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Abstract—As a biometric trait drawing increasing attention,
finger vein (FV) has been studied from many perspectives. One
promising new direction in FV biometrics research is full-view
FV biometrics, where multiple images, covering the entire surface
of the presented finger, are captured. Full-view FV biometrics
presents two main problems: increased computational load,
and low performance-to-cost ratio for some views/regions. Both
problems are related to the inherent redundancy in vascular
information available in full-view FV images. In this work, we
address this redundancy issue in full-view FV biometrics. Firstly,
we propose a straightforward FV redundancy analysis (FVRA)
method for quantifying the information redundancy in FV images.
Our analysis shows that the redundancy ratio of full-view FV
images is up to 83%-87%. Then, we propose a novel feature
extraction model, named FV dynamic Transformer (FDT), whose
architecture is configured based on the redundancy analysis results.
The FDT focuses on both local (single-view) information as well as
global (full view) information at different processing stages. Both
stages provide the advantage of de-redundancy and noise avoid-
ance. Additionally, the end-to-end architecture simplifies the full-
view FV biometrics pipeline by enabling the direct, simultaneous
processing of multiple input images, thus consolidating multiple
steps into one. A series of rigorous experiments is conducted to
evaluate the effectiveness of the proposed methods. Experimental
results show that the proposed FDT achieves state of the art
authentication performance on the MFFV-N dataset, yielding
an EER of 0.97% on the development set and an HTER of
1.84% on the test set under the balanced protocol and EER
criterion. The cross-domain generalization capability of FDT is
also demonstrated on the LFMB-3DFB dataset, where it achieves
an EER of 7.24% and an HTER of 7.34% under the same protocol
and criterion. Code for the proposed methods can be access via:
https://github.com/SCUT-BIP-Lab/FDT.

Keywords—Biometrics, vein recognition, finger vein, full-view,
dynamic Transformer

I. INTRODUCTION

Security applications relying on authentication of individual
identities are increasingly relying on biometrics. In recent years
finger vein (FV) biometrics has attracted growing attention,
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Fig. 1: Full-view FV biometrics, taking MFFV [1] as an example.
(a) MFFV imaging device; (b) Schematic layout of MFFV imaging
device; (c)-(e) Full-view FV images of View 1, View 2, and View 3,
respectively (the blue boxes indicate regions with higher density of
veins, and the red boxes indicate regions with fewer veins); (f) - (h)
Patches division for View 1, View 2, and View 3, respectively.

due to the three main advantages it offers, namely, liveness
detection, difficulty of counterfeiting, and user-friendliness
[2 3].

In FV biometrics, multi-view FV authentication (FVA) is a
topic drawing increasing interest and has the potential to be
widely used. Compared to single-view FV biometrics, multi-
view FV biometrics 1) captures more information, which can
lead to higher recognition accuracy; 2) significantly increases
the difficulty of constructing presentation attacks (PA), and
thus is more secure; and 3) inherently solves the pose variation
problem during application [4], making the biometrics system
more robust. Figure [I] shows an example of a multi-view
FV biometrics system, the Mirror-based Full-view FV device


https://github.com/SCUT-BIP-Lab/FDT

(MFFV) [1]]. The external view of the MFFV device is shown
in Figure [T(a)] and the internal arrangement of cameras and
mirrors in the device is shown in Figure In Figure |1(c)
- |I(e), we show examples of FV images captured using this
device.

There are two kinds of taxonomy [1]] for the current multi-
view FV biometrics studies. The first taxonomy is modality-
based, and groups the existing works into three categories:
partial multi-view FV, full-view FV, and three-dimensional
(3D) FV. The second taxonomy groups them by imaging
technology, into multi-camera-based systems and moving-
camera-based systems. Any multi-view FV biometrics system,
regardless of taxonomy, needs to handle multiple FV images
simultaneously. This requirement entails the following chal-
lenges: 1) Increased computational complexity: the process
of extracting features from multiple FV images will notably
increase the computational complexity. 2) Low performance-
to-cost ratio for certain views and regions: due to the natural
distribution property of FV trait, FV information is variable in
different locations. As shown in Figure (1} the palmar view of
finger has more FV information than the lateral views
of the finger (Figure and [I(d)). Also, certain regions, for
example those marked with red rectangles, include relatively
less FV information compared to other regions, such as those
marked with blue rectangles in Figure and Therefore,
if all image-regions are processed in the same way, this will
result in low performance-to-cost ratio for regions, or even
entire views containing low FV information.

These two challenges can be seen as different manifestations
of redundancy in multi-view FV biometrics. The increased com-
putational complexity reflects the macroscopic manifestation
of the redundancy issue; whereas the low cost performance
index for some views and regions reflects the microscopic
embodiment. This redundancy issue is the main reason that
most of the existing FV biometrics studies only focus on single-
view FV paradigm. Simultaneously, it is the main obstacle to
the development of multi-view FV biometrics.

To advance the state of the art (SOTA) in multi-view FV
biometrics, the redundancy issue should be addressed. In
this work we propose a series of methods for estimating
and reducing redundancy in feature extraction of multi-view
FV biometrics. Our proposed approach, based on dividing
the FV images into patches, is inspired by the approach
adopted in Vision Transformer (ViT) [3]. Firstly, we propose
a FV redundancy analysis (FVRA) method to estimate the
redundancy ratio of both single-view and full-view FV data
quantitatively. As shown in Figure [[(f){I(h)| each view of FV
image is divided into a set of patches for redundancy analysis,
which is the manner for handling FV image with region variant
and spatial texture characteristics. To the best of our knowledge,
this is the first study on redundancy analysis for FV images.
Then, based on the redundancy analysis results, we propose
a Full-view FV Dynamic Transformer (FDT) model. The
proposed FDT model gradually reduces the token sequence
during the feature extraction process, thereby, reducing
the redundancy significantly, during feature extraction. The
proposed FDT incorporates discriminative information from
individual single-view images along with relational information

shared across multiple views. There are two kinds of feature
extraction stages in FDT: the single-view stage (SV stage)
and the full-view coupling stage (FCV stage), which are
used as follows: 1) During the SV stages, each view is
processed independently of the other views and different
views are treated independently. Hence enhance the feature
extraction of specific characteristics inner each view. As the
stage progresses, the number of tokens that contribute little to
identity-discrimination are removed, and the tokens that are
important to identity-discrimination are retained. 2) In the
FVC stages, the intermediate tokens from each SV stage are
coupled together. This enables the FDT to extracted features
that integrate information from all views. The FVC stages
also continue to reduce the number of FV tokens, to further
reduce redundancy. Finally, the class token output by the last
FVC stage — a short (128-dimension) vector, is used as the
biometrics template.

We have conducted a series of experiments to evaluate the
performance of the proposed FDT on two publicly available
full-view FV datasets. Experimental results show that the FDT
achieves SOTA performance for full-view FV authentication,
and effective cross-domain generalization performance.

The main contributions of this work are summarized here-
under:

1) This is the first work to address the redundancy issue,
which is an significant obstacle in the development of
FV biometrics, especially for multi-view FV biometrics.
A straightforward and effective method, namely FVRA,
for analyzing the redundancy for FV biometrics. The
proposed FVRA provides a quantitative measure of the
redundancy present in FV data.

2) Based on the redundancy analysis results, this work
proposes a novel full-view FV feature extraction model,
namely FDT. The proposed FDT considers both the in-
formation specific to each view, as well as the correlation
among full views.

3) Experimental results on two publicly available full-view
FV datasets demonstrate that the proposed FVRA and
FDT effectively address the redundancy issue in FV
biometrics. The proposed FDT achieves SOTA perfor-
mance for full-view FV authentication, and effective
cross-domain generalization performance.

The rest of this paper is organized as follows. We discuss
the related works in Section |lI} Then, we describe the FVRA
method in Section and introduce the design of the proposed
FDT in Section [[V] Experimental results for evaluating the
proposed methods are presented in Section Finally, we
conclude our work in Section [VIl

II. RELATED WORKS

In this section, we mainly discuss the related works of
FV biometrics, starting with the single-view FV biometrics,
followed by a focus on multi-view FV approaches. We also
provide a concise overview of vision Transformers as a relevant
technical foundation.



A. FV biometrics: from single-view to multi-view

Recent deep-learning-based methods have shown excellent
performances for FVA. Das et al. [6] investigated the per-
formance of convolutional neural networks (CNN) for FV
identification tasks. Their experimental results show that it
is possible to achieve rank-1 identification accuracy higher
than 95% for some publicly available FV datasets. Yang et
al. [7] proposed a feature-fusion method for small-area FV
recognition. Recognition for partial FV image is common
in practical application, especially for some low-constraint
FV biometrics system. Kuzu er al. [8] proposed an on-the-
fly FV recognition system, which uses a CNN for feature
extraction and a recurrent neural network (RNN) to further
extract the temporal dependence of the input features. Li et
al. [9] presented a novel compact multi-representation feature
descriptor (CMrFD) as FV feature, which has the characteristic
of visual and semantic consistency.

Following the development of Vision-Transformer neural
network architecture [3]], Huang et al. [10] first adapted the
Transformer encoder for FV authentication task. By adopting
several novel local information enhanced techniques, they
proposed a customized FV Transformer, namely FVT. Inspired
by the difference of filtered results of FV images using different
frequency filters, Huang et al. [3]] proposed a frequency domain
processing (FDP) module, which can adaptively learn the
frequency filters through training. Experimental results show
that their proposed FDP module can achieve satisfactory per-
formance on FV authentication task. Further, they combine the
FDP with a spatial CNN for coupling the frequency and spatial
features of an FV image, and proposed a lightweight model,
namely FVFSNet (FV frequency-spatial coupling network).
Experimental results show that the FVFSNet achieved overall
SOTA FVA performance on nine FV datasets.

With the extensive study of finger veins, some challenges
have begun to emerge, such as the requirement for higher
accuracy and the risk of being counterfeit attack. To tackle
these two challenges, the multi-view biometric modality is a
good response due to more information is captured, which will
improve the accuracy of identity-discrimination and difficulty
of being counterfeited. For FV biometrics, there are three kinds
of multi-view modalities: partial multi-view FV, full-view FV,
and 3D FV [1].

Partial multi-view FV systems capture a set of FV images
from different angles, but the different views do not cover the
entire surface of the finger. Bunda [11]] reconstructed the 3D
point cloud from multiple palmar FV images. These images
were captured from different angles by the device of Rozendal
[12]. Zhao et al. [13] also developed a partial multi-view FV
imaging device. Their system is different from that of Rozendal
[12] in two ways: (1) to capture different views of the presented
finger, the user is required to rotate the finger in the device,
and (2) the FV images are captured from the dorsal side.

Full-view FV systems capture a set of FV images that cover
the entire finger surface. It cantains more information compared
with partial multi-view FV, and therefore can make full use of
the vein information on the fingers. Published works on full-
view FV biometrics can be grouped into two categories: the

moving-camera based methods [14H16]] and the multi-camera
based methods [} 4} [17]. Prommegger et al. [[14] have designed
a moving-camera based full-view FV biometrics system. They
have collected a new full-view FV dataset using their proposed
device, for which they have presented a set of experimental
results. Considering only single-view FVA, their experiments
indicate that FV images from palmar and dorsal views lead
to better results than those from other views. They further
demonstrate that score-fusion based multi-view FVA can lead
to better results than single-view FVA. Qin et al. [15] have also
proposed a full-view FV imaging device based on the moving-
camera idea. They have also proposed a Transformer-based
model that models the features from the different views as a
sequence to fit the Transformer architecture. Song et al. [16]
also adopt the moving-camera design and proposed a full-view
FV imaging system. They have used their prototype device
to capture a dataset with eight views per finger. They also
propose the MFV-FESNet architecture that extracts the context
feature and the dominant feature from the full-view FV images
and fuses them to generate the final feature vector.

Huang et al. [[1] propose a mirror-based full-view FV
(MFFV) imaging system. Their system follows the multi-
camera design. There are two main contributions in this work:
first, the mirror-based FV imaging design reduces the device
size, which is important for practical applications; second,
the multiple illumination FV capture strategy (MIFV) and the
accompanying FV illumination adaption (FVIA) algorithm
address the illumination issue caused by finger-thickness
variations. Their proposed system is designed to use optimally
illuminated FV images to improve both single-view and full-
view FVA performance. Kauba et al. [18]] also propose a mirror-
based full-view FV imaging device. Their device only use a
single camera and several mirrors to capture FV from different
views. However, because of varying imaging distances for the
different views, there are discrepancies among the different
views captured by their system.

Another dimension of full-view FV biometrics is the 3D
FV modality, where the full-view FV images are used to first
reconstruct the 3D vein-pattern in the presented finger. After
reconstructing the 3D representation of the finger, Kang et al.
[4] unfold the 3D information into a 2D texture image and
a 2D representation of the finger-shape. Their experimental
results show that the combination of these two cues leads to
superior FVA results, compared to using FV texture information
alone. Yang et al. [17] propose a visual hull based 3D
finger reconstruction method. Since the visual hull based 3D
reconstruction requires as many views as possible, they have
developed a six-view imaging device and have collected a
finger multi-biometrics dataset namely LFMB-3DFB. Their
experiments show that although the proposed visual-hull based
method can reconstruct the 3D finger, there is room for
improvement in some details such as edges and corners.

In contrast to the works discussed above, this work introduces
a framework guided by an analysis of redundancy in full-view
FV data. The redundancy analysis directly informs the design
of an efficient, end-to-end feature extraction model for full-view
FV recognition.



B. Vision Transformer

The Transformer implements the multi-head self-attention
(MHSA) mechanism [19]. This architecture was first proposed
for text-processing application. Dosovitskiy et al. [5] proposed
a Vision Transformer (ViT) for image-processing applications
by converting images into a sequence of 16 x 16 patches. This
pioneering work, demonstrating the effectiveness of ViT in
computer-vision (CV) tasks has inspired many CV applications
of ViT [20, 21]]. Liu et al. [22] propose a Swin Transformer,
which uses a hierarchical architecture and applies the MHSA
with local windows that are shifted across layers. Li et al.
[23] propose a Local-ViT, which uses a locality-enhanced
feed-forward network (LFFN) to gather the information from
local tokens, thus enhance the local information extraction
ability. Chu et al. [24] propose a position embedding generator
(PEG) for generating the position embedding according to
the given token and its adjacent tokens. These three works
have proposed improvements to the original ViT by taking
into account hierarchical structure, local information, and
position embedding. Many contemporary Vision Transformer
architectures draw inspiration from the key ideas behind these
enhancements, even if they do not incorporate the techniques
directly.

The recently proposed dynamic Tranformer (DT) architecture
improves upon the ViT by processing token-sequences using a
dynamic strategy that can reduce the sequence-length signifi-
cantly. These dynamic strategies can generally be grouped into
two categories: learning-based [25} 26] and class-token-based
[27, 28]. The learning-based strategy uses a sub-network (also
called decision-network) to assign a score to each token; tokens
with scores lower than a preset threshold are pruned, that is,
excluded from subsequent processing. Rao er al. [25] propose
a DynamicViT, which prunes redundant tokens progressively
by using a lightweight prediction module to estimate the
importance score of each token. Meng et al. [26] propose
an adaptive computation framework, namely AdaViT, which
can dynamically adjust the number of patches, self-attention
heads, and Transformer blocks, based on their corresponding
decision networks. The Class-token based strategy generates
the token scores directly from the attention value between the
content tokens and the class token. Fayyaz et al. [27]] propose a
Adaptive Token Sampler (ATS) module, which can selects the
most informative and distinctive tokens based on their attention
values. Liang et al. [28] propose the EViT, which uses the
attention values to identify the important tokens, thus reducing
the sequence between MHSA and FFN modules.

Inspired by the dynamic mechanism of the DTs, this work
introduces a novel full-view FV authentication approach that
leverages this principle to reduce redundancy in intermediate
features during feature extraction. By integrating this with
a dedicated analysis of FV images redundancy, our method
achieves efficient and focused feature learning.

III. REDUNDANCY ANALYSIS FOR FV IMAGES

In this section, we present a method for analyzing redundancy
in FV images that is equally applicable to both single-view and
multi-view FV imagery. We refer to the proposed approach

as FV redundancy analysis (FVRA). For FV biometrics,
the location of veins can be considered as the distribution
of identity-discriminant information, and redundancy is an
inherent issue in FV images, mainly due to the uneven
distribution of veins. As shown in Figure not all the
regions in the FV images have veins. For example, the regions
enclosed in red boxes do not show obvious vein, whereas the
blue boxes indicate the vein-rich regions. Veins constitute a
relatively small portion of the captured image. For example,
Figures [[(DI(h)| show FV images of three views of a single
finger. In these figures, the FV image is divided into 100 non-
overlapping rectangular sub-regions. We note from the figure
that only about 10-15% of these sub-regions actually contains
vein-structures. This is a typical distribution of vein-information
in fingers. The uneven distribution of such identity-discriminant
information implies that some FV regions are more salient
than others [7], or even that some views are significantly better
than others [} [14], in terms of biometrics performance.

To the best of our knowledge, no previous study has
addressed the issue of redundancy in FV images. In this work,
we propose a straightforward method FVRA, for quantitatively
estimating the redundancy in FV images. The redundancy ratio
can be used as the basis for designing an efficient FV feature
extraction model, which will be introduced in Section The
proposed FVRA method is described below.

1) Each FV image, of size 320 x 240, is divided into 100
non-overlapping patches of size 32 x 24, as illustrated
in Figure [[(OHI(h)]

2) For single-view FV, each FV patch is unraveled into an
1-D vector, called a ’component’. Thus there are 100
components for a single view FV image.

3) For full-view FV, three complementary FV images that
cover the whole finger surface are used. Hence, there are
3 x 100 components for a full-view FV image set.

4) Principal component analysis (PCA) is used to figure
out the ratio of principal components. The FVRA
framework assesses the information redundancy of the
FV image by calculating the proportion of principal
components necessary to account for 99% of its total
information content. This 99% criterion serves to balance
the dual objectives of maintaining recognition accuracy
and minimizing redundancy.

Equation shows the mathematical expression of the
proposed FVRA metrics, where R is the redundancy-metric,
Pyg and P, are the number of PCs retained and the number
of total PCs.

B Pog
R=100x (1 - %)

ey

The ratio of the number of selected tokens to the total number
of tokens gives a quantitative measure of the redundancy that
exists in a given set of FV images — the smaller the ratio, the
larger the redundancy. The proposed FVRA method possesses
two distinct advantages.

« Firstly, it takes into account the characteristics of image
structure through patch-level analysis, thereby preserving
the spatial properties of FV images.



o Secondly, by using the subspace learning method — PCA,
the proposed FVRA can simulate the interaction between
patches, as well as the dimensionality-reduction process
implemented in the proposed FDT feature-extractor.

Using the proposed FVRA method conducive to select those
tokens of an FV image that together include almost all (99%)
of the FV information in the image (or set of full-view FV
images).

The experimental details and results are presented in Section
which verify that 1) the redundancy issue exists in FV
image heavily; and 2) this issue is amplified in full-view FV.
More importantly, in this work, we use the results of FV
redundancy analysis to guild the configuration of the feature
extraction model, which will be demonstrated in Section

IV. FULL-VIEW FV DYNAMIC TRANSFORMER

In this section we describe the proposed Full-view FV
Dynamic Transformer (FDT) in detail. Compared to previous
works on FV authentication (FVA), the proposed FDT offers
three advantages:

1) FDT processes the input data dynamically. During the
process of feature extraction, the tokens that contribute
less to the identity-discrimination are progressively
eliminated, while the tokens that provide significant
identity-discrimination are retained for the next layer,
making the feature extraction procedure both focused
and efficient.

2) The FDT is inherently consider both the local infor-
mation from individual single-view FV images and
the global information from the full-view set. It first
processes each view independently to capture view-
specific characteristics, and subsequently merges the
resulting intermediate features to form a consolidated
full-view feature sequence.

3) The FDT offers an end-to-end processing solution for full-
view FV image sets. By integrating the entire procedure
into a single model, it eliminates the need for dedicated
stages — such as preprocessing and a separate fusion
step — that are typically required to adapt single-view
systems for multi-view data.

There are five key modules in the proposed FDT: the multi-
layer perceptron based patch embedding (MLP-P) module, the
batch attention (BatchAtten) module, the position embedding
generator (PEG), the de-redundancy multi-head self-attention
(DeRedun-MHSA), and the local-enhanced feed-forward net-
work (LFFN). In the following, we describe these modules in
detail.

A. Overall Architecture and Working Mechanism

As shown in Figure [2] the pipeline of the proposed FDT
includes two kinds of stages: single-view (SV) stages and full-
view coupling (FVC) stages. During the SV stages, the FV
features are extracted from different views independently. As
indicated in Figure [T} FV images captured from different views
carry complementary information. By processing each view
independently in the SV stages, the model captures both the

view-specific information and the inter-view complementarity.
The input tokens to the SV stages are image patches consisting
of pixels that represent low-level information. The SV stages
process these image-patches and produce tokens that encode
higher-level information. The FVC stages process tokens from
all views together, thus aggregating the full-view information
into a unified representation. It is these two kinds of information
processing stages that realize the feature extraction strategically
and efficiently. The full-view coupling dynamic Transformer
(FVCDT) and single-view dynamic Transformer (SVDT)
layers are built upon the same structural design. They differ
exclusively in their input tokens: SVDT handles view-specific
tokens, whereas FVCDT processes a combined token set from
all views to achieve full-view representation.

The FDT is trained in an end-to-end manner, including both
the auxiliary and classifier stages shown in Figure [2] The
auxiliary part is described in section while the classifier
and the losses consist with the works [3) [10]]. The cost-function
of training FDT is a combination of the cross-entropy loss and
the center loss [29]], as shown in in Equation

@

In the inference phase, both the auxiliary and classifier
parts are discarded. For a given full-view FV image set, the
embedding produced by FVC Stage 6 of the FDT is taken
as the corresponding feature vector. Two feature vectors, the
enrolled feature and the probe feature, are compared using
the Cosine-Similarity measure, to generate an authentication
score and output the authentication result by comparing the
authentication score with a pre-defined threshold.

L= aLCELOSS + ﬂLCenterLoss

B. Multi-layer Perceptron based Patch Embedding

The proposed FDT framework begins by converting the
input full-view finger vein (FV) images into token sequences.
This transformation is achieved using a multi-layer perceptron-
based patch embedding (MLP-P) module, which differs from
the tokenization method employed in the original Vision
Transformer (ViT).

In the original ViT, tokenization involves a sequence of
operations: dividing the image into patches, flattening them,
and mapping via a linear layer. This procedure can be viewed
as a transformation based on a single linear layer. We argue
that this approach has a limitation: it fails to fully capture
the information within each patch. To address this, the MLP-
P module replaces the single linear layer with a multi-layer
perceptron, offering a simple yet effective solution to enhance
intra-patch feature extraction.

The MLP-P module, as illustrated in Figure |3} is imple-
mented through a specific sequence of operations: a convolu-
tional layer with kernel sizes and strides matching the patch
dimensions, a Leaky ReLU activation layer, and a subsequent
1 x 1 convolutional layer. The mathematical expression for

the MLP-P is shown in Equation
X =Wix1x0(Wps_ks*I+b1)+ba (3)

where Wpg_ ks and by denote the kernel and bias of the
first convolutional layer; the W7« and the by represent the
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C. Position Embedding Generator

In this work, we have used conditional position embedding to

represent the position information of FV tokens. The working
mechanism of conditional position embedding is based on a
position embedding generator (PEG) [24], which generates
the position embedding based not only on the token itself, but
also on its nearest neighbors. For the proposed FDT, we have
adapted the PEG in the following two specific details:

Fig. 3: Architecture of Multi-layer perceptron based patch
embedding (MLP-P). PS-KS denotes patch-sizes kernel and stride,

1x1 K denotes one-by-one size kernel.

kernel and bias of the second convolutional layer, I denotes
the input image and o(-) denotes the activation function.

Ablation experiments to study the effectiveness of the MLP-P

stage are discussed in Section [V-G]

e The PEG is used for all dynamic Transformer modules
in the proposed FDT. There are two reasons. On one
hand, the PEG can enhance the local position information
extraction ability with the given token, which is an
advantage when processing FV images that are abundant
by texture information. On the other hand, as the tokens
are dynamically reduced by FDT, the position of each
token changes from one stage to the next. Hence it is
necessary to update the position information for each
stage.
To use PEG, the token sequence should be reshaped
to the 2D feature map format. In the proposed FDT,



before using PEG, each token is reshaped as a pixel
in the intermediate feature map. Note that PEG is applied
only to normal tokens. For special tokens, namely, class
tokens and aggregation tokens, position embedding is not
necessary.

We have implemented the PEG as a convolution layer, as
expressed in Equation 4, where X denotes the normal tokens
input; (Xpg) denotes the conditional positional embedding
output; Wpg and b denote the conditional weights and bias
for position embedding (here a 3 %3 kernel is used); M2S-
reshape(-) and S2M-reshape(-) denote the map-to-sequence and
sequence-to-map reshape operation, respectively.

X pg = M2S-reshape(Wpg * S2M-reshape(X) + b) (4)

The effectiveness of using PEG in FDT is studied with the
ablation experiment presented in Section [V-G|

D. De-Redundancy Multi-Head Self-Attention

As discussed in Section redundancy in FV image is
an inherent issue in multi-view FV biometrics. The Dynamic
Transformer is well suited to handle redundant tokens, because
it can dynamically trim the token-sequence. As the sequence of
tokens progresses through the DT layers, its length is reduced
by removing token of less importance. In this work, the class-
token-based token reduction strategy [28] is used to dynamically
reduce the number of tokens. There are two advantages of using
class-token based strategy:

« In the proposed FDT working mechanism, we use the class
token as the feature vector that represents the full-view FV
images. Hence the class token is trained to carry identity-
discrimination information, and therefore, its attention
value can serve to determine whether to retain a token at
a given layer.

o The class-token based strategy requires no additional pa-
rameters and introduces extra computational complexity at
a negligible cost, which remains crucial for the lightweight
design.

The structure of the DeRedun-MHSA is illustrated in the
center part of Figure [2(b)] and its working mechanism is
described as follows:

1) The input tokens are first processed by MHSA and
a linear layer. The mathematical expression is shown
in Equation where the X denotes the resulting
intermediate tokens; M HSA(-) and Fj;eq-(-) denote
the MHSA and linear mapping operation, respectively.

(&)

2) The attention values between the class token and normal
tokens are considered as the importance scores of the
tokens. These scores are sorted in descending order.

3) The top K tokens with highest scores are selected as the
normal tokens, denoted by X non,; and the tokens with
lower scores are considered as redundant tokens, denoted
by Xg. Thus, the input token sequence results in the
normal tokens, redundant tokens, and the class tokens.
The mathematical expression is shown in Equation

X = Finew( MHSA(X)) + X

[6l where the Sort_Split(-) denotes the sort and split
operation.

XnNom: Xr, Xcis = Sort_Split(X)  (6)
4) The redundant tokens are aggregated into a single token,
named aggregation token, X 444. In the aggregation
process, the attention values between the class token and
each of the redundant tokens are used as the aggregation
weights, denoted by W,+. The mathematical expression

is shown as Equation
XAgg = Wait X Xgr @)
5) Finally, the normal tokens X nom, aggregation token

X agg,> as well as the class token X ¢ys are combined
to construct the token sequence for next layer.

The effectiveness of the DeRedun-MHSA is studied by the
ablation experiments in Section [V-G|

E. Locally-Enhanced Feed-Forward Network

In Transformer architectures, the output of the self-attention
stages is processed by a feed-forward network (FFN). The
purpose of the FFN is further refine the features extracted
by the MHSA stages. The MLP based FFN in the original
Transformer architecture processes each input token in isolation.
Li et al. [23]] propose a simple and effective Locally-enhanced
feed-forward network (LFFN), which mainly consists of token-
to-map reshape operation and convolution layer. By contrast,
the LFFN processes each token together with its neighboring to-
kens, thus enhancing the local interaction between neighboring
tokens. This enables the LFFN to extract identity-discriminant
contextual information from FV images. The effectiveness of
this module in FV biometrics is demonstrated in the study of
FVT (Finger Vein Transformer) [10]. Therefore, in the proposed
FDT, we also adopt LFFN to post-process the intermediate
tokens output by DeRedun-MHSA.

In our work, only the normal tokens are processed by
the LFFN section of the proposed FDT. class token and
aggregation tokens are not processed by the LFFN. The reason
is as follows: The class token is associated with an entire
sequence of normal tokens, and the aggregation token is used
for mitigating redundancy in normal tokens. Therefore, the
notion of local information does not apply to class tokens
and Aggregation tokens. Hence, in the proposed FDT, tokens
of the latter two types are directly transferred to the stage
following the LFFN. This is illustrated in the right part of
Figure 2(b)] The mathematical expression of LFFN is shown
as Equation E} Where the Concatenate(-) and LFEN(-) denote
the concatenation and LFFN operation, respectively, and the
Xt denotes the output of the current layer.

Xout = Concatenate(X agg, LEFN(XNom), Xcis) (8)

In Section we describe ablation experiments to study
the effectiveness of the LFFN in the proposed FDT.
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E. Batch attention

Inspired by BatchFormer [30], in this work we propose a
novel batch attention (BatchAtten) module, aimed at further
improving the discrimination ability of the FDT. BatchAtten
is used as a training auxiliary, as shown in Figure [2| The
BatchAtten module, illustrated in Figure E], is based on
the MHSA mechanism, whose function is to facilitate the
interaction among class tokens by attention-fusion.

When training Transformer networks, it is common practice
to provide the class tokens as input to the classifier (for the
cost-function evaluation). In our case, to train the FDT, we

provide the class tokens as input to the BatchAtten module first.

The use of the BatchAtten module doubles the number of class
tokens provided as input to the classifier, as the BatchAtten
module produces the same number of class tokens as the
number of original class tokens. The main idea is based on the
conjuncture: For biometrics task, the feature extracted should
always be distinguishable, even after they interact with other
biometrics samples’ feature. Here the feature is the class tokens
output by the FDT model, and the other biometrics samples

are the class tokens of other samples within the training batch.

The mathematical expression of BatchAtten is given by
Equation E} Here, X5 denotes the double batch class
tokens output of BatchAtten, and Norm(-) denotes the layer
normalization operation.

Xacis = Concat(Xcis, Xcis + Norm(MHSA(Xcis))) 9)

Since the proposed BatchAtten is applied batch-wise, the
additional computational load (in the training phase) of the
BatchAtten module is negligibly small, as the module uses only
a single MHSA layer. In the inference phase, both the auxiliary
and classifier are removed, and the class token output by the
last FVCDT layer is used as the feature vector to represent
the input full-view FV images.

In Section we present ablation experiments to analyze
the performance of the proposed BatchAtten module.

V. EXPERIMENTS

In this section we present the experiments designed to
evaluate the performance of the proposed FDT for full-view

FVA. First we describe two publicly available full-view FV
datasets, as well as the corresponding experimental protocols
used in this work. Then, the metrics and criteria for evaluating
full-view FVA performance are outlined. We also describe the
software setup for reproducing our experimental results.

We present five sets of experiments. First, we conduct
redundancy-analysis experiments for both single-view and
full-view FV data. Then we evaluate the performance of the
proposed FDT. We also compare the performance of the FDT to
that of other relevant, reproducible works published previously.
This is followed by a set of ablation experiments to study
the utility of key modules in the FDT. Finally, we present an
analysis of the computational complexity of the proposed FDT,
which provides some intuition for practical applications.

A. Full-View FV Datasets and Experimental Protocols

We have used two full-view FV datasets, namely, MFFV
and LFMB-3DFB, in this work:

1) MFFV [1] includes FV data from 320 fingers, each cap-
tured in 3 orientation poses (10 presentations per orientation),
6 illumination levels, and 3 camera views, totaling 540 images
per finger. The orientations include normal pose, 60° clockwise,
and 60° anticlockwise rotations. In this work we have used the
MFFV-N dataset, which is a subset of the full MFFV dataset,
consisting of only the normal presentations of each finger.
We follow the two experimental protocols provided with the
dataset, balanced protocol and normal protocol, as shown in
the upper part of Table [I}

2) LFMB-3DFB [17] includes multi-biometrics data (FV and
finger-skin), corresponding to 695 fingers. For each finger this
dataset includes images from six views (named A — F). Since
three cameras evenly spaced around the finger are sufficient to
capture the full view FV [} 4l], we use FV images of three
views A, C, and E in this study. In this way, we make the
full-view FV data from this dataset compatible with the FDT
proposed in this work. We follow the protocol provided with
the dataset, as shown in the lower part of Table E}

The main results of this study are reported on the MFFV-N
dataset. That is, we report the results of all experiments on
the MFFV-N dataset. The LFMB-3DFB dataset is used only
for evaluating the cross-domain generalization of the proposed
FDT. In FVA experiments, we train the FDT model on the
training partition. Then, we use the development partition
with the balanced protocol to select the optimal model, and
the score-threshold corresponding to the selected criterion.
Finally, we apply the selected optimal model, with the selected
score threshold, to the test partition, to compute the final FVA
performance of the FDT.

B. Evaluation Metrics and Criteria

In our experiments we use several metrics and criteria to
comprehensively evaluate the FVA performance of the proposed
FDT. The metrics and criteria used in this work, as well as
their functions are briefly introduced below.

1) Metrics: We have used the following five metrics: false
match rate (FMR), false non match rate (FNMR), half total
error rate (HTER), equal error rate (EER), and true match rate
(TMR). FMR indicates the proportion of impostor matches that



TABLE I: Experimental protocols. There are two protocols in our experiments, the balanced protocol and the normal protocol.

Balanced protocol

Dataset Num

Normal protocol

Training set  Development set ~ Test set ~ Training set ~ Development set Test set
Num of fingers 160 64 96 160 64 96
MFEV-N Num of genuines / 2880 4320 / 576 864
Num of imposters / 2880 4320 / 36288 82080
Num of total comparison / 5760 8640 / 36864 87944
Num of fingers 347 139 209 / / /
Num of genuines / 6255 9405 / / /
LFME-3DFB Num of imposters / 6255 9405 / / /
Num of total comparison / 12510 18810 / / /

Note: these protocols are provided with the datasets. For MFFV-N, there are balanced and normal protocols. For LEMB-3DFB, there is one protocol, balanced protocol.
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Fig. 5: Cumulative information distribution of FV image components. The red dotted line indicates the location where the cumulative
information reaches 99%. (a) View 1; (b) View 2; (3) View 3; (4) Full-view FV images.

are incorrectly accepted by the system, whereas FNMR denotes
the proportion of genuine matches incorrectly rejected by the
system. HTER is the average of FMR and FNMR. EER is the
error rate corresponding to the operating point (score-threshold
over the development set) where FMR and FNMR are equal.
TMR is indicates the true matching rate at a fixed FMR.

2) Criteria: Three criteria are used in this work: minimum
HTER (min-HTER) criterion, EER criterion, and fixed-FMR.
The min-HTER criterion is used to compare experiments
with different parameters, to find the parameters that lead
to the lowest misclassification error. The EER criterion is used
in scenarios when both FMR an FNMR are considered to
be equally important. In most real-world applications, false-
matches are considered to be far more important than false
non-matches. In such scenarios, the biometrics system is tuned
to limit the FMR to a certain acceptable value, typically 1%
or even 0.1%. The fixed-FMR criterion is useful for evaluating
the biometrics system in this scenario.

C. Experimental Environment and Setup

We have conducted the experiments using the PyTorch
framework. The models are trained and tested on the NVIDIA
RTX 3090 GPU; the maximum number of training epoch is
set to 5000. During the last 3000 epochs of training, the model
is evaluated on the development set with balanced protocol
in the later 3000 epochs, where the model with the lowest
EER is selected as the best performing model. The learning
rate is set to 0.001. The cosine annealing schedule with the
maximum of interactions set to 25 is used as the learning rate
change scheduler. The batch size is set to 32. The weights
of cross-entropy loss and center loss are set to 1 and 0.01,
respectively. Note that there is a separate learning rate for
updating the centers in the center-loss function, which is set to
0.001. The stochastic gradient descent is used as the optimizer,
where the momentum and weight-decay parameters are set to
0.9 and 0.01, respectively. We have used the data augmentation,
including random color jitter with the coefficient of brightness,
contrast, saturation, and hue all set to 0.2; random translation



transform with both the coefficient of the horizontal and vertical
are set to 0.2; and random perspective with the coefficient of
scale is set to 0.8-1.2.
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Fig. 6: Redundancy analysis results.

D. Redundancy Analysis Experiments

In this section, we present the redundancy analysis experi-
ment for both single-view and full-view FV images. To the best
of our knowledge, this is the first experiment for FV image
redundancy analysis.

The experiment is conducted using the MFFV-N dataset.
First, we perform the FV image redundancy analysis for each
view independently. As described in Section the given
single-view FV image, of size 320 x 240 x 1, is divided into
100 non-overlapping patches of size 32 x 24 x 1 each. Each
patch is flattened, that is, represented by a 1D vector of 768
elements. Thus, each single-view FV image is represented by
matrix of shape 100 x 768. We perform PCA on this matrix,
and retain the top N principal components such that 99% of the
original information is conserved. Figure - show the
cumulative information distributions of one full-view sample
(three views). From these plots we can see that the cumulative
information of a given FV image is close to 100% even when
N (the number of retained principal components) is relatively
small (20%-30%) of the total number of PCs (which is 768)).
This result indicates that there is significant redundancy
in FV images, up to 70%-80%.

To perform redundancy analysis of FV images in the full-
view scenario, we combine the components of all the three
views, totally 300 components. Then all the components are
fed into the PCA process as for single-view. Figure shows
the cumulative information distribution for PCs of a given set
of full-view FV images. From this plot we can see that the
ratio of components when cumulative information is obviously
less than the single-view’s — the ratio is less than 20%. This
result is consistent with our conjecture, in Section |I| that the
redundancy issue is more serious in full-view FV images.

We have performed a statistical analysis of the redundancy in
FV images using the training partition of the MFFV-N dataset.
Specifically, the redundancy-analysis procedure is applied to

the first FV sample recorded for each finger in the training
partition, that is, to a total of 480 FV images (160 FV images
per view). For each finger we record the number of PCs required
to retain 99% of the original image-information in both, single-
view and full-view scenarios. In Figure [6] we show box-plots
summarizing the distribution of the number of PCs retained, for
each single-view scenario as well as for the full-view scenario.
From this figure we see that for single-view scenarios (View 1,
View 2 and View 3) a minimum of 20-30% of the total number
of PCs is retained. This corresponds to a redundancy in the
range of 70-80%. Among these three views, View 3 requires
the overall most minimum of components that contain 99%
information compared to View 1 and View 2, indicating that
the redundancy of View 3 is lower than other two views. This
phenomenon might be due to the fact that the finger palmar side
contains richer veins, which is consist with the experimental
results of work [1]. For the full-view scenario we see that
the minimum number of PCs retained falls in the range
of 13-17%, corresponding to a redundancy of 83-87%.

E. FDT Configuration Based on The FVRA Result

The architecture configuration of the proposed FDT model
is based on the redundancy analysis results. During the
feature extraction process, the FDT model gradually trims
the unimportant tokens, so as to achieve de-redundant FV
feature extraction. The configuration details are as explained
in follows:

Firstly, we set the number of normal tokens to be retained
in the FDT output layer (the last FVCDT module) to 49. This
setting is guided by the redundancy-analysis results (Section
[V-D), and fulfills two important conditions: (a) it falls within
the range (40 — 50) of number of PCs typically retained in full-
view FV redundancy analysis, and (b) it is an integer result of a
square operation, which is convenient for the sequence-to-map
operation (in the LFFN and PEG modules) in FDT.

Secondly, we also set the number of retained normal tokens in
the last SVDT module (Stage 4 in Figure 2(a)]to 49. This choice
is guided by two requirements: (a) the number should have an
integer square-root, and (b) the number should be approximately
twice the minimum number of tokens necessary, according to
the preceding redundancy analysis. We elaborate further on the
second requirement. In the single-view scenario, we have seen
that 20-30 tokens may be sufficient to represent the identity-
discriminant information available in an FV image. The SVDT
modules form the intermediate stages of the FDT, where we
cannot guarantee that the identity-discriminant information is
most efficiently represented. In other words, to encapusulate all
the identity information available in the input FV image, at this
stage we may need more tokens than the absolute minumum
necessary according to the redundancy-analysis. By setting
the number of retained normal tokens to approximately twice
the number indicated by the preceding redundancy-analysis,
we aim to ensure that important identity information is not
inadvertently excluded at the intermediate stages.

Thirdly, for the same two reasons mentioned previously, we
set the number of retained normal tokens in the SVDT modules
in the first stage at 100. This implies that the SVDT modules



TABLE II: Architecture configuration of FDT.

Retained normal tokens

Stage
SVDT FVCDT
Num Reduction ratio Num  Reduction ratio

Stage 1 100x3 0% 144 52%

Stage 2 81x3 19% 121 59.67%

Stage 3 64x3 36% 100 66.67%

Stage 4 49%3 51% 81 73%

Stage 5 / 64 78.67%
Stage 6 (Final) / 49 83.67 %

in the first stage do not reduce the number of normal tokens
at all. Similarly, the number of tokens retained after the first
FVCDT module is set to 144, which represents a very small
reduction compared to the number of input normal tokens.

Fourthly, the number of normal tokens retained in the rest
intermediate SVDT and FVCDT modules are gradually reduced
from the first stage to the last stage, in accordance with the
square-root principle.

The configuration of the proposed FDT, based on the factors
described above, is shown in Table As indicated in the
table, the model achieves a high overall reduction of 83.67 %
in the full-view scenario. At the individual view level, the
SVDT stages contribute to this by achieving a reduction of up
to 51% for normal tokens per view.

There are two advantages of token reduction in the proposed
FDT:

1) Token reduction is beneficial to reduce the model
complexity, i.e. computational load;

2) Trimming the low information tokens also reduces noise
interference.

We evaluate these two aspects through ablation experiments
and the application complexity experiment, presented later.

F. Authentication Experiments of the Proposed FDT

In this section we present the FVA experiments using
the proposed FDT as well as the baseline methods. For
comparisons, the MVCNN [31]] and the MVT [32]] are adopted
as the baseline methods in our experiments, we also adopt
the baseline method (MC+MM+SVM) results in work [1]. As
neither the MVCNN nor the MVT are designed specifically
for FV biometrics, they are hard to be trained in this task.
Therefore, we have modified both models for FVA applications,
based on some straightforward but effective principles. The
MVCNN is modified by replacing the original VGG backbone
by ResNet [33]. In the MVT, the original parameter-shared local
Transformer module is replaced by a parameter-independent
local Transformer.

Figure [/| shows the receiver operator characteristic (ROC)
curves of the FVA experiments. To comprehensively evaluate
and compare the performances of the proposed FDT and the
comparative methods in all application scenario, both balanced
and normal protocols and all the three kinds of criteria are
used: EER criterion, min-HTER criterion, and fixed FMR
criterion at FMR=1%, and FMR=0.1%. Table [[II] shows the
FVA results, and the best values of each case is denoted in
bold font. From this table we can see that the proposed
FDT achieves the overall best performances on full-view

FV authentication task — most of the best results (among the
different experiments) are produced by the FDT. Even in the
experiments where the FDT does not produce the best results,
its performance is very close to the best. We highlight here
some key results.

1) Using the EER criterion, FDT achieves 0.97% EER
on development set and 1.84% HTER on test set, under
the balanced protocol; whereas under the normal protocol
it achieves 2.22% EER on development set and 3.04% HTER
on test set. Considering the min-HTER criterion, FDT achieves
0.94% HTER on development set and 1.85% on test set, under
the balanced protocol; and HTERs of 2.05% and 2.92% on the
development set and the test set, respectively, under the normal
protocol. Both the EER and min-HTER criteria evaluate the
biometrics system’s performance in the standard evaluation
scenario — that the determinant threshold of a biometrics
system is selected when the two error rates, FMR and
FNMR, are equal, or their mean is smallest. These results
demonstrate that the proposed FDT is a very effective tool
for full-view FVA.

2) Using the FMR=1% criterion, the FDT achieves 98.96%
TMR on development set and 1.37% FMR on test set, under
the balanced protocol; and 95.49% TMR on development
set and 0.98% FMR on test set, under the normal protocol.
Considering the FMR=0.1% criterion, FDT achieves 92.62%
TMR on development set and 0.16% FMR on test set, under
the normal protocol; whereas it achieves 75.52% TMR on
the development set and 0.13% FMR on the test set, under
the normal protocol. The fixed FMR criteria evaluate the
performance of the biometrics system in application scenarios
where FMR is constrained to be below a specified threshold.
The TMR metrics indicate that the proposed FDT achieves
high pass rate for genuine FV samples under the predefined-
FMR constraint. In both protocols, the FMR values for
the test-sets are quite close to the FMR limits set on the
corresponding development sets. These results demonstrate
that the FDT generalizes well from the development set to
the test set in both protocols.

G. Ablation Experiments for the Proposed FDT

In this section, we present the ablation experiments for the
proposed FDT. The performances of the various ablated models
of the FDT are shown in Table [Vl As introduced in Section
there are five key modules in the proposed FDT, namely
PEG, MLP-P, LFFN, DeRedun-MHSA, and BatchAtten. We
ablate these modules one by one to evaluate their effectiveness.
For the ablation of PEG, it is simply removed from the FDT.
For the ablation of MLP-P, since the patch-to-token embedding
is necessary in Transformer architecture, it is replaced by the
original linear method. For the ablation of LFFN, since the
FFN model is one of the two key modules of Transformer,
it is replaced by the original FFN method. For the ablation
of DeRedun-MHSA, since the MHSA is also one of the two
key modules of Transformer, it is also replaced by the original
MHSA method. For the ablation of BatchAtten, it is removed
from the training framework of the FDT.

Table shows the evaluation results of the ablation
experiments. The performances without ablation are also
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TABLE III: FVA experiments for the proposed FDT and the baseline methods. The best results are indicated in bold font.

Balanced protocol

Normal protocol

Criterion Method
Development set Test set Development set Test set
EER  FMR FNMR HTER FMR FNMR HTER EER FMR FNMR HTER FMR FNMR HTER
MC+MM+SVM  2.08 2.08 2.08 2.08 2.29 4.51 3.40 3.97 3.94 3.99 3.97 2.32 8.56 5.44
EER MVCNN 6.15 6.15 6.15 6.15 6.64 9.42 8.03 10.07  10.07 10.07 10.07  9.67 12.62 11.14
MVT 4.27 427 427 427 3.08 4.98 4.03 7.63 7.62 7.64 7.63 5.48 6.94 6.21
FDT(proposed) 0.97 0.97 0.97 0.97 1.39 2.29 1.84 2.22 2.18 2.26 2.22 2.02 4.05 3.03
EER  FMR FNMR HTER FMR FNMR HTER EER FMR FNMR HTER FMR FNMR HTER
MC+MM+SVM / 1.77 2.19 1.98 2.08 4.65 3.37 / 2.97 4.34 3.66 1.67 9.72 5.69
min-HTER MVCNN / 4.27 7.88 6.08 4.70 11.55 8.13 / 8.56 1111 9.83 8.15 14.93 11.54
MVT / 4.27 4.24 425 3.15 4.88 4.02 / 7.80 6.94 7.37 5.61 6.60 6.10
FDT(proposed) / 1.01 0.87 0.94 1.46 2.25 1.85 / 2.53 1.56 2.05 2.25 3.59 2.92
TMR FMR FNMR HTER FMR FNMR HTER TMR FMR FNMR HTER FMR FNMR HTER
MC+MM+SVM 9639 097 3.61 2.29 1.34 6.25 3.80 89.93 1.00 10.07 5.53 0.49 15.74 8.12
FMR=1% MVCNN 80.35  0.97 19.65 10.31 1.00 22.55 11.77  62.85 1.00 37.15 19.08 083 38.43 19.63
) MVT 86.70  0.97 13.30 7.14 0.79 15.53 8.16 64.76  1.00 35.24 18.12  0.63 29.40 15.02
FDT(proposed)  98.96  0.97 1.04 1.01 1.37 2.38 1.88 9549  1.00 4.51 2.76 0.98 6.25 3.61
TMR FMR FNMR HTER FMR FNMR HTER TMR FMR FNMR HTER FMR FENMR HTER
MC+MM+SVM  92.05  0.07 7.95 4.01 0.35 11.92 6.13 79.51  0.10 20.49 10.29  0.06 27.20 13.63
EMR=0.1% MVCNN 56.60  0.07 43.40 21.74  0.02 46.06 23.04 3646  0.10 63.54 31.82  0.05 61.46 30.75
: MVT 61.77  0.07 38.23 19.15 0.02 44.05 2204 3177  0.10 68.23 34.16  0.08 66.20 33.14
FDT(proposed)  92.60  0.07 7.40 3.73 0.16 8.63 4.40 75.52  0.10 24.48 1229 013 20.14 10.14

*The results of MC+MM+SVM method are reproduced from work [1].



TABLE IV: Ablation experiments for the proposed FDT and the comparative methods. The best results are indicated in bold font.

Balanced protocol

Normal protocol

Criterion Ablation
Development set Test set Development set Test set
EER FMR FNMR HTER FMR FNMR HTER EER FMR FNMR HTER FMR FNMR HTER
PEG 1.35 1.35 1.35 1.35 0.97 3.61 229 2.81 2.84 2.78 2.81 1.73 7.18 4.45
EER MLP-P 1.74 1.74 1.74 1.74 1.50 2.13 1.82 434 4.34 4.34 4.34 2.79 4.40 3.59
LFEN 3.65 3.65 3.65 3.65 1.99 8.56 528 5.76 578 5.73 5.76 2.46 14.58 8.52
DeRedun-MHSA 1.70 1.70 1.70 1.70 2.57 227 242 3.48 3.49 3.47 3.48 3.25 579 452
BatchAtten 1.08 1.08 1.08 1.08 1.39 2.48 1.93 2.26 2.26 2.26 2.26 1.63 5.44 3.54
No Ablation(FDT)  0.97 0.97 0.97 0.97 1.39 2.29 1.84 222 2.18 2.26 2.22 2.02 4.05 3.03
EER FMR FNMR HTER FMR FNMR HTER EER FMR FNMR HTER FMR FNMR HTER
PEG / 1.22 1.35 1.28 0.95 3.68 231 / 2.92 243 2.67 1.77 6.94 4.36
min-HTER MLP-P / 1.28 2.15 1.72 1.18 2.62 1.90 / 2.70 5.38 4.04 1.81 5.56 3.68
LFEN / 3.40 3.82 3.61 1.78 8.84 531 / 4.52 6.94 5.73 1.90 17.25 9.57
DeRedun-MHSA / 1.49 191 1.70 227 2.38 2.33 / 3.81 3.13 3.47 3.56 4.98 427
BatchAtten / 1.28 0.80 1.04 1.60 2.29 1.94 / 2.01 2.43 222 1.50 5.67 3.59
No Ablation(FDT) / 1.01 0.87 0.94 1.46 2.25 1.85 / 253 1.56 2.05 2.25 3.59 2.92
TMR FMR FNMR HTER FMR FNMR HTER TMR FMR FNMR HTER FMR FNMR HTER
PEG 98.02  0.97 1.98 1.48 0.83 4.77 2.80 94.10  1.00 5.90 3.45 0.67 13.43 7.05
EMR=1% MLP-P 97.29 097 2.71 1.84 0.97 3.10 2.04 90.45 1.00 9.55 527 0.76 9.61 5.18
§ LFFN 9149  0.97 8.51 4.74 0.65 16.30 8.47 76.74  1.00 23.26 12.13 0.41 38.43 19.42
DeRedun-MHSA 96.56  0.97 3.44 2.20 1.48 3.40 244 86.81 1.00 13.19 7.10 1.10 11.00 6.05
BatchAtten 98.40  0.97 1.60 1.28 1.09 2.94 2.01 92.53 1.00 7.47 4.23 0.85 8.68 4.77
No Ablation(FDT) 98.96  0.97 1.04 1.01 1.37 2.38 1.88 95.49 1.00 4.51 2.76 0.98 6.25 3.61
TMR FMR FNMR HTER FMR FNMR HTER TMR FMR FNMR HTER FMR FNMR HTER
PEG 91.84  0.07 8.16 4.11 0.12 13.08 6.60 7917  0.10 20.83 10.47 0.13 27.31 13.72
EMR=0.1% MLP-P 89.76  0.07 10.24 5.16 0.14 12.55 6.34 71.18  0.10 28.82 14.46 0.12 29.28 14.70
: LFFN 55.80  0.07 44.20 22.14 0.00 56.34 28.17 4045  0.10 59.55 29.82 0.04 70.72 35.38
DeRedun-MHSA 84.31 0.07 15.69 7.88 0.07 17.20 8.63 72.57  0.10 2743 13.76 0.21 25.00 12.61
BatchAtten 85.24  0.07 14.76 7.41 0.07 18.17 9.12 75.69  0.10 24.31 12.20 0.14 26.39 13.26
No Ablation(FDT)  92.60  0.07 7.40 3.73 0.16 8.63 4.40 7552 0.10 24.48 12.29 0.13 20.14 10.14

included in this table for intuitive comparison, and the best
value in each case is denoted in bold font. From this table we
can make the following observations:

1) In most cases the (full, non-ablated) FDT performs
better than the ablated models. From these results we
can conclude that all the key modules contribute to the
efficacy of the proposed FDT model;

In a few cases the ablated version of the FDT achieves
slightly lower FMR or FNMR than the full FDT. We can
leverage this phenomenon by adjusting the FDT’s struc-
ture to optimize its performance for specific application
scenarios. For example, in applications requiring very
low FMR, it may be useful to remove the PEG module.

2)

H. Cross Dataset FVA Experiments Using FDT

In this section we discuss the results of using the proposed
FDT model (trained only using MFFV-N data) for FVA on
the LFMB-3DFB dataset. Our purpose here is to study the
generalization properties of the FDT in cross-dataset scenarios.

FV images of the three views A, C, and E of the LFMB-
3DFB dataset are used to construct the 3D input sample
required for the proposed FDT. The MC+MM+SVM method
[1]]) is taken as the baseline. Experimental results are shown in
Table [V] From these results we can draw the following three
conclusions:

1) The performance of the proposed FDT is much better
than the baseline method, thus demonstrating its cross-
dataset generalization, e.g. the proposed FDT achieves
an EER of 7.24% and an HTER of 7.34% under the
balanced protocol and EER criterion.

2) The MC+MM+SVM method performs poorly on the
LFMB-3DFB dataset. This can be explained by the

TABLE V: Cross-domain Experiments on LFMB-3DFB (%).

Balanced protocol

Criterion Method
Development set Test set

EER EER FMR FNMR HTER FMR FNMR HTER
MC+MM+SVM 3538 3538 3538 3538 3293 3523 34.08

FDT (proposed) 7.24 7.24 7.24 7.24 7.09 7.23 7.37
min-HTER EER FMR FNMR HTER FMR FNMR HTER
B MC+MM+SVM / 13.61 52.69 3315  13.04 5333 33.18
FDT (proposed) / 6.19 8.09 7.14 6.20 8.46 7.33

EMR=19% I-FNMR FMR FNMR HTER FMR FNMR HTER
= MC+MM+SVM 25.15 0.99 74.85 37.92 0.72 74.75 37.74

FDT (proposed) 71.37 0.99 28.63 14.81 1.02 28.59 14.81

EMR=0.1% 1-FNMR FMR FNMR  HTER FMR FNMR HTER
= MC+MM+SVM 18.10 0.10 81.90 41.00 0.07 81.81 40.94
FDT (proposed) 36.28 0.10 63.73 3191 0.06 64.23 32.15

*The results of MC+MM+SVM method are reproduced from work [1].

following analysis: in the LFMB-3DFB dataset the finger-
orientation was not controlled during data collection (as
described in [} [17]). Therefore, for a given view (say,
A), we are not guaranteed that every presentation of the
same finger will result in the same vein pattern. In other
words, there is high intra-class variation in this dataset
for individual views.

This result indicates that there is still room for developing
orientation-invariant methods for FV biometrics, and
also indicates that there still room for cross-dataset
generalization of our proposed method.

3)

1. Complexity Experiments

We have also conducted the complexity experiments, the met-
rics including parameters (Params), floating-point operations
(FLOPs), and the saved template dimension. Results of the
complexity-analysis are shown in Table [VI] from which we can
see that the proposed FDT model and its sub-models (ablation
models) have the relatively small Params (11.11M), FLOPs
(0.87G), and template dimension (128). These complexity



TABLE VI: Complexity Experiments

Model Params FLOPs Template dimension
MVCNN 21.28M  16.72G 512
MVT 50.92M 6.53G 384
FDT without LFFN 9.69M 0.85G 128
FDT without MLP-P 10.37M  0.80M 128
FDT without PEG 8.45M 0.62G 128
FDT without DeRedun-MHSA 11.11M 1.59G 128
FDT without BA 11.11M 0.87G 128
FDT 11.1IM 0.87G 128

metrics are considerably lower than those of the comparator
models, highlighting the lightweight advantage of the proposed
FDT model. Compared to the ablated models, the Params and
FLOPs of the full (non-ablated) FDT are only slightly higher.
These results show that the proposed FDT not only achieves
SOTA performance, but also application potential.

VI. CONCLUSIONS AND FUTURE WORKS

Full-view FV authentication (FVA) systems offer higher
accuracy than single-view FVA systems and it is much more
difficult to be constructed presentation attacks. However, Full-
view FVA systems present two main challenges: increased
computational loads, and low performance-to-cost ratio. Both
these challenges stem from the high degree of redundancy
in FV images. In this work we have proposed a dynamic
transformer model, named Finger-Vein Dynamic Transformer
(FDT), that addresses the core issue of redundancy in FV
samples. Successive stages of the FDT gradually trim redundant
information in the input FV samples (full-view or single-
view). To guide this process, we initially developed the FV
Redundancy Analysis (FVRA) method to conduct a redundancy
analysis, which estimates redundancy in both single-view and
full-view FV samples. To the best of our knowledge, this is the
first work to conduct redundancy analysis in FV biometrics,
and to use it to design a FV feature extraction method.

We have presented a set of rigorous experiments to com-
prehensively evaluate the performance of the proposed FDT
and FVRA methods. Specifically, the proposed FDT achieves
SOTA full-view FV authentication performance: on the MFFV-
N dataset [1]: 0.97% EER on development set and 1.84%
HTER on test set, under the balanced protocol. The FDT also
exhibits better cross-dataset generalization on the LFMB-3DFB
dataset [[17]] than the baseline method.

In future works, we plan to further develop FV biometrics
mainly on the following two aspects: 1) cross-view FV
biometrics and orientation invariant full-view FV biometrics;
and 2) more lightweight and higher performance feature
extraction models.
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