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Abstract—In real-world speech data processing, the scarcity
of annotated data and the abundance of unlabelled speech data
present a significant challenge. To address this, we propose an
efficient data selection pipeline for fine-tuning ASR models by
generating pseudo-labels using WhisperX pipeline and selecting
efficient labels for fine-tuning. In our work, we propose a domain
classifier system developed with a computationally inexpensive
TFIDF and classical machine learning algorithm. Later, we
filter data from the classifier output using a novel metric that
assesses word ratio and perplexity distribution. The filtered
pseudo labels are then used for fine-tuning standard encoder-
decoder Whisper models and Zipformer. Our proposed data
selection pipeline reduces the dataset size by approximately
1/100th while maintaining performance comparable to the full
dataset, outperforming random domain-independent selection
strategies.

Index Terms—Automatic Speech Recognition (ASR), Data
Selection, Domain Classification, WhisperX, Zipformer

I. INTRODUCTION

Automatic Speech Recognition (ASR) systems have under-
gone significant advancements in recent years [1], moving
from traditional hybrid-based models [2]–[5] to cutting-edge
end-to-end architectures [6]–[13]. These innovations include
models such as wav2vec 2.0, cross lingual speech repre-
sentations (XLSR) [14], Conformer [7], [15], and the latest
Zipformer [16], all of which leverage large-scale speech data
to improve transcription accuracy. Most of these advancements
rely on supervised learning methods, where massive annotated
datasets are used to fine-tune models [17]. While this approach
has been highly effective, the availability of annotated data re-
mains a major bottleneck in scaling ASR solutions to broader,
real-world applications.

Past works suggest improving ASR performance in target
domain by exploiting manually transcribed data from other
domains, e.g., through feature mapping approaches [18]. More
recent works explore semi-supervised learning as a cost-
effective solution to this problem [19]–[23], utilizing pseudo
labeled speech data available for target domain to fine-tune
ASR models. This approach allows models to benefit from
the vast quantities of unlabeled data flowing into industrial
pipelines. At Uniphore, an AI-native company that unifies
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Fig. 1: Functional blocks of the proposed data selection
pipeline.

voice, video, text, and data with AI to enhance customer
and employee experiences, these challenges are particularly
pronounced. Large volumes of customer-agent interaction data
are collected daily, but only a fraction of it is manually labeled
due to high annotation costs. This makes it crucial to explore
efficient data selection methods, especially when applying
pseudo labels.

Finetuning ASR models faces challenges in selecting rele-
vant data. Traditional methods rely on static datasets [24] and
fixed domain labels [25], which fail to adapt to evolving real-
world data like customer-agent interactions. The absence of
domain labels and the high cost of training on large datasets
[24] further complicate the process. We propose a dynamic
data selection pipeline that uses pseudo labels for domain
classification and filters high-quality data for efficient ASR
fine-tuning.

Our proposed approach (see Figure 1) comprises four key
stages: (1) pseudo label generation using WhisperX pipeline,
(2) training a domain classifier to classify into 6 domains,
(3) our data selection pipeline which includes (a) selection
of an equal amount of data from different domains to ensure
balanced fine-tuning across diverse contexts, (b) introduce a
novel metric to automatically filter hallucinated or low-quality



data, further enhancing model performance and (4) adapting
whisper and zipformer models on the selected pseudo labels.
This pipeline is designed to optimize both the efficiency and
accuracy of fine-tuning ASR models in real-world applica-
tions, providing a scalable solution for evolving speech data.

In this paper, we enhance data selection for ASR fine-tuning
by overcoming the constraints of using fixed seed-labeled dis-
tributions. First, we leverage pseudo labels to effectively fine-
tune ASR models on large, unlabeled datasets, overcoming the
challenge of lacking ground truth labels. Second, we introduce
a novel domain classifier trained directly from pseudo labels,
eliminating the need for prior domain knowledge. Third,
we present a dynamic data selection pipeline that adapts to
evolving acoustic and lexical properties by utilizing text-based
features such as word ratio and perplexity. Lastly, our approach
demonstrates a significant improvement in ASR fine-tuning
performance through effective data selection based on pseudo
labels.

The paper is organized as follows: Section II briefly de-
scribes the proposed data selection pipeline. Section III and IV
discusses experimental design and results. Section V concludes
the paper, suggesting future directions.

II. PROPOSED SPEECH DATA SELECTION PIPELINE

Our proposed approach is in Figure 1 in the introduction.
The functional blocks of Figure 1 are illustrated below:

1) Speech Corpus: the speech corpus at Uniphore includes
a large amount of untranscribed conversations between
agents and customers, with only a small portion tran-
scribed by Uniphore’s annotation partners.

2) WhisperX pipeline: In this task, we aim at transcribing
large unlabeled audio-only corpora with state-of-the-art
foundational speech models such as WhisperX [26].
WhisperX consist of i) an audio pre-processing step,
including voice activity detection (VAD) and optional
speaker diarization (SD) using PyAnnote [27]; ii) seg-
ment batching with cut & merge for efficient inference;
and finally, iii) a transcription phase with one of the
pre-trained Whisper models [28]. All in all, WhisperX
is a friendly pipeline to generate low-effort large-scale
PL datasets. In addition, it loads the models with faster-
whisper 1, which uses quantized pre-trained models from
CTranslate2 2, e.g., whisper-large-v2.

3) Domain Classification: The Uniphore dataset consists
of six domains: auto insurance, automotive, customer
service, home service, medical, and medicare. We pro-
pose domain classification on this dataset using Term
Frequency-Inverse Document Frequency (TFIDF) fea-
tures, employing machine learning algorithms such as
logistic regression and SVM [29]. The domain classifier
is integrated as the front end of the data selection
pipeline to enhance its efficiency.

4) Data Filtering: There are two steps followed in the data
filtering block:

1https://github.com/SYSTRAN/faster-whisper
2https://github.com/OpenNMT/CTranslate2/

• Filtering data based on domain: Here we select
equal amount of speech data based on the outputs
of the domain classifier.

• Filtering using word ratio (WR) and perplexity
(PPL): In all our experiments, the ASR output
generated by WhisperX is processed through two
filtering mechanisms: (1) WR (2) PPL. WR is
defined as the total number of words that are present
in the speech segment divided by the total duration
of that particular segment. It is calculated across all
segments of the ASR outputs using the following
formula:

WR =

∑N
i=1 Wi∑N
i=1 Di

(1)

where:

– Wi is the number of words in segment i,
– Di is the duration of segment i,
– N is the total number of segments.

Filtering based on WR helps detect hallucinations,
a known issue in Whisper models where excessive
words are generated for short speech segments
[30]. WR measures the ratio of words to segment
duration, with higher values indicating potential
hallucinations. In this paper, we analyze the WR
distribution and set an empirical threshold to filter
out these segments, improving pseudo-label quality.

An another metric that we utilize for data selection
is via PPL and is calculated as:

Perplexity(P ) = 2−
1
N

∑N
i=1 log2 P (wi|w1,w2,...,wi−1)

(2)
where:

– P (wi | w1, w2, . . . , wi−1) is the probability as-
signed by the GPT-2 [31] language model to the
word given the preceding words.

– N is the total number of words in the sequence.

GPT-2, a transformer-based model, uses self-
attention to capture dependencies between the cur-
rent word and previous words, modeling complex
relationships and context across multiple layers for
more accurate predictions. In our approach, we cal-
culate PPL on WhisperX segments and analyze its
distribution to select a representative subset of data.
This method helps prioritize more informative and
challenging segments, improving model fine-tuning
by focusing on data that enhances performance and
reduces redundancy.

5) ASR Finetuning: The pre-trained Whisper medium
model [32], with 769M parameters, is fine-tuned using
(a) the entire training set, (b) a randomly selected subset,
and (c) pseudo-labels from our data selection pipeline.
The pseudo-labels are further refined using Zipformers
[33]. More details on model fine-tuning are provided in
Section III.



III. EXPERIMENTS

The following section outlines the datasets and provides
details of the experimental setup used for our various ablations.

A. Data

The dataset contains industry conversations recorded at 44.1
kHz stereo across six domains: automotive, auto insurance,
medicare, medical, home services, and customer services.
Table I shows the duration of data in training, development,
and test sets. Total speech duration is derived from Lhotse
cuts [34]. The training set does not contain any ground truth

TABLE I: Overview of Conversational Speech Dataset

Dataset # Conversations # Segments Total speech duration (hrs)

Train 67911 1.35 M 7057
Dev 64 6516 5
Test 248 26649 20

transcripts, whereas the test and development sets have them
available. Figure 2 (a) and (b) shows the distribution of
domains across train and test data set.
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Fig. 2: Distribution of domains across (a) Train and (b)
Test set. The domain abbreviations are: HS (Home Services),
AI (Auto Insurance), AM (Automotive), ML (Medical), MC
(Medicare), and CS (Customer Service).

In our domain classification experiment, we used only 1%
of the training set (approximately 72 hours), ensuring that the
dataset was balanced with 12 hours of data from each domain,
totaling 72 hours.

B. Models used for different stages of data selection pipeline

1) Domain Classification Models: We utilize two machine
learning models for domain classification: Logistic Regression
and Support Vector Machines (SVM). Logistic Regression pro-
vides a straightforward approach to classify domains based on
conversation features, offering simplicity and interpretability.
In contrast, SVMs are effective in high-dimensional feature
spaces and enhance classification accuracy by maximizing the
margin between domain classes.

2) ASR Model Adaptation: For adapting the Automatic
Speech Recognition (ASR) system to domain-specific data,
we use:

• Whisper Medium – A model with 769 million
parameters, designed for precise speech recognition.

Adaptation involves fine-tuning a pretrained model
on a domain-specific dataset Dadapt. The adap-
tation process uses the loss function Ladapt =
−
∑

(x,y)∈Dadapt
logP (y|x, θadapt), where (x, y) are

input-target pairs and θadapt are the updated model
parameters. Fine-tuning is performed by minimizing
Ladapt using gradient descent: θadapt ← θadapt −
η∇θadapt

Ladapt, with η as the learning rate. The adapted
model is then evaluated using task-specific metrics.

• Zipformer – A transformer-based model for manag-
ing long-range dependencies and varying speech charac-
teristics, optimized for domain-specific fine-tuning. We
train Transformer-Transducer models from scratch using
the Zipformer encoder [16] with the Icefall Transducer
recipe. Training employs the ScaledAdam optimizer [35],
a learning rate scheduler with 500-step warmup and
decay phases [36], and a combined RNN-T and CTC
loss [6], [37], [38]. The loss function is defined as
L = (1−λ)·LRNN−T +λ·LCTC with λ = 0.1. Training
is performed for 30 epochs with a peak learning rate of
5.0e−2 on a single RTX 3090 GPU.

C. Evaluation

The domain classifier’s performance is measured using F1
scores per domain and overall accuracy. For the fine-tuned
ASR model, thee standard word error rate (WER) is used
for evaluation. WER = S+D+I

N where S, D, and I represent
substitutions, deletions, and insertions, respectively, and N is
the total number of words in the reference.

IV. RESULTS AND DISCUSSION

A. Domain Classification Results

Table II presents the performance metrics of two classifiers,
Logistic Regression and SVM, across various domains. It can

TABLE II: Performance of Classifiers by Domain on the test
data

Domain Classifier P R F1 Support

auto insurance
Logistic Regression 0.92 0.94 0.93

35SVM 0.92 0.94 0.93

automotive
Logistic Regression 0.90 0.97 0.94

37SVM 0.95 0.97 0.96

customer service
Logistic Regression 1.00 0.92 0.96

38SVM 1.00 0.92 0.96

homeservices
Logistic Regression 0.98 0.98 0.98

122SVM 0.98 0.98 0.98

medical
Logistic Regression 0.90 0.45 0.60

40SVM 0.95 0.45 0.61

medicare
Logistic Regression 0.63 0.93 0.75

40SVM 0.62 0.95 0.75

be observed that the top four domains such as auto insurance,
automotive, customer service, and home services achieve an
average F1 score above 95%, reflecting strong performance.
In contrast, the medical and medicare domains have compar-
atively lower F1 scores due to the use of overlapping medical
terminology, which poses challenges for classification.



TABLE III: WER Performance Across Different Data Selection Strategies for ASR Model Fine-Tuning

Model Data Selection Stages for Training Data Selection for Training Duration of Train set (hh:mm:ss) WER (↓)

Pretrained (whisper medium) N/A N/A N/A 17.53

Finetuned (whisper medium)

Baseline All 7056:32:49 15.26
Fixed Single Domain (home services) 95:59:58 19.37

Random
Random (seed=42) 95:59:59 18.51

Random (seed=111) 95:59:47 17.14
Random (seed=2024) 95:59:45 16.30

Domain Dependent (Filtering 01)
Equal data selection (seed=42) 95:58:52 16.57

Equal data selection (seed=111) 95:58:34 16.44
Equal data selection (seed=2024) 95:58:54 17.28

Domain Dependent (Filtering 02)
Perplexity 95:22:60 17.08

Word Ratio 94:49:60 16.26

Pretrained (zipformers) N/A N/A N/A 23.52

Finetuned (zipformers) Filtering 01 + Filtering 02 Equal data selection + Word ratio 94:49:60 15.60

B. ASR Finetuning based on Data Selection Pipeline

Our comparison of data selection methods is currently
limited to random selection, as presented in Table III. Unlike
recent approaches [25], [39], which rely on seed models
trained on manually labeled data (unavailable for real-world
customer-agent interactions), our strategy leverages perplexity
and word ratio distributions for selection. This study highlights
(1) comparable fine-tuning results between 7000 hours and 95
hours of data and (2) a framework tailored to industrial needs.

1) Results using Whisper Adaptation: Table III summarizes
the WER performance across various data selection strate-
gies for fine-tuning the Whisper medium ASR model. The
pretrained model had a WER of 17.53%, which improved to
15.26% after fine-tuning on the full training set. However, fine-
tuning on a single domain (home services) increased WER
to 19.37%, indicating domain bias when evaluated across all
domains. Random selection of Lhotse segments (96 hours)
resulted in WERs ranging from 16.30% to 18.51%, with
an average of 17.32%. Domain-balanced random selection
gave WERs between 16.57% and 17.28%, averaging 16.76%.
Further filtering based on perplexity and word ratio reduced
WER to 17.08% and 16.26%, respectively, demonstrating the
effectiveness of targeted data selection.

2) Results using Zipformers Adaptation: Table III (bot-
tom part) compares the WER performance of whisper and
zipformer models, both pretrained and fine-tuned using the
proposed Data Selection Pipeline (DSP). For the Whisper
model, the pretrained version achieves a WER of 17.53%,
while fine-tuning using data selection pipeline (DSP) over 94
hours of training reduces the WER to 16.26%. In contrast,
the zipformer pretrained model exhibits a higher initial WER
of 23.52%. When trained from scratch for 94 hours, its
WER increases significantly to 34.23%, demonstrating the
challenge of training from scratch on a small amount of data.
However, applying the DSP for fine-tuning zipformer over 94
hours improves the WER considerably, lowering it to 15.60%,
outperforming Whisper and highlighting the effectiveness of
the proposed DSP in fine-tuning both models.

C. Effectiveness and Practical Implications

The proposed data selection pipeline has been deployed in
a real-world production environment at Uniphore, addressing
key challenges in adapting ASR models to evolving datasets.
High-quality data is selected on a weekly basis, ensuring con-
tinuous improvements in transcription accuracy. The compu-
tationally intensive domain classifier ensures data is classified
across six domains, enabling effective fine-tuning, while the
fast and efficient WhisperX pipeline generates pseudo labels,
maintaining scalability. As a next step, we plan to streamline
the process by passing only critical data to WhisperX, opti-
mizing both data selection and ASR adaptation.

V. CONCLUSION

In this paper, we address the challenge of limited annotated
data and an excess of unlabeled speech data by introducing
an efficient data selection pipeline for ASR model fine-tuning.
Our approach integrates four key stages: generating pseudo-
labels with the WhisperX pipeline, training a domain classifier
with 90% accuracy using a TFIDF-based classical machine
learning algorithm, applying a novel metric for data filtering,
and adapting Whisper and Zipformer models. Our pipeline
effectively reduces the dataset from 7,000 hours to just 94
hours by ensuring balanced domain coverage and filtering
low-quality data. The results demonstrate that this streamlined
approach maintains performance comparable to using the full
dataset, significantly surpassing traditional random selection
methods.
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