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Abstract—Self-supervised pretrained models exhibit competitive per-
formance in automatic speech recognition (ASR) on finetuning, even
with limited in-domain supervised data. However, popular pretrained
models are not suitable for streaming ASR because they are trained with
full attention context. In this paper, we introduce XLSR-Transducer,
where the XLSR-53 model is used as encoder in transducer setup.
Our experiments on the AMI dataset reveal that the XLSR-Transducer
achieves 4% absolute WER improvement over Whisper large-v2 and
8% over a Zipformer transducer model trained from scratch. To enable
streaming capabilities, we investigate different attention masking patterns
in the self-attention computation of transformer layers within the XLSR-
53 model. We validate XLSR-Transducer on AMI and 5 languages
from CommonVoice under low-resource scenarios. Finally, with the
introduction of attention sinks, we reduce the left context by half while
achieving a relative 12% improvement in WER.

Index Terms—streaming ASR, self-supervised learning, XLSR, trans-
former transducer

I. INTRODUCTION

End-to-End (E2E) modeling approaches for automatic speech
recognition (ASR) have become ubiquitous in literature. There are
three popular architecture for achieving E2E models: encoder-decoder
(AED) based models [1]–[4], using Connectionist Temporal Classifi-
cation (CTC) loss [5], and neural Transducer [6], [7] based models.
The transducer models, shown in Figure 1a, consist of an encoder,
predictor and joint networks. Using Transformers [8] encoder, termed
as Transformer Transducer (TT) [9], [10], is a popular choice for
streaming ASR [11]–[13] because of its inherently streaming nature.
It is common to train TT models from scratch which requires large
amount of supervised data [11], [12]. Self-supervised (SSL) models
have shown strong ASR performance when trained with small amount
of in-domain supervised data [14]–[18]. Most of the recent works
using SSL models for ASR use encoder-decoder setup [19]–[21] or
CTC loss [14], [15], [22], [23]. In this paper, we present XLSR-
Transducer where we use a pretrained XLSR-53 model as encoder
in the TT architecture. This opens the door to streaming TT systems
for low-resource applications.

In streaming ASR, partial hypotheses are generated for each
audio chunk sequentially [12], [24] to produce the transcript for
the full audio, whereas the entire audio segment is available for
non-streaming decoding. Depending on the latency requirements,
the chunk size may vary from few hundred milliseconds to few
seconds [24]. Typically, a drastic degradation in word error rate
(WER) is observed when non-streaming models are decoded in
streaming fashion [13], because only a limited context is available.
In this work, we propose a variety of attention masking patters that
enables streaming training and decoding of our XLSR-Transducer
model. We also study the importance of chunk sizes and past context
by varying them during inference. Increasing past context typically
enhances ASR performance [24], at the expense of increased latency.
Recently, it was shown that the transformer layers learn to assign
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Fig. 1: Current state-of-the-art a) Transducer ASR includes state-less
predictor, pruned transducer loss and b) Transformer-based encoder,
trained from scratch. We replace the encoder by XLSR-53, an SSL
model suitable for low-resource applications. Our contributions lead
to the c) XLSR-Transducer.

disproportionate attention scores to few initial tokens for streaming
language models [25], termed as attention sinks. We study the effects
of attention sinks for the first time in streaming ASR. Formally, at
decoding time, we allow the transformer layers in XLSR to attend
to few initial frames in addition to designated frames in chunk and
past context. In theory, this reduces total computation required for
processing an audio chunk during streaming decode. Although SSL
encoder-based transducer models have been explored in [26], detailed
results for varying chunk sizes and past context are not available.
The trade-off between increased latency due to larger chunk or past
context sizes and performance is not immediately clear, especially
when the SSL model is not pre-trained in a streaming fashion. In
this work, we present a comprehensive analysis that can better inform
the choice of these hyperparameters based on specific requirements.
Moreover, our work explores attention sinks, which can reduce overall
computation while improving performance.
Our contributions are covered below:

• Introduction of the XLSR-Transducer, a multilingual SSL en-
coder based transducer model, demonstrating significant WER
improvement on the AMI dataset compared to large speech
foundational models and other open-source ASR models;

• extension to streaming XLSR-Transducer and a systematic study
of chunk size and past context on training and inference;

• to author’s knowledge, this is the first work that explores the
attention sink [25] phenomenon for streaming ASR which leads
to improved WER; and

• Evaluation of the XLSR-Transducer on AMI and five languages
of CommonVoice dataset in low resource settings.
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Fig. 2: Masking strategies for streaming XLSR-Transducer. Multi-chunk training allows decoding with variable chunk size (blue) and left
context (orange). Each square denotes “n” frames. Attention sink (yellow) allows context from the first n frames. Our results show that
attention sink frames offer a better trade-off w.r.t increasing left context alone, leading to lower WERs.

II. XLSR-TRANSDUCER

In a typical Transformer-Transducer (TT) ASR model (Figure 1a),
there are three networks: the encoder, predictor, and joiner. The
encoder processes audio frames to produce acoustic embeddings. The
predictor generates token embeddings in an auto-regressive manner,
taking previous non-blank tokens as input. Lastly, the joiner combines
the outputs from the encoder and predictor to predict a probability
distribution over the tokens in the vocabulary. In this work, we utilize
a stateless predictor [27] composed of an embedding layer and one
1-D CNN layer, and the joiner network consists of one linear layer.
Typically, the encoders [28]–[31] are trained from scratch and require
a large amount of in-domain supervised data to achieve decent WER,
which may not always be feasible. We train the TT model using the
pruned-transducer loss [7] from k21 toolkit.

A. Non-Streaming XLSR-Transducer

In contrast to encoders trained from scratch, recent advancements
in SSL pretrained models demonstrate competitive performance [14],
[15] when fine-tuned with a limited amount of labeled data for
ASR. Previously, the popular ASR systems employing SSL pretrained
models have utilized CTC loss [5], encoder-decoder based architec-
ture [2], [3], and Lattice-Free MMI loss [32] (hybrid approach) for
training. In this paper, we integrate pretrained models as encoders
in the TT setup, as illustrated in Figure 1c. One notable advantage
is the ability to achieve strong ASR performance with relatively low
amounts of training data. We select XLSR-53 [14] as our encoder
model, which takes raw audio as input and outputs audio frames
with a frame duration of 25ms and a stride of 20ms. The selection
of XLSR-53 is driven by its large-scale pre-training on multilingual
audio, which has demonstrated competitive ASR performance [14]
in the low-resource across multiple languages.

B. Streaming XLSR-Transducer

XLSR is typically trained and decoded using entire audio sample.
This makes the proposed XLSR-Transducer non-streaming despite
the use of stateless predictor and linear joiner that are inherently
streaming. The main challenge to port SSL models to streaming is
the use of self-attention in the transformer layers [8], i.e., computed
over entire acoustic frames of an utterance. In this paper, we present
multiple masking patterns [24] to limit the frame context over which
self-attention is computed, simulating streaming ASR within the
XLSR-Transducer setup.
Chunked masking In streaming ASR, decoding partial hypotheses
begins after receiving a few audio frames, known as the chunk size.
As depicted in Figure 2a, we implement chunk-wise decoding by

1https://github.com/k2-fsa/k2

masking frames outside a specific chunk during the forward pass from
the XLSR model. The mask is applied after dot-product computation
during self-attention, ensuring that each frame inside a chunk has
access to all the frames within that chunk. Note that the XLSR model
also includes a CNN front-end, which takes raw audio as input. Thus,
we feed chunk-size equivalent raw waves to the CNN front-end in a
sequential manner and concatenate them across the time dimension to
obtain all the frames for an utterance. In this paper, we explore chunk
sizes of 16, 32, 64, and 128, translating to approximately 320ms,
640ms, 1280ms, and 2560ms, respectively, for XLSR.
Chunked masking with variable left context chunks In practice,
when decoding chunk “n”, we have access to all the previous chunks,
which can be utilized as left context. As illustrated in Figures 2b and
2c, a variable number of left context chunks can be utilized during the
self-attention computation of a chunk, with the possibility of using
the full left context. The number of frames in the left context is a
multiple of the chunk size, as this can be efficiently implemented to
store past chunks in the cache.
Streaming training and decoding The use of non-streaming
XLSR-Transducer for streaming decoding with the described masking
patterns presents a challenge. The model has been trained on full
context, creating a train-test mismatch. To address this challenge, we
train the model in a streaming fashion using a fixed chunk size and
left context. Flexibility in our chunked mask implementation allow
us to perform both streaming and non-streaming decoding using a
single model. The advantage of our method is that it only affects the
fine-tuning stage and we can avoid the computationally prohibitive
pre-training of the SSL model.
Multi-chunk Training In many practical use-cases of streaming
ASR, varying the chunk size at inference is often desirable depending
upon latency requirements. However, a streaming XLSR-Transducer
model trained with a fixed chunk size may not yield optimal WERs
when decoded with different chunk sizes. Also, training multiple
models for varying chunk sizes may be infeasible. To address this
limitation, we propose randomly selecting the chunk size from the
predefined list mentioned above for each batch during training.

C. Attention sinks for streaming ASR

In a recent work on streaming language models (LM) [25], [33],
[34], it was shown that a surprisingly large amount of attention
scores during self-attention computation inside transformer layers is
directed towards the initial tokens, termed as attention sinks. This
was attributed to the Softmax operation, which mandates attention
scores to sum up to one and in autoregressive LMs, all subsequent
tokens have access to the initial tokens. Consequently, the model
may find it easier to learn to assign large scores to these initial
tokens. In our streaming model training, where we utilize full left



context, we employ a similar setup. This leads us to introduce the
first utilization of the attention sinks in the context of streaming ASR
during inference. Specifically, as depicted in Figure 2d, we enable
self-attention to focus on not only frames within a chunk and left
context chunks, but also on the initial few frames.

III. EXPERIMENTAL SETUP

A. Datasets

We benchmark our proposed model on two datasets—AMI and
CommonVoice. We choose AMI, instead of Librispeech [35], because
it involves natural, multi-party, conversational speech with acoustic
complexity and overlapping dialogue, whereas LibriSpeech contains
read speech, making AMI more relevant for real-world scenarios.
AMI We train and evaluate the XLSR-Transducer model on the
individual head microphone (IHM) split from the AMI dataset [36]
containing audios with a sampling rate of 16 kHz.We use the default
recipe for AMI from lhotse2 toolkit to prepare the train, dev and
eval sets containing 80hr, 8.8hr, 8.5hr of audios respectively. In all
our experiments on the AMI dataset, we use WER on the dev set to
select the best epoch and report the results on the eval set.
CommonVoice We validate XLSR-Transducer on five non-English
languages from CommonVoice-v11 [37].3 This includes Catalan
(CA), Belarusian (BE), Spanish (ES), French (FR) and Italian (IT).
To keep experimentation under the low-resource domain, we extract
randomly a 100-hr subset from the training data per language. Later,
we train streaming and non-streaming models. We report WERs on
the full official test sets.

B. Zipformer-Transducer Baseline

We establish strong baselines by training non-streaming and
streaming Zipformer transducer models [30] from scratch, following
the AMI recipe4 from Icefall toolkit (we only use the IHM set). The
state-less Predictor [27] consists of an embedding layer followed by
one 1-D CNN layer and joiner consists of 1 linear layer. We use the
default hyper-parameters from the recipes and train for 30 epochs.
See more training details in [30]. Beam search with width of 4 is
used across all ASR decoding in this paper.

C. XLSR-Transducer Training

The XLSR-transducer model is constructed from the Icefall’s
Transducer recipe for AMI dataset adapted with the XLSR model
from fairseq [38]. The fine-tuning uses Scaled Adam [39] and a
learning rate scheduler that consists of a 500-step warmup phase [8]
followed by a decay phase directed by number of steps and epochs.
Furthermore, the model is optimized with pruned rnn-t loss [6], [7].
The learning rate is set to lr= 1.25e−3 for AMI and lr= 5.0e−3

for CommonVoice. We train AMI and CommonVoice models for 10
and 20 epochs, respectively.

IV. RESULTS & DISCUSSION

Non-streaming ASR We begin by benchmarking the XLSR-
Transducer model for non-streaming ASR on the AMI dataset.
Results are reported in the Table I (full-attn). We compare against
large open source foundational speech models. It can be seen that the
proposed XLSR-Transducer model achieves significant improvement
in WERs. Note that we do not finetune these open-source models
on the AMI dataset because the primary goal of our work is to
demonstrate best practices for utilizing SSL models in streaming

2https://github.com/lhotse-speech/lhotse
3CommonVoice-v11: cv-corpus-11.0-2022-09-21.
4github.com/k2-fsa/icefall/tree/master/egs/ami

TABLE I: WERs on the AMI eval set. On non-streaming decoding†

XLSR-Transducer yields significant WER reduction. On streaming
decoding, the multi-chunk training (mutiple) provides significant gain
w.r.t encoders trained from scratch with minimal degradation in non-
streaming performance. ‡encoder-decoder model. ¶decoding chunk
size 2000ms.

Encoder Chunk Size Chunk Size decoding

training 320 ms 1280 ms full-att†

decoding: non-streaming ASR

Whisper large-v2 (1.6B)‡ [1] - - - 16.9
FastConformer (1.1B) [31] - - - 15.6
Zipformer (70M) - - - 21.0

decoding: streaming ASR

FastConformer (114M)¶ [12] - - 24.2 -
Zipformer (70M) multiple 28.5 24.6 23.2

XLSR (300M) full-att 35.3 17.8 12.7
XLSR (300M) 320 ms 17.1 15.0 14.2
XLSR (300M) 1280 ms 19.7 14.5 13.1
XLSR (300M) multiple 17.7 14.2 12.9

ASR. Next, we train a Zipformer encoder based transducer model
from scratch and observe that XLSR-Transducer yields 39% relative
improvement in WER. It is clear that there are significant advantages
of using pretrained encoders in TT setup for low resource ASR.
Streaming ASR First, we decode the non-streaming trained
XLSR-Transducer model in streaming fashion by applying different
masks (see §II-B). Results are reported in the Table I, where full
left context is used during decoding. The XLSR-Transducer achieves
significant improvement over Zipformer and FastConformer based
transducer models. Despite the improvements, there is a significant
degradation from non-streaming performance because the model was
not trained for streaming. When model was trained for streaming
with full left context and decoded using chunk size of 320ms, the
performance improves (35.3% → 17.1% WER) because of the train-
test matched chunk size setting. However, training with larger chunk
sizes and decoding at 320ms degrades performance, showcasing the
importance of context during self attention computation inside a
chunk which the model may have learned during training.

Increasing the chunk duration during decoding (320ms → 1280ms)
improves the performance monotonically [13], which is expected as
larger context available for frame attention score computation. Now,
the streaming trained models are decoded in non-streaming which can
serve as performance upper bound. We observe that increasing chunk
size during training improves the non-streaming performance and
even when chunk size of 320ms is used during training, the results
only degrade by 1.5% in absolute WER. When random chunk sizes
are used during training, the gap is 0.2% when compared with the
best non-streaming ASR performance. Overall, a streaming trained
XLSR-Transducer model using random chunk sizes shows best WER
when decoded in streaming fashion with 1280ms chunk duration and
performance gap for non-streaming decoding is minimal. Thus, a
single model can be used for both streaming and non-streaming ASR.

Streaming ASR with variable left context Using full left context
during training and decoding will incur additional computation.
Limiting left context during training of streaming models resulted in
significant WER degradation; therefore, we use full left context for
all streaming XLSR-Transducer training. Figure 3 list WERs when
the number of left context chunks are varied during decoding. Note
that the left context duration is in multiple of chunk size. Increasing
the left context improves the performance for all training scenarios
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Fig. 3: Plots of WERs on AMI eval set for XLSR-Transducer trained on three configurations (a, b and c) and decoded on multiple streaming
scenarios. Note that adding one or more left-context chunks at decoding time reduces WERs dramatically.

TABLE II: WERs of streaming XLSR-Transducer on five Common-
Voice languages. Models are fine-tuned on random 100hr train subset
and with multi-chunk training. full-att: non-streaming decoding. †CA
is 28h long, while the rest 26h. ‡median (duration) in seconds.¶non-
streaming training and decoding.

Lang† Test Set Streaming model - chunk size [ms] full-att¶

#utt [50%-dur]‡ 320 640 1280 2560 full-att full-att

CA 16k 6.1 17.5 15.2 13.9 12.9 12.0 10.7
BE 15.8k 5.7 20.0 17.5 15.9 14.8 13.8 13.7
ES 15.5k 6.1 17.7 15.0 13.5 12.2 11.3 10.8
FR 16k 5.7 24.3 21.6 20.0 18.7 17.6 17.1
IT 15k 6.3 18.5 15.9 14.3 13.1 12.1 11.5

and chunk duration. At the same time, a significant improvement is
observed using just one chunk of left context. Further increase in left
context improves the performance but the reduction in WER per left
context chunk is lower. When the XLSR-Transducer is trained with
multi-chunk streaming strategy and decoded with 1280ms chunk size,
a relative improvement of only 4% in WER is observed using full left
context instead of one left context chunk. Thus, a limited number of
left context chunks should be enough for most real-world streaming
ASR with XLSR-Transducer model.
XLSR-Transducer on multiple languages We also train the pro-
posed model on five non-English languages of CommonVoice [37].
WERs are listed in Table II for multi-chunk streaming and full-
attention non-streaming models. We see competitive WERs for
models evaluated under different streaming conditions, with constant
WERs improvement as chunk size increases; similar behavior is
reported in [13]. The upper-bound WERs are obtained with a model
trained and evaluated in non-streaming fashion, i.e., last column of
Table II. We note negligible WER degradation (up to 1.5% absolute
WER, worse CA; best BE) for full-attention decoding (full-att) on
streaming models vs. their non-streaming counterparts. This confirms
the robustness of XLSR-Transducer on multiple languages.
Improving streaming ASR with attention sinks In theory,
restricting left context chunks should lead to overall latency im-
provements for streaming ASR. The recent observation of attention
sinks phenomena [25], [40], where the transformer models learn
to assign relatively higher attention scores to initial tokens, may
help in reducing the overall computation required to decode one
chunk of audio in streaming ASR. WERs on the AMI dataset are
reported in Table III for the XLSR-Transducer model trained in multi-
chunk setting. For different chunk sizes and left contexts, we observe
that increased frames for attention sinks improve the performance

TABLE III: WERs on AMI eval set for varied decoding settings,
including attention sink. Adding attention sinks offer a better trade
off than larger left context. (blue) denotes relative WER reduction
w.r.t no attention sink within same chunk and left context. †Number
of chunks. ‡Number attention sink frames.

Decoding settings Decoding chunk-size

Left-context† attn-sink‡ 320ms 640ms

full none 17.7 15.5

1

none 25.9 – 18.1 –
1 22.9 (+11.6) 17.4 (+4.1)
4 21.4 (+17.4) 16.8 (+7.1)
16 19.7 (+23.7) 16.3 (+10.0)

2

none 22.5 – 16.7 –
1 20.9 (+7.1) 16.4 (+1.8)
4 20.0 (+11.1) 16.2 (+3.0)
16 18.9 (+16.0) 15.9 (+4.8)

4 none 19.8 15.9

monotonically. Specifically, for a smaller chunk of 320ms, using 1 left
context chunk and 16 frames (i.e., 320ms) for attention sinks performs
better than using 2 left context chunks by 12% in relative terms
despite attending over same number of frames. We do not observe a
significant reduction in WERs beyond a chunk size of 640ms. Overall,
our results show that it is better to use attention sinks than increasing
left context chunks beyond 1 for improved performance. We also
run decoding with attention sinks on the CommonVoice dataset and
observe similar trends but do not include a results table for brevity.

V. CONCLUSIONS

In this paper, we demonstrate that using a self-supervised trained
model as encoder in the transducer framework, termed as XLSR-
Transducer, leads to significant improvement in WER on AMI
dataset. We explore various chunked masks and left context config-
urations to enable streaming decoding in XLSR. Our findings across
2 datasets and 6 languages shows that the proposed model achieves
streaming performance comparable to non-streaming ASR.
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