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Abstract—Recent research has demonstrated that training a linear
connector between speech foundation encoders and large language models
(LLMs) enables this architecture to achieve strong ASR capabilities.
Despite the impressive results, it remains unclear whether these simple
approaches are robust enough across different scenarios and speech
conditions, such as domain shifts and speech perturbations. In this paper,
we address these questions by conducting various ablation experiments
using a recent and widely adopted approach called SLAM-ASR. We
present novel empirical findings that offer insights on how to effectively
utilize the SLAM-ASR architecture across a wide range of settings. Our
main findings indicate that SLAM-ASR exhibits poor performance in
cross-domain evaluation settings. Additionally, speech perturbations on
in-domain data, such as changes in speech rate or additive noise, can
significantly degrade performance. Our findings offer critical insights for
fine-tuning and configuring robust LLM-based ASR models, tailored to
different data characteristics and computational resources.

Index Terms—ASR, LLMs, embeddings, speech-to-text alignment,
foundation models.

I. INTRODUCTION

Enabling large language models (LLMs) to “comprehend” non-
textual modalities has received substantial attention recently. For
instance, in [1] the authors trained a projection layer to align the
outputs of a visual encoder with an LLM. In the context of automatic
speech recognition (ASR), some early methods utilize a cascaded
approach, where speech is first transcribed using an automated ASR
system, followed by processing the resulting text with an LLM
to enhance the transcription accuracy [2]–[5], or extracting further
knowledge from automatic transcripts for downstream tasks [6], [7].
However, cascaded approaches have several limitations, including
error propagation and lack of valuable paralinguistic information
conveyed by acoustics, such as prosody and speaker characteristics.

Recently, systems that integrate robust speech encoders with
instruction-tuned LLMs through a connector/projector layer have
been proposed as end-to-end ASR solutions [8]–[12], henceforth re-
ferred to as LLM-based ASR systems. Intuitively, the main task of the
connector/projector is to learn how to transform acoustic embeddings
from speech encoders into speech representations (tokens) that are
meaningful within the LLM’s embedding space. These representa-
tions are then combined with text instructions (i.e., prompts) and fed
into an LLM to generate various predictions, such as transcription,
emotion classification, language identification, and named entity
recognition. Three immediate advantages of such architectures are:
(a) computational efficiency, as the entire system can be adapted
to new tasks by adopting parameter-efficient approaches, and/or by
training the projector layer; (b) efficient use of the vast corpora
used in the pretraining of foundation models; and (c) enhanced
generalization capability, as LLMs can leverage prompts for zero-
shot or in-context learning to handle unseen tasks effectively [9].
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Fig. 1: SLAM-ASR pipeline. The selected models and the number of
parameters for the performed experiments appear between brackets.

In [8], the authors proposed attaching an audio encoder (comprising
36 Conformer [13] layers) to an LLM (Llama-7B [14]) to perform the
ASR task. Embeddings generated by the audio encoder are stacked
and projected onto the LLM’s input embedding space, which is
further trained using the low-rank adaptation (LoRA) approach [15].
Similarly, in SpeechVerse [9] and SpeechLLM [16], the authors de-
scribe robust multitask training and curriculum learning frameworks
that combine pretrained speech and text foundation models via a
small set of learnable parameters. Contrary to [8], these approaches
applied a 1-D convolution module that operates over the audio feature
sequence to ensure compatibility with the LLM. In the end, only
the convolutional downsampling module and the LoRA adapter are
trained.

Recently, the SLAM-ASR architecture was introduced as “an
embarrassingly simple approach for large language models with
robust ASR capabilities” [12]. The authors argue that elaborate
neural architecture designs are unnecessary, showing that a simple
composition of off-the-shelf speech encoders and LLMs—using only
a simple trainable projector to connect them—is sufficient (Figure 1).

Despite the impressive results reported for SLAM-ASR [12], it
remains unclear whether this novel, yet simple solution, is “the way
to go” for LLM-based ASR systems. This paper aims to address
this question and performs three ablation experiments on the SLAM-
ASR architecture to evaluate how strong its claimed ASR capabilities
really are. We study and analyze the performance of SLAM-ASR on
three well-known benchmark datasets and one private dataset, as well
as its performance under extreme, yet plausible conditions normally
addressed by traditional ASR models. This allows insights into the



structure and organization of the knowledge represented within the
SLAM-ASR architecture, providing transparency and interpretability
of the network’s behavior.

Overall, our work makes three main contributions that we hope will
support the methodological decisions of future researchers working
on LLM-based ASR in the SLAM-ASR paradigm: (i) we show
empirically that SLAM-ASR has a big dependence on the data used
for training the projector (i.e., overfitting), resulting in a model that
lacks robustness when training and test data are mismatched; (ii)
we show how sensitive the SLAM-ASR architecture is to temporal
and noise perturbations, unlike its ASR counterpart, and (iii) we
performed an exhaustive analysis, both quantitative and qualitative,
of what type of alignments the projector layer is learning and, we
show how such an alignment can be improved to give better ASR
performance.

II. METHODS
A. SLAM-ASR

The SLAM-ASR architecture consists of a speech encoder, fol-
lowed by a fixed downsampler, then a trainable projector, with
the final network being an instruction-tuned LLM accepting text
embedding (prompt) and audio representations coming from the
projector (Figure 1). One advantage of this implementation is its flex-
ibility, making it possible to use different existing pretrained speech
encoders, as well as a variety of LLMs. According to the original
work [12] and confirmed by our experiments, the combination of
WavLM-large [17] as a speech encoder and Vicuna-7B as an LLM
achieves the best performance. Thus, in the experiments reported
here, we always use the same WavLM-large+Vicuna-7B combination
as the original work. The key element of the SLAM-ASR architecture
is that the only trained element is the projector 1, a single hidden layer
followed by a ReLU activation and a regression layer:

Ei = Linear(ReLU(Linear(Zi))) (1)

where Zi is the ith downsampled audio feature, consisting of the
concatenation of k consecutive frames (output by WavLM) in the
feature dimension, and Ei has the same dimension as the LLM
input embedding. We refer to Ei as the speech token embedding
of the ith audio feature. Finally, an input audio consisting of the n
downsampled audio features Z0 · · ·Zn is given to the instruction-
tuned LLM using the following prompt:2

E0 · · ·En<s>USER: Transcribe speech to
text.
ASSISTANT:{transcript}</s>

where {transcript} is the text corresponding to the audio, which
is either provided during training or forced to be generated by the
LLM at inference time.

B. Baseline model

For the sake of a fair comparison, we will use the WavLM-
large [17] based model as our baseline ASR system since, as in
the original work, is also used as the speech encoder in the SLAM-
ASR model. More precisely, the baseline simply consists of adding a
linear layer on top of the WavLM-large, trained using Connectionist
Temporal Classification (CTC) [18] loss, as a typical End-to-End
(E2E) ASR model. We refer to this model simply as “ASR”.

1Although referred to as a ‘linear projector’ in the original work, it employs
a non-linear activation function (ReLU) as shown in Eq. 1. In this work, we
refer to it simply as projector to avoid confusion.

2In the original SLAM-ASR paper, speech embeddings are placed after
"USER:", but in the released code, they are prepended to the input; we
adopt the latter prompt format .

TABLE I: Cross-domain performance comparison between the base-
line (ASR) and SLAM-ASR in terms of word error rate (WER). ∞
denotes WER values greater than 100.

Training Evaluation Datasets (WER (↓))

Data LibriSpeech CallHome ContactCenter CommonVoice

ASR

LibriSpeech 2.6 38.5 31.8 26.2
CallHome 15.9 25.9 30.5 48.9
ContactCenter 17.1 37.2 17.0 44.1

SLAM-ASR

LibriSpeech 2.6 ∞ 69.7 51.5
CallHome 61.8 35.5 44.5 ∞
ContactCenter 60.4 ∞ 13.8 67.7

III. EXPERIMENTAL SETUP
A. Datasets

We selected three well-known benchmark datasets—LibriSpeech,
CallHome, and CommonVoice—due to their distinct characteristics
and the unique challenges they present. Additionally, we experi-
mented with a private dataset, ContactCenter, composed of multido-
main contact center conversations.
LibriSpeech consists of read English speech derived from audiobooks
with 1000 hours of speech sampled at 16 kHz [19]. We trained our
models using the 960h training partition, while all the evaluations
were performed in the LibriSpeech test-clean partition.
CallHome English (LDC97S42) contains spontaneous telephone con-
versations between multiple speakers, comprising 12.5h of tran-
scribed training speech and 1.5h of test data. This dataset poses
challenges due to its conversational nature, known to be difficult for
ASR, with a large number of short segments.
CommonVoice comprises several thousand hours of crowdsourced au-
dio in more than 100 languages [20], featuring significant variability
in speakers, accents, speaking styles, and background noise, among
others. We used the English test partition from CommonVoice-v11,
containing 27h, but only as test set, to evaluate robustness.
ContactCenter contains 48h of training and 6h of test stereo-
audio/transcript data from contact center conversations between
agents and customers. We upsampled audio from 8 kHz to 16 kHz
to align with the SLAM-ASR model’s requirements.

B. Training setup and technical details

For the experiments on LibriSpeech, we use the publicly available
checkpoint from SLAM-ASR3, while we trained the projectors for
CallHome and ContactCenter datasets in-house. To ensure that our
results are reproducible and comparable to SLAM-ASR results, in all
our experiments, we followed the setup from the original work [12]:
the projector was trained for 3 epochs, with early stopping based on
cross-entropy loss on the dev set, using AdamW [21] with a learning
rate γ = 10−4 and a batch size of 4. The speech encoder produces
output at 50 Hz and the downsampling rate is set to k = 5, leading to
the downsampled audio features Zi having a rate of 10 speech token
embeddings Ei per second. The projector hidden layer dimension is
set to 2048 and beam search with a beam size of 4 is used.

IV. EXPERIMENTS AND RESULTS

A. Cross-domain robustness evaluation

Since the projector is the only trainable component in SLAM-
ASR, we hypothesize it may be prone to overfitting the domain seen

3https://github.com/X-LANCE/SLAM-LLM

https://github.com/X-LANCE/SLAM-LLM


(a) Tempo (b) Babble noise (c) Music noise

Fig. 2: Analysis of the impact of tempo (speech rate) and noise on WER.

(a) ASR (unchanged) (b) ASR (tempo=0.5)

(c) SLAM-ASR (unchanged) (d) SLAM-ASR (tempo=0.5)

Fig. 3: Scatter plots of WER versus speech duration for SLAM-ASR
(bottom) and ASR baseline (top) on the LibriSpeech test-clean set:
unchanged (left) and half-speed (right).

during training. This could limit its generalization to unseen domains
or tasks when compared to standard ASR models, as highlighted in
[22]. Thus, the goal of this experiment is to evaluate the robustness of
SLAM-ASR in cross-domain scenarios. More precisely, we assess the
performance degradation of SLAM-ASR when trained on one dataset,
but evaluated on different, mismatched datasets (Section III-A). We
compare this degradation to that of standard ASR under the same
conditions.

From the results, shown in Table I, it is clear that SLAM-ASR
shows much greater performance degradation than its ASR counter-
part when decoding audio from datasets different from those used in
training, consistently across all datasets. Additionally, SLAM-ASR
exhibits exceptionally high WER (denoted by ∞) for certain dataset
combinations. Upon inspection, we identified that this behavior was
mainly due to a substantial increase in insertion errors, caused by
LLM hallucinations spiraling out of control.

B. Speech perturbation ablations

In the previous subsection, SLAM-ASR demonstrated limited
cross-dataset generalization capabilities. This suggests that the
model’s claimed strong speech recognition performance may be
partially due to a reliance on dataset-specific acoustic and speaker
characteristics, which it exploits as shortcuts to map audio features Zi

to speech token embeddings Ei. To further investigate this hypothesis,
we designed a series of ablation experiments incorporating various
speech perturbation techniques applied to the original evaluation
audio. Specifically, we evaluate how different levels of perturbations
impact the performance of SLAM-ASR. We used the SLAM-ASR
model trained on LibriSpeech, enabling a comparison of the results
reported in the original SLAM-ASR paper [12] with those obtained
in this section, when the test waveforms are altered.

1) Tempo perturbation: In SLAM-ASR, the projector must learn
to map each audio feature Zi to the LLM’s input space, specifically
the (sub)word embedding space. We hypothesize that the learned
mapping could be influenced by the speaking rates present in the
training data. Intuitively, the average speaking rate affects the average
number of frames into which words are split and, consequently, the
average number of audio feature Zs to be mapped to the words’
corresponding Es. Therefore, we assess the robustness of SLAM-
ASR to time-scale modifications of the test audio. In particular, the
time-scale was modified by simply manipulating the hop length using
the well-established PSOLA method [23], [24] which modifies the
prosody of natural speech while retaining a high level of naturalness.

Figure 2a shows the change in WER performance across time-scale
ratios ranging from 0.5 to 1.5, in increments of 0.1. As the speaking
rate increases (i.e., ratio > 1), both models exhibit a similar decline
in performance. However, when the rate slows down (i.e., ratio < 1),
SLAM-ASR’s WER rises sharply, reaching nearly 12% at a ratio of
0.5 (half the normal rate), in contrast to its ASR counterpart. These
results suggest that SLAM-ASR struggles to handle an increase in
the number of frames that must be mapped to the same number of
(sub)words. This phenomenon may occur because a greater mismatch
between the number of frames and the LLM’s input wordpieces
makes the mapping from Z to the corresponding E significantly more
challenging. To further support this hypothesis, in Figure 3 we plot
utterance-level WER values against speech duration. We can see that
SLAM-ASR’s WER starts to increase linearly when audio inputs are
longer than ≈ 30 seconds (i.e. longer than 300 Zs audio features),
unlike ASR, which maintains a consistent WER pattern regardless of
rate changes4

2) Noise augmentation: Given that the LLM and speech encoder
are fixed in SLAM-ASR, the projector must be robust to relatively
small changes in audio feature Zi for accurate mapping to the LLM’s
embedding space. We hypothesize that the projector’s tendency to
find shortcuts for this mapping may significantly impact SLAM-
ASR’s performance, even with simple additive noise in the audio.
Therefore, we add noise to the waveforms [25] to assess SLAM-

4Note that this behavior is unlikely due to reaching the maximum LLM
context-length, 4K for Vicuna-7B, since the longer audio samples generate
only around 700 speech tokens.



Fig. 4: The pairwise cosine similarity between every pair of speech
and text token embeddings for two test examples before (left side)
and after using LoRA (right side) in the LLM. Colors range from
purple (-1, low similarity) through green (0, neutral) to yellow (+1,
high similarity), using the viridis colormap.

Fig. 5: Ground truth transcript compared to learned speech tokens
for SLAM-ASR and SLAM-ASR+LoRA for the same input audio.

ASR’s robustness to noise. We use music and speech (babble) noise
files from the MUSAN [26] corpus.

Figures 2b and 2c show the WER when babble and music noise,
respectively, are added, resulting in a Signal-to-Noise Ratio (SNR)
ranging from 0 to 30 decibels (dB) in 5 dB increments. As the noise
increases (30dB → 0dB), the performance of SLAM-ASR degrades
quite rapidly in contrast to its ASR counterpart. With babble noise
in particular, even a small amount of noise (e.g., 20 dB) causes
substantial degradation in SLAM-ASR’s performance, while the ASR
model experiences only minimal degradation. These results suggest
SLAM-ASR struggles with minor audio changes unseen in training.

C. Speech-to-text alignment analysis

Previous research has suggested that the LLM-based ASR task
can be viewed as a regurgitation activity, where the language model
is responsible for refining and reproducing information in the same
order as it appears in the audio encoder’s output sequence [8]. Thus,
if the projector in SLAM-ASR can provide a sequence of embeddings
monotonically aligned with the text embeddings, the LLM-based
ASR problem reduces to a repetition task, which should not require
the full capacity of an LLM. Nevertheless, a key aspect of the
SLAM-ASR architecture is that both the speech encoder and the
LLM are frozen, which contrasts with the current trend in LLM-
based ASR research [8]–[12], where adapters (e.g., LoRA [15]) are
used to fine-tune the LLM. Hence, we hypothesize that SLAM-ASR
will face more difficulties in learning the alignment of speech tokens
and text tokens compared to methods that also fine-tune the LLM.
To validate our hypothesis, we conducted an additional experiment
on the ContactCenter dataset using the LoRA adapter to fine-tune
the LLM alongside training the projector of SLAM-ASR. We then
computed the cosine similarity between each possible pair of speech

tokens and text tokens embedding of the LLM. Figure 4 shows the
resultant alignment plots for two randomly selected samples. As can
be inferred from the similarity plots, the task of aligning audio to
text is harder for the original SLAM-ASR setup (left-side plots).

Additionally, to assess what the projector is learning, we mapped
the learned speech tokens to their closest token from the LLM’s
vocabulary. One example from this exploration is shown in Figure
5. Note that the output from SLAM-ASR is mostly gibberish, while
the tokens retrieved by SLAM-ASR+LoRA are much more aligned
with the reference text. Overall, the results from this ablation raise
the question whether freezing the LLM is advisable, given the clear
advantage of using LoRA for better alignments and the improvement
in performance for in-domain and cross-domain scenarios.5

V. CONCLUSIONS

We have investigated what is and what is not advisable when
working with a recent, widely adopted LLM-based ASR solution,
i.e., SLAM-ASR. By ablation, we were able to identify the good,
the bad, and the ugly aspects of this ASR paradigm in which both
the speech foundation model and the LLM are frozen, and connected
through a trainable projector.

The Good: SLAM-ASR is efficient, both in computation and
data usage, while delivering competitive in-domain performance. Its
flexibility allows easy integration of various speech encoders and
LLMs, the only trainable component being a simple projector, a great
advantage when computational resources or data are scarce.

The Bad: Like many other LLM-based ASR systems, SLAM-
ASR tends to strongly overfit the training domain. This is a clear
disadvantage compared to traditional ASR models, which have better
generalization capabilities and are less sensitive to domain shifts
and speech perturbation. Our experiments show that SLAM-ASR
can easily go off the rails and hallucinate words (e.g., repetitions or
unrelated text) when simple perturbations are applied to the speech
signal.

The Ugly: Unlike LLM-based ASR approaches that use LoRA
for fine-tuning the LLM, the SLAM-ASR architecture lacks clear
evidence that the projector is learning an alignment between speech
and text, rather than some other spurious correlation. Our analysis
shows that the alignment is less evident without LoRA, resulting in
gibberish output when speech tokens are mapped to text tokens.

The Way Forward: Overall, our ablations suggest that SLAM-
ASR should be trained and used with in-domain data for inference.
However, if the data is very noisy, such as in CallHome, a traditional
ASR model is the better choice. Similarly, our experimental analysis
suggests that LoRA adapters should be considered for improving the
alignment of speech and text tokens, as well as for better performance
of SLAM-ASR in both in-domain and cross-domain scenarios. We
recognize that many factors can influence the learning capabilities of
LLM-based ASR models; however, we believe that our insights will
benefit the research community working in similar areas.
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5SLAM-ASR+LoRA experiments using ContactCenter as training and
evaluation data (in-domain setup) improved the WER from 13.8 to 11.6.
For the cross-domain setup, i.e., (train) ContactCenter → (test) LibriSpeech,
WER improves from 60.4 to 22.5. We had to switch the default fp16 to fp32
precision for training with LoRA, as the default setting did not converge.

6https://eloquenceai.eu/
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