This opens promising research direc-
tions in the field of electronics to further investigate a feasible implementation of cochlear
function, potentially drawing an interesting parallel to this thesis.

7.7 Conclusion

This chapter presents the integration and implementation of a module inspired by the Hopf
oscillator mechanism into an ASR system. The Hopf oscillator, mathematically describing the
OHC-IHC interaction, enables the human auditory system to process a wide range of sound
amplitudes through cube-root compression and active amplification.

Upon incorporation into the ASR system, the module introduces a dual adaptation mechanism:
one driven by differential equations to dynamically adjust the parameters of the Hopf module,
and another governed by an autograd system to optimize the weights of the ASR’s various
components.

Furthermore, this chapter incorporates larger auditory pathway feedback mechanisms into
the ASR system, which parallels the feedback process of the auditory brain. The autograd
mechanism adjusts synaptic weights to enhance the tonotopic mapping of incoming sounds,
while a larger CNN-TCNN architecture models the olivocochlear feedback loop, directly
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influencing the Hopf module’s output. The results demonstrate that this feedback mechanism
significantly improves experimental performance, highlighting its necessity for adapting Hopf
module signals to phoneme mapping. In physiological terms, the olivocochlear feedback loop
is a well-documented feedback pathway in the auditory system essential for human hearing.

Moreover, previous studies suggest that the feedback mechanisms implied in the ear enhance
noise robustness for human hearing. However, our experiments reveal that this capacity is
not observed compared to convolutional filters in the context of ASR. Nevertheless, we do not
exclude the possibility that other implementations could lead to more robust behaviour, such
as in self-supervised model contexts.
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This thesis lies at the intersection of the ASR field and the physiological understanding of the
cochlea. In ASR, self-supervised pre-trained models are the current state-of-the-art. These
models are pretrained on large amounts of unlabeled data and able to be fine-tuned on labeled
datasets. The latest models use transformer-based modules, which achieve state-of-the-art
performance, but are computationally more expensive compared to the previous vanilla ASR
models. The cochlea can initially be understood to work as a filterbank. However, recent
studies suggest that the cochlea functions more like an array of active amplification oscillators,
driven by a local feedback loop between OHCs and IHCs. The mathematical model that best
approaches this interaction is the Hopf bifurcation model. The bifurcation enables the model
to switch from a damping mode in loud environments to an active amplification mode in
silent environments.

Modularity is a key concept in the combination of different modules. In the context of this
thesis, the modularity concept is particularly interesting for the integration of cochlear models
within ASR systems. Additionally, we investigated the modularity concept for noisy speech in
a conformer-based ASR system. In this study, we implemented a fixed and learned routing
mechanism to route speech in different noise environments and showed that using a modular
network enhanced the overall performance as well as the learning curve.

Building on the modularity concept, we undertook two studies using trainable filters of SincNet
into ASR systems. An initial study was conducted on a small ASR system, highlighting that the
filters tend to learn both narrowband and wideband filters when trained within an ASR system.
Narrowband filters self-organize into a mel-distributed filterbank of 30 to 40 filters. Wideband
filters capture larger frequency range information, which in physiology are found in higher
auditory path nuclei. In a second study, we investigated the trainable filters within a self-
supervised model. This study confirms that a trainable filterbank tends to learn about 40 filters.
This study also shows that wideband filters are precluded to appear by the self-supervised
transformer-based model.

The Hopf oscillator is the state-of-the-art mathematical model that best captures the in-
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tricacies of the cochlea. In the first chapter, we presented the Hopf model, explaining the
bifurcation mechanism and demonstrating its ability to process raw speech. This prior work
lays the foundation for a second chapter, presenting our Hopf module implementation and
integration into an ASR frontend. Moreover, we integrated a larger feedback loop, which
models the efferent pathway. This efferent path shows significant performance improvement
over the initial Hopf integration. Further, based on the promising noise robustness hypothesis,
we performed a series of experiments on noisy data. However, in our implementation, these
noise robustness implications did not surpass traditional filter capacities.

Generally, this thesis has investigated modern theories of the cochlea in the context of machine
learning models. It explores the use of machine learning models under the assumption
that they approximate the human auditory pathway when trained on ASR tasks. This gives
interesting insights when combined with more physiologically plausible models, forcing the
model to better adapt to more physiologically plausible inputs. The results obtained with the
efferent path integration shows on the one hand that physiological inspirations can lead to
interesting improvements for the ASR field. On the other hand, using physiologically plausible
models can give insights to neuroscientists. The results obtained in deep learning applications
raise interesting questions about how the physiological system handles different situations,
which was the main purpose of this thesis.

8.1 Further research and recommendations

This thesis acts as a tool for the two communities to mutually inspire each other and contains
several results which pose interesting research questions in the physiological field.

For further research, we suggest investigating new implementation solutions that deal with
the computational limitations, which can allow actual combinations of state-of-the-art or
physiologically plausible ASR models with Hopf-based oscillator frontends. For example,
creating a pretrained model for the CNN encoder, which can then be integrated into a larger
transformer-based model, may yield interesting insights. Another research direction is to
combine physiologically inspired models of the auditory path such as spiking neural networks
with the Hopf oscillator frontend.

Hardware implementations of the Hopf oscillators have shown interesting results on sound
classification. Combining those electronic Hopf reservoirs with other physiologically plausible
circuits could lead to an interesting parallel of this thesis in the electronics field.

Furthermore, the midbrain also employs lateral inhibition to sharpen neural responses by
suppressing the activity of neighbouring neurons. This mechanism enhances contrast and
facilitates feature discrimination. The maxpooling function partially reflects this idea by
selecting only the strongest activations for subsequent layers. However, a more physiologically
plausible approach could involve using Mexican hat filters in the convolutional layers following
the cochlear stage. When combined with a feedback mechanism, this implementation would
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more closely resemble the biological auditory pathway, contributing to a more realistic ASR
model.
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. cppcnaix

A.1 Active force: a set of two differential equations

We start from the harmonic oscillator equation combined with an active amplification force:

mi=-Ak—kx+FE,+F A.1)

If we consider the inertial effects as negligeable (mi = 0), the stiffness as nonlinear (k = k(x))
then this harmonic oscillator equation becomes:

Ax=—k(x)x+F,+F (A.2)

To obtain oscillations, the non-linear stiffness should display a regime of negative elasticity
k(x) = k— C + Bx? where k is the bare stiffness and C a control parameter characterizing a
reduction of stiffness. When C > k the system actively amplifies the oscillations for small
displacements x. The active force f, evolves as a first-order differential equation that generates
arestoring force when the system is displaced which relaxes with a time-constant 7 and its
own stiffness k.

{ Ai=—(k—C+Bx>)x+F,+F (A.3)

1F,=—F,—kx

129



Chapter A An appendix

A.2 Equations for simulation of Hopf oscillator

A.2.1 Single oscillator with adaptive frequency

This appendix explains more in detail how the simulation equations of chapter 4.3 the equa-
tions are derived from Biswas et al., 2020.

The canonical model of the Hopf oscillator without any external input is given by:
z=z(u+io+ Bilz?) (A.4)

Further developing this expression in polar form gives:

z=re +ire®0=re(u+iow+pir? (A.5)

After separating the real and imaginary parts, the polar coordinates are obtained:

r(u+ p1r?) (A.6)
0 = w (A.7)

Similarly, the Hopf oscillator equation can be expressed with cartesian coordinates:

2

x(u—1/x2+y%)-yw (A.8)
2

yu—1/x2+y% )+ xw (A.9)

I
1l

<.
1l

A Hopf oscillator influenced by a real sinusoidal input (F(t) = Fcos(wot + ¢)) signal can adapt
its natural frequency to the frequency of the input signal if it follows the following dynamics
(Righetti et al., 2005). The canonical model of the Hopf oscillator with an external input and
the oscillator adaptation are given by:

z(u+iw+ P11z|?) + F(1) (A.10)
—F(t)sinf (A.11)

nN-
1

e
1
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The polar coordinates are given by:

Fo= r(u—r?+F(t)cos®) (A.12)

: F(t) .

o = w+Tsm(0) (A.13)
= —F(f)sin0 (A.14)

For a complex input(F(¢) = Fe!@*#)) the frequency adaptation function becomes:

o = -—[real(F(1)sin(0)—imag(F(t))cos(6)] (A.15)
= —[Fcos(wgt+¢)sin(@) — Fsin(wgt + ¢p) cos(6)] (A.16)
= —Fsin(@—-wot—¢) (A.17)

A.2.2 A series of Hopf oscillators

To model a series of Hopf oscillators, we need to take into account the impact of the interaction
between the different oscillators. Therefore the interaction between the oscillators is modelled
through complex coefficients with Hermitian symmetry. For two oscillators i and j with the
same frequency (w), the Hopf oscillator equation of oscillators becomes:

zi(p+io+ Blzil*) + Wz; (A.18)
zj(u+iw+Plz;H) + Wz (A.19)

zj

Zj

Where W = Aijeieif and W* :Ajieiefi with Aij = A]‘i and eij = _eji-

Oscillators can however have different frequencies, the angular coupling should therefore
o 0i
be normalized: W = A; jel “i and W* = Aj;e“i . The signal from the other oscillator also

Yi

undergoes a coupling frequency adaptation : z; — z;'j :

oy o

Z = zi(u+iwi+ﬂ|zi|2)+Ai]~el‘“/zj’ (A.20)
o o

Zj = zj(p+iw,~+ﬂ|zj|2)+Aj,~e @i Z}ui (A.21)

(A.22)
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Extending this model to a series of N oscillators results in the canonical model given by:

0. ext. signal
. . 9 N igt o ~=
Zi=zi(u+iw;+Plzil )+ Y Ajje “iz;) + F(1) (A.23)
S ~———  ji#j
oscillator i —_——

coupling with other osc.
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