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Abstract—In this work, we investigate Speech Foundation
Models (SFMs) for Parkinson’s Disease (PD) detection. We explore
two main approaches: (1) using SFMs as frozen feature extractors
and, (2) fine-tuning/adapting SFMs for PD detection. We propose
a cross-validation-based layer selection methodology to identify
the layer effective for PD detection. Additionally, we compare
the performance of the layer selection scheme with full fine-
tuning and, parameter-efficient fine-tuning (PEFT) using Low-
Rank Adaptation (LoRA). Our results show that layer selection
and LoRA-based fine-tuning can perform on par with full fine-
tuning, providing a more parameter-efficient alternative. The
highest accuracy was achieved by fine-tuning Whisper using
LoRA.

Index Terms—Parkinson’s Disease, Speech for health, Founda-
tion Models, PEFT, LoRA, Fine-tuning, PC-GITA.

I. INTRODUCTION

Parkinson’s disease (PD), a neurodegenerative disorder
caused by the progressive loss of dopaminergic neurons [1],
often results in speech impairments such as reduced voice
quality, monotonicity, and difficulty in articulation [2], [3].
Speech analysis offers a non-invasive, cost-effective approach
for automatic PD detection, motivating the development of
systems to reduce the time and effort required for clinical
assessments of PD-related speech disorders, dysarthria [4], [5].

Traditional methods for dysarthria detection have utilized
acoustic features like jitter, shimmer, formants, glottal features
and Mel Frequency Cepstral Coefficients (MFCCs) [6]–[8].
With the success of Deep Learning (DL) in various fields [9]
there has been a surge in research focused on using DL
for automatic pathological speech detection [10], [11]. These
approaches employ various speech representations and archi-
tectures. For instance, [12]–[14] utilized Convolutional Neural
Networks (CNNs), while [15]–[17] applied Long Short-Term
Memory (LSTM) networks. Rios-Urrego et al. [18] used a
convolutional recurrent network, consisting of a 1D-CNN
followed by an LSTM, to classify PD versus healthy controls
(HC). The authors in [19], [20] utilized latent features such
as i-vectors [21] and x-vectors [22], originally developed for
speaker verification and identification, to differentiate PD from
HC. Wodzinski et al. [23] and Karaman et al. [24] identified
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the limited availability of pathological speech data for training
deep neural networks and thus employed a transfer learning
approach for PD detection. Both studies utilized the ResNet
architecture [25], pretrained on the ImageNet corpus [26].
Wodzinski used the pretrained features for classification, while
Karaman fine-tuned the network for PD detection. Although
the pretrained network was meant for image classification both
the studies demonstrated the effectiveness of transfer learning
for the PD detection task.

The scarcity of diverse, publicly available pathological
speech data remains a challenge. However, the success of
Speech Foundation Models (SFMs) [27] in various speech-
related downstream tasks has led to increased interest in
leveraging transfer learning for pathological speech analysis.
Recent studies [28]–[31] highlights the effectiveness of SFMs,
particularly wav2vec2.0-base [32], in encoding different speech
pathologies.

When using SFMs, there are two primary approaches: freez-
ing them to serve as feature extractors or fine-tuning/adapting
them for downstream tasks, as illustrated in Figure 1 (a)
and Figure 1 (b), respectively. Studies have demonstrated
that when using SFMs as feature extractors, each layer
captures distinct speech-related information [33], [34], making
layer selection a potentially advantageous approach for the
task. Furthermore, full fine-tuning/adaptation of SFMs for
pathological speech is still underexplored. In this work, we
focus on the PD detection task utilising SFMs and in the scope
of this work we: (a) propose a methodology for layer selection
in SFMs, (b) investigate the effectiveness of adaptation on
SFMs, and (c) investigate LoRA-based adaptation approach for
PD detection, utilizing parameter-efficient fine-tuning (PEFT)
via the Low-Rank Adaptation (LoRA) method [35]. While
LoRA has been explored in various speech processing tasks
[36]–[38], its application to pathological speech detection
remains unexplored.

Specifically, we aim to assess whether adapting large SFMs
with massive parameter spaces is feasible for pathological
speech in a data-constrained scenario, or if utilizing features
from a particular layer selected through our proposed method-
ology is sufficient. We also explore if PEFT approach of
strategically updating a small subset of parameters within the
SFM (using LoRA) is more efficient than full fine-tuning for
the PD detection task.



The rest of the paper is organised as following, Section II
introduces the methods investigated in this study. Section III
outlines the dataset used and the experimental setup, Section IV
presents the experimental results and the analysis, finally
Section V concludes the paper.

II. METHODS INVESTIGATED

A. Cross validation based layer selection

We propose a simple approach, (i) Extract the representations
(of speech utterances) from different layers of the SFMs (ii)
train an auxiliary classifier for the task-on hand and evaluate
only using the cross-validation set (iii) The classifier’s accuracy
on the cross-validation set serves as an indicator of the layer’s
effectiveness in learning task-related properties. (iv) the best
performing layer on the cross-validation set is selected to
evaluate the test set.

B. Fine-tuning/Adaptation

Fine-tuning/adaptation involves updating all model parame-
ters, including those of the foundation model (upstream model)
and the classifier block (downstream model), to tailor the
network for the target task, as shown in Fig 1(b).

C. LoRA

LoRA is a PEFT technique, proposed to efficiently adapt
large FMs to specific domains or downstream tasks. Consider
W0 ∈ Rd×k to be the pre-trained weight matrix, LoRA replace
model update with low-rank matrix decomposition as follows,
W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and
rank r ≪ min(d, k). During training W0 is kept frozen while
A and B are trainable parameters as shown in Figure 1(c) .
This strategy significantly reducing the number of trainable
parameters.

III. EXPERIMENTAL SETUP

A. Dataset and Protocol

We consider PC-GITA corpus [39] for the PD detection
task, the corpus consists of 100 participants, divided equally
between 50 Parkinson’s disease (PD) patients and 50 healthy
controls (HC), all native Spanish speakers from Colombia.
The two groups are balanced in terms of age, gender, and
education level. Each participant contributed 10 sentences and
a phonetically balanced text, providing an average of 55.5
seconds of speech data per participant. Originally the speech
data was recorded at a sampling frequency of 44.1 kHz, we
downsampled the recordings to 16 kHz for our study.

For our investigation, we resort to a stratified 10-fold speaker-
independent cross-validation evaluation. At each fold, 80%,
10%, and 10% of the data is used for training, cross-validation,
and testing, respectively. Following the previous work, we
report the performance of our classification systems in terms
of accuracy, F1-score, sensitivity (correct classification rate
for PD), and specificity (correct classification rate for HC).
The final performance is the mean and standard deviation of
classification metric values obtained across 10 folds of the
test-set. It is worth noting that with this protocol, we acquire
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Fig. 1: Figure depicting different training methodologies: (a)
Linear probing, (b) Fine-Tuning, and (c) Fine-Tuning using
LoRA ; ‘hl’ and ‘FC Layer’ refer to frame-level embeddings
from layer ‘l’ and the fully connected layer, respectively; HC=
healthy control and PD= Parkinson’s disease

around 1 hour and 15 minutes of speech data per fold for
training.

B. System description and Configurations

(a) Handcrafted features: For Baseline we utilize knowledge-
based feature representations provided with OPENSMILE toolkit
[40]. We utilize COMPARELLD×F , which consists of 6,373
static turn-level features derived from computing functionals
(statistics) over (65+65) LLD contours. Additionally, we con-
ducted experiments with EGEMAPSLLD×F , which includes
88 static turn-level features obtained from functionals computed
over 23 LLD contours.

We use support vector machine (SVM) as a classifier for
the handcrafted feature based pipeline. SVM performance was
optimized by doing grid search for hyperparameters such as
the kernel, kernel width (γ) and soft margin constant (C) using
the cross-validation set.

(b)Speech Foundation Models: In this work, we examine
three SFMs for the PD detection task. We carefully selected
these systems to enable a detailed analysis of various training
approaches, such as self-supervised and weakly supervised
methods. Also, the impact of monolingual versus multilingual
pretraining, this is relevant since the PC-GITA corpus consists
of Spanish recordings.
Wav2vec2.0-base [32] hereafter referred to as W2V2, utilizes
a self-supervised learning approach, combining contrastive
learning with masking techniques. It comprises 12 transformer
encoder layers, 768-dimensional hidden states, and 8 attention



TABLE I: Comparison of different feature representations for PD vs. HC classification results on test-set, averaged over 10-folds
on PC-GITA.(·) indicates the standard deviation. “Param.” indicate network’s trainable parameters for respective systems

Feature representation Param. Dim. Accuracy ↑ F1-score ↑ Sensitivity ↑ Specificity ↑

G-1: Handcrafted Features

COMPARELLD×F − 6373 77.60(7.1) 77.62(7.1) 76.90(10.2) 79.16(12.3)
EGEMAPSLLD×F − 88 76.44(6.3) 75.98(6.4) 75.45(11.8) 77.45(13.3)

G-2: Cross-validation layer selection for SFMs (selected layer)

W2V2 (L 10) 197K 768 83.54(5.6) 83.73(5.3) 84.72(9.8) 82.36(13.4)
XLSR (L 16) 263K 1024 83.72(8.3) 84.12(8.1) 86.12(10.6) 81.27(13.2)

WHISPER (L 12) 197K 768 81.09(8.6) 81.93(8.0) 86.00(10.7) 76.18(12.1)

G-2.2: Combining decisions from all layers of SFMs

W2V2 197K 768 84.27(6.5) 84.54(6.2) 85.82(9.4) 82.73(12.5)
XLSR 263K 1024 83.91(7.1) 84.45(6.7) 86.73(8.6) 81.09(12.9)

WHISPER 197K 768 75.73(9.6) 74.27(9.9) 70.73(12.7) 80.73(15.5)

G-3: Fine-tuning SFMs

W2V2-FT 90.4M 768 80.90(8.3) 80.09(9.7) 79.27(15.6) 82.54(13.1)
XLSR-FT 311M 1024 84.72(7.8) 85.51(7.2) 89.45(8.6) 80.00(12.8)

WHISPER-FT 87.2M 768 83.53(8.3) 83.91(8.3) 86.06(11.5) 81.01(14.4)

G-4: Fine-tuning SFMs with LoRA adapters (rank)

W2V2 (R 4) 862K 768 83.09(7.2) 83.06(7.4) 83.81(12.2) 82.36(13.1)
XLSR (R 4) 2M 1024 83.09(7.5) 83.30(7.3) 84.90(12.4) 81.27(15.4)

WHISPER (R 16) 2.9M 768 85.00(9.6) 85.34(8.9) 86.36(10.1) 83.63(15.2)

heads, amounting to 95 million parameters. Pretraining of
network was conducted on 960 hours of English audio using
the LibriSpeech corpus.
XLSR [41] is a multilingual variant of Wav2vec2.0 with 24
transformer encoder layers, 1024-dimensional hidden states,
and 16 attention heads. The model is pretrained on 53 languages
and consist of 315M parameters.
Whisper-small [42] henceforth denoted as whisper, the network
was pretrained in a wealky-supervised fashion. The model
comprises 12 encoder and 12 decoder blocks, each with 12
attention heads and a 768-dimensional hidden state, totaling 244
million parameters. Whisper is multilingual, and was trained
on approximately 680,000 hours of weakly-supervised speech
data sourced from the internet.

All the SFMs were retrieved from HuggingFace. The frame
level representation derived from the SFMs were mean pooled
and then fed to the classifier head consisting of one hidden
layer with 256 nodes and output layer of 2 nodes corresponding
to the number of classes, 2 in this case (HC and PD). The
output layer had softmax activation, while the hidden layer
had ReLU activation. The networks were trained using cross-
entropy loss with Adam optimizer. The batch size was set to 4,
with gradient accumulation configured at 8, and the seed value
was set to 1337. When probing the network for the downstream
task (Figure 1(a)), the learning rate was set to 1× 10−4. For
fine-tuning (Figure 1(b)), the learning rate was adjusted to
1×10−5. It is worth emphasizing during fine-tuning, the CNN-
based encoder blocks were kept frozen for all SFMs, while
only the transformer encoder blocks were fine-tuned. In the
case of whisper, the 12 encoder layers were used to generate
speech representations, while the decoder layers were excluded.
Lastly, for fine-tuning with LoRA (Figure 1(c)), we performed
experiments with rank (r) value across the set {4, 8, 16} for
each SFMs the best performing results are reported here.

IV. RESULTS AND ANALYSIS

A. System performance

Figure 2 present the accuracy trends for the three SFMs based
on the layer-wise analysis performed on the cross-validation
set on 10 folds. The results reveals that the best-performing
layer for W2V2 is Layer 10, which aligns with findings from
previous studies [28], [29]. For XLSR, Layer 16 shows the
highest performance, while Whisper’s optimal layer is Layer
12. Notably, XLSR exhibits minimal fluctuation in performance
across the mid layers, with the last layer performing the worst.
Table I G-2 presents the test set outcomes for the layers selected
using the cross-validation set. W2V2 and XLSR achieves higher
accuracy, while XLSR and Whisper show better sensitivity
scores. Comparing layer selection to fine-tuning, shown in
Table I G-3, we observe a slight accuracy improvement for
XLSR and whisper, but a decrease for W2V2. Additionally, the
sensitivity score for XLSR increases after fine-tuning, while
it decreases for W2V2 and remains unchanged for Whisper.
When comparing layer selection results with LoRA adaptation
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Fig. 2: -•- on curves depicts mean of classification accuracy
over 10 folds on validation-set at every layer. Best Accuracy
( on validation-set data): -⋆- W2V2: 86.53%, -⋆- Whisper:
74.27%, and -⋆- XLSR: 85.72% from layer 10, 12 and 16
respectively



in Table I G-4, we observe a 4% absolute gain in whisper’s
accuracy. Furthermore, the results indicate that SFM-based
classification whether using layer selection or fine-tuning,
consistently outperforms the handcrafted features, reported
in Table I G-1. Notably, the best-performing accuracy of
85.00% obtained with whisper finetuned using LoRA with rank
value 16 (in Table I G4) surpasses what has been previously
reported in the literature using a similar train test protocol
for PC-GITA- 83% [14] and 82.6% [29]. When compared to
previous work [43] which investigated PD classification on PC-
GITA using only fine-tuning, our study presents a comparative
analysis, demonstrating that selecting the appropriate layer
and using PEFT-based fine-tuning can achieve performance
comparable to full fine-tuning.

B. Analysis

Layer selection analysis: To better analyse our cross vali-
dation layer selection scheme, we computed the layer-wise
accuracy for the test-set similarly to what we did for cross-
validation data. Figure 3 showcases the accuracy trend for
test-set. We see a some common layer-wise accuracy trend
for both test and cross-validation data. For W2V2 on test data
layer-3 yield 85.36% accuracy, whereas using cross-validation
layer selection layer-10 is selected, yielding an accuracy of
83.54% on test data, which is not a large difference. If observed
for cross-validation set (in Figure 2) next best pick would have
been layer-3. For whisper the trend remains the same with
lower layer not performing well, and the last layer (layer-12)
being the best pick for both validation and test set. This seems
valid as whisper is trained for speech recognition (SR) task
and last layer being task specific for SR could pick up on the
cues of atypical PD speech. For XLSR via cross validation
layer selection layer-16 is picked which has test set accuracy of
83.72% whereas layer-15 on test data yields 87.06% accuracy,
this might be an anomaly observed from the peak at layer-15
in Figure 3. Otherwise, for XLSR the accuracy trend remains
the same for the test and the cross-validation data, that is the
middle layer yield better results, and for the last layer a drastic
drop in accuracy is observed. This analysis showcases that
cross-validation layer selection scheme generalise well to the
test set. We also analyze the impact of combining decisions
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Fig. 3: -•- on curves depicts mean of classification accuracy
over 10 folds on test-set at every layer. Best Accuracy (on test
set data): -⋆- W2V2: 85.36%, -⋆- Whisper: 81.09%, and -⋆-
XLSR: 87.06% from layer 3, 12 and 15 respectively
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(b) WHISPER (R 16)

Fig. 4: t-SNE plot of the last layer embedding space from
selected systems, using 110 utterances from 10 speakers (5
HC and 5 PD) in the test set. Data points are color-coded to
represent: (i) HC vs PD, (ii) Gender (M and F), and (iii) Age.

from all layers using a majority voting strategy. Table I (G2.2)
presents the results, where no significant performance gain is
observed, with a noticeable drop in Whisper’s performance.
These findings, along with the trends shown in Figure 2 and 3,
suggest that selectively choosing layers for combining decisions
may be more advantageous.

Embedding space analysis: We generate embeddings from
the test set data of one fold, consisting of 110 utterances
from 10 speakers (5 HC and 5 PD), with 3 males and 2
females in each group. For embedding generation, we select
two systems: XLSR (L 16) with 83.72% accuracy, and Whisper
(R 16) fine-tuned using LoRA, achieving 85% accuracy. To
visualize the embedding space, we use t-SNE plots, as shown
in Figure 4. For XLSR (L 16) and Whisper (R 16), we
observe distinct clusters for PD and HC. When these clusters
are color-coded by gender and age, we notice distinct and
systematic clustering, particularly within the HC set. This
indicates that these networks might also be capturing speaker
identity information in the process of PD detection.

V. CONCLUSION

In this work, we explore Speech Foundation Models (SFMs)
for the task of PD detection. We introduce a cross-validation-
based layer selection methodology and compare its effective-
ness to full fine-tuning or adaptation of the SFMs. Additionally,
we for the first time employ LoRA-based fine-tuning for PD
detection. Our results show that the layer selection approach
achieves accuracy on par with, and sometimes equal to, full
fine-tuning, offering a more parameter cost-efficient alternative.
LoRA adaptation for whisper outperforms layer selection,
possibly because whisper is pre-trained for speech recognition,
and fine-tuning it with LoRA enables it to detect atypical
speech, caused due to articulation difficulties in PD patients.
This naturally leads to future work, where we plan to explore
SFMs fine-tuned for ASR tasks in the context of PD detection.
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