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Abstract

The accuracy of face recognition systems has improved

significantly in the past few years, thanks to the large

amount of data collected and advancements in neural net-

work architectures. However, these large-scale datasets are

often collected without explicit consent, raising ethical and

privacy concerns. To address this, there have been propos-

als to use synthetic datasets for training face recognition

models. Yet, such models still rely on real data to train

the generative models and generally exhibit inferior perfor-

mance compared to those trained on real datasets. One of

these datasets, DigiFace, uses a graphics pipeline to gen-

erate different identities and intra-class variations without

using real data in model training. However, the perfor-

mance of this approach is poor on face recognition bench-

marks, possibly due to the lack of realism in the images

generated by the graphics pipeline. In this work, we in-

troduce a novel framework for realism transfer aimed at

enhancing the realism of synthetically generated face im-

ages. Our method leverages the large-scale face founda-

tion model, and we adapt the pipeline for realism enhance-

ment. By integrating the controllable aspects of the graph-

ics pipeline with our realism enhancement technique, we

generate a large amount of realistic variations, combining

the advantages of both approaches. Our empirical evalua-

tions demonstrate that models trained using our enhanced

dataset significantly improve the performance of face recog-

nition systems over the baseline. The source code and

dataset will be publicly accessible at the following link:

https://www.idiap.ch/paper/digi2real

1. Introduction

Face recognition (FR) technology has seen widespread

adoption due to its accuracy and ease of use. This high per-

formance can be attributed to advancements in deep learn-

ing architectures, margin-based loss functions [6, 12], and

large-scale public datasets [9,38]. However, the acquisition

of many of these datasets often conducted without explicit

user consent, posing significant legal and ethical challenges,

particularly in light of the European Union’s General Data

Protection Regulation (GDPR) and laws in other regions.

As a result of these regulations, several datasets have been

withdrawn, reducing the availability of training data. Con-

sequently, there is a growing interest in generating high-

performance synthetic face recognition datasets for training

face recognition models, as evidenced in public competi-

tions on this topic [5, 17, 18, 27].

Over the past few years, several synthetic face datasets

have been introduced for training face recognition models.

Most of them rely on generative models like StyleGAN [11]

and Diffusion Models [24]. These models are often trained

on real datasets such as FFHQ [11] to model the distribu-

tion of faces. Most of them also use pretrained face recog-

nition networks in the generation pipeline to induce the no-

tion of identity in the sampling process. However, these

datasets suffer from issues like a limited number of identi-

ties and limited intra-class variation. Preserving the identity

while generating intra-class variations is another challeng-

ing issue here as these are sampled from a continuous la-

tent space. These issues result in reduced accuracy of face

recognition models trained with these synthetic datasets,

which limits the practical use of these models, as the per-

formance is much worse than those trained using real data.

It should also be noted that the diversity and accuracy of

these models could vary based on the training data used to

train the generative model in the pipeline.

DigiFace-1M [1] offers an alternative to generative mod-

els for data creation by utilizing a graphics rendering

pipeline to produce images without requiring large-scale

real images or a face recognition network. This method uses

the rendering pipeline described in [33] to combine facial

geometry, texture, and hairstyle. It facilitates the genera-

tion of intra-class variations by rendering additional images

with varying poses, expressions, lighting, and accessories.

This approach holds significant potential for creating a large

number of identities with diverse intra-class variations and

ethnicities. Interestingly, it also allows for controlled gen-



Figure 1. The images on the left show an example identity from the DigiFace dataset alongside its realism-enhanced versions, illustrating

intra-class variations. On the right, the first row showcases original images from the DigiFace dataset, while the second row presents the

corresponding transformed images generated using our approach.

eration processes by selecting specific attributes. However,

the primary limitation of this approach is the lack of realism

in the generated samples, resulting in poor face recognition

performance for models trained with this dataset. The com-

putational requirement to produce these samples is another

constraint.

In our proposed method, we introduce a novel approach

to enhance the realism of the procedurally generated Digi-

Face dataset. By reusing existing DigiFace samples as our

source dataset, we eliminate the need for recomputation

and demonstrate through empirical evidence that our ap-

proach substantially boosts performance. Our approach sig-

nificantly improves face recognition performance compared

to DigiFace and achieves comparable performance to other

state-of-the-art synthetic data methods.

The main contributions of this work are listed below:

• We introduce a novel framework for generating realis-

tic sample images from those generated by a graphics

pipeline.

• We introduce a new synthetic face recognition dataset

called Digi2Real with a large number of identities and

intra-class variations

• We conduct a thorough analysis using the generated

dataset, demonstrating the advantages of our approach.

Additionally, the dataset and the code necessary to re-

produce the results will be made publicly available 1.

2. Related works

Recent studies have extensively explored the generation

of synthetic datasets as a solution to the legal and ethical

constraints associated with the use of real data. Many of

1https://www.idiap.ch/en/scientific-research/

data/digi2real

these approaches employ StyleGAN or Diffusion models

within their generation pipelines. In this section, we pro-

vide a brief review of the synthetic face datasets.

SynFace [21] focused on developing facial recognition

(FR) models using synthetic data. It evaluated DiscoFace-

GAN [7] to analyze intra-class variance and the domain

gap between real and synthetic images. SynFace enhanced

DiscoFaceGAN by introducing identity and domain mix-

ups, techniques that blend image features to create new syn-

thetic faces. SFace [3] introduced a class-conditional syn-

thetic GAN designed for generating class-labeled synthetic

images. By leveraging synthetic data, the authors trained

supervised FR models that demonstrated reasonable perfor-

mance. In [2], the authors introduced IDiff-Face, which

leverages conditional latent diffusion models for generat-

ing synthetic identities. The approach uses a two-stage

pipeline: first, an autoencoder is trained, and then its la-

tent space is used to train the diffusion model. The gener-

ation process is conditioned by projecting training images

into a low-dimensional space and incorporating them into

the intermediate stages of the diffusion models via a cross-

attention mechanism. A dropout mechanism is employed

to prevent overfitting to identity-specific features. In [16],

the authors presented the GANDiffFace dataset, which inte-

grates StyleGAN and diffusion-based methods. The Style-

GAN model is initially used to create realistic identities

with specified demographic distributions. These generated

images are then used to fine-tune diffusion models, synthe-

sizing various identities. The latent space is manipulated to

sample identities across different demographic groups. Ex-

FaceGAN [4] proposes a novel method for disentangling

identity within the latent space of a StyleGAN, allowing

for the synthesis of multiple variations. This technique in-

volves learning identity decision boundaries by splitting the

latent space into two distinct subspaces. Images generated

from either side of the boundary can represent the same

or different identities without the need for separate classi-



fiers. These subspaces represent image transformations that

maintain the original identity, making the approach com-

patible with any GAN-based generator. IDNet [14] intro-

duces a three-player generative adversarial network (GAN)

framework that incorporates identity information into Style-

GAN’s generation process. Besides learning the distribu-

tion of real data, a third player - a face recognition net-

work pre-trained on the CASIA-WebFace dataset-ensures

the generator produces identity-separable images. In this

setup, only the classification layers of the face recogni-

tion network are trained, enhancing the generator’s abil-

ity to create distinct identities. Works such as SynthDis-

till [28, 29], utilized the generation of synthetic data using

the feedback mechanism in a loop to train lightweight mod-

els by generating challenging samples. In [8], the authors

introduce a novel method for sampling the latent space of

a StyleGAN, inspired by the physical motion of soft par-

ticles under stochastic Brownian forces. This framework

allows for the inclusion of multiple constraints in the sam-

pling process. They propose an algorithm named DisCo,

which combines identity Dispersion with latent directions

augmentation to synthesize both diverse identities and intra-

class variations. The identity Dispersion algorithm samples

the latent space around each class’s identity reference la-

tent vector, optimizing these intra-class samples to be close

in the embedding space. Their method achieved accuracy

comparable to state-of-the-art methods for synthetic face

recognition using StyleGAN.

One major limitation of generative approaches is the dif-

ficulty in synthesizing a large number of unique identities

and producing identity-consistent intra-class variations. In

contrast to these generative approaches, DigiFace [1] pro-

poses a rendering-based pipeline to generate synthetic face

identities. DigiFace used 511 3D face scans, obtained with

consent, to construct a parametric model of facial geome-

try and texture. From these scans, a parametric generative

face model was created, capable of producing random 3D

faces combined with artist-designed textures, hair, and ac-

cessories, and rendered in various environments. Distinct

combinations of facial features, eye color, and hairstyles

define unique identities, effectively reducing diversity and

label noise. This pipeline generated a dataset of 1.22 mil-

lion images featuring 110,000 unique identities. Each iden-

tity was created using random combinations of facial ge-

ometry, texture, hairstyle, and other variations, rendered in

diverse environments. Although this rendering-based ap-

proach is computationally intensive, it offers greater flexi-

bility by enabling the creation of a large number of identities

and identity-consistent variations, with user-defined sam-

pling of pose, expression, demographics, and more. How-

ever, the generated samples lack realism, often resulting in

a domain gap and lower performance when training face

recognition models.

In the work by Rahimi et al. [23], image-to-image trans-

lation techniques were used to enhance the realism of im-

ages from the DigiFace dataset. They aimed to enhance

DigiFace images using a pretrained image enhancement

network, without relying on a pretrained face recognition

network or real face data with identity labels. Models like

CodeFormer, designed for image enhancement, were uti-

lized in their pipeline. Although there was a performance

improvement, the results remain significantly below the per-

formance of models trained with real data, limiting the prac-

tical application of this approach.

From the above discussion, it is evident that using a

graphics rendering pipeline is a powerful method for gen-

erating identity-consistent and diverse large-scale datasets.

However, this approach is computationally expensive and

lacks realism. To address these issues, we propose a new

method that reuses DigiFace images and reduces the real-

ism gap. Our approach eliminates the need for re-rendering

images, combining the strengths of both rendering and gen-

erative models to achieve better results.

3. Proposed method

The key insight of our approach is to reuse procedu-

rally generated identities from a graphics pipeline and en-

hance their realism to reduce the domain gap. The stages

of our pipeline are illustrated in Fig. 2. DigiFace1M pro-

vides an elaborate pipeline for generating synthetic identi-

ties and their variations, allowing us to obtain a large num-

ber of identities from this dataset. Additionally, we gen-

erate variations by interpolating between multiple images

of an identity within the embedding space. Using a pre-

trained foundation model, specifically the Arc2Face [20]

model, we synthesize identity-consistent images from these

interpolated embeddings. We further enhance the realism of

the generated images by modifying the intermediate CLIP

space. The resulting dataset consists of various variations

suitable for training a face recognition model. Detailed de-

scriptions of the different components are presented in this

section.

Sampling Identities To generate samples with multiple

identities, we draw from the identities in the DigiFace1M

dataset. This ensures that the identities are unique and come

from a purely synthetic dataset, enabling the creation of

a large set of identities. It’s worth noting that while we

reuse DigiFace, this framework can be extended to generate

a vast number of identities with various variations in pose,

ethnicity, gender, and more. This approach offers signifi-

cantly more flexibility compared to directly sampling from

the latent space of generative models. To generate realis-

tic face images from the sampled images, we need to trans-

form them to preserve the identity while introducing enough

intra-class variations.

Identity Consistent Face Generation The objective of
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Figure 2. Different stages of the proposed generation pipeline: We start with the original images from DigiFace and generate a class

prototype and intra-class variations. A pre-trained Arc2Face model for generating identity-conditioned images, we add the CLIP shift to

enhance realism.

this stage is to generate images that share the same identity

as the original images from the DigiFace dataset. Arc2Face

[20] introduces an identity-conditioned face foundation

model that can generate photorealistic images based on face

embeddings from an ArcFace model. They leverage Sta-

ble Diffusion [24], a text-conditioned latent diffusion model

that utilizes text embeddings from a CLIP encoder [22] to

generate photorealistic images. Stable Diffusion employs a

UNet [25] as its backbone and incorporates cross-attention

layers to map auxiliary features from the CLIP embeddings

into its intermediate layers for conditional generation. The

Arc2Face model uses a simple prompt, photo of a “id” per-

son after tokenization. The “id” token embedding is re-

placed with the ArcFace embedding vector to obtain the to-

ken embeddings. These embeddings are then fed into the

CLIP encoders to obtain the CLIP latent representation.

This process effectively transforms ArcFace embeddings

into the CLIP latent space. The Arc2Face model was trained

on a large-scale, upscaled version of WebFace42M [38] and

fine-tuned on FFHQ and CelebA-HQ. Despite being trained

on a substantial dataset, their ablation studies demonstrate

that their approach does not memorize the training data.

The CLIP latents are used with the UNet to generate photo-

realistic images.

Reducing Realism Gap Despite the enhanced realism in

projecting and reconstructing synthetic identities, they still

lacked the visual quality of natural images. In Fig. 3, we

plot the T-SNE of CLIP representations from the encoder

for 1000 images sampled from both FFHQ and DigiFace.

As seen in the figure, there’s a disparity between the distri-

butions of embeddings for real images and those from Digi-

Face. To address this gap, we propose calculating the offset

in the CLIP space and estimating a shift vector. This ap-

proach is similar to the Domain Gap Embeddings proposed

in [35] (∆).

DigiFace
FFHQ

Figure 3. T-SNE plots of samples from the FFHQ and DigiFace

datasets in the CLIP latent space show a clear difference in the

distribution of embeddings between the two datasets.

∆ =
1

N

N
∑

i=1

(

CLIPFFHQ
i

)

−
1

N

N
∑

i=1

(

CLIPDigiFace
i

)

(1)

The estimated shift values, ∆, are added to correct the

distribution in our generation pipeline as follows:

CLIPcorrected = CLIPDigiFace +∆ (2)

Figure 4 shows the improvement in realism with the ad-

ditional correction term in the CLIP space.

Generating Intra-class Variations Challenging intra-

class variations is an important aspect that is needed to train

robust face recognition networks. To generate intra-class

variations, we use the intra-class samples from the Digi-

Face dataset. First, we generate the ArcFace embeddings

for all samples of the same subject and normalize them to

the unit hypersphere. One naive way would be to gener-

ate samples from each of the images present. However, we

have observed that sampling from different images as start-

ing points resulted in identity drift (especially for images



Figure 4. The set of images on the left shows images from

DigiFace, the middle set shows images generated using identity-

preserving sampling, and the right set shows images generated

with CLIP shift added.

Figure 5. Intra-identity sampling is performed using spherical lin-

ear interpolation on the unit sphere, from the class prototype to the

direction of the image samples in DigiFace.

in extreme off-pose and extreme expressions). Hence, we

opted to introduce a class prototype vector for each iden-

tity computed as the mean vector embedding space and in-

troduce variability by sampling along the geodesic on the

unit hypersphere to generate variations. Specifically, we

perform spherical interpolation (SLERP) [30] on the unit

sphere using the following equation:

Let µ be the class mean on the unit hypersphere, and

ei, ei ∈ {1, 2, . . . ,K} represent embeddings correspond-

ing to samples in DigiFace. We compute intra-class varia-

tion by sampling along the directions of samples present in

the dataset. For an interpolation factor λ, the interpolation

equation is given by:

v(λ) =
sin((1− λ)θi)

sin(θi)
µ+

sin(λθi)

sin(θi)
ei (3)

where θi is the angle between µ and ei, defined as:

θi = cos−1(µ · ei) (4)

The value of λ is sampled from a Beta distribution β(α, β))

λ ∼ Beta(α, β) (5)

for value of α = β = 1, it is equivalent to uniform distribu-

tion in the range [0, 1].
Dataset Generation For each subject in the DigiFace

dataset, we select five images and project them into the Arc-

Face embedding space. We perform SLERP (Spherical Lin-

ear Interpolation) sampling based on the Beta distribution

to generate intra-class variations. The resulting sampled la-

tents are fed into the CLIP encoder to produce a latent rep-

resentation. This representation is then modified using the

estimated ∆ parameter to generate five images per latent.

These images undergo post-processing, where faces are de-

tected, cropped, and aligned using MTCNN to a uniform

resolution of 112 × 112. We process up to 87K identities

from the original DigiFace dataset.

4. Experiments

We trained face recognition models using the dataset

generated through our proposed approach. This section pro-

vides a detailed evaluation, including ablation studies and

comparisons with state-of-the-art methods.

Evaluation Datasets We evaluate the performance of

the model using several benchmarking datasets, including

Labeled Faces in the Wild (LFW) [10], Cross-age LFW

(CA-LFW) [37], CrossPose LFW (CP-LFW) [36], Celebri-

ties in Frontal-Profile in the Wild (CFP-FP) [26], AgeDB-

30 [19], IARPA Janus Benchmark-B (IJB-B) [32], and

IARPA Janus Benchmark-C (IJB-C) [15].

Following previous works, we report accuracies for

datasets such as LFW, CA-LFW, CP-LFW, CFP-FP, and

AgeDB-30. For the IJB-B and IJB-C datasets, we report

the True Accept Rate (TAR) at a False Accept Rate (FAR)

of 1× 10−4.

Training details In all experiments, we adopt the IRes-

Net50 architecture to ensure comparability with previous

literature. Specifically, we employ AdaFace [12] as the loss

function. The models were trained for 30 epochs with a

batch size of 256, following a cosine learning rate schedule.

For the loss, we used the default hyperparameter settings

as specified in the AdaFace [12] paper for our experiments.

Models were trained using NVIDIA RTX 3090 GPUs.

4.1. Ablation Experiments

A wide range of design choices are involved in gener-

ating the final dataset, so we performed a series of experi-

ments to determine the optimal parameter set. The specifics

are outlined in this subsection.

Table 1. Effect of varying the number of images per identity, ex-

periment was performed with 10K identities.

Images per ID LFW CALFW CPLFW AgeDB30 CFP-FP IJB-B IJB-C

10 97.40 84.80 78.40 80.63 81.94 66.66 70.95

20 97.95 85.97 79.25 81.83 84.66 67.86 72.28

25 98.03 85.80 79.17 81.70 84.94 30.81 43.80



Number of Images per Subject Given that the small-

est sample count per subject in DigiFace was five, we per-

formed an experiment to determine the optimal number of

images per subject. We generated 10,000 identities with 10,

20, and 25 images each, then evaluated face recognition per-

formance. The results, shown in Table 1, indicate that while

performance remains stable in high-quality datasets, IJB-C

and IJB-B performance declines with higher image counts.

Based on these results, we selected 20 as the optimal num-

ber of samples for further experiments.

Table 2. Effect of changing the value of α, experiment performed

with 10K identities.

α LFW CALFW CPLFW AgeDB30 CFP-FP IJB-B IJB-C

1 97.40 84.80 78.40 80.63 81.94 66.66 70.95

2 97.87 86.18 78.78 82.20 85.10 68.87 73.09

Value of α The hyperparameter α controls the distribu-

tion of samples around each class prototype, with samples

selected in the direction of DigiFace embeddings and drawn

from a beta distribution parameterized by α. We performed

an experiment with 10,000 identities, each having 20 im-

ages, using α values of 1 and 2. The results, shown in Table

2, indicate that an α of 2 yielded improved performance,

particularly on IJB-B and IJB-C, so we chose α = 2 for

subsequent experiments.

Table 3. Impact of varying number of identities generated on the

face recognition performance.

No of ID’s LFW CALFW CPLFW AgeDB30 CFP-FP IJB-B IJB-C

10K 97.87 86.18 78.78 82.20 85.10 68.87 73.09

20K 98.12 86.60 81.17 82.77 87.20 57.15 63.86

30K 98.17 88.10 81.68 84.63 87.84 53.20 59.86

40K 98.52 88.25 82.62 84.65 88.63 50.02 57.30

50K 98.43 88.58 82.25 84.60 88.86 32.38 37.17

60K 98.28 88.27 83.58 85.73 88.76 43.92 48.95

70K 97.83 88.02 82.13 84.92 88.96 36.47 40.66

80K 97.78 88.68 81.87 85.78 89.56 31.01 34.15

87K 98.17 88.78 82.85 86.05 89.53 37.52 42.38

Table 4. Face recognition performance with the sorted list of iden-

tities.

No of ID’s LFW CALFW CPLFW AgeDB30 CFP-FP IJB-B IJB-C

10K 98.12 86.32 80.77 80.98 84.87 66.92 72.79

20K 98.58 87.22 82.65 84.72 87.49 70.14 75.80

30K 98.37 88.87 83.95 84.88 88.83 62.94 67.82

40K 98.77 88.18 83.90 85.13 88.60 44.21 52.39

50K 98.50 88.62 84.10 85.32 89.21 37.52 43.75

60K 98.47 88.77 83.90 85.13 89.57 38.53 42.40

70K 98.12 88.58 83.02 85.68 89.34 31.26 33.91

80K 97.57 88.17 82.50 85.77 89.77 33.55 36.10

Number of identities Another factor in synthetic dataset

generation is the number of identities created. Since our ap-

proach relies on the identities in the DigiFace dataset, the to-

tal number of generated identities is limited. We conducted

an experiment to evaluate the impact of generating different

Figure 6. Examples of images from DigiFace the are labeled with

distinct identities, but the only differences are attributes like skin

tone and accessories.

identity sets, with results shown in Table 3. While the Digi-

Face dataset had 110K identities, we capped the number of

identities at a maximum of 87K, as adding more led to di-

minishing returns, and performance on the IJB-B and IJB-C

datasets decreased with additional identities.

The performance degradation observed with an in-

creased number of identities was counterintuitive, so we

investigated this issue further by examining the generated

samples. Our analysis revealed that some identities in the

original DigiFace dataset were highly similar. As DigiFace

generates data through random combinations of attributes,

it sometimes creates identities that are visually alike but are

classified as different, such as faces with similar shapes but

varying skin tones. Some examples are shown in Fig. 6.

This overlap complicates the training of robust face recog-

nition models.

To address this, we filtered the dataset based on identity

similarity. We sorted identities based on their cosine sim-

ilarities with other identities and created a set of identities

from this sorted list for our experiments. Using this filtered

set, we repeated our experiments and observed performance

improvements in the IJB-B and IJB-C datasets, as shown in

Table 4. In this case, 20,000 samples proved optimal. This

sorted set of identities was used for all subsequent compar-

isons, denoted as Digi2Real-20K.

4.1.1 Evaluations

In this section, we compare the performance of our gen-

erated Digi2Real-20K dataset with other synthetic and real

datasets on standard benchmarks. Specifically, Digi2Real-

20K is the enhanced version of DigiFace, generated using

our proposed realism-enhancement approach, consisting of

20K identities with 20 images per identity.

Comparison with DigiFace Since Digi2Real-20K was

created by enhancing the realism of DigiFace, it is essential

to evaluate its face recognition performance against Digi-
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Figure 7. Comparison of IJB-B and IJB-C performance

Table 5. Performance improvement from DigiFace to Digi2Real-

20K

Dataset LFW CALFW CPLFW AgeDB30 CFP-FP IJB-B IJB-C

DigiFace1M [1] 91.93 75.80 73.13 71.12 78.89 43.23 49.53

Digi2Real-20K 98.58 87.22 82.65 84.72 87.49 70.14 75.80

Face. The results of this comparison are presented in Table

5. Our realism transfer approach shows a substantial per-

formance improvement, even though only 20,000 identities

from DigiFace were used. This indicates that enhancing re-

alism considerably boosts face recognition performance.

Comparison with State of the Art We evaluate the per-

formance of face recognition networks trained on various

synthetic datasets, including our proposed dataset. Specif-

ically, we compare results against other synthetic datasets

generated using StyleGAN and Diffusion-based methods,

and we also provide context by including performance on

real datasets. The results are presented in Table 6. Our

proposed dataset demonstrates superior performance over

many alternatives, with particularly notable improvements

on the IJB-B and IJB-C benchmarks, where it ranks sec-

ond only to the DCFace dataset. While performance on

high-quality datasets like LFW remains comparable to other

methods, our approach significantly outperforms many syn-

thetic datasets on IJB-B and IJB-C, achieving verification

rates of 70.14% and 75.80%, respectively. The ROC plots

for comparison with other synthetic and real datasets are

shown in Fig. 7.

Performance on RFW We also assess recognition bias

across different demographic groups using the Racial Faces

in-the-Wild (RFW) dataset [31]. We measured recognition

performance for each group, calculating verification accu-

racies for Asian, African, Caucasian, and Indian identities,

along with the average accuracy and standard deviation. As

shown in Table 7, while a performance gap remains com-

pared to models trained on real data, our approach reduces

the disparity in terms of standard deviation compared to sev-

eral other synthetic datasets.

Training Models using Synthetic and Real Data The

performance of face recognition models trained solely on

synthetic data still falls short of those trained on real data.

Although synthetic data can address privacy and legal chal-

lenges, the performance gap hinders the practical use of

these models in critical applications. Previous studies have

shown that incorporating a small amount of real data can

help close the performance gap between models trained on

synthetic versus real datasets [1]. This suggests a practical

approach where consent could be obtained from a limited

number of subjects. To explore this, we conducted an ab-

lation study using our synthetic dataset along with samples

from WebFace260M, progressively adding identities from

WebFace to our synthetic dataset and training new mod-

els. The results in Table 8 show significant performance

improvements with the addition of even a small number of

real identities. Adding 1,000 identities from WebFace, for

instance, raises the LFW accuracy to 99.25%, highlighting

the effectiveness of combining real and synthetic data.

5. Discussions

In this work, we present a novel approach for enhanc-

ing realism in synthetic images generated from a graph-

ics pipeline. Our method introduces intra-class variation

through hypersphere interpolation, reducing the gap to real

images in CLIP space. We evaluated the performance of

the synthesized datasets on standard face recognition bench-

marks, demonstrating a significant improvement over the



Table 6. Comparison with State-of-the-Art synthetic and real datasets (SOTA)

Dataset LFW CALFW CPLFW AgeDB30 CFP-FP IJB-B (E-4) IJB-C (E-4)

R
ea

l
MSCeleb [9] 99.77 96.05 92.13 97.78 95.74 94.91 96.20

CASIA WebFace [34] 99.47 93.83 90.07 94.40 94.99 45.80 50.94

S
y
n

th
et

ic

DCFace [13] 98.97 92.37 84.40 91.03 88.03 79.82 84.91

GANDiffFace [16] 93.52 76.95 74.33 68.32 76.91 47.85 52.95

DisCo [8] 98.83 93.38 81.52 92.63 83.39 53.45 51.55

IDiffFace [2] 97.72 89.70 80.77 84.10 81.19 65.08 67.11

ExFaceGAN [4] 84.65 68.42 65.27 56.22 65.06 24.79 26.61

DigiFace1M [1] 91.93 75.80 73.13 71.12 78.89 43.23 49.53

Syn2Auth-DF-CF [23] 93.18 77.43 76.82 75.53 82.33 54.30 59.96

SFace [3] 93.35 77.20 74.47 70.45 76.97 18.79 12.24

Digi2Real-20K (ours) 98.58 87.22 82.65 84.72 87.49 70.14 75.80

Table 7. Comparison with state of the art methods on RFW dataset

Dataset African Asian Caucasian Indian Mean Std.

MSCeleb [9] 98.32 97.85 99.12 97.90 98.29 0.51

CASIA WebFace [34] 88.35 86.32 94.20 89.12 89.49 2.90

DCFace [13] 80.73 84.03 89.50 87.20 85.37 3.31

GANDiffFace [16] 64.60 70.72 75.38 71.55 70.56 3.87

DisCo [8] 79.53 83.28 88.65 84.83 84.07 3.27

IDiffFace [2] 75.23 79.87 85.20 80.68 80.25 3.54

ExFaceGAN [4] 55.63 63.82 64.62 62.18 61.56 3.54

DigiFace1M [1] 65.55 69.60 72.58 70.00 69.43 2.52

Syn2Auth-DF-CF [23] 69.87 73.27 76.90 73.52 73.39 2.49

SFace [3] 64.60 69.68 74.32 67.87 69.12 3.51

Digi2Real-20K (ours) 80.67 79.95 85.33 81.40 81.84 2.08

Table 8. Peformance of models trained on Digi2Real and WebFace

dataset

Number of IDs Performance Metrics

Digi2Real WebFace LFW CALFW CPLFW AgeDB30 CFP-FP IJB-B IJB-C

20K 0 98.58 87.22 82.65 84.72 87.49 70.14 75.80

20K 10 98.62 87.12 82.67 84.02 87.24 67.59 73.66

20K 100 97.95 86.20 81.70 82.38 87.70 54.88 63.58

20K 200 98.53 86.48 82.47 83.88 88.56 59.89 67.54

20K 500 98.97 89.25 84.85 88.12 89.93 72.22 78.51

20K 1000 99.25 91.27 86.60 89.57 91.66 76.95 82.00

20K 2000 99.20 91.92 87.42 91.28 92.57 81.98 86.42

original DigiFace dataset. Additionally, our approach per-

forms comparably to, and often outperforms, many other

synthetic datasets. While our method’s performance is lim-

ited by the quality of the source dataset, applying it with

more advanced graphics pipelines could yield further im-

provements.

Limitations While this approach successfully generates

high-quality images, there are several important aspects to

note. Firstly, the Arc2Face training pipeline utilizes im-

ages from WebFace42M, FFHQ, and CelebA-HQ, indi-

cating that the Arc2Face model requires supervision from

a large number of samples to generate identity-consistent

images. Moreover, their method depends on a high-

quality face recognition model, also trained on the WebFace

dataset, which is a common limitation among many syn-

thetic datasets. Additionally, as shown in the figures, the

generated images do not always appear very realistic.

Despite these limitations, our approach demonstrates

that it is possible to train highly effective face recog-

nition models by first procedurally generating samples

from a graphics pipeline, followed by generating identity-

consistent variations. We hope this inspires researchers to

focus more on procedural generation pipelines for synthetic

data and to develop more sample-efficient approaches for

face recognition.

6. Conclusion

In this work, we demonstrate that adding realism to im-

ages generated from a graphics pipeline can greatly enhance

face recognition performance. The use of the graphics

pipeline allows for the creation of a large number of identi-

ties with user-defined poses, expressions, accessories, light-

ing, ethnicities, etc., providing fine-grained control over the

generation process. This capability facilitates the easy gen-

eration of balanced datasets. The next step is to make the

generated images appear photorealistic, and our approach

can be employed to achieve this realism. Essentially, our

proposed hybrid approach combines the effectiveness of

both graphics rendering and data-driven synthetic data gen-

eration paradigms, further boosting face recognition perfor-

mance. We also note the need for more innovation in trans-

ferring realism with minimal use of real data. We hope the

performance improvement with our approach will encour-

age researchers to focus more on hybrid approaches to syn-

thetic data generation.
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