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Figure 1. Significance of ST-WSGE. Our self-training based weakly-supervised framework for robust 3D gaze estimation in real-world
conditions (e.g., varying appearance, extreme poses, resolution, and occlusion). All predictions used our image and video agnostic Gaze
Transformer (GaT) model. Top row: importance of the training diversity using ST-WSGE and GazeFollow (GF) for generalization com-
pared to standard supervised methods. Bottom row: influence of temporal context between image and video inference. Circles in images
represent unit disks where 3D gaze vectors are projected onto the image plane (x, y in yellow) and a top-down view (x, z in blue). Images
from VideoAttentionTarget, GFIE, and MPIIFaceGaze datasets.

Abstract

Accurate 3D gaze estimation in unconstrained real-world

environments remains a significant challenge due to vari-

ations in appearance, head pose, occlusion, and the lim-

ited availability of in-the-wild 3D gaze datasets. To

address these challenges, we introduce a novel Self-

Training Weakly-Supervised Gaze Estimation framework

(ST-WSGE). This two-stage learning framework leverages

diverse 2D gaze datasets, such as gaze-following data,

which offer rich variations in appearances, natural scenes,

and gaze distributions, and proposes an approach to gen-

erate 3D pseudo-labels and enhance model generaliza-

tion. Furthermore, traditional modality-specific models, de-

signed separately for images or videos, limit the effective

use of available training data. To overcome this, we propose

the Gaze Transformer (GaT), a modality-agnostic architec-

ture capable of simultaneously learning static and dynamic

gaze information from both image and video datasets. By

combining 3D video datasets with 2D gaze target labels

from gaze following tasks, our approach achieves the fol-

lowing key contributions: (i) Significant state-of-the-art im-

provements in within-domain and cross-domain generaliza-

tion on unconstrained benchmarks like Gaze360 and GFIE,

with notable cross-modal gains in video gaze estimation;

(ii) Superior cross-domain performance on datasets such

as MPIIFaceGaze and Gaze360 compared to frontal face

methods. Code and pre-trained models will be released to

the community.

1. Introduction
Non-verbal behaviors play a crucial role in human com-
munication, often conveying more information than words
alone. Among the various forms of non-verbal cues, eye
gaze stands out as an important signal for understanding
human behavior, including attention, communication, in-
tents, and mental state. Consequently, gaze signals have
been used in many applications. Some applications require
accurate gaze for frontal head pose such as AR/VR [5], 3D
avatar animation [45], human-computer interaction [3, 44],
and driver behavior monitoring [27]. While other applica-
tions focus on robust 3D gaze estimation from a wide range



of head poses such as medical and psychological analysis
[29] or human-robot interaction [2, 30, 48].

In this paper, our goal is to develop a robust 3D gaze
estimation for in-the-wild applications with unconstrained
head pose and real-world environments. In the literature,
this refers to the less explored and highly challenging prob-
lem of “physically unconstrained gaze estimation” [28].
Motivations. Estimating gaze in unconstrained, real-world
settings poses unique challenges not fully addressed by
current lab-based datasets, which are primarily collected
in controlled screen-target setups [18, 19, 32, 42, 60, 63].
While these datasets have enabled recent approaches to
achieve high accuracy in frontal 3D gaze estimation from
monocular images [1, 7, 9–11, 18, 55, 61], their effec-
tiveness declines in real-world scenarios. This limitation
stems from restricted gaze distributions, lab-specific condi-
tions, limited subject diversity, and reliance on potentially
noisy head-pose estimates for normalizing eye and face im-
ages [62].

To address the lack of data for unconstrained gaze es-
timation, Gaze360 [28] and GFIE [25] were developed.
Although these datasets have advanced the field, models
trained on them continue to struggle with challenging, real-
world conditions (see Fig. 1), particularly when facing ex-
treme head poses, partial eye occlusions, varying resolu-
tions from diverse camera-to-subject distances, and a wide
range of appearances (e.g., skin tones, hairstyles, facial ex-
pressions). This limitation is largely due to insufficient
diversity in the training data, as collecting high-quality,
naturally occurring, and diverse 3D gaze data is complex,
resource-intensive, and not easily scalable.

To overcome these limitations, researchers have ex-
plored using “secondary” labels that are easier to obtain,
e.g. by relying on internet data. For example, Kothari et

al. [31] leveraged 2D gaze direction labels from the “Look-
ing at Each Other” (LAEO) dataset [38]. By applying ge-
ometric constraints and head-size heuristics, they generated
pseudo-3D gaze data. While this approach showed some
generalization improvement, the authors noted that LAEO’s
gaze distribution is primarily horizontal and requires images
containing at least two people with mutual gaze, which lim-
its sample diversity and availability.

Here we aim to utilize more general 2D gaze annotations
from the gaze following task [14, 43, 50, 51]. Although the
ground truth for gaze following is defined as the 2D pixel lo-
cation a person in the scene is looking at, we can repurpose
it as 2D gaze direction ground truth. Compared to LAEO,
gaze following datasets offer greater diversity, with broader
gaze distributions and a wider variety of natural scenes.

In addition, in contrast to [31], we propose a Self-
Training Weakly-Supervised Gaze Estimation (ST-WSGE)
framework using a two-stage training approach without re-
lying on heuristics or relative depth estimation to generate

pseudo-3D gaze labels. First, we train a gaze network on
existing 3D gaze datasets. We then use this network’s pre-
dictions on gaze-following data, combined with 2D gaze
ground truth, to create 3D gaze pseudo-labels. In the sec-
ond stage, we retrain a similar gaze network using both
3D gaze datasets and gaze-following datasets with these
pseudo-labels. Our approach minimizes the need for labor-
intensive, unconstrained 3D gaze labeling and demonstrates
significant improvements over state-of-the-art methods in
both within-domain and cross-domain generalization on
Gaze360, GFIE, and MPIIFaceGaze [60].

Given the scarcity of in-the-wild 3D gaze datasets, an-
other challenge lies in how to leverage both image and video
data effectively. Modality-specific models restrict the train-
ing set to modality-specific datasets, limiting their ability
to benefit from all available resources. While static models
can draw on large image datasets such as GazeFollow [14],
temporal dynamics are also essential for robust 3D gaze es-
timation in unconstrained environments [28, 40], and is par-
ticularly valuable when the eye region is obscured, whether
due to occlusions, low resolution, or blinking (see Fig. 1).

To address this, one approach is to pre-train a model on
images and transfer the weights to a temporal model us-
ing techniques like filter inflation, where 2D filters are ex-
tended to 3D models, as done in prior adaptations for video
tasks [6]. However, this method is more suited to fine-
tuning and risks catastrophic forgetting, where the model
loses pre-trained knowledge [39]. Alternatively, images can
be duplicated to simulate fixed-length video clips, allowing
for training on both image and video datasets in a temporal
model. However, this can impair the learned gaze dynam-
ics, as synthetic clips lack genuine motion information.

Transformers offer a promising solution for handling
multiple modalities. Inspired by recent work [20, 21], we
propose a Gaze Transformer (GaT) designed to encode
both image and video inputs into a shared representation.
This allows us to leverage labeled datasets more effectively,
by training jointly on image and video data. We demon-
strate better cross-modal generalization, and that using im-
age datasets enhances video gaze prediction, thus enabling
a more versatile and robust 3D gaze estimation model.
Contributions. They can be summarized as:
• ST-WSGE, a novel learning framework enhancing

generalization. To address the lack of diverse, natural-
istic 3D gaze datasets, we leverage 2D gaze-following
datasets using 3D pseudo labels. Combining these with
3D gaze datasets in a two-stage manner, we demonstrate
improved 3D generalization on several benchmarks.

• A visual modality agnostic Gaze Transformer (GaT)
architecture making efficient use of existing gaze
datasets. By allowing simultaneous learning from 3D
gaze image and video datasets, it outperforms modality-
specific models, resulting in better static and dynamic



gaze representations, better capturing spatiotemporal pat-
terns in head sequences compared to the state-of-the-art.

• State-of-the-art results. Our approach surpasses exist-
ing methods in both unconstrained (Gaze360, GFIE) and
constrained (MPIIFaceGaze) environments, achieving su-
perior results in within- and cross-dataset evaluations.

These contributions position our approach as ideal for real-
world unconstrained 3D gaze estimation applications.

2. Related Work
Our research pertains to 3 main aspects: unconstrained gaze
estimation, temporal gaze modeling, and generalization
using additional data and labels to bridge the domain gap
between controlled setups and real-world data.
Unconstrained Gaze Estimation. Most 3D gaze esti-
mation models address the frontal face gaze prediction
task [9, 10, 18, 33, 49, 58, 61], relying on normalized
frontal face crop as input. These methods tend to fail under
partial occlusion of the eyes due to extreme head pose.
Nevertheless, at 90-135 head pose yaw, a significant part
of one eyeball is still often visible and informative for gaze
estimation [28]. For this reason, few works tackle the most
challenging setting of “physically unconstrained gaze esti-
mation” without constraint on the head pose. Kellnhofer et

al. [28] are the first to collect a physically unconstrained 3D
gaze dataset Gaze360 and develop a method that used head
crop as input. Then, combining different head crop scales
proved to be beneficial [8] since more resolution helps on
the frontal face while more context is beneficial for profiles
and back heads. Following this idea, MCGaze [22] used
a spatiotemporal interaction module between head, face,
and eye features in an end-to-end manner to extract local
eyes and global head features. These approaches focus
on within-data performance, while in this work we aim to
improve both within and the generalization as discussed in
the following section.
Generalization in the Wild. Bridging the dataset’s
domain gap challenge is crucial for 3D gaze estimation in
real-world applications. Two trends have been explored
to adapt to specific target domains effectively: One
leverages few labeled samples, while the other uses only
unlabeled samples [13, 26, 28, 53, 54, 57]. In contrast, gaze
generalization models focus on enhancing cross-domain
performance without any prior knowledge of the target
domain. For instance, the methods proposed in [4, 13, 54]
demonstrate improved generalization by learning robust
general features (e.g. via image rotation consistency) for
gaze estimation across varying conditions. Even if those
methods focus on constrained settings with face crop as
input, we compare our approach with them to show the
effectiveness in frontal face generalization.
Furthermore, to improve in-the-wild generalization, re-
searchers seek to exploit diverse weak gaze labels that can

be easily or automatically generated on in-the-wild data.
In this direction, Zhang et al. [59] automatically generates
a new 3D gaze dataset, MPSGaze, by blending on images
of people from the Widerface datasets [56], eyes from
images of the ETH-Xgaze dataset with known 3D gaze and
similar head pose. While this greatly improves diversity
with more than 10000 new identities, this method generates
only near frontal faces and might impact the appearance of
the face. In another study, Ververas et al. [53] used eyeball
fitting techniques to create pseudo-3D gaze on new face
datasets. They improved generalization, but their work is
also restricted to frontal faces. Finally, Kothari et al. [31]
used a weakly-supervised learning framework for improved
generalization using pseudo 3D gaze labels from 2D gaze
LAEO labeled datasets. However, as acknowledged by
the authors, the 2D gaze distribution of LAEO is limited
horizontally. In our work, we follow this idea but leverage
a more diverse gaze distribution and natural scene 2D gaze
label obtained from the annotation of where people look
in the scene. Using a self-training learning approach with
generated 3D pseudo labels via geometric projection, we
show improved within and cross-dataset generalization
on unconstrained Gaze360 and GFIE [25] and frontal
MPIIFaceGaze [60] datasets.
Dynamic 3D Gaze Estimation has not been extensively
explored due to the lack of available datasets. EYE-
DIAP [19] and EVE [42] are video datasets collected in
constrained settings, resulting in mostly frontal poses. In
this particular context, Park et al. [42] and Palmero et

al. [41] estimated the gaze from face crop image sequences
but only showed marginal improvement compared to static
methods. Indeed, it is questionable if eyeball dynamics
have temporal dependencies besides the ones due to
specific tasks or scenarios (e.g. reading). Nevertheless, in
unconstrained settings with low resolution and head pose
dynamic scenarios, temporal methods show benefits in
encoding the head and eye dynamics [8, 22, 23, 28, 40].
For instance, seen from a far distance, head and body
orientation dynamic revealed to be an important prior
for gaze estimation when eyes are barely visible [40].
Unconstrained video gaze data is challenging to collect.
Beyond Gaze360, GFIE [25] is the only other 3D gaze
dataset for gaze following, using complex laser setups, yet
it is limited to indoor settings and lacks natural scene and
gaze dynamics. The scarcity of video 3D gaze datasets
hampers the development of video-based methods that
generalize to real-world data. To address this, we propose
a unified model trained on both image and video datasets,
demonstrating improved video prediction through diverse,
large-scale data.
Furthermore, current video-based gaze estimation methods
typically employ a backbone to extract features from
image sequences, followed by a Recurrent Neural Network



Figure 2. Our ST-WSGE training framework. 1. In the first stage, we train a Gaze Transformer (GaT) on both image and video 3D gaze
datasets. 2. Using the trained network, 3D gaze is inferred on 2D gaze dataset. Then, a geometric rotation is applied to generate a pseudo
3D gaze label from the inferred 3D gaze that is aligned to the 2D ground truth gaze label in the image plane. 3. In the second stage, we
train a similar gaze network as in 1. using available 3D gaze datasets and gaze following datasets with 3D pseudo labels.

(RNN) to capture temporal dynamics [8, 26, 28, 31, 41, 42].
However, these approaches do not explicitly model the
spatiotemporal interactions in the input sequence. To
address this limitation, we investigate a spatio-temporal
model to encode subtle eye motion or head pose changes in
the input sequence directly.

3. ST-WSGE Method
3.1. Self-Training Pipeline
We propose a two-stage training pipeline for gaze estima-
tion to leverage any 2D gaze datasets, as presented in Fig. 2.
In the first stage, a gaze network is trained on image and
video 3D gaze datasets in a supervised manner. Next, the
network is used to infer 3D gaze on 2D gaze datasets.
Since only the gaze’s depth is missing in the 2D gaze la-
bel, we employ a geometric transformation to generate a
robust pseudo-3D gaze label from the inferred 3D gaze that
is aligned with the 2D gaze label. We assume that a model
pre-trained on unconstrained 3D gaze datasets provides a
good prior z-estimation. In the second stage, a similar gaze
network is trained in a supervised regime using both gaze
following data with 3D pseudo labels and 3D gaze datasets.

3.2. Gaze Transformer (GaT)
Model Architecture Motivation. Accurate and robust 3D
gaze estimation in the wild requires three key capabilities:

capturing fine local details from the eye region when vis-
ible; extracting global information from head orientation
which is particularly useful when the eyes are occluded or
partially obfuscated; capturing small motion of head pose
and eyes in the temporal domain to capture subtle gaze
shifts. A model capable of training on both image and
video data is especially valuable, as it broadens the range
of available training datasets. Convolutional Neural Net-
works (CNNs) excel in frontal gaze estimation due to their
ability to extract local eye features [1, 28, 55] but may en-
counter more difficulty in global reasoning (i.e. merging
pose and eye information), and extending CNNs to handle
temporal data within a single modality-agnostic model is
challenging. Vision Transformers (ViTs) [16], as noted by
Cheng et al. [10], are less suited for gaze estimation since
they may miss critical local details, especially when the eye
region is split across multiple patches. In contrast, hier-
archical transformer architecture [35, 46] offers a flexible
architecture to capture both local and global features. For
instance, the Swin Transformer, which uses smaller patches
(typically 4→4 vs 16→16 in standard ViTs), is better able to
capture fine local details. Its ”shifted window” mechanism,
which applies self-attention within local windows that shift
at regular intervals, effectively aggregates local and global
context. Extending the Swin Transformer to the temporal
dimension has proven successful for temporal tasks on sev-



eral benchmarks [36]. Additionally, transformers are versa-
tile, recent work has demonstrated their effectiveness when
trained on both image and video datasets within a single
model [20, 21]. Inspired by these approaches, we introduce
our Gaze Transformer, GaT, with several modifications for
3D gaze estimation, as illustrated in Fig. 2 and detailed in
the following sections.
Patchifier. The model needs a common representation for-
mat to encode both image and video input. Following
[16, 17, 20, 35, 52], images and videos are represented
as 4D tensors X ↑ RT→H→W→3, with T = 1 for an
image I, and T > 1 for a video clip V. Then, the in-
put X is divided into a collection {xi}N of 4D sub-tensor
(patches) xi ↑ Rt→h→w→3, as presented in Fig. 2. Follow-
ing [20, 21, 38, 52], we use t = 2. When working with
image only, we duplicate the image instead of zero-padding
because we find better cross modalities generalization from
video to image. Then, a shared linear layer and LayerNorm
are applied to project the patches to a token representation.
Encoder. The tokens from the patchifier are then fed into
a tiny Swin3D hierarchical spatiotemporal encoder. It re-
lies on self-attention within nearby tokens in a spatiotem-
poral window that is shifted every time. In addition, it uses
two sets of relative positional encoding: one spatial and one
temporal. Because of the hierarchical representation, the
number of tokens is reduced by patch merging layers as the
network gets deeper. The temporal output dimension is re-
duced by a factor of two. The output tokens are then fed to
a gaze decoder module.
Gaze Decoder. We first apply a mean spatial pooling on the
output tokens, followed by an interpolation function to dou-
ble the temporal dimension to match the input length (for
images, interpolation is skipped). Finally, a shared MLP
with a single hidden layer is applied to each token to pre-
dict a normalized 3D gaze vector.
Baseline Networks. Different approaches exist to process
image and video in a single model. To compare the per-
formance of our GaT model, we develop in addition two
baselines. Given that the static Swin(2D) transformer gives
good performance on gaze estimation. We add a temporal
encoder to model the gaze dynamic. Therefore, we develop
Swin(2D)-LSTM which first processes a set of images using
Swin and outputs a set of embedding for each image. Then,
it is fed to a bidirectional LSTM followed by a shared gaze
MLP on each output to produce a gaze vector. Similarly, the
second baseline called Swin(2D)-Tr replaces the LSTM by
a transformer. The output tokens from each image are pro-
jected to a lower dimension followed by a LayerNorm and
absolute spatiotemporal encoding. Then, the transformer is
applied to the spatiotemporal output token. Finally, a spatial
mean pooling is applied followed by a similar gaze MLP.
Both architectures are input agnostic and are compared in
an ablation study.

3.3. Pseudo 3D Gaze Generation
Creating 2D gaze datasets is easier than creating 3D gaze
datasets, as annotation can be completed after the images
have been collected, unlike 3D gaze which can not be an-
notated by humans and require a special setup. As a result,
2D datasets like GazeFollow offer a broad gaze, head pose
distribution, and head/face appearance diversity. There are
different possibilities to leverage such a dataset which will
be discussed in the ablation sections. For instance, Kothari
et al. [31] used 2D gaze from LAEO labels and 3D fitted
head models for z-direction estimation. In contrast, as pre-
sented in Fig. 2, our 3D pseudo gaze generation method as-
sumes that a pre-trained model trained on unconstrained 3D
gaze datasets can provide a good prior z-estimation, which
is confirmed by our experiments. Combining the z com-
ponent of predicted 3D gaze with 2D gaze ground truth
provides a robust pseudo 3D gaze label. Then, using this
pseudo label as an additional label during training, we re-
port improvement in unconstrained generalization.
Geometric Projection. The predicted 3D Gaze (3DPred)
ĝ and the 2D ground truth (2D GT) v = (vx, vy) are com-
bined such that the image plane projection of the pseudo
3D gaze (3DGP) gps is aligned with the 2D ground truth v.
Therefore, a rotation is applied to ĝ around the z-axis such
that gps has the same x,y direction as v:

gps = (vx↓(ĝx, ĝy)↓2, vy↓(ĝx, ĝy)↓2, ĝz) (1)

3.4. Training Strategy
In both training stages, the objective is to train our GaT
model on a collection of both image and video datasets with
gaze label {(X, g)j} where g ↑ RT→3 with T=1 for images,
which creates different training challenges to be addressed.
Video Training Data. As our model is modality agnostic, a
video dataset can be considered both as a set of video clips
or as a collection of images. These views of the data are not
equivalent, as, typically, considering the data as video-clip
at training will impact more inference on videos at test time
rather than on images. Hence, a video dataset can be used
twice as an image or video training dataset1. We will see
in ablations that it can impact the modality generalization
capability.
Mini-batch Strategy. Different mini-batch strategies have
been proposed in the literature to handle multiple datasets.
One approach mixes samples from each of the datasets, but
in our case, this requires careful implementation because
images and videos don’t have the same dimensions.
Another strategy creates batches from one dataset at a
time and alternates between them. This approach has
proven effective in previous work [20, 24] and we followed

1By convention, when reporting experiments, for video datasets, we
will add the suffix I when it is considered as an image dataset, V in the
video case, and I&V when it is used twice as image and as video dataset.



GF Additional Label G360 Full GFIE MPII EDIAP
Method Training Data None 2D 3DPred 3DGP Img Vid Img Vid Img Vid

Supervised G360I&V ↭ 13.6 12.6 21.9 20.9 7.4 8.3
Weakly-Sup (WS) G360I&V+GF ↭ 13.1 12.1 16.1 15.7 6.5 9.2
Self-Training (ST) G360I&V+GF ↭ 13.6 12.7 20.2 19.7 7.4 7.7
ST-WSGE G360I&V+GF ↭ 13.2 12.2 15.9 15.5 6.4 8.2

Supervised GFIEI&V ↭ 30.6 29.9 15.7 15.4 23.8 37.8
Weakly-Sup (WS) GFIEI&V+GF ↭ 22.9 22.1 12.5 12.2 24.4 33.0
Self-Training (ST) GFIEI&V+GF ↭ 29.7 29.4 14.9 14.9 21.2 34.6
ST-WSGE GFIEI&V+GF ↭ 21.5 21.1 13.0 12.7 17.3 16.7

Table 1. Ablation study for the self-training weakly-supervised
learning framework. We experiment with our GaT model, two
3D gaze datasets Gaze360 and GFIE, and three ways to include
GazeFollowing labels (GF). The best and the second best scores
are in bold and underlined, respectively.

Training modality G360 Full G360 180 G360 40
Model Img Vid Img Vid Img Vid Img Vid

Swin(2D)-LSTM ↭ 14.33 13.97 12.17 11.89 9.73 9.47
Swin(2D)-LSTM ↭ 14.75 13.05 12.58 10.98 9.86 8.67
Swin(2D)-LSTM ↭ ↭ 13.93 13.02 11.76 10.94 8.88 8.27

Swin(2D)-Tr ↭ 14.05 14.53 12.02 12.78 9.63 9.32
Swin(2D)-Tr ↭ 14.05 12.63 12.05 10.54 9.46 8.14
Swin(2D)-Tr ↭ ↭ 13.81 12.91 11.96 11.09 9.43 8.67

GaT ↭ 13.95 13.82 11.95 11.78 9.58 8.89
GaT ↭ 13.87 12.31 11.89 10.39 9.29 7.95
GaT ↭ ↭ 13.64 12.60 11.66 10.67 9.10 8.23

Table 2. Ablation study for the gaze model network. Since
different models are image and video training agnostic, we exper-
iment with three models on three training modalities dataset com-
binations using Gaze360 as the training set.

G360 Full G360 180 G360 40 GFIE
Training Data Img Vid Img Vid Img Vid Img Vid

G360V+GF 13.5 12.1 11.6 10.2 8.3 7.7 15.7 17.9
G360I&V+GF 13.2 12.2 11.3 10.3 8.6 7.7 15.9 15.5

GFIEV+GF 22.8 24.2 22.4 23.9 29.9 31.8 13.4 13.0
GFIEI&V+GF 21.5 21.1 20.6 20.3 26.6 26.7 13.0 12.7

Table 3. Impact of the training datasets modalities on cross-
modal generalization. We experiment with GaT model, ST-
WSGE framework, and different training dataset modalities.

this approach here. In addition, dataset size imbalance
is another challenge, as dataset sizes range from 30k to
120k samples. To address this, we balance the datasets by
oversampling smaller ones and undersampling larger ones
so that each dataset contributes equally during an epoch.
Loss. For training the model, we utilize a temporal
weighted average of the angular loss, which represents the
angular difference between the predicted gaze vector ĝ and
the ground truth g in degree:

Lgaze(ĝ, g) = 1

T

T∑

t=1

180

ω
arccos(

ĝT
t

g
t

↓ĝ
t
↓↓g

t
↓ ) (2)

4. Experiments
4.1. Datasets
In this work, we employ five 3D gaze datasets: two video
unconstrained datasets for training and evaluation: Gaze360
(G360) [28], GFIE [25], and three constrained only
for generalization MPSGaze (MPS) [59], MPIIFaceGaze
(MPII) [60] and EYEDIAP (EDIAP) [19] (EDIAP), with
only EDIAP being a video dataset. As shown in Fig. 3,

Figure 3. Dataset gaze distribution. Gaze in polar coordinates.

G360 and GFIE differ considerably in their gaze distribu-
tion, which makes cross-dataset evaluations challenging. In
addition, we consider the 2D gaze following dataset Gaze-
Follow [43] (GF), which contains more than 100k images
with gaze target annotations.
The details of the six datasets are presented in the supple-
mentary materials. Nevertheless, as authors have been us-
ing many subsets of G360 for evaluation, we clarify the
test splits to avoid any confusion. We followed the split of
[28]: G360 Full corresponds to ”All 360°” (all the test set);
G360 180 corresponds to ”Front 180°” (gaze within 90°);
and G360 40 to ”Front Facing” (gaze within 20°). Addition-
ally, we consider G360 Back (gaze above 90°) [8] and G360
Face (all detected faces), used in many studies [1, 7, 9–
11, 18, 55, 61]. G360 Face 180 or 40 corresponds to the
detected face with a gaze within 90° or 20°.

4.2. Implementation Details
Each dataset has different head bounding boxes ground
truth. To avoid discrepancies in cropping, we standardize
the input by using a robust pre-trained head detector2 train
on the CrowdHuman dataset [47]. We match the detected
and ground truth bounding boxes to get the final head crop
bounding box. Furthermore, we downscale the head bound-
ing box by 10% and resize it to 224→ 224 pixels. We show
the impact of the head bounding box size in the supplemen-
tary materials. An 8-frame head crop clip is used for the
video modalities, and the frame rate is unified across all
video datasets. All the backbones used in this work are pre-
trained on Imagnet for static backbones and ImageNet-1K,
Kinetics-400, and SUN RGB-D for Swin3D. Please refer to
the supplementary materials for training and data augmen-
tation details.

4.3. Ablation Study
Does gaze following label improve 3D gaze estimation?
In Tab. 1, we evaluate various methods for learning from 2D
gaze following labels (GF). We find that, with few excep-
tions, incorporating GF consistently improves 3D gaze es-
timation. This underscores the importance of broader train-
ing diversity for robust 3D gaze estimation. The specific
details and advantages of each approach are discussed in
the following section.
Self-Training Weakly-Supervised learning framework.
In Tab. 1, we perform ablation experiments related to the

2https://github.com/zhangda1018/yolov5-crowdhuman



learning framework. In our experiments, we train with
our model GaT on two 3D gaze datasets namely G360 and
GFIE. The first baseline experiment is to train on a 3D gaze
dataset in a standard supervised manner. Then, there are
three possibilities to leverage additional 2D datasets such
as GF. The first method, Weakly-Supervised (WS), applies a
specific loss only to the x, y coordinates of the 3D gaze pre-
diction for GF batch samples supervised by the 2D ground
truth label. The second approach Self-Training (ST) is sim-
ilar to our ST-WSGE approach described in Fig. 2 but in
the second stage, 3DPred is used to supervise the training.
Finally, the last approach ST-WSGE is our proposed ap-
proach described in Fig. 2 and Sec. 3.1. Compared to ST,
ST-WSGE achieves higher accuracy across all evaluations
except when trained on G360 and tested on EDIAP. This
indicates that relying solely on 3DPred lacks diversity in
gaze distribution, as it mostly follows the training data dis-
tribution. By incorporating our 3DGP label, we obtain a
more robust gaze vector that enhances accuracy. Further-
more, when compared to using only 2D labels in the WS
method, ST-WSGE performs slightly better overall, partic-
ularly on the frontal EDIAP and MPII benchmarks. This
suggests that datasets, where the z component is signifi-
cant (e.g., frontal views), require more than 2D supervision.
Overall, our method is either the best or the second best (by
a small difference) demonstrating the effectiveness of our
ST-WSGE learning framework.
Gaze Model Network. In Tab. 2, we present the results
concerning the model architecture. In our experiments, we
train on G360 in a supervised manner with different train-
ing modalities combinations ( I, V, and I&V). We compare
our model GaT with baseline models (see Sec. 3.2) that can
also handle different training data modalities. First, we no-
tice that when models are trained on both image and video,
our GaT model is the best model on G360. It suggests
that spatiotemporal learning from the input is beneficial for
gaze estimation, especially in non-frontal scenarios. Addi-
tionally, within each model, training on both modalities im-
proves image evaluation but slightly reduces video evalua-
tion. However, modality-specific models are limited to their
own data type which limits the available training dataset.
Indeed, in the next section, we show that combining modal-
ities can result in cross-modal generalization. Given these
findings, our model stands out as a reliable and versatile op-
tion for robust 3D gaze estimation.
Does training on additional image datasets help video
generalization? As observed in Tab. 1, training our GaT
model with ST-WSGE, which includes a diverse image
dataset (GF), not only improves image generalization but,
more notably, enhances generalization on videos. Com-
pared to a supervised method, our approach improves im-
age GFIE evaluation by 38% and video GFIE by 34%. A
similar trend is observed when training on GFIE and evalu-

ating on G360 Full. Furthermore, the modality of the train-
ing data plays an important role in generalization, as ob-
served in Tab. 3. By considering G360 both as an image
and video dataset (I&V setting), G360I&V+GF further im-
proves video generalization compared to G360V+GF with
an angular error reduced by 2.2°. A Similar trend is ob-
served when training on GFIE. Interestingly, adding im-
age training data improves video generalization. Note that
image-only training G360I+GF has reduced video general-
ization.
Temporal Context. Temporal dynamic plays a crucial role
in unconstrained gaze estimation, as evidenced in Tab. 1
with our GaT model trained on both modalities (I&V). In
all configurations, video predictions consistently outper-
form image-based predictions. Other important observa-
tions emerged from visual and quantitative analyses and are
discussed in the supplementary material.

4.4. Comparison with State-of-the-art (SOTA).
Within-Dataset Experiments. In the following, we fo-
cus on within-dataset experiments. In Tab. 4, we compare
our results with the state-of-the-art methods on G360 and
GFIE. We report results using our model GaT in a super-
vised manner and using our ST-WSGE learning framework.
Our model trained in a supervised manner is SOTA on im-
age G360 Full and GFIE with 2% and 13% relative im-
provement, respectively. On video inference, MSA+Seq is
slightly better (12.6° vs 12.5° ours) since it uses an average
of multiple input scales. More importantly, when trained
with gaze following labels like GF using our ST-WSGE
learning framework, we outperform all the SOTA on im-
age and video by 5% on G360 Full image, 3% on G360
Full video, and 36% on GFIE image. In contrast, Kothari et

al. [31] don’t improve when using the LAEO label (AVA)
in a weakly-supervised framework. Additionally, in Tab. 5,
we compared our method trained on G360 Full to meth-
ods trained on detected face subset G360 Face. Given that
the state-of-the-art methods are specifically designed for
near-frontal faces, our supervised model GaT is not SOTA
but demonstrates competitive performance. When includ-
ing gaze following label using our ST-WSGE framework, it
shows very competitive results and SOTA performance on
G360 Face video (9.92° vs 10.05°), G360 Face 180 video
(9.84° vs 9.75°), and G360 Face 40 (8.62° vs 8.30°). There-
fore, compared to methods using tight face crops (increas-
ing eye resolution), our ST-WSGE approach proved to be
competitive on near frontal view. We include a comparison
with SOTA trained on G360 and evaluated on constrained
benchmarks MPII and EDIAP in supplementary materials.
Cross-Dataset Experiments. In this section, we empha-
size on cross dataset experiments. In Tab. 4, we compare
our method with SOTA methods on generalization on G360
(bottom part). Among the few approaches that explore gen-



G360 Full G360 180 G360 40 G360 Face G360 Back GFIE
Method Training Data Img Vid Img Vid Img Vid Img Vid Img Vid Img Vid

Gaze360 [28] G360I 15.6 - 13.4 - 13.2 - - - - - - -
Kothari et al. [31] G360I 15.07 - - - 10.94 - - - - - - -
MSA [8] G360I 13.9 - 12.2 - - - - - 23.5 - - -
Gaze360 [28] G360V - 13.5 - 11.4 - 11.1 - - - - - -
Kothari et al. [31] G360V - 13.2 - - - 10.1 - - - - - -
Kothari et al. [31] G360V+AVA - 13.2 - - - 10.2 - - - - - -
MCGaze [22] G360V - 12.96 - 10.74 - 10.02 - - - - - -
MSA+Seq [8] G360V - 12.5 - 10.7 - - - - - 19.0 - -
Supervised (GaT) G360I&V 13.64 12.60 11.66 10.67 9.10 8.23 11.20 10.25 20.74 19.53 21.86 20.89
ST-WSGE (GaT) G360I&V+GF 13.19 12.17 11.34 10.35 8.58 7.67 10.84 9.92 19.82 18.72 15.90 15.51

GFIE [25] GFIEI - - - - - - - - - - 17.7 -
Kothari et al. [31] ETH 52.6 - - - 20.5 - - - - - - -
Kothari et al. [31] ETH+AVA - 25.0 - - - 16.9 - - - - - -
3DGazeNet [53]† ETH - - - - - - 22.1† - - - - -
3DGazeNet [53]† ETH+AVA+CMU - - - - - - 17† - - - - -
3DGazeNet [53]† ETH+ITWG-MV - - - - - - 15.4† - - - - -
Supervised (GaT) GFIEI&V 30.57 29.90 29.08 28.65 33.43 32.94 28.87 28.56 35.95 34.40 15.70 15.44
ST-WSGE (GaT) GFIEI&V+GF 21.48 21.06 20.61 20.32 26.55 26.73 20.46 20.23 24.61 23.75 12.99 12.68
Supervised (GaT) GFIEI&V+MPS 25.75 24.29 20.35 19.42 16.35 15.49 19.07 18.28 45.19 41.81 15.61 15.38
ST-WSGE (GaT) GFIEI&V+MPS+GF 21.59 20.02 17.02 15.67 13.90 12.66 16.00 14.75 38.02 35.69 12.82 12.49

Table 4. Comparison with the state-of-the-art on physically unconstrained benchmark Gaze360 and GFIE test set. We report both
within and cross-dataset evaluation trained using GaT model with and without our ST-WSGE framework. The top table presents methods
trained with Gaze360, while at the bottom, methods are trained using GFIE. The method with † is restricted with only frontal pose with
face and eye crop as input. Moreover, the method is evaluated on a new subset (head pose yaw → [-90,90]), which is close to, but not the
same as, the Gaze360 Face subset.

G360 Face G360 Face 180 G360 Face 40
Method Training Data Img Vid Img Vid Img Vid

FullFace [61] G360I Face 14.99 - - - - -
Dilated [9] G360I Face 13.73 - - - - -
RT-Gene [18] G360I Face 12.26 - - - - -
CA-Net [11] G360I Face 11.20 - - - - -
Gaze360 [12] G360V Face - 11.04 - - - -
ResNet50 [10] G360I Face 10.73 - - - - -
GazeTR [10] G360I Face 10.62 - - - - -
L2CS [1] G360I Face - - 10.4 - 9.0 -
SPMCCA [55] G360I Face - - 10.16 - 8.62 -
SAM-LSTM [26] G360V Face - 10.05 - 9.84 - 6.92
Supervised (GaT) G360I&V 11.20 10.25 11.01 10.09 8.81 8.02
ST-WSGE (GaT) G360I&V+GF 10.84 9.92 10.65 9.75 8.30 7.48

Table 5. Comparison with the state-of-the-art constrained
methods tested on Gaze360 detected face. All the state-of-the-
art methods use a face crop as input and are trained on the de-
tected face subset of Gaze360. We report results trained on G360
Full using GaT and with or without ST-WSGE. Note that the other
methods are constrained to face input therefore our method is more
general and can be applied to any head pose orientation.

eralization on Gaze360, Kothari et al. [31] provides the
most relevant comparison. In contrast, 3DGazeNet [53]
provides cross-dataset generalization on G360 Face but
only works on frontal faces requiring face and eye crop
as input. Our results show that our ST-WSGE framework
trained with various available 3D gaze datasets (GFIE, or
GFIE+MPS) always improves generalization. For instance,
when tested on G360 Full image and video, it always out-
performs our supervised approach by 40% and 20% when
trained with GFIE or GFIE+MPS, respectively. A similar
trend is observed when trained on G360 and tested on GFIE.
Therefore, it confirms that our framework using gaze follow
labels is effective for improved generalization.

When compared to Kothari et al. [31] trained on LAEO
labels (AVA), our ST-WSGE approach trained using
GFIE+GF shows better performance on G360 Full but is
behind on G360 40 because GFIE doesn’t contain frontal
samples. In contrast, when trained using GFIE+MPS+GF,
it improves over Kothari on both G360 Full and 40.
Limitations. As expected when using our framework,
the generalization improvement is tight to the training di-
versity used in the pre-training stage. In cross-dataset ex-
periments in Tab. 4, compared to our supervised model, we
observe that when trained using GFIE our framework im-
proves more on G360 Back and less on G360 40 because of
the non-frontal distribution of GFIE.

5. Conclusion
In this work, we introduced the ST-WSGE learning frame-
work, which leverages weakly annotated images with 2D
gaze datasets, such as gaze-follow labels, to enhance ap-
pearance diversity and broaden gaze distributions across
natural scenes. We also presented our Gaze Transformer,
GaT, which improves performance and supports both image
and video training. By combining ST-WSGE and GaT, we
achieve significant gains in both within- and cross-dataset
experiments, reaching state-of-the-art results on GFIE and
Gaze360. Additionally, we demonstrate effective cross-
modal generalization, a critical capability given the scarcity
of video datasets. We believe our approach is a promising
solution for robust 3D gaze tracking in the wild, suitable for
a range of challenging applications.
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