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Abstract

While recent zero-shot multi-speaker text-to-
speech (TTS) models achieve impressive re-
sults, they typically rely on extensive tran-
scribed speech datasets from numerous speak-
ers and intricate training pipelines. Meanwhile,
self-supervised learning (SSL) speech features
have emerged as effective intermediate repre-
sentations for TTS. Further, SSL features from
different speakers that are linearly close share
phonetic information while maintaining indi-
vidual speaker identity. In this study, we intro-
duce kNN-TTS, a simple and effective frame-
work for zero-shot multi-speaker TTS using
retrieval methods which leverage the linear re-
lationships between SSL features. Objective
and subjective evaluations show that our mod-
els, trained on transcribed speech from a single
speaker only, achieve performance comparable
to state-of-the-art models that are trained on
significantly larger training datasets. The low
training data requirements mean that kNN-TTS
is well suited for the development of multi-
speaker TTS systems for low-resource domains
and languages. We also introduce an interpo-
lation parameter which enables fine-grained
voice morphing. Demo samples are available
at https://idiap.github.io/knn-tts.

1 Introduction

Neural text-to-speech (TTS) synthesis has ad-
vanced significantly in recent years, achieving a
level of naturalness comparable to human speech.
and allowing for an increasingly expressive range
of outputs (Tan et al., 2021). Neural TTS systems
can be categorized into two-stage and single-stage
pipelines. Two-stage models convert text or phone-
mic features into acoustic features and then use
a vocoder to generate waveforms. These models
can suffer from error propagation and limitations
due to their dependence on low-level features like
mel-spectrograms (Kim et al., 2020; Shen et al.,
2018). Single-stage models aim to address these

issues by streamlining this process into an end-to-
end framework (Kim et al., 2021; Casanova et al.,
2022), but they may face oversmoothing, mispro-
nunciations, and reduced flexibility due to the lack
of explicit linguistic information and entangled la-
tent representations (Lee et al., 2022; Choi et al.,
2023). Recent research combines the strengths of
both approaches by using self-supervised learning
(SSL) speech representations as intermediate ele-
ments in two-stage models (Siuzdak et al., 2022;
Shah et al., 2024; Wang et al., 2023b). These rep-
resentations help improve word error rates, pronun-
ciation of out-of-vocabulary words (Siuzdak et al.,
2022), and robustness to noise (Zhu et al., 2023).

In practice, end-user applications may need to
synthesize speech in the voices of multiple speak-
ers. Collecting high quality speech data and build-
ing a TTS model for each target voice is a chal-
lenging problem. As a result, there has been a
growing interest in zero-shot multi-speaker TTS
systems which can synthesize speech in an unseen
speaker’s voice based on short reference samples.
State-of-the-art models such as XTTS (Casanova
et al., 2024) and HierSpeech++ (Lee et al., 2023)
demonstrate impressive quality and similarity to
unseen speakers. To produce varied voices, these
models condition the output on style embeddings,
which are extracted from a reference audio sam-
ple via a speaker encoder. However, these models
require end-to-end training on thousands of hours
of transcribed audio data from a large number of
speakers to generalize effectively.

Simultaneously, kNN-VC (Baas et al., 2023) has
emerged as a promising any-to-any voice conver-
sion method, leveraging SSL features for zero-shot
conversion. It uses a kNN algorithm to match
frames from the source speaker with the target
speaker’s representations, adjusting the speaker
identity while preserving speech content. This ap-
proach is similar to retrieval-augmented generation
(RAG) techniques used in deep generative models
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such as language models (Khandelwal et al., 2020,
2021) and image generators (Chen et al., 2023).
These methods have been effectively used in these
fields to enhance accuracy and reliability, as well
as to enable style transfer by steering model out-
puts to mirror characteristics of a retrieval database
(Borgeaud et al., 2022; Chen et al., 2023).

In this work, we investigate whether retrieval-
based methods can be similarly applied to TTS
for style-transfer, to achieve effective zero-shot
multi-speaker capabilities. Additionally, we ex-
plore whether these methods can reduce data re-
quirements for the development of a robust zero-
shot multi-speaker TTS system. This paper’s key
contributions can be summarized as follows:

• We propose kNN-TTS, a novel framework for
multi-speaker zero-shot TTS which leverages
retrieval methods to modify target voices, di-
verging from the conventional approach of using
speaker embeddings.

• By exploiting linear relationships in SSL fea-
tures, our framework alleviates the need for
multi-speaker transcribed data during training.

• We introduce a novel linear interpolation param-
eter allowing for fine-grained control over the
influence of the target style on the output, which
offers voice morphing capabilities.

• We validate the method using two different
lightweight models trained solely on transcribed
speech from one speaker and demonstrate com-
petitive performance with state-of-the-art models
trained on much larger datasets.

Code, models, and demo samples are publicly
available at https://idiap.github.io/knn-tts.

2 Proposed Approach

2.1 Framework
The kNN-TTS framework, illustrated in Fig. 1,
begins with a Text-to-SSL model that generates
source speaker features from text input. A kNN
retrieval algorithm then matches these generated
features to units in a target speaker’s unit database,
which contains features extracted from the target
speaker’s recordings using a pre-trained SSL en-
coder. The selected target speaker features are
linearly interpolated with the source speaker fea-
tures to obtain the converted features. Finally, a
pre-trained vocoder decodes the converted features
back into a speech waveform.

Text
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Figure 1: kNN-TTS framework overview. Only the Text-
to-SSL model is trained on transcribed audio. The SSL
encoder, vocoder are pre-trained on untranscribed multi-
speaker data, and the kNN algorithm is non-parametric.

SSL encoder: For this framework, we need an
intermediate audio representation that meets the
following criteria: (1) it should encompass both
linguistic and speaker-specific information; (2) fea-
tures that are linearly close should exhibit similar
phonetic properties while preserving speaker iden-
tity; and (3) it should be possible to decode the
features back to waveform. Recent works show
that SSL models encode speech into representa-
tions that meet these criteria (Dunbar et al., 2022).
Preliminary experiments indicate that spectral fea-
tures are ineffective in this context (Appendix A).

Text-to-SSL: We train a Text-to-SSL model that
generates corresponding SSL features from a given
text input. Notably, this is the only component of
our framework that requires audio data paired with
text transcriptions for training. It is possible to train
this model on the speech of a single speaker.

kNN Retrieval: To synthesize speech in a target
speaker’s voice, units (or frames) from the target
speaker unit database are selected to replace corre-
sponding frames from the source speaker features.
The selection is done by comparing source and
target frames using a linear distance metric. This
results in selected target speaker features that main-
tain the phonetic information while replacing the
voice attributes with those of the target speaker.

The source and target speaker features are then
linearly interpolated to obtain the converted fea-
tures (Khandelwal et al., 2020). A variable param-
eter λ modifies the degree of influence the target
features have on the output, enabling voice morph-
ing by blending the source and target styles.

yconverted = λ yselected + (1− λ) ysource (1)

Vocoder: We employ a vocoder capable of de-
coding the SSL features back into a waveform. To
ensure robust generalization, the vocoder should be
pre-trained on a large and diverse dataset to main-
tain high-quality waveform reconstruction across
different speakers and contexts.
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2.2 Implementation
SSL encoder: We employ a pre-trained WavLM-
Large encoder from (Chen et al., 2022). It is
specifically selected due to its effective audio re-
construction capabilities, obtained through training
on masked speech denoising and prediction tasks
(Wang et al., 2023a). We use the features from
the model’s 6th layer which encapsulate both pho-
netic and speaker characteristics (Baas et al., 2023;
Wang et al., 2023a). These representations are pre-
extracted and cached prior to training or inference,
eliminating the need to load WavLM during either
process, assuming the target speaker is known.

Text-to-SSL: We evaluate two Text-to-SSL im-
plementations: GlowTTS (Kim et al., 2020) and
GradTTS (Popov et al., 2021). GlowTTS em-
ploys a non-autoregressive architecture with a
transformer-based text encoder, a duration predic-
tor, and a flow-based decoder (Kingma and Dhari-
wal, 2018). GradTTS follows a similar architecture
but uses a diffusion-based decoder (Song et al.,
2021). We maintain each model’s default configu-
rations and cost functions for training. We adjust
only their output dimension to 1024 channels to
align with WavLM-Large features instead of mel-
spectrograms. For the GradTTS diffusion decoder,
we use 100 iterations for synthesis. Both models
are trained on the LJSpeech dataset (Ito and John-
son, 2017), which comprises 24 hours of single-
speaker English speech. GlowTTS is trained for
650k steps, and GradTTS for 2M steps.

kNN Retrieval: For each source frame, we com-
pute its cosine distance with every target speaker
frame within the unit database. We then select the
k closest units, and average them with uniform
weighting. Similar to Baas et al. (2023), we use
k = 4 which was determined to be suitable across
different amounts of target audio.

Vocoder: We use a pre-trained HiFi-GAN V1
(Kong et al., 2020) model trained to reconstruct
16kHz waveforms from WavLM-Large layer 6 fea-
tures. The model checkpoint, sourced from Baas
et al. (2023), was trained using their pre-matched
paradigm on the LibriSpeech train-clean-100 set,
consisting of 100 hours of clean English speech
from 251 speakers (Panayotov et al., 2015).

3 Experimental Setup

3.1 Baselines
We benchmark our models against leading open-
source zero-shot multi-speaker TTS systems.

YourTTS (Casanova et al., 2022) is trained on 529
hours of multilingual transcribed data from over
1000 speakers. XTTS (Casanova et al., 2024) uses
27,282 hours of transcribed speech data across 16
languages. HierSpeech++ (Lee et al., 2023) is
trained on 2796 hours of transcribed English and
Korean speech, encompassing 7299 speaker. These
models are trained end-to-end, and employ various
speaker encoders to convert a reference utterance
into a style embedding for zero-shot multi-speaker
synthesis. We use the default checkpoints and con-
figurations provided by the authors for each base-
line model1 2. Further details about the baselines
can be found in Table 1 and Appendix C.

3.2 Evaluation
For zero-shot multi-speaker synthesis comparisons,
we use LibriSpeech test-clean for target speaker
reference utterances. It includes speech of varied
quality from 20 male and 20 female speakers, with
8 mins of speech per speaker. For each model,
we synthesize 100 English sentences per speaker,
selecting the sentences randomly from FLoRes+
(Costa-jussà et al., 2022), as per the XTTS protocol.
Tests are performed with λ = 1. For baseline mod-
els, we obtain a speaker embedding by averaging
style embeddings across all reference utterances of
each target speaker, ensuring a fair comparison.

Objective analysis: we evaluate each model’s
performance in terms of naturalness using UTMOS
(Saeki et al., 2022), intelligibility using the word er-
ror rate (WER) and phoneme error rate (PER) com-
puted with the Whisper-Large v3 model (Radford
et al., 2023), and speaker similarity using speaker
encoder cosine similarity (SECS) with ECAPA2
(Thienpondt and Demuynck, 2023).

Subjective evaluation: we conduct a listening
test to assess naturalness and similarity mean opin-
ion scores (N-MOS and S-MOS). We randomly se-
lect utterances from 10 male and 10 female target
speakers from LibriSpeech test-clean, choosing 3
synthesized sentences per speaker, totaling 60 utter-
ances per model. Each is rated by 10 raters on nat-
uralness and similarity to a ground-truth recording,
with scores ranging from 1 to 5 in 0.5 increments.
We use Amazon Mechanical Turk, with raters re-
quired to be native English speakers based in the
United States, having a HIT acceptance rate above
98% and more than 100 approved HITs. Further
details are presented in Appendix D.

1https://github.com/idiap/coqui-ai-TTS
2https://github.com/sh-lee-prml/HierSpeechpp
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Table 1: Zero-shot multi-speaker TTS results. Training data specifically refers to transcribed data. Evaluation scores
are reported with 95% confidence intervals, and the best scores for each metric are highlighted in bold.

#Params Training Data Memory RTF WER PER UTMOS SECS N-MOS S-MOS
Model (M) (Hours) (GB) ↓ ↓ ↑ ↑ ↑ ↑
Ground Truth n/a n/a n/a n/a 2.91 ± 0.31 0.92 ± 0.15 4.09 ± 0.01 0.87 ± 0.003 4.21 ± 0.06 4.12 ± 0.06
Baselines:
YourTTS 85.5 529 0.56 0.71 6.09 ± 0.32 2.24 ± 0.12 3.65 ± 0.01 0.54 ± 0.003 3.87 ± 0.08 3.86 ± 0.09
XTTS 482 27,282 2.15 1.64 2.76 ± 0.21 0.84 ± 0.09 4.07 ± 0.01 0.40 ± 0.003 4.11 ± 0.06 3.93 ± 0.08
HierSpeech++ 63 2,796 1.29 0.18 3.36 ± 0.23 0.78 ± 0.06 4.44 ± 0.01 0.67 ± 0.003 4.15 ± 0.06 4.01 ± 0.08
Proposed:
GlowkNN-TTS 51.5 24 0.45 0.24 3.71 ± 0.24 0.98 ± 0.07 4.02 ± 0.01 0.72 ± 0.002 4.07 ± 0.07 3.93 ± 0.08
GradkNN-TTS 31.5 24 0.91 2.41 4.32 ± 0.25 1.44 ± 0.09 4.16 ± 0.01 0.71 ± 0.003 4.10 ± 0.07 3.91 ± 0.08

Model efficiency: we compare models on pa-
rameter count, peak GPU memory usage during
test sample synthesis, and real-time factor (RTF),
tested on an NVIDIA RTX3090 GPU.

Voice Morphing: we perform an experiment
using the interpolation parameter, computing the
SECS of the model’s output with the target
speaker’s ground truth data for various values of λ.
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Figure 2: Speaker similarity matrix comparing SECS
values for ground truth (GT) LJSpeech samples,
LibriSpeech Speaker 4077 (Libri4077) recordings,
and GlowkNN-TTS outputs with kNN retrieval from
Libri4077 data for various λ values. Samples in each
case are split in half into sets A and B and compared.

4 Results and analysis

Results are presented in Table 1. Objective met-
rics reveal that the kNN-TTS models demonstrate
the best speaker similarity, XTTS excels in intel-
ligibility, and HierSpeech++ achieves the highest
naturalness. In the listening test, HierSpeech++
was rated highest for naturalness and similarity,
while the kNN-TTS models and XTTS performed
similarly. These models’ results fall within each
other’s confidence intervals, suggesting compa-
rable performance. Regarding model efficiency,
kNN-TTS models have the fewest parameters and
lowest memory usage among the top performers.
GlowkNN-TTS uses 3× less memory than Hi-
erSpeech++ with similar speed. GradkNN-TTS’s
memory usage and RTF are higher due to the 100
iterations used in the diffusion decoder. Further,

the kNN-TTS models are trained on 100× less tran-
scribed data than HierSpeech++ and 1000× less
data than XTTS.

Figure 2 illustrates the results of the voice mor-
phing experiment. We can observe that the simi-
larity of the outputs to the target speaker gradually
increases as λ rises, demonstrating the ability to
finely blend source and target styles and suggests
the potential to combine multiple target styles.

5 Discussion and conclusions

State-of-the-art zero-shot multi-speaker TTS mod-
els rely on large datasets of transcribed speech from
thousands of speakers for training. In this paper,
we demonstrated that by leveraging retrieval meth-
ods and SSL features, we can develop a simple and
lightweight TTS system that achieves a compara-
ble level of naturalness and similarity to leading
approaches while being trained on transcribed data
from only a single speaker. We further showed that
fine-grained voice morphing can be achieved using
an interpolation parameter. This indicates that this
technique, which is originally inspired from other
domains such as language modeling (Khandelwal
et al., 2020) and machine translation (Khandelwal
et al., 2021), can be applied in the context of TTS.

The simplicity of the training process is a main
advantage of our approach: only the Text-to-SSL
model needs training, and it can be trained on tran-
scribed data from one speaker. In conjunction with
the kNN approach’s cross-lingual capability (Baas
and Kamper, 2023), this is particularly appealing
for extending the model to new languages with less
resources, a direction open for future work.

We also showed that the framework can be imple-
mented using different Text-to-SSL architectures,
allowing for model swapping to leverage differ-
ent benefits. Our implementations notably demon-
strated efficiency in terms of parameters, memory
usage, and runtime speed in the case of GlowkNN-
TTS, even without optimizing the retrieval process.
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Limitations

Reference Data Requirements

While our approach offers simplicity in training
and is more lightweight, it requires more reference
audio compared to other methods. We conduct
ablation studies to evaluate the models’ outputs
with varying amounts of reference utterances. Fig-
ure 3a compares outputs using retrieval from dif-
ferent amounts of LJSpeech data. We find that
approximately 30 seconds of reference utterances
are needed to achieve suitable intelligibility, while
naturalness improves up to 5 minutes, surpassing
the model outputs without retrieval. Figure 3b com-
pares the kNN-TTS models to the baselines for
different amounts of reference utterances from a
target speaker. Similarly, about 30 seconds are
required for suitable intelligibility, while similar-
ity plateaus at around 1 minute. In contrast, the
baselines benefit less from increasing the amount
of reference utterances beyond 10 to 30 seconds.
There is therefore a trade-off; our method requires
at least 30 seconds of reference audio, whereas
competing approaches can function with smaller
amounts.

Rhythmic variations

Typically, different speakers exhibit different pro-
nunciation durations. In our method, the duration
aspect is determined by the Text-to-SSL model,
and the target voice is modified through frame-by-
frame selection, meaning that the duration of each
utterance remains unchanged for different speakers.
Our future work will explore techniques, such as
Urhythmic (van Niekerk et al., 2023), to address
this limitation.

Training Simplicity and Model Capacity

In this study, we trained and evaluated Text-to-
SSL models on transcribed speech from a single
speaker to demonstrate that strong performance can
be achieved in a simplified low-resource setting.
However, expanding the training data to include
multiple speakers and larger datasets can increase
the model’s output quality and enable it to generate
speech with a wider range of expressiveness. Simi-
larly, while we prioritized lightweight models for
efficiency, more complex models could improve
speech quality at the cost of efficiency. These as-
pects can be explored further in future work.
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Figure 3: (a) Mean UTMOS (↑) and WER (↓) for kNN-
TTS outputs using different amounts of LJSpeech refer-
ence utterances. (b) Mean SECS (↑) and WER (↓) for
kNN-TTS and baseline outputs using different amounts
of LibriSpeech Speaker 4077 reference utterances.

Ethics Statement

Zero-shot multi-speaker TTS systems such as the
one we describe in this manuscript can offer bene-
fits in accessibility, entertainment and education by
enabling the generation of varied expressive syn-
thetic voices from textual input. Our approach’s
lowered data requirements can unlock these ben-
efits for low-resource domains, while its reduced
compute needs ensure sustainability. However, this
technology’s accessibility also poses many risks,
including voice cloning without consent, imper-
sonation, and the creation of deepfake audio for
misinformation and manipulation. We note that
compared to other zero-shot methods, our pro-
posed approach, requires more data from the target
speaker for sufficient quality, reducing imperson-
ation risks. In our research, we strictly adhere to
using only public datasets with appropriate licenses.
To mitigate potential harm, it is important to ad-
vance research in watermarking synthetic outputs
for traceability and developing methods to differ-
entiate synthetic speech from authentic recordings,
thereby reducing risks to individuals and groups.
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Appendix

A Spectral Features

We conducted preliminary experiments to assess
the viability of spectral features as intermedi-
ate representations within our framework. We
use a GlowTTS model and HiFi-GAN vocoder
that use mel-spectrograms as feature representa-
tions. Table 2 presents the outcomes of replicat-
ing the experiment described in Section 3.2 using
mel-spectrogram features instead of SSL features,
comparing them with ground truth samples and
GlowkNN-TTS outputs. The objective metrics
reveal that the resulting speech is unintelligible
and of poor quality, demonstrating that these spec-
tral features are unsuitable for our framework. In-
deed, they do not meet the requirement of having
phonetic similarity while maintaining individual
speaker characteristics when linearly close. This
helps highlight the importance of using SSL fea-
tures in this context, as they possess useful proper-
ties that align with our defined criteria.

Table 2: Objective metrics comparing the Ground Truth
and GlowkNN-TTS model to the experiment using mel-
spectrogram features as intermediate representations
(MelSpec).

Model WER (↓) PER (↓) UTMOS (↑) SECS (↑)
Ground Truth 2.91 ± 0.3 0.92 ± 0.2 4.09 ± 0.01 0.87 ± 0.003
GlowkNN-TTS 3.71 ± 0.2 0.98 ± 0.07 4.02 ± 0.01 0.72 ± 0.002
MelSpec 109 ± 5 79 ± 5 1.27 ± 0.001 0.15 ± 0.004

B Model and Training Details

Table 3 presents the detailed configurations for
each model. We trained the models using a sin-
gle NVIDIA RTX 3090 GPU. For both models,
we retained the default parameters from their open-
source implementations34, only adjusting their out-
put channels to 1024 to match the dimension of
WavLM-Large features. We pre-processed all au-
dio data by resampling it to 16 kHz, trimming si-
lences from the beginning and end using a Voice
Activity Detector, and normalizing the loudness to
-20 dB.

C Baselines Details

YourTTS (Casanova et al., 2022) builds on VITS
(Kim et al., 2021), adding elements for multilin-
gual training and zero-shot multi-speaker capabil-
ities. It uses the H/ASP speaker encoder (Chung

3https://github.com/huawei-noah/Speech-Backbones
4https://github.com/coqui-ai/TTS
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Table 3: Detailed configurations for the GlowkNN-TTS
and GradkNN-TTS models presented in this paper.

Config GlowkNN-TTS GradkNN-TTS
Optimiser RAdam Adam
Betas [0.9, 0.998] n/a
Learning rate 1e−3 1e−4

Scheduler Noam n/a
Batch Size 32 16
Mixed-precision 16bit 16bit
Steps 650k 2M

#Parameters 51.5M 31.5M
Encoder
Hidden Channels 192 192
Kernel Size 3 3
Dropout 0.1 0.1
Layers 6 6
Heads 2 2
FFN Channels 768 768
Duration Predictor Channels 256 256
Decoder
Hidden Channels 192 64
Output Channels 1024 1024
Dropout 0.05 n/a
Flow Blocks 12 n/a
Kernel Size 5 n/a
β0, β1 n/a 0.05, 20

et al., 2020), pre-trained on the VoxCeleb2 dataset
(Chung et al., 2018), to extract a speaker embed-
ding from reference utterances. This embedding
conditions the model’s duration predictor, flow-
based decoder, posterior encoder, and vocoder.

XTTS (Casanova et al., 2024) features a Vec-
tor Quantised-Variational AutoEncoder (VQ-VAE)
that encodes mel-spectrograms into discrete codes,
a GPT-2 encoder that predicts these audio codes
from text tokens, and a HiFi-GAN-based decoder.
The GPT-2 encoder is conditioned on speaker in-
formation using a Perceiver conditioner, which out-
puts 32 1024-dimensional embeddings from a mel-
spectrogram. The decoder is also conditioned on a
speaker embedding extracted using H/ASP.

HierSpeech++ (Lee et al., 2023) comprises a
text-to-vec module and a hierarchical speech syn-
thesizer. The text-to-vec module generates mas-
sively multilingual speech (MMS) representations
(Pratap et al., 2024) from text inputs and prosody
prompts. The hierarchical speech synthesizer pro-
duces a waveform from MMS features and a style
prompt. Prosody and voice style representations
are extracted from reference mel-spectrograms us-
ing style encoders comprising 1D convolutional
networks, a multi-head self-attention temporal en-
coder, and a linear projection.

D Listening Test

To ensure reliable ratings, we implemented the fol-
lowing measures:

• Recruited native English speakers from the
United States via Mechanical Turk.

• Required participants to have >100 approved
HITs and a >98% approval rate.

• Compensated raters at $15/hour ($0.5 per 2-
minute task), exceeding the U.S. minimum
wage.

• Clearly defined task objectives at the start and
alongside each question.

• Added a sound check and training samples
at the beginning of the test to help the raters
adjust to the tasks.

• Included attention check samples with specific
audio instructions (e.g., "This is an attention
check, please select the number 3 to confirm
your attention"). Raters were informed about
the presence of such checks at the beginning
of the listening test.

• Filtered out unreliable raters based on atten-
tion check performance and ground truth sam-
ple ratings.

Rating Criteria
Naturalness: Participants rated audio clips on a
scale from 1 (Bad) to 5 (Excellent) with 0.5 incre-
ments. The prompt was:

Rate how natural each audio clip sounds
on a scale from 1 (Bad) to 5 (Excellent).
Excellent indicates completely natural
speech, and Bad indicates completely un-
natural speech. In this context, Natural-
ness refers to whether the speech sounds
like it’s produced by a native English-
speaking human.

Rating options were:
□ 5 - Excellent - Completely natural speech
□ 4.5
□ 4 - Good - Mostly natural speech
□ 3.5
□ 3 - Fair - Equally natural and unnatural speech
□ 2.5
□ 2 - Poor - Mostly unnatural speech
□ 1.5
□ 1 - Bad - Completely unnatural speech
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Similarity: Raters compared each clip to a ref-
erence voice, using the same scale. The prompt
was:

Compare each audio clip with the ref-
erence voice. Rate whether you feel
they are spoken by the same speaker
on a scale from 1 (Bad) to 5 (Excel-
lent). Excellent indicates exactly the
same speaker, and Bad indicates com-
pletely different speakers.

Rating options were:
□ 5 - Excellent - Identical to reference speaker
□ 4.5
□ 4 - Good - Mostly similar to reference speaker
□ 3.5
□ 3 - Fair - Somewhat different from reference

speaker
□ 2.5
□ 2 - Poor - Mostly unlike reference speaker
□ 1.5
□ 1 - Bad - Completely different from reference

speaker
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