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Abstract—Fine-tuning has become a norm to achieve state-of-
the-art performance when employing pre-trained networks like
foundation models. These models are typically pre-trained on
large-scale unannotated data using self-supervised learning (SSL)
methods. The SSL-based pre-training on large-scale data enables
the network to learn the inherent structure/properties of the data,
providing it with capabilities in generalization and knowledge
transfer for various downstream tasks. However, when fine-tuned
for a specific task, these models become task-specific. Finetuning
may cause distortions in the patterns learned by the network
during pre-training. In this work, we investigate these distortions
by analyzing the network’s information recovery capabilities by
designing a study where speech emotion recognition is the target
task and automatic speech recognition is an intermediary task.
We show that the network recovers the task-specific information
but with a shift in the decisions also through attention analysis,
we demonstrate some layers do not recover the information fully.

Index Terms—Foundation Models, wav2vec2.0, Finetuning,
Domain adaptation, Speech Emotion Recognition, ASR

I. INTRODUCTION

When employing Foundation Models (FMs) [1] for the
downstream tasks, there are two prevalent approaches: (a)
full fine-tuning, involving the updating/tuning of all model
parameters, and (b) linear probing, where the entire network
is frozen, and only the last linear layer (known as the
‘head’) is tuned for the target task. In the Independent and
Identically Distributed (IID) setting, it is known that fine-tuning
outperforms linear probing [2], [3]. Therefore, usually fine-
tuning becomes the de facto approach to yield state-of-the-art
performance. Despite the prevalent usage of fine-tuning for
adapting a FM, a comprehensive understanding of this process
is still underway and actively being investigated by the machine
learning community [4]–[6].

It is well-known that when a model undergoes self-supervised
pretraining, employing either contrastive loss [7] or reconstruc-
tion loss, it learns a robust representation of the input modality
(e.g., speech). This quality makes pretrained models a valuable
choice as a ‘universal’ feature extractor [8], [9]. However,
after adapting to a specific task, these networks often acquire
specialization for that adapted task. It was observed that the
fine-tuning process has the potential to distort the patterns
learned by the pretrained model on a large corpus, resulting in
a decline in the quality of the model’s generated outputs [6],
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Fig. 1: Diagram illustrates two pathways to attain the target
network, with the same target task. We ask if these target
networks (a & b) are equivalent. ‘PT’ refers to the pre-trained
SSL network, and ‘Imd.’ denotes the intermediary network.

[10]–[12]. We question, does performing a single round of
fine-tuning on a pre-trained network distort its representations
to the extent that it becomes unsuitable for further fine-tuning
for tasks in different domains?

Researchers in speech community have utilized different
speech FMs [13]–[15] and investigated how representations
evolve across layers [16]–[19]. Whereas this work aims to
investigate the information recovery potential of the FMs.
Information recovery, in this context, pertains to the network’s
capability to attain a comparable state of information encoding.
This comparability is evaluated when the pretrained network is
directly adapted for a target task or if the pretrained network is
initially adapted to an auxiliary task before undergoing further
adaptation for the target task, as illustrated in Figure 1.

Previously, it was observed that while fine-tuning the
pretrained speech FM, Wav2vec2.0 [13] for Automatic Speech
Recognition (ASR) and utilizing these ASR-based embeddings
for modeling Emotion Recognition (ER), the incremental
improvement in Word Error Rate (WER) achieved through
the utilization of more data for fine-tuning ASR corresponds
to a gradual decrease in the encoding of paralinguistic infor-
mation [17], [20], [21]. This corresponds to the fact that as
the model gets more task (ASR)-specific it loses paralinguistic
feature encoding properties. We utilize these findings to design
our study for investigating information recovery in FMs.

II. METHODOLOGY AND STUDY DESIGN

Figure 2 illustrates our methodology for examining informa-
tion recovery in the Foundation Models (FMs). In this study, we
propose to systematically model and analyze the representations
derived from three specific systems:

1) Modeling the ‘universal’ embeddings derived from the
pre-trained FM for the target task.

2) Fine-tuning the pre-trained FM to an intermediary task-
specific system, and subsequently extracting and utilizing
these representations for the target task.



3) Further adapting/fine-tuning the intermediary task-
specific network acquired in the previous step to the target
task and utilizing the corresponding representations.
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Fig. 2: Proposed systems: (a) generates pre-trained embeddings,
(b) generates intermediary (Imd.) task-specific representation,
and (c) generates target task representation. The circles (#)
indicate the switching system, while the filled circle ( ) denotes
the activated switch, directed towards the classifier block.

In this case study we examine our hypothesis, by considering
ASR as our intermediary task and ER as our target task and
probe the following questions:

1) Is the loss of paralinguistic information a permanent
effect, or is there a possibility of its recovery through
additional fine-tuning of the ASR network for the ER
task? Furthermore, does this result in the same encoding
of paralinguistic information as we would observe if we
had fine-tuned the pretrained network directly for the
target task?

2) If recovery is possible, what are the implications on the
decision-making capabilities of the system compared to
the network directly finetuned for the target task?

III. DATASET AND PROTOCOLS

The Interactive Emotion Dyadic Motion Capture: The In-
teractive Emotion Dyadic Motion Capture (IEMOCAP) [22]
features ten actors (5 male and 5 female) participating in five
dyadic sessions. These sessions involve both improvised and
scripted scenarios designed to evoke emotional expressions.
For consistency with previous studies, we categorized emotions
into four classes: angry, happy, neutral, and sad. Notably, we
merged samples from the excited class with the happy class,
encompassing a total of 5531 utterances.

MSP-Improv Database: The MSP-IMPROV [23] corpus
comprises recordings from six spontaneous dyadic sessions
involving twelve actors (6 male and 6 female) affiliated with
the University of Texas at Dallas. The database is known for
its emphasis on naturalness in the recorded interactions. In line
with prior studies, we adopt four emotion categories: angry,
happy, neutral, and sad comprising of a total 7798 utterances.

To adhere to previous works, for each corpus, we use the
protocols that have been used in the literature. More precisely,
we use the leave-one-session-out methodology. That is, for
testing the ‘k’-th session, we trained the model on the remaining
sessions. We evaluate the performance of the SER systems
in terms of Unweighted average recall (UAR) and Weighted
average recall (WAR).

IV. SYSTEMS AND RESULTS

(a) Handcrafted feature representation: We employ
COMPARE features [24]. Two configurations of COMPARE
features are utilized: COMPARELLD, comprising 130 low-
level descriptors (LLDs) and their delta functions for frame-
level representation, and COMPARELLD×F , consisting of 6373
static turn-level features derived from computing functionals
(statistics) over LLD contours. Additionally, we apply the
Bag-of-Audio-Words (BOAW) approach implemented in the
OPENXBOW toolkit [25] to extract turn-level representations
from the COMPARELLD frame-level representation. In the
BOAW approach, 1000 codebook vectors were created, with
500 for the 65 LLDs and 500 for the delta coefficients of 65
LLDs. This system is denoted as BOAW(COMPARELLD).

(b) FM based representation: We leverage
Wav2vec2.0 [13] representations. The Wav2vec2.0 model
adopts a contrastive learning approach, combining it with
masking techniques. In this study, we employ the base variant
of the model, which includes 12 transformer encoder layers,
768-dimensional hidden states, and 8 attention heads, totaling
95 million parameters. The model underwent pre-training using
960 hours of audio data from the Librispeech corpus [26]. For
this study, we investigate four variations of Wav2vec2.0 :

1) The default pre-trained network, identified as PT.
2) PT fine-tuned specifically for our target task of emotion

recognition, denoted by SER.
3) PT fine-tuned for the intermediate ASR task with three

configurations, each based on the amount of data used for
the fine-tuning process: (a) Fine-tuned with 10 minutes
of LibriSpeech data (ASR10), (b) Fine-tuned with 100
hours of LibriSpeech data (ASR100), and (c) Fine-tuned
with 960 hours of LibriSpeech data (ASR960).

4) Networks derived from the intermediate ASR task
further adapted for our target task (ER), labeled as
ASR(x)→SER, where x represents the different ASR
models as mentioned above.

ASR-based fine-tuned model checkpoints were retrieved
from HuggingFace, ASR10 [27] with a WER of 57.81%,
ASR100 [28] with a WER of 6.1%, and ASR960 [29] with
a WER of 3.4% on the clean set of Librispeech. To fine-tune
Wav2vec2.0 for Speech Emotion Recognition (SER), we follow
the default S3PRL [8] configuration with minor adjustments.
The learning rate is set to 1.0× 10−5, using the cross-entropy
loss function, the batch size is 4, gradient accumulation is
configured at 8, and a random seed value of 1337 is utilized.
During Wav2vec2 fine-tuning, the convolution-based encoder
blocks are kept frozen, while all the 12 transformer encoder
blocks are fine-tuned.

Support Vector Machine (SVM) was utilized as a classifier.
We performed hyperparameter tuning for the classifiers associ-
ated with handcrafted features using the grid search. For neural
embeddings we maintain a consistent linear kernel for SVM,
but optimize the values of C and γ parameters through grid
search, employing a 5-fold cross-validation split. This approach
ensures a fair comparison across various embedding spaces.



TABLE I: Comparison of different feature representations for
emotion recognition on two evaluation corpora.

EVALUATION CORPUS

IEMOCAP
(4-CLASS)

MSP-IMPROV
(4-CLASS)

Feature representation Dim. UAR ↑ WAR ↑ UAR ↑ WAR ↑

G-1: Baseline Features

COMPARELLD×F 6373 58.00 56.51 43.10 55.90
BoAW(COMPARELLD) 500/500 57.67 56.62 43.30 55.60

G-2: Pretrained network embeddings

PT 768 56.76 56.26 47.01 58.49

G-3: Task specific fine-tuning network embeddings

SER 768 64.98 63.89 56.54 63.41
ASR10 768 55.18 53.59 41.42 58.10

ASR100 768 60.03 58.09 49.25 60.44
ASR960 768 49.38 49.34 36.51 62.22

G-4: 2 step fine-tuning network embeddings

ASR10→SER 768 60.93 59.52 52.80 59.91
ASR100→SER 768 64.59 63.68 56.29 63.99
ASR960→SER 768 63.57 62.56 55.54 62.72

A. System performance

From Table I it is evident that the SER network outperforms
other systems across both databases, as anticipated due to its
specific optimization for the ER task. There is a significant
enhancement in ER task performance when transitioning from
ASR10 to ASR100, characterized by a lower WER for
ASR100. However, a subsequent decline in ER performance
is observed with ASR960, even with it being a superior ASR
system with the lowest WER. This observation aligns with
findings reported in prior literature [20]. Upon comparing
the performance of PT and ASR100, it becomes evident
that the incorporation of phonetic information in the ASR
network is, to some extent, more beneficial than the vanilla
pre-trained network for the ER task. But, as the ASR network
is further optimized for improved ASR performance, there is
a notable decline in SER performance. This reaffirms that as
the model becomes more optimized for ASR, it tends to lose
paralinguistic information which might be undesirable for ASR.
Examining the G-4 section of Table I, all the three ASR systems,
when further fine-tuned for the SER task, achieved comparable
performance to SER in the G-3 section of the table. We do
not observe any performance gain through using ASR-based
initialization in a two-step fine-tuning process. Nevertheless,
the network proficiently regains emotion information, with
ASR100→SER demonstrating the most effective recovery,
while ASR10→SER exhibits the least recovery. It is worth
mentioning that both direct fine-tuning and two-step fine-
tuning outperform handcrafted features in terms of performance.
Additionally, our results align with previously reported figures

TABLE II: Comparision of decision missmatch between the
predictions of SER and ASR(X)→SER network.

IEMOCAP MSP-IMPROV

Feature representation Miss-Match % Miss-Match %

ASR10→SER 35.18 34.03
ASR100→SER 27.57 25.10
ASR960→SER 29.66 28.89

in the literature for both Iemocap [17], [21], [30] and MSP [20],
[23], [31]. It is important to emphasize that our primary focus
is not on competing for state-of-the-art results. In this study, we
compare and analyze various systems using a similar parameter
setup to explore the information recovery potential of FMs.

V. ANALYSIS

A. Effects of two-step fine-tuning on decision outcomes

To further investigate the information recovery within the
two-step fine-tuned systems (ASR(x)→SER), we examined the
decision outcomes of these systems. We computed the decision
mismatches between the predicted labels of the SER network
and the ASR(x)→SER networks. The mismatch values are
presented in Table II. At first glance, it is noticeable that there
is a mismatch of more than 25% for all the networks. It is
interesting to point out, in spite of the seemingly close UAR
values between ASR100→SER (64.59%) and SER (64.98%)
in Table I, there exists a more than 25% discrepancy in their
decision outcomes. Consequently, we do observe a discernible
shift in the decision properties.

B. Latent space analysis

In addition to examining the decision outcomes, we analyzed
the embedding space by comparing the last layer representations
of SER and ASR(x)→SER systems. For this analysis we re-
sorted to the cosine distance formulation, which helps measure
the similarity between two non-zero vectors. We calculated the
cosine distance between the embeddings generated from SER
and ASR(x)→SER systems for all data points in both the
corpora used in the study. Figure 3 showcases the distribution
of cosine distances for all data points using a line-joined
histogram plot. The markers (e.g. -•-) on the curves in the
subplots of Figure 3 represent the center of each of the 10
bins for their respective systems. The distribution of cosine
distances between SER and ASR100→SER (denoted by -×-
curve) reveals that the majority of data points exhibit lower
distances, indicating a higher degree of similarity. In contrast,
the diamond head curve (-♦-) representing cosine distance
distribution between SER and ASR960→SER shows lower
similarity. These observations align with the results presented
in Table I. To better assess the alignment of cosine distance
with the decisions, we computed decision matches between
the predictions of SER and ASR(X)→SER for data points
falling within a defined distance threshold. This threshold is
represented by a dashed magenta line in the subplots of Figure 3,
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Fig. 3: Distribution of cosine distance values computed for the
last layer representation between SER and ASR(x)→SER
network, for all the data points in the corpus. Vertical dashed
magenta line indicates the threshold value.
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(b) Comparing: SER with ASR960 & ASR960→SER
Fig. 4: Bhattacharyya distance comparison (using Equation1) for the attention heads at different layers for different systems.

with values set at 0.6 for Iemocap and 0.65 for Msp-Improv.
The threshold is chosen to encompass more than 70% of the
total data points, while maintaining a small cosine distance
for analysis. Table III provides details on the percentage of
data points falling within the cosine distance threshold for
different systems, along with the decision matches between
the SER prediction and ASR(X)→SER prediction for those
encompassing data points. The values in the match percentage
column of Table III suggest that the networks can effectively
recover the information to a considerable extent. It is important
to highlight that there were a few data points where the cosine
distance exceeded one, indicating complete dissimilarity. Upon
examining the decision matches, no matches were found for
these points. Instances where the cosine distance exceeded
one were primarily associated with ASR10→SER (-•- curve),
constituting 3.6% of the total data from Iemocap and 5.5% from
Msp-Improv. Conversely, the least occurrences were noted with
ASR100→SER (-×- curve), accounting for 1.5% in Iemocap
and 2% in Msp-Improv.
TABLE III: % of data falling within the cosine distance
threshold, along with the corresponding decision match %.

IEMOCAP MSP-IMPROV

Feature representation Data % Match % Data % Match %

ASR10→SER 70.85 89.00 70.00 85.63
ASR100→SER 75.55 90.69 81.98 88.75
ASR960→SER 70.01 94.07 73.04 89.69

C. Attention head analysis

We extract self-attention weights for each head in every
layer of the Wav2vec2.0 model for a particular input audio.
This results in a 2D float-type array of shape N ×N , where N
is the frame-wise sequence length of the input audio. This 2D
representation is referred to as the self-attention map (SAM).
Each row in the SAM is a probability distribution representing
the attention logits for a specific element to all other elements
in the sequence. For our analysis of SAMs, we make use of
Equation 1, which computes the Bhattacharyya distance (BC)
[32], providing a symmetric distance measure between the rows
of the SAMs generated by different systems to be compared.
Each unit/cell in Figure 4 subplots represents the normalized
distance between the rows of SAMs from 2 different systems
referred to as sys (E.g. ASR and SER) and are computed using
Equation 1, where l and h refers to the transformer layers
(= 12) and attention heads (= 12) in Wav2vec2.0 respectively.

Disl,h =

∑N
i=0 BC(Asys

l,h,i , A
sys
l,h,i)

N
(1)

In Figure 4, subplots (a) and (b) reveal that the attention
behaves similarly in the initial layers, as indicated by the low
distance values depicted in the plots. However, it is in the last
few layers where the attention mechanism becomes more task-
specific, as evidenced by the higher distance values. In Figure 4,
subplot (a), when comparing ASR100 and SER, we observe
that in the last layer, some attention blocks exhibit high distance
values, while others have lower distance values. In contrast, in
Figure 4, subplot (b), when comparing ASR960 and SER, we
see that the last layer attention heads have consistently high
distance values. This observation might explain the results
in Table I, where ASR100 yields better results compared to
ASR960 and even the PT network. It suggests that some
attention heads in ASR100 focus on phonetic information,
while others concentrate on emotion-related information. For
ASR960, the attention does not correspond well to emotional
information, as indicated by the high distance values. Upon
further fine-tuning of these ASR(X) networks for the ER
task (ASR(X)→SER), we observe that the attention heads in
the last layer begin to behave similarly to those in the SER
network. This is evident from the lower distance values in
Figure 4, rightmost subplots for both (a) and (b). It is worth
noting that even after adapting the network for the ER task
some intermediary layers (e.g., 7, 8) still exhibit high distance
values, showing the information was not restored completely;
this requires further probing.

VI. CONCLUSION

Our study explored information recovery potential of FMs
using SER and ASR tasks as the target and intermediary
tasks, respectively. Initially, the evaluation of intermediary
network representations for the target task uncovered an inverse
relationship. As the network excelled in the ASR task, it
exhibited a decline in SER discrimination properties. However,
fine-tuning the intermediary networks for the target task
successfully recovered SER information, achieving performance
levels comparable (similar) to a network directly tuned for
the target task. Despite similar overall performance, we
identified disparities in decision-making capabilities between
the networks (SER and ASR(X)→SER). Future investigations
will explore information recovery using diverse tasks, and the
interplay between different learning rates. Additionally, we aim
to conduct a layer-wise analysis with different FMs to further
enhance our understanding of information recovery in these
systems.



REFERENCES

[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On
the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[2] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer
better?” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 2661–2671.

[3] X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic,
J. Djolonga, A. S. Pinto, M. Neumann, A. Dosovitskiy et al., “A large-
scale study of representation learning with the visual task adaptation
benchmark,” arXiv preprint arXiv:1910.04867, 2019.

[4] A. Kumar, A. Raghunathan, R. Jones, T. Ma, and P. Liang, “Fine-tuning
can distort pretrained features and underperform out-of-distribution,”
arXiv preprint arXiv:2202.10054, 2022.

[5] J. Mukhoti, Y. Gal, P. H. Torr, and P. K. Dokania, “Fine-tuning can
cripple your foundation model; preserving features may be the solution,”
arXiv preprint arXiv:2308.13320, 2023.

[6] H. Zheng, L. Shen, A. Tang, Y. Luo, H. Hu, B. Du, and D. Tao,
“Learn from model beyond fine-tuning: A survey,” arXiv preprint
arXiv:2310.08184, 2023.

[7] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in IEEE computer
society conference on computer vision and pattern recognition (CVPR),
2005, pp. 539–546.

[8] S.-w. Yang, P.-H. Chi, Y.-S. Chuang, C.-I. J. Lai, K. Lakhotia, Y. Y.
Lin, A. T. Liu, J. Shi, X. Chang, G.-T. Lin et al., “SUPERB: Speech
Processing Universal PERformance Benchmark,” in Proc. of Interspeech,
2021, pp. 1194–1198.

[9] A. Mohamed, H.-y. Lee, L. Borgholt, J. D. Havtorn, J. Edin, C. Igel,
K. Kirchhoff, S.-W. Li, K. Livescu, L. Maaløe et al., “Self-supervised
speech representation learning: A review,” IEEE Journal of Selected
Topics in Signal Processing, 2022.

[10] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[11] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends
in cognitive sciences, vol. 3, pp. 128–135, 1999.

[12] K. Lee, K. Lee, J. Shin, and H. Lee, “Overcoming catastrophic forgetting
with unlabeled data in the wild,” in IEEE/CVF International Conference
on Computer Vision (ICCV), 2019, pp. 312–321.

[13] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representations,”
Advances in neural information processing systems, vol. 33, pp. 12 449–
12 460, 2020.

[14] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda,
T. Yoshioka, X. Xiao et al., “Wavlm: Large-scale self-supervised pre-
training for full stack speech processing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 16, pp. 1505–1518, 2022.

[15] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “Hubert: Self-supervised speech representation learning by
masked prediction of hidden units,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 29, pp. 3451–3460, 2021.

[16] A. Pasad, J.-C. Chou, and K. Livescu, “Layer-wise analysis of a self-
supervised speech representation model,” in IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), 2021, pp. 914–921.

[17] L. Pepino, P. Riera, and L. Ferrer, “Emotion Recognition from Speech
Using wav2vec 2.0 Embeddings,” in Proc. of Interspeech, 2021, pp.
3400–3404.

[18] A. Pasad, C.-M. Chien, S. Settle, and K. Livescu, “What do self-
supervised speech models know about words?” Transactions of the
Association for Computational Linguistics, vol. 12, pp. 372–391, 2024.

[19] W. Wu, C. Zhang, and P. C. Woodland, “Self-supervised representations
in speech-based depression detection,” in Proc. of ICASSP, 2023, pp.
1–5.

[20] T. Purohit, B. Vlasenko, and M. Magimai.-Doss, “Implicit phonetic
information modeling for speech emotion recognition,” in Proc. of
Interspeech, 2023.

[21] Y. Li, Y. Mohamied, P. Bell, and C. Lai, “Exploration of a self-supervised
speech model: A study on emotional corpora,” in IEEE Spoken Language
Technology Workshop (SLT), 2023, pp. 868–875.

[22] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower et al.,
“IEMOCAP: Interactive emotional dyadic motion capture database,”
Language resources and evaluation, vol. 42, pp. 335–359, 2008.

[23] C. Busso, S. Parthasarathy, A. Burmania, M. AbdelWahab, N. Sadoughi,
and E. M. Provost, “MSP-IMPROV: An acted corpus of dyadic
interactions to study emotion perception,” IEEE Transactions on Affective
Computing, vol. 8, pp. 67–80, 2017.

[24] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval,
M. Chetouani, F. Weninger, F. Eyben, E. Marchi et al., “The INTER-
SPEECH 2013 computational paralinguistics challenge: Social signals,
conflict, emotion, autism,” in Proc. of Interspeech, 2013.

[25] M. Schmitt and B. Schuller, “openXBOW - Introducing the Passau Open-
Source Crossmodal Bag-of-Words Toolkit,” Journal of Machine Learning
Research, 2017.

[26] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in Proc. of ICASSP,
2015, pp. 5206–5210.

[27] Huggingface, “w2v2-libri-10min,” https://huggingface.co/Xinnian/
w2v2-libri-10min.

[28] ——, “wav2vec2-base-100h,” https://huggingface.co/facebook/
wav2vec2-base-100h.

[29] ——, “wav2vec2-base-960h,” https://huggingface.co/facebook/
wav2vec2-base-960h.

[30] T. Purohit, S. Yadav, B. Vlasenko, S. P. Dubagunta, and M. Magimai.-
Doss, “Towards Learning Emotion Information from Short Segments of
Speech,” in Proc. of ICASSP, 2023, pp. 1–5.

[31] M. Neumann and N. T. Vu, “Improving speech emotion recognition with
unsupervised representation learning on unlabeled speech,” in Proc. of
ICASSP, 2019, pp. 7390–7394.

[32] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distribution,” Bulletin of the
Calcutta Mathematical Society, vol. 35, pp. 99–110, 1943.

https://huggingface.co/Xinnian/w2v2-libri-10min
https://huggingface.co/Xinnian/w2v2-libri-10min
https://huggingface.co/facebook/wav2vec2-base-100h
https://huggingface.co/facebook/wav2vec2-base-100h
https://huggingface.co/facebook/wav2vec2-base-960h
https://huggingface.co/facebook/wav2vec2-base-960h

	Introduction
	Methodology and Study design
	Dataset and protocols
	Systems and results
	System performance

	Analysis
	Effects of two-step fine-tuning on decision outcomes
	Latent space analysis
	Attention head analysis

	Conclusion
	References

