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Abstract—This study examines the acoustic features of Parkin-
son’s patients with depression. More specifically, the research
investigates whether interpretable, handcrafted acoustic feature-
based methods, previously used for automatic speech-based
depression detection, can be applied to detect depression in PD
patients. We approach this by conducting a comparative study
of speech-based depression detection tasks, using the DAIC-Woz
corpus for typical speech and the PD-Depression corpus for atyp-
ical speech. We investigate how the acoustic descriptors of typical
depressed speech differ from those extracted from the speech of
PD patients suffering from depression. Our finding indicates that
while typical depressed speech exhibits pronounced fluctuations
in pitch and vocal stability, the speech of Parkinson’s patients
presents a more varied range of spectral features, reflecting the
complexities of their condition caused by hypokinetic dysarthria.

Index Terms—Parkinson’s Disease, Depression detection,
Acoustic features, Speech in health

I. INTRODUCTION

Depressive disorder is a prevalent and complex mental
illness that, according to the World Health Organization,
afflicts approximately 5% of the global adult population [1].
The disorder is characterized by emotional, cognitive, and
behavioral symptoms [2], including feelings of low mood or
anxiousness, psychomotor retardation, or, in the worst cases, it
can lead to suicide [3]. Assessment of this condition primarily
relies on clinical interviews, which can lead to variability and
heterogeneity in diagnosis [4]–[6]. Hence, there is a need to
focus on the development of robust automated methods for
screening depression in its various manifestations.

Within the speech community, researchers have conducted
numerous studies utilizing acoustic features for detecting
depression, showcasing the feasibility of vocal features [7]–
[12]. These investigations have incorporated statistical anal-
yses of acoustic descriptors such as fundamental frequency
(F0), intensity, and spectral characteristics, indicating that
these acoustic descriptors could potentially serve as effective
indicators for depression screening. Over the last few years,
Artificial Neural Network (ANN) based methods have gained
widespread adoption within the community for the task of

depression detection, showing great potential in analyzing
speech patterns that are associated with the illness [13]–
[15]. Despite generally achieving high accuracy compared
to traditional handcrafted feature-based strategies, these ap-
proaches often sacrifice interpretability for the majority of
models. Furthermore, they face challenges associated with
limited training data.

Despite significant progress in the field, speech-based de-
pression detection remains a challenging task, primarily at-
tributed to the diverse manifestations of depression. A note-
worthy aspect overlooked by many depression studies is the
critical exploration of detecting depression in conjunction with
other neurological disorders like Alzheimer’s disease [16] or
Parkinson’s disease. Aarsland et al. [17] underlined as PD is
predominantly known for its movement-related symptoms, but
the disorder also involves a range of non-motor symptoms,
with depression being the most prevalent, affecting roughly
one-third of individuals with PD. It is often long-lasting and
in some cases appears in prodromal states [18]

The coexistence of Depression and neurological disorders
may introduce complexity to the diagnostic process, often re-
sulting in the oversight and neglect of treatment for numerous
cases [19], prompting notable concern. There is a significant
gap in the existing literature, which lacks exploration into the
detection of depression from an atypical speech. To the best
of our knowledge, only three existing studies have addressed
this specific case. Ozkanca et al. [20] were the first to con-
duct depression screening on PD patients. They recorded 10s
phoneme sound samples from the subjects. Classification was
performed by employing various machine learning classifiers,
utilizing handcrafted features. Their findings demonstrated a
strong correlation between voice and depression in PD. Pérez-
Toro et.al [21]–[23] reported automatic speech-based depres-
sion detection on monologues for Parkinson’s and Alzheimer’s
patients. They utilized transfer learning techniques, thereby
modeling emotions on the valence-arousal plane using Forest-
Net [24] and then finetuning for depression in AD and PD
patients, highlighting the potential of leveraging emotional
information for such diagnostic tasks. While [20] explored
handcrafted features, the study is limited to phonemes. In
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Fig. 1. Proposed methodologies representation: conventional approach (solid
arrows) and PBCC-based approach (dashed arrows).

contrast, [21], [23] investigated monologues, but their work
centered around emotion as the base task.

In this study, we ask the question of whether inter-
pretable handcrafted feature-based methods, previously
employed for automatic speech-based depression detection,
can be extended to detect depression in PD patients. Ad-
ditionally, we aim to analyze the acoustic features differences
in a normal speech1 and PD patients speech and what may
pose challenges for the classifier in detecting depression. We
do so by conducting a systematic analysis based on acoustic
features, to compare non-PD patients with depression and PD
patients diagnosed with depression. For this study, we utilize
interpretable handcrafted feature representation as input to the
classifiers. Additionally, we propose a method that utilizes the
Point Biserial Correlation Coefficient (PBCC) for feature se-
lection, to identify the most significant features for depression
detection within the datasets which may help enhance the clas-
sification performance. Finally, for better understanding, we
present our analysis by grouping acoustic features into three
broad categories based on the type of information they convey:
vocal source-related features describe the characteristics of the
sound that affect pitch, loudness, and voice quality; vocal tract-
related features describe the characteristics of the sound that
speech articulator modifies as it travels through the vocal tract,
such as formants; and global-related features describe both
processes that influence speech production, such as energy.

The rest of the paper is organized as follows, Section II
introduces the methods investigated in this study. Section III-A
outlines the dataset used and the experimental setup, Sec-
tion IV presents the experimental results and the analysis, and
finally Section V concludes the paper.

II. METHODOLOGY

Figure 1 depicts the methodologies adopted for the study.

A. Conventional approach

Handcrafted features were first extracted from the input
audio signal and then used as representations that are fed into
the classifier block to generate the confidence score (Fig 1
solid arrows). This method serves as a valuable baseline for
comparison with more complex strategies.

1In the context of this study, ’normal speech’ refers to non-PD patient’s
speech.

B. Feature selection approach

Handcrafted features are first extracted from the raw au-
dio, followed by feature selection using the Point Biserial
Correlation Coefficient (PBCC) (Fig 1 dashed arrows). The
PBCC quantifies the strength of the linear relationship between
a binary target variable (D/ND) and continuous features,
allowing for the identification of a smaller, more relevant
subset of features. The measure is defined as:

rpb =
MD −MND

sn

√
nDnND

n2

where MD and MND are the mean of the features for
Depressive (D) and Non-Depressive classes respectively; nD

and nND represent the sample sizes of the two groups; n is
the total amount of samples; sn is the standard deviation of
the continuous variables.

Initially, correlation threshold values are established. For
each threshold, the PBCC is computed between each feature
and the target labels of the training samples. Features with
PBCC values that surpass the defined threshold are retained,
as they exhibit a stronger linear relationship with the target
variable and are deemed more informative. Subsequently, a GB
Classifier is utilized to assess the predictive performance of the
selected features. Different thresholds, ranging from 0.06 to
0.6 in increments of 0.2, are tested, and the subset of features
that optimizes the system’s accuracy is ultimately selected.

III. EXPERIMENTAL SETUP

A. Datasets and protocols

(a) Distress analysis interview corpus - Wizard of Oz
(DAIC-WOZ) [25]: consists of audio-visual interviews from
193 participants assessed for psychological distress, including
anxiety, depression, and PTSD, totaling 17 hours of audio
data. Standard train-test split provided in the database,
following the guidelines of the AVEC 2016 challenge [26].
Precisely, recordings from 107 interviews were utilized for
training, and the evaluation was performed using recordings
from 35 interviews, serving as the test set.

(b) Depression in Parkinson’s disease (PD-D) [21]: consists
of speech data from 60 Spanish speakers from Colombia,
including 25 Depressive PD patients (D-PD) and 35 Non-
Depressive PD patients (ND-PD). All participants were
instructed to provide a monologue about their daily routines,
after which a neurologist evaluated their neurological state
using the Movement Disorders Society – Unified Parkinson’s
Disease Rating Scale (MDS–UPDRS) [27]. This scale is
considered the standard for evaluating the neurological
status of PD patients. The first part of the MDS-UPDRS
scale contains an item that assesses depression based on
the patient’s daily routines, with scores ranging from 0 to
4. Patients with scores higher than zero were labeled as
depressed PD patients denoted by D-PD, while those with
scores equal to zero were classified as Non-Depressed PD
patients indicated by ND-PD. The average duration of the
monologues is 84±34 seconds for the D-PD patients and



TABLE I
DISTRIBUTION OF UTTERANCES USED IN THE STUDY, CORRESPONDING

TO EACH LABEL.

Database Content Depressed
patients

Not-Depressed
patients Total

DAIC-WOZ English 42 100 142
PD-D Spanish 24 35 59

80±37 for the ND-PD patients, for a total duration of about
4892 seconds for the whole dataset. For our study, we
excluded speaker 52 due to recording errors. To be consistent
with the previous work [21], we opted for the Leave One
Speaker Out (LOSO) cross-validation protocol. That is, for
evaluating the ‘k’-th speaker the classifier was trained on the
remaining ‘k-1’ speakers.

Table I summarizes the two datasets.

B. Features and classifiers description

The study employed three well-known sets of knowledge-
based handcrafted features: EGEMAPS [28], COMPARE
[29], both extracted using the openSMILE toolkit [30], and
DisV oice [31]. EGEMAPS includes 25 Low-Level Descrip-
tors (LLDs) designed to capture key aspects of audio signals,
such as frequency-related information, energy, amplitude, and
spectral parameters. From this set of descriptors, a range
of statistical functionals were computed, resulting in a com-
prehensive total of 88 distinct parameters. COMPARE offers
a more extensive set with 6373 features calculated using
delta functions for frame-level representation and functionals
for utterance-level representation. Lastly, for DisV oice fea-
ture, the static representations of phonation, articulation, and
prosody features were combined to create a single representa-
tion. More details on the features and extraction code can be
found in [31].

In this study, we utilized three distinct machine-learning
algorithms for the classification task, namely Support Vector
Machine (SVM), Random Forest (RF), and Gradient Boosting
(GB). The optimal hyperparameter configuration for each
classifier was selected based on the Grid Search along with
6-fold cross-validation performance, ensuring a robust model
selection process.

C. Evaluation metrics

Following prior research [15], [32] we assessed the perfor-
mance of our systems using F1-score, precision, and recall as
the primary evaluation metrics. We presented the performance
metrics for each class, depressed (D) and non-depressed (ND),
for both datasets in the study. Additionally, we reported the
overall (O) score as the unweighted average across the two
groups (D and ND).

IV. RESULTS AND ANALYSIS

A. System performance

Table II presents the results for the best-performing clas-
sifier (GB) for each feature set across both corpora used. In
the DAIC-WOZ dataset, our system significantly outperforms

TABLE II
CLASSIFIERS’ PERFORMANCE OVER THE TWO DATASETS. Dims DENOTES

THE FEATURE DIMENSION; Thr. SIGNIFIES THE THRESHOLD SET FOR
FEATURE SELECTION; D AND ND DENOTE DEPRESSED AND

NOT-DEPRESSED PATIENTS, RESPECTIVELY; O IS THE UNWEIGHTED
AVERAGE OF D AND ND.

F1-score Precision Recall

Features Dims Thr. O D ND D ND D ND
DAIC-Woz

Valstar et al. [26] 88 0.49 0.41 0.58 0.26 0.94 0.88 0.42

Conventional approach
EGEMAPS 88 0.74 0.62 0.87 0.90 0.78 0.47 0.97
COMPARE 6373 0.47 0.24 0.07 0.45 0.59 0.16 0.86
DisV oice 620 0.55 0.33 0.77 0.50 0.69 0.25 0.87

Feature-selection approach
EGEMAPS 39 0.18 0.69 0.54 0.84 0.67 0.72 0.33 0.91
COMPARE 2756 0.18 0.72 0.65 0.80 0.62 0.78 0.33 0.87
DisV oice 184 0.20 0.65 0.47 0.83 0.80 0.73 0.33 0.96

PD-D
Perez-Toro et al. [21] 0.68 - - - - - -

Conventional approach
EGEMAPS 88 0.54 0.40 0.69 0.53 0.61 0.32 0.79
COMPARE 6373 0.43 0.30 0.56 0.33 0.53 0.28 0.59
DisV oice 620 0.74 0.69 0.78 0.71 0.77 0.68 0.79

Feature-selection approach
EGEMAPS 7 0.26 0.65 0.57 0.72 0.62 0.68 0.52 0.76
COMPARE 186 0.3 0.78 0.75 0.81 0.73 0.82 0.76 0.79
DisV oice 16 0.32 0.77 0.73 0.81 0.75 0.80 0.72 0.82

the baseline values reported by AVEC 2016, which were
obtained using the EGEMAPS feature set with an SVM
classifier, demonstrating an improvement of approximately
51%. Initially, EGEMAPS achieves a F1 score of 0.74 in the
conventional approach; however, following feature selection,
this score slightly decline to 0.69, likely due to its lower
dimensionality. In contrast, both COMPARE and DisV oice
show notable enhancements in their performance after feature
selection.
In the context of the PD-D corpus, our methodologies surpass
the overall F1 score of 0.7 reported by Perez-Toro, who uti-
lized a combination of the Valence and Arousal representation
for classification [21]. Initially, DisV oice features demon-
strate superior performance within the conventional pipeline,
achieving an F1 score of 0.74. After applying Point Biserial-
based feature selection, we observe a significant performance
improvement across all feature sets. Notably, COMPARE im-
proves from 0.43 to 0.78, while utilizing only 186 features for
classification. Overall, it is worth noting that feature selection
enhances the classifier’s ability to better predict depressed (D)
patients in both corpora, the exception being EGEMAPS for
DAIC-WOZ, as reflected in the F1 scores for the D column.
These results show that the PBCC method filters out redundant
features, leading to simpler, more interpretable models with
improved precision-recall balance.



B. Feature Analysis

Following the classification outcomes discussed in the pre-
vious section, we conducted a feature analysis by ranking the
top 10 features based on the normalized feature importance
values assigned by the best-performing classifier based on the
feature selection approach for both databases. To gain a better
understanding, we categorize the acoustic descriptors into
three groups, considering the information conveyed by each
feature. Using the classification from Eyben et al. [33] and, we
distinguished Low-Level Descriptors into vocal source-related
and vocal tract-related categories. Additionally, we introduced
a third category for features that represent global speech signal
information, incorporating both the vocal tract and source.
Table III presents the features sorted by their importance
scores using the GB model. The descriptor names are included
for clarity. The ”Index” column indicates the ’i’-th element
from the indexed feature list in the openSMILE header, while
the ”Group” column shows our proposed categories.

The feature rankings displayed in Table III highlight a
significant difference in how the classifier detects depression
in non-PD versus PD speech. In the case of the DAIC-
WOZ corpus, where the classification involves distinguishing
between depressive patients and healthy control subjects, the
classifier predominantly focuses on source-related features (6
out of 10), a select number of vocal tract features (3 out of 10),
and a single global-related low-level descriptor (LLD). This
emphasis on source features indicates that characteristics re-
flecting the quality and stability of vocal fold vibrations—such
as harmonic-to-noise ratio, jitter, and pitch variations—are
crucial for detecting depression within the non-pathological
population represented in the DAIC dataset. Additionally,
these findings are consistent with observations made by several
clinicians treating patients with depression. Hollien [34] notes
alterations in pitch patterns among depressed patients, while
Darby [35] highlights a reduction in pitch and vocal intensity.
In contrast, the PD-D dataset the feature ranking reveals
a more diverse distribution of information across various
features. The inclusion of multiple spectral features, such as
spectral entropy, spectral centroid, spectral roll-off, spectral
flux, and spectral kurtosis, underscores the instability of vo-
cal characteristics in patients with Parkinson’s disease [36].
Furthermore, the noted reductions in spectral entropy and
spectral centroid among individuals experiencing depression
illustrate the complex relationship between emotional states
and voice quality [37]. The Length L1, which serves as a
measure of voice quality and stability, is significantly affected,
indicating fluctuations in speech patterns that may stem from
motor control issues associated with the disease. This shift
emphasizes the complexities introduced by motor control
issues and vocal tract coordination deficits in analyzing speech
for depression detection in individuals with PD.

V. CONCLUSION

This study explores automatic depression detection in PD
patients using the PD-D corpus and compares it with typical
depression-affected continuous speech using the DAIC-WOZ

TABLE III
FEATURE RANKING OF GB TRAINED ON COMPARE FOR BOTH

DAIC-WOZ (LEFT) AND PD-D (RIGHT), USING PBCC FEATURE
SELECTION APPROACH.

DAIC-WOZ PD-D
Index LLD name Group Index LLD name Group
3861 logHNR Source 142 Length L1 Global
4038 Jitter DDP Source 88 RMS Energy Global
5126 Py Sharpness Source 1 Length L1 Global
1493 Spectral Harmonicity Source 64 RMS Energy Global
6077 Spectral Variance Global 6067 Spectral Entropy Vocal tract
6174 MFCC Vocal tract 1245 Spectral Flux Global
2365 audSpec Vocal tract 1476 Py Sharpness Source
4132 F0 Source 2925 Spectral RollOff 90.0 Vocal tract
4131 F0 Source 2991 Spectral Centroid Global
1373 Spectral Skeweness Vocal tract 3106 Spectral Kurtosis Global

corpus. The classification findings suggest that hand-crafted
feature-based methods for detecting depression in patients with
Parkinson’s Disease can be extended. The performance of the
Gradient Booster classifier shows a significant improvement
when employing the Point Biserial Correlation-based feature
selection approach rather than the conventional method across
both datasets. This result underscores the importance of elim-
inating redundant features to develop more robust models.
The findings from the analysis of feature rankings reveal the
difference in terms of acoustic descriptors of depression in
non-PD speech versus PD speech. For DAIC-WOZ dataset the
classifier emphasizes source-related features and demonstrates
their crucial importance in identifying depressive states. This
observation is supported by existing research, which under-
lines that fluctuations in vocal characteristics, such as pitch
variations, serve as key indicators of depression. Conversely,
in PD speech, a broader range of spectral features stands out,
capturing the complexities introduced by Parkinson’s disease
manifestations. These characteristics are likely closely linked
to speech motor symptoms, which are prevalent among Parkin-
son’s disease patients. Our findings indicate that the symptoms
of Parkinson’s make it challenging for the classifier to classify
depression automatically. The study highlights that depression,
along with Parkinson’s disease, can present distinct acoustic
characteristics. These findings may contribute to advancing
our understanding of speech analysis in the context of mental
health in patients with neurodegenerative disorders.
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