On feature representations for marmoset vocal communication analysis
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Abstract

The acoustic analysis of marmoset (Callithrix jacchus) vocalizations is often used to understand the evolutionary origins of human
language. Currently, the analysis is largely carried out in a manual or semi-manual manner. Thus, there is a need to develop
automatic call analysis methods. In that direction, research has been limited to the development of analysis methods with small
amounts of data or for specific scenarios. Furthermore, there is lack of prior knowledge about what type of information is relevant
for different call analysis tasks. To address these issues, as a first step, this paper explores different feature representation methods,
namely, HCTSA-based hand-crafted features Catch22, pre-trained self supervised learning (SSL) based features extracted from
neural networks trained on human speech and end-to-end acoustic modeling for call-type classification, caller identification and
caller sex identification. Through an investigation on three different marmoset call datasets, we demonstrate that SSL-based feature
representations and end-to-end acoustic modeling tend to lead to better systems than Catch22 features for call-type and caller

classification. Furthermore, we also highlight the impact of signal bandwidth on the obtained task performances.

Keywords: bioacoustics, marmoset call analysis, feature representation, call-type classification, caller identification, sex

classification.

1. Introduction

The advancements in human speech processing have also
accelerated and impacted research in non-human communica-
tion, such as bioacoustics, i.e. the study of animal sounds.
Common marmosets (Callithrix jacchus) have recently gained
prominence as a valuable research model among non-human
primates. This is primarily due to their exceptional vocal abil-
ities, which are rooted in their highly complex social behavior
and cooperative breeding system [1} 2]]. They possess extensive
vocal repertoires used in various social situations [3} 4], and
their vocalizations have the capacity to encode a wide range of
information, such as population, group affiliation, sex, and even
individual identity [5 |6} 7, 8l |9, [10]. These vocalizations are
not limited to simple tonal signals but also encompass complex
calls with multiple frequency components, some of which are
within the ultrasonic range [[11]. Moreover, marmosets have
been observed to exhibit remarkable vocal adaptability. They
can alter the duration [12]], intensity [12} [13} [14], complexity
[15]], or timing [16} [15] of their calls, even when faced with
disruptions in their environment that occur after the initiation
of a call [[14]. While these properties make marmosets an in-
triguing subject for the study of communication processes, they
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also pose a significant challenge when attempting to automate
the analysis of their vocalizations. The literature on automatic
marmoset vocalization analysis is relatively sparse.

Turreson et al. compared different classification methods for
marmoset ‘call-type’ classification using linear prediction co-
efficients as feature representation, and found that on a small
data setup of 30 samples per call-type, k-NN, SVM and optimal
path forest algorithms yield better performance than multilayer
perceptron, Adaboost, and logistic regression [17]. Wisler et
al. investigated different feature representations, namely, audio
features (statistics based on energy entropy, signal energy, zero
crossing rate, spectral rolloff, spectral centroid, and spectral
flux), mel-frequency cepstral coefficients (MFCCs), and Teager
energy operator-based features for marmoset vocalization and
call-type detection [[18]]. On a synthetic dataset, created by tak-
ing a small set of calls and augmenting it with background noise
and acoustic events, it was found that feature level combination
leads to better performance. Verma et al. investigated discov-
ering of different patterns in marmoset calls through unsuper-
vised learning. Specifically, they developed an HMM-based
approach to segment and cluster marmoset vocalizations into
discrete units through multi-resolution and multi-rate analysis
of the signal [[19]. In [20], it was demonstrated that marmoset
vocalizations and call-types can be better detected/classified by
feeding statistics of log-mel-filter bank energies as input to re-
current neural networks, when compared to feeding it to SVM
or multilayer perceptrons. In the scenario of analyzing record-
ings obtained from a pair of marmosets, [21] investigated a
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deep learning approach where a spectrogram was fed as in-
put to a convolutional neural network to jointly perform vocal-
ization, detection, call type classification and caller detection.
It was found that joint modeling yielded better performance
than training systems individually for each task in this scenario.
Recently, Highly Comparable Time-Series Analysis (HCTSA)
features have been used to model source (caller) identifica-
tion through an Adaboost-based hierarchical approach for mar-
mosets [10]], as well as for 14 mammalian species [22]]. In
the bioacoustics field, breakthroughs in self-supervised learn-
ing (SSL), which leverages unlabeled data by creating surrogate
labels from the data’s inherent structure, has led to works which
explore birdsong detection [[23]] and bioacoustic event detection
[24] by pre-training with a contrastive learning approach. In
that direction, a study using different SSLs pre-trained on hu-
man speech, demonstrated that neural embeddings extracted in
such a framework can also distinguish marmoset callers [25]].

However, in the existing works, there are three main lim-
itations. First, most of the studies have been carried out on
small data sets. Second, these studies have been conducted on
datasets intended for specific scenarios. Due to a lack of vali-
dation, it is unclear whether the methods studied on one dataset
would scale to another. Third, there is limited prior knowl-
edge about what type of information is relevant for different
call analysis tasks. There is a need to overcome these limita-
tions to advance the development of automatic analyses of mar-
moset vocalizations. The present paper is a step in that direction
with a specific focus on feature representations for automatic
marmoset call analyses, where we investigate three prominent
feature representation methods, namely, (a) hand-crafted fea-
tures, (b) self-supervised learning-based representations, and
(c) end-to-end acoustic modeling, on three different marmoset
call datasets and three different tasks (call type, caller identity,
and caller sex classification).

The paper is organized as follows. Section2]presents the dif-
ferent datasets, tasks, and investigated feature representations.
Section |3| and [4] present the studies and analysis of the results
respectively. Finally section [5|concludes the paper.

2. Methodology

2.1. Datasets and tasks

We conduct investigations on three different marmoset
datasets, denoted as Dy, D, and Ds, respectively. D, and Ds
contain vocalizations produced by adult individuals, while D,
InfantMarmosetsVox, originates from infant marmosets [25].
Consequently, D; is expected to encompass different call types,
likely characterized by higher frequencies compared to those
in D, and Ds. Furthermore, D, and Dj are gathered from the
same colony, while D; was obtained from a different one. All
the datasets consist of audio recordings of marmosets vocaliza-
tions segments, collected and hand-labeled with the start and
end time by experienced researchers. In addition to call-type
and caller identity annotations of each vocalization provided
for all three datasets, D; and D, also include information about
the sex of the vocalizing individual. For more details regarding
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Figure 1: Log distribution of vocalization lengths per dataset. The medians are
calculated over the entirety of each dataset.

We discard any segments labeled as ‘silence’ and ‘noise’, and
only keep the vocalization segments. The log distribution of the
vocalization lengths of the three datasets is presented in Fig-
ure[I] We can observe that D; has the shortest median vocal-
ization length at 127 ms, with D, and D3 at 175 and 1037 ms
respectively. Based on the given annotations, we define multi-
class tasks, specifically call-type, caller, and sex classification,
henceforth referred to as CTID, CLID, and SID respectively.
Table[I] gives the number of vocalization segments S, their to-
tal duration length L, the native sampling rates, as well as the
number of classes 7, for each task across datasets.

Table 1: S indicates the number of data samples, L the sum of all vocalizations
segment durations (in minutes), and SR the native sampling rate of the given
data (kHz). ne,sk is the number of classes of each task-dataset permutation.

D S L SR ncrp Roup Msio
Dy [25] 73K 464 44.1 11 10 -
D, [26] 14K 37 300 7 8 2
D; 5K 138 125 12 8 2

2.2. Feature representations

We investigate the following feature representations:

1) Hand-crafted features: Highly Comparable Time-Series
Analysis (HCTSA) is an interpretable signal processing-based
framework that has been demonstrated to be useful for diverse
time series application domains [27]. In this framework, a set
of 7700 features are extracted by characterizing the signal by
different time series analysis methods, such as, linear correla-
tion, modeling fitting (e.g., autoregressive moving average anal-
ysis, GARCH), wavelet analysis, extraction of information the-
oretic measures, which then is combined with feature selection
to build statistical models for the end task. In the literature,
these features have been investigated for behavioural birdsong
discrimination [28]], automated acoustic monitoring of ecosys-
tems [29], as well as marmoset caller identification [[10]. One of
the challenges of HCTSA approach is computational complex-
ity and involves an evaluation of many similar features. In a
recent work, CAnonical Time-series CHaracteristics (Catch22)
features, a subset of the HCTSA feature set has been proposed
which exhibit a strong performance across 93 real-world time-
series classification problems, but are also minimally redun-



dant [30]. In this work, we investigate the Catch22 features,
denoted as C22.

2) Pre-trained self-supervised learning (SSL) based features:
Inspired from the recent study presented in [25]], we investigate
the use of feature representations extracted from pre-trained
SSL neural networks trained on human speech for marmoset
call analysis. We extend the investigations from caller detec-
tion to call type, caller ID and sex classification. Furthermore,
contrary to the previous work [235]], which focused only on the
last transformer layer representation, in this work we investi-
gate representations obtained from all the transformer layers to
gain insight which level of layer representations are informative
for marmoset call analysis.

3) End-to-end acoustic modeling: With advances in deep
learning, acoustic modeling approaches have emerged in speech
and audio processing where raw signal can be modeled to
learn task-dependent information from the signal in an end-to-
manner with minimum prior knowledge [31} 32, [33] [34]. Such
approaches hold potential for advancing marmoset call analy-
sis, as they could help not only in addressing the lack of reliable
task-dependent prior knowledge challenge, but also in gaining
insight into the task relevant acoustic information learned by
such trained networks through analysis [34}135/36]. The insight
gained could then be further validated through linguistic stud-
ies. Motivated by these aspects, we investigate this approach.

A sub-challenge that arises when analyzing marmoset calls
is the range of frequency information to be modeled. More
precisely, the fundamental frequencies (typically corresponding
to the peak frequency) of adult marmoset vocalisations span a
range of 6-13 kHz, depending on the call-type [3]. However, as
can be seen in Table |1} datasets are collected at varying sam-
pling frequencies. Furthermore, the SSL neural networks are
typically pre-trained on speech signal of 8 kHz bandwidth (i.e.,
16 kHz sampling frequency). As part of the investigation, we
thus also study the impact of sampling rate (SR) on marmoset
call analysis tasks.

3. Experimental Study

3.1. Systems

For each task, we divided all datasets into training, valida-
tion, and test sets, named Train, Val, and Test respectively, fol-
lowing a 70:20:10 split ratio, in order to train models on a suffi-
ciently large number of samples, while ensuring sufficient data
points for model evaluation and validation. Train is used to train
the models, Val to tune any hyperparameters, and Test to eval-
uate the trained models on unseen data. We then developed the
following systems for each task on each dataset to investigate
the aforementioned feature representations:

1) We used pycatch22 to extract a feature vector x € R*P
(denoted as C22) for each utterance, where D = 24, and feed
it to a multilayer perceptron (MLP) with three hidden layers
of 128, 64, and 32 number of hidden units, respectively. The
classifier is trained for 30 epochs, using a batch size 16 and
learning rate n = le — 3.

2) As it is challenging to investigate all the different types
of pre-trained SSL feature representations across all tasks and

datasets, we simply chose WavLM [37]], as it was found to yield
strong performance on the task of marmoset caller detection
[25], been found to scale well to different human speech pro-
cessing tasks in the SUPERB challenge [38]]. For each layer,
we extracted frame-by-frame variable-length feature represen-
tations x € R¥*P, where D = 768 and N the variable number
of frames (contingent on the vocalization length). We then con-
verted these embeddings into utterance-level fixed-length rep-
resentations f,, € R'™?? (denoted as WLM), by computing
and concatenating the first and second order statistics across
the frame axis on the extracted features. An MLP of same three
layer architecture as C22 is then trained with the fixed length
feature as input.

3) We trained a convolutional neural network (CNN) based
end-to-end acoustic modeling system (denoted as E2E) that
takes a raw waveform as input and classifies to the output
classes. Following the literature in speech processing [39, 40,
41]], the E2E system consists of four convolution layers fol-
lowed by an adaptive pooling layer and two hidden layers. The
E2E system is optimized with a cross-entropy cost function
with an early stopping criteria. Further details of the architec-
ture are provided in the

In the case of C22, we developed systems at native sampling
frequency and downsampled acoustic signals: 16 kHz for D,
60 and 16 kHz for D,, and 60 and 16 kHz for D5. In the case
of WLM, we developed systems with signals downsampled to
required pre-training sampling rate of 16 kHz. For E2E sys-
tem, D, and Dj signals were downsampled to 60 and 16 kHz.
To evaluate the systems we used Unweighted Average Recall
(UAR) as the metric to account for any class imbalance.

3.2. Results

Table [2[ shows the performances of systems based on differ-
ent feature representations. For the sake of clarity, only the best
layer and worst layer performances are reported for WLM. Fig-
ure [2] presents the layer-wise performances for all tasks on all
datasets for WLM. Note that layer O corresponds to the output
embedding of the CNN encoder, where as the other 12 refer
to the outputs of the transformer encoder layers. The perfor-
mances are all above chance level, i.e. 100/n,, for all systems.
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Figure 2: Layer-wise UAR scores for WLM for all tasks and datasets. The
layers follow the same indexing as [37].



Table 2: UAR scores on Test on features . WavLM’s best and worst layer’s
score is given. For each dataset, the best score across features is bolded per
task.

D F SR CTID CLID SID
441 51.04 4758 N/A

Dy €22 16 3772 3454 N/A
60.10 6747 N/A

Dy WLM 16 5504 3605 N/A
44 6832 7412 N/A

DiE2E 16 5303 5994 NA
300 37.68 4356 66.24

D, C22 60 3250 3552 6338
16 3565 3532 58.14

56.77 46.05 63.80

Dy WIM 16 501 2542 5708
60  42.03 49.78 62.36

Dy E2E 6 3765 3621 60.15
125 6432 43.19 62.80

D; C22 60 6567 4550 61.22
16 5259 3943 57.32

80.38 55.58 74.26

Dy WIM 16 o1 6r 4133 5914
60 6531 4792 60.73

Dy E2E ¢ 6624 3131 5659

Ignoring the sampling frequency aspect, it can be observed
that E2E yields the best performances for D;’s CTID and CLID
tasks. For D,, WLM yields best performance for CTID, E2E for
CLID, and C22 for SID. On both D; and D,, we can observe
that WLM yields competitive systems, however in the case of
D3, WLM’s third layer representations consistently yield the
best performance across all the tasks (see Figure [2), and out-
perform C22 and E2E. Although WLM yields competitive per-
formances on D; and D5, it is difficult to systematically com-
pare to C22 or E2E as different layers yield best performance
for different tasks.

Furthermore, it can be observed that the 16 kHz SR perfor-
mance is generally inferior across different datasets and tasks
for C22 and E2E. This finding is in line with the understandings
in the literature gained by analysis of different call types which
showed that most marmoset call types extend into frequencies
above 8 kHz [3]]. This implies that, with an 8 kHz bandwidth,
certain vital information for specific call types might be lost,
rendering it increasingly challenging, if not impossible, for the
classifier to accurately categorize certain calls. Indeed, it can
be observed that C22 systems yield superior performance with
the native SR compared to 16 kHz for all datasets. This em-
phasizes that higher frequencies are likely to contain valuable
information. A comparison between C22, WLM and E2E at
16 kHz sampling frequency demonstrates the potential of SSL
based feature representations learned on human speech.

It is worth noting that a recent, independent study explored
representations learned from other acoustic domains such as
general audio, which includes audio event classes such as envi-
ronmental sounds, musical instruments, and human and animal
vocalizations. They demonstrated on D) that increasing the pre-
training bandwidth of a PANN model [42], pre-trained on the
AudioSet dataset with log-mel spectrogram inputs, improved
performance on both CTID and CLID tasks [43]. However, the
study didn’t explicitly disentangle whether these improvements
resulted from the increased bandwidth itself, the spectrogram-
based inputs, or from the inclusion of some animal vocaliza-
tions in the pre-training dataset. This distinction still remains
an important open question for future investigations.

4. Analysis

4.1. Layer-wise linear performance analysis

In Figure [2] it can be observed that lower layer representa-
tions tend to yield better systems. To further ascertain that, we
carried out layer-wise classification performance of the same
tasks using a simple linear classifier (single layer perceptron).
Figure [3] shows the results independently normalized per-task
to a [0, 1] range. It can be observed that the lower layers are
much more salient representations for all three tasks across all
datasets when compared to higher layers. A possible expla-
nation is that, because WavLM’s CNN encoder operates di-
rectly on the raw waveform, the early layers capture fundamen-
tal acoustic features and can leverage spectro-temporal varia-
tions relevant to tasks such as speaker identification and ver-
ification [37]. Thus, these lower layers inherently generalize
better to other acoustic domains, such as marmoset vocaliza-
tions. In contrast, the later layers — shown to perform well
on linguistic tasks, such as speech or phoneme recognition —
appear more specialized for human speech and consequently
much less transferable to bioacoustics, resulting in lower per-
formance. We can also observe that there is no consistent opti-
mal layer for each task type across the datasets.
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Figure 3: Layer-wise UAR scores of WLM features modeled by single layer
perceptron. The scores are normalized independently per task. Darker regions
indicate higher performance.



4.2. Frequency response of learnt convolution filters

We analyzed the frequency response of the first learnt convo-
lution layer filters of E2E systems by estimating the cumulative
frequency response F,;, as [36]:

F.. = i i (1)
LR

where ny denotes the 128 filters in the first convolution layer
(see Appendix) and F; denotes discrete Fourier transform of
filter k over 2048 DFT points.

Figure [] shows the cumulative frequency response for each
task per dataset at an SR of 16 kHz, and 44.1 or 60 kHz. With
a 8 kHz bandwidth (left half), it can be observed that the em-
phasis is on frequencies 4-5 kHz and above irrespective of the
task. As the bandwidth of the signal is increased (right half), it
can be observed that emphasis is also given to higher frequency
regions such as around 10 kHz or above. These observations
further corroborate previous findings that most marmoset calls
occupy frequency ranges beyond 8 kHz [3]], and also explain the
improved performance obtained with higher bandwidth signals.
In addition, we observe that for different tasks the learned filters
give emphasis to different frequency regions. A detailed analy-
sis of the spectral information learned is part of our future work.
Taken together, the analysis indicates that the E2E framework
inspired from speech processing can be scaled to marmoset call
analysis.

1.04 i {\ -1

T T T T T T T T T T
0 2000 4000 6000 8000 0 5000 10000 15000 20000

S Y |V

T T T T T T T
0 2000 4000 6000 8000 0 6000

1.04 4

| = CTD CLID = GID

[X(w)]

T T T T
12000 18000 24000 30000

T T T T T T T T T T T
0 2000 4000 6000 8000 0 6000 12000 18000 24000 30000

Frequency (Hz)

Figure 4: Cumulative frequency response per task on all datasets. Sampling
rate: 16 kHz (left), and 44.1 or 60 kHz (right).

5. Conclusions

This paper explored different feature representations or learn-
ing methods, namely handcrafted feature Catch22, SSL feature
representation WLM, and end-to-end acoustic modeling (E2E)
for analyzing marmoset calls. Our investigations on three dif-
ferent datasets demonstrate that end-to-end acoustic modeling
and SSL feature representations yield better systems than hand-
crafted Catch-22 features for call-type classification and caller
identification, while also achieving comparable performances

for sex identification at a common sampling rate. As a by-
product, our studies demonstrated that (a) the utility of pre-
trained SSL models on human speech can be extended to call-
type and sex, besides caller discrimination and (b) end-to-end
acoustic modeling methods developed for speech processing
can be scaled for marmoset call analysis. Our study raises a
few pertinent questions such as: (a) with limited signal band-
width how are SSL features informative about marmoset calls?
(b) what kind of task specific spectral information is learned
by the E2E systems?, and (c) how to combine the different ap-
proaches for improving marmoset call analysis? Furthermore,
in this work we only investigated feature representations that
directly modeled the raw input waveform. However, recent
bioacoustic studies on bats, birds, and rodents have leveraged
spectrogram-based methods [44] 45) 46, 47]. Whether such ap-
proaches can offer distinct advantages over the waveform-based
methods for marmoset vocal communication analysis remains
to be determined. Our future work will investigate these ques-
tions.
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Appendix A. Data description

Dataset D, is an extended version of the dataset used in the
study on marmoset call type discrimination by Zhang et al. [20].
This version, entitled InfantMarmosetsVox, was used in the re-
cent work on marmoset caller discrimination using SSL fea-
tures [25]. The audio was recorded from five pairs of infant
marmoset twins, each recorded individually in two separate
sound-proofed recording rooms at a sampling rate of 44.1 kHz.
Additionally, marmosets were recorded individually without
communication with other marmosets and the intervention from
experimenters. The audio recordings were manually annotated
using the Praat tool by an experienced researcher. For each
vocalization, the start and end time, call type, and marmoset
identity have been provided. The data consists of 11 differ-
ent marmoset calltypes, namely, peep (pre-phee), phee, twitter,
trill, trillphee, tsik tse, egg, pheecry (cry), trllTwitter, pheetwit-
ter, and peep. The data contains 350 files of precisely labelled
10-minute audio recordings across all ten caller classes.

D, consists of 102 labelled 10-min focal audio recordings of
common marmoset calls recorded in six behavioural contexts.
A pair of marmosets was either separated or in the same en-
closure, with preferred food either freely available for the focal
individual or not. Each of the 8 subjects was recorded on 16
separate occasions. Most of the calls were given in bouts as
holistic single call units, and thus, a call-type unit was defined
as a call bout with call elements which were not further apart
than 0.5s, as per existing literature [3| 48]]. We only used the
segments labelled as single call elements, i.e. not split up in
bouts, to avoid data overlap and duplication. The dataset con-
sists of 7 calls, namely alarm, ek, food, phee, trill, tsk, and
twitter. The audio recordings were manually annotated by us-
ing Avisoft SASLab Pro (Avisoft Bioacoustics, Feb. 2017) to
narrowly label the start and end of each call-type. The data
was collected under Swiss legislation and licensed by Zurich’s
cantonal veterinary office (license ZH 223/16 and ZH 232/19).

D3 was collected from 6 target adult common marmosets, 3
male and 3 female, housed at the University of Zurich. Two ad-
ditional non-target individuals were also included in the dataset,
summing to 8 individuals in total. The data consists of 12 calls
classes: phee, trill, food call, tsk, low tsk (tsk with a peak
frequency of approximately 7-9 kHz), twitter (sequence), ek,
phee sequence (multiple phees), low tsk sequence (multiple low
tsks), ek sequence (multiple eks), food call sequence (multi-
ple food calls). All procedures were done in accordance with
Swiss legislation and were licensed by Zurich’s cantonal vet-
erinary office (license ZH223/19). For each recording, two in-
dividuals (one male and one female) were placed in adjacent
wire cages and recorded simultaneously in 15-minute intervals
with two UltraSoundGate 116H recorders coupled with an Avi-
soft CM16/CMPA condenser microphone (Avisoft Bioacous-

tics, Germany), each set to a different gain to capture both low
and high amplitude calls with a sampling rate of 125kHz. A to-
tal of 12 recordings, spread over 7 months, were made for each
target individual. Caller identity was labeled in real time using
Avisoft-RECORDER USGH (Avisoft Bioacoustics, Germany).
The labelling of the calls’ exact start and end points was car-
ried out through a visual examination of the spectrograms. For
inclusion in subsequent analyses, calls needed be distinctly vis-
ible on the spectrogram, devoid of any interference from other
calls, and readily classifiable into specific call-type categories.

Appendix B. CNN architecture

Table [B.3] presents the architecture of the E2E system. The
first convolution layer kernel width kW and shift dW was cho-
sen based on the sampling frequency. More precisely, based on
the understanding gained from speech studies, we chose those
hyper-parameters to strike a balance between the length of the
convolution filter and enough pitch cycles being modeled [34].
For 44.1 and 60 kHz sampling frequency, we chose kW = 1 ms
and dW = 0.05 ms, respectively. As marmoset calls have fun-
damental frequency around 5 kHz and above [3], 1 ms signal
would be expected to contain around 10 pitch cycles or more.
However, for 16 kHz sampling frequency, 1 ms would contain
only 16 samples, i.e. at the most 1-2 sample(s) representing
each pitch cycle. This may not hinder capturing the pitch fre-
quency information in the marmoset call well. So, for 16 kHz
we set kW = 10 ms and dW = 0.5 ms. The training batch
size 16 and learning rate of 0.001, same as the MLP classifier
for C22 and WLM. The optimization configuration simply con-
sisted of Adam and a dynamic learning rate scheduler which
reduces the learning rate 7 when the selected optimization cri-
terion, in this case Val UAR, shows no improvement after 10
epochs.

Table B.3: CNN model parameters. ny denotes the number of filters, ny, the
the number of hidden units, and o the activation function.

Layer kW dW ng/n,, Padding o
Convl kW dW 128 - RelLU
Conv2 10 5 256 - RelLU
Conv 3 4 2 512 2 RelLU
Conv 4 3 1 512 1 RelLU
Adapt - - - - -
FC1 - - 512 - RelLU
FC2 - - 256 - ReLU
FC3 - - ne - -
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