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Abstract—Self-supervised learning (SSL) foundation models
have emerged as powerful, domain-agnostic, general-purpose
feature extractors applicable to a wide range of tasks. Such
models pre-trained on human speech have demonstrated high
transferability for bioacoustic processing. This paper investigates
(i) whether SSL models pre-trained directly on animal vocal-
izations offer a significant advantage over those pre-trained on
speech, and (ii) whether fine-tuning speech-pretrained models on
automatic speech recognition (ASR) tasks can enhance bioacous-
tic classification. We conduct a comparative analysis using three
diverse bioacoustic datasets and two different bioacoustic tasks.
Results indicate that pre-training on bioacoustic data provides
only marginal improvements over speech-pretrained models, with
comparable performance in most scenarios. Fine-tuning on ASR
tasks yields mixed outcomes, suggesting that the general-purpose
representations learned during SSL pre-training are already
well-suited for bioacoustic tasks. These findings highlight the
robustness of speech-pretrained SSL models for bioacoustics and
imply that extensive fine-tuning may not be necessary for optimal
performance.

Index Terms—bioacoustics, self-supervised learning, pre-
training domain, fine-tuning, human speech.

I. INTRODUCTION

Bioacoustics, the study of animal sounds, plays a crucial
role in ecological and evolutionary research, providing insights
into animal communication, biodiversity, and the origins of
language. However, despite its significance, working with
bioacoustic data presents several challenges: the data is often
scarce, difficult to collect, noisy, and expensive to annotate.
In recent years, advances in machine learning have made
substantial progress in addressing these challenges [1]. No-
tably, modern pre-trained deep learning foundation models
have demonstrated impressive transferability to bioacoustic
tasks, significantly advancing the field [2]–[6]. In particular,
self-supervised learning (SSL) models pre-trained on human
speech have shown remarkable success in tackling various
bioacoustic tasks, such as animal call-type classification [7]–
[11], caller identification [12]–[14], and species recognition
[15]. These models leverage large volumes of unlabeled data,
prevalent in bioacoustics, by creating surrogate labels based
on the intrinsic structure of the audio data, and then solving
pre-text tasks designed to learn salient representations [16].
Given the domain-agnostic nature of these pre-training tasks,

Source code: https://github.com/idiap/ssl-human-animal.

SSL models have been effective in transferring from speech to
bioacoustics without the need for domain-specific fine-tuning.
Essentially, SSLs serve as powerful, general-purpose feature
extractors for a wide range of downstream tasks.

Building on these developments, this paper explores the fol-
lowing two points, aimed at analyzing SSLs for bioacoustics:
1. SSL Pre-training Domain: While SSL models pre-trained
on human speech have shown strong transferability to bioa-
coustic tasks, recent research has explored pre-training on
bioacoustic data itself, both in supervised and self-supervised
frameworks [15], [17], [18]. The motivation behind pre-
training on animal data is that these models may better capture
species-specific vocal patterns and other properties unique
to animal sounds. However, given that SSL pre-training is
designed to learn general, domain-agnostic features, it is not
yet clear whether pre-training directly on bioacoustics actually
provides any significant advantage over SSLs pre-trained on
human speech. Therefore, in this study, we systematically
compare SSL models pre-trained on human speech against
those on animal vocalizations, and evaluate their performance
for bioacoustics processing across various datasets and tasks.
2. Fine-tuning on Human Speech: SSL representations
have demonstrated strong performance on bioacoustic tasks
without requiring fine-tuning, indicating their extracted latent
representations can capture acoustically rich information ca-
pable of distinguishing animal call-types and caller identities.
However, fine-tuning in a supervised framework often forces
the model to learn novel and more specialized patterns, such as
phonetic distinctions and temporal structures, typically leading
to further performance gains. As both human speech and
animal calls encode structured vocal and linguistic informa-
tion for communication, SSL models fine-tuned on speech
recognition (ASR) may provide an additional inductive bias,
enhancing the model’s ability to recognize complex features
in bioacoustic data. Therefore, we seek to explore whether
fine-tuning pre-trained SSLs on human speech tasks, such as
ASR, can further improve these models’ capability to process
animal vocalizations by capturing the subtle spectro-temporal
characteristics present in animal calls, which may otherwise
remain underrepresented in general SSL pre-training.

The rest of the paper is organized as follows: section II
provides the experimental setup for the studies in this paper,

https://github.com/idiap/ssl-human-animal


section III presents and thoroughly analyzes the experiments’
comparative results. Finally, section IV concludes the paper.

II. EXPERIMENTAL SETUP

A. Datasets, Tasks, and Protocols

We conducted the experiments for our studies on the three
distinct bioacoustic datasets, summarized in Table I. Figure 1
also presents a log distribution of their vocalization lengths.

TABLE I
L DENOTES THE LENGTH [MINUTES], nc THE NUMBER OF CLASSES, SR
THE SAMPLING RATE [KHZ], µ THE MEDIAN LENGTH [MS], σ THE STD.

Dataset # Samples L SR nc µ σ

[19] Watkins 1, 697 295 – 32 1701 71245
[12] IMV 72, 920 464 44.1 11 127 375
[9] Abzaliev 8, 034 137 48 14 655 1313

Watkins [19]: contains the recordings of different marine
mammals, such as specific dolphins, whales, and seals. We
chose Watkins for its multi-species vocalizations, rich acoustic
variety, and high variance in segment lengths (fig. 1). It has
been commonly used for bioacoustic benchmarking, particu-
larly for evaluating modern deep learning models [2], [15]. We
chose the ‘best of’ cut of the original dataset, a selected subset
from the original 15,000 samples in total, deemed to be of
higher sound quality and to contain less noise. The final dataset
contains 1697 vocalization segments from 32 different species,
totalling to 295 minutes, with a median length of 1701s. The
sampling rate (SR) varies according to the recorded species.

InfantMarmosetsVox (IMV) [12]: is an audio dataset of
Callithrix jacchus, a highly vocal new world primate. Mar-
mosets were chosen for their complex social system, which
allows them to encode vital information in their calls, such as
identity, group affiliation, and dialect. They serve as surrogate
models to understand the evolutionary origins of human vocal
communication for neuro-biologists. The dataset consists of
72,920 segments representing 11 different call-types over 464
minutes. It was recorded from five pairs of infant marmoset
twins, each recorded individually in sound-proofed rooms at
44.1 kHz SR, without communication with other marmoset
pairs or the experimenters. The audio recordings were man-
ually labeled by an experienced researcher. Although a large
dataset by bioacoustics standards, each segment is predom-
inantly short, with a median length of 127 ms. The spectral
range of the calls is mostly centered around 7-8 kHz, although
there is some information present above 16 kHz [7].

Abzaliev [9]: is a novel dog dataset (here referred to by
the first author’s name) consisting of 8,034 vocalizations from
the v2017 Mescalina Bark ID dataset [20]. It contains 14
different call-types, ranging from normal, aggressive, fearful,
and playful barks at strangers (IDs 0–3), to vocalizations
related to owner interaction (4–5) and non-stranger/non-play
sounds (6). It also contains postive or negative whines (7–8)
and growls (9–10), barks associated with sadness or anxiety
(11), and excitement upon the owner’s arrival home (12).
The recordings originate from various dog breeds, including

Chihuahuas, French Poodles, and Schnauzers. The data was
recorded at 48 kHz SR from a microphone, and followed a
protocol designed and validated by experts in animal behavior.
The dog vocalizations were induced by exposing the dogs to
different types of external stimuli, with the participation of
the owner and/or experimenter. We discard all the segments
labelled as non-dog sounds, such as TV, cars, and appliances.

For our experiments, we divide the datasets into a Train,
Val, and Test sets, following a random 70:20:10 split protocol.
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Fig. 1. Log distribution of vocalization lengths per dataset. The medians are
calculated over the entirety of each dataset.

B. Models and Feature Representations

For our experiments, we select four different models to
obtain our various feature representations F . These consist
of neural representations extracted through pre-trained (PT)
models on animal vocalizations or human speech in a self-
supervised learning framework, as well as their counterparts
fine-tuned (PT+FT) in a supervised approach. The different
features and their various properties are tabulated in table II.

TABLE II
# PARAMETERS P [M] AND FEATURE DIMENSION D OF SELECTED

MODELS. LS REPRESENTS LIBRISPEECH AND AS IS AUDIOSET.

F Corpus P D TL Type

[15] AVES-Bio FSD, AS, Bio 94.68 768 12 PT
[21] HuBERT LS 960 94.68 768 12 PT

[22] W2V2 LS 960 95.04 768 12 PT
[22] W2V2-100h LS 960 95.04 768 12 PT+FT
[22] W2V2-960h LS 960 95.04 768 12 PT+FT

[23] WLM LS 960 94.38 768 12 PT
[23] WLM-100h LS 960 94.38 768 12 PT+FT

SSL pre-trained on animal vocalizations: We look at the
AVES models family [15], which are essentially the same as
HuBERT models, but pre-trained on bioacoustics data instead
of human speech. We select them based on their effectiveness
on numerous bioacoustic classification and detection tasks,
as well as the extensive benchmarking. Although this model
performs well compared to traditional classifiers [15], its
performance has not been directly compared to a regular
HuBERT model pre-trained on speech. The AVES set are pre-
trained on combinations of publicly available audio datasets,
namely FSD50K [24], AudioSet [25], and VGGSound [26],
instead of human speech. Specifically, we chose the Bio model,



which was pre-trained on a masked-prediction task on a total
of 142K audio segments (360 hours) of the animal label in
the AudioSet ontology (ID: /m/0jbk) and VGGSound class
group. It’s architecture is based on HuBERT’s base model,
and contains 12 encoder transformer layers (TL).

SSL pre-trained on human speech: In order to directly
compare our performance against AVES-Bio, we select the
HuBERT base model, pre-trained on a masked-prediction task.
In addition, we also look at the base WavLM, denoted as
WLM, based on its demonstrated effectiveness in animal call
and caller classification [7], [12], as well as its versatility
in speech processing tasks as benchmarked on the SUPERB
challenge [27]. Finally, we also use the base Wav2Vec2 model,
denoted as W2V2, pre-trained on a constrastive task. All three
models were pre-trained on the 960-hour Librispeech dataset.

SSL pre-trained and fine-tuned on human speech: For
our second study, we assess the impact of fine-tuning on mod-
els pre-trained on human speech for bioacoustic tasks. To that
end, we use WLM fine-tuned on 100 hours of Librispeech, and
W2V2 fine-tuned on both 100 and 960 hours of Librispeech.
All 3 models are fine-tuned on a ASR task1.

Fusion: We also compute a simple fusion representation
as comparison to the other features. For each vocalization
segment, we simply compute the mean across the posterior
probabilities of all the other features, and then take its argmax.

Fig. 2. Feature representation extraction pipeline.

The general pipeline for obtaining a feature vector for a
given vocalization segment is illustrated in fig. 2. We obtain the
features from these each of the SSL models F , by first giving
them the animal vocalizations s as inputs resampled at 16
kHz. We extract the variable-length embeddings x ∈ RN×D

output for each frame. Then, we transform them into fixed-
length vocalization-level representations by computing and
aggregating first and second order statistics across the temporal
axis, resulting in a final feature functional representation
f ∈ R2D. For our work, we extract the embeddings of the
CNN and all encoder transformer layers (TL) of F , since we
are interested in investigating the features at a layer level.

III. EXPERIMENTS AND ANALYSIS

This section looks at the classification performance of the
extracted feature representations. In order to compare and
evaluate the saliency of the different features, we follow

1All fine-tuned models are obtained from Huggingface, namely from the
facebook, microsoft, and patrickvonplaten repositories.

existing literature [7] and classify them using a simple, non-
linear MLP, composed of three blocks of [Linear, LayerNorm,
ReLU] layers, with 128, 64, and 32 number of hidden units
respectively, followed by a final linear layer.

We train the classifier for 30 epochs using cross-entropy
loss, and employ a early-stopping criterion, where training is
stopped if no improvement is observed on the Val set for 10
consecutive epochs. The optimization consists of Adam, with
a η-scheduler of factor 0.1 and patience of 10 epochs. We
evaluate the performance through Unweighted Average Recall
(UAR) as the metric to account for any class imbalance.

A. Pre-Training Domain Analysis

CNN1 2 3 4 5 6 7 8 9 101112
Layer

50

55

60

65
IMV

CNN1 2 3 4 5 6 7 8 9 101112
Layer

85

90

95
Watkins

CNN1 2 3 4 5 6 7 8 9 101112
Layer

35

40

45

50

55
Abzaliev

AVES
HuBERT

Fig. 3. Layer-wise performance of AVES (•) against HuBERT (•).

In this sub-section, we analyze the impact of pre-training
domain by comparing AVES against HuBERT. Figure 3 shows
that HuBERT outperforms AVES in the initial and final layers
for IMV. Both models show that the initial transformer layers
are more important for this task, indicating that this trend is not
specific to speech-based pre-training. The loss of substantial
spectral information in these Marmoset calls when down-
sampled to 16 kHz likely affects the overall performance [7].
For Watkins, we see that AVES’s initial layers are not as
salient as later ones, where as HuBERT’s middle layers are
conversely the least useful. In the Abzaliev dataset, AVES
performs better overall, with both the initial and later layers
contributing comparably. HuBERT, on the other hand, does not
scale well, and follows the same downwards trend as IMV.
Overall, the results indicate that pre-training on bioacoustic
data can provide marginal improvements in some datasets.

B. Fine-Tuning Analysis
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Fig. 4. UAR of W2V2 (▲) and WLM (■) against their fine-tuned versions.
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Fine-tuning yields mixed effects across both models and
datasets, as shown in Figure 4. In several cases, we observe
that fine-tuned models do not consistently outperform their
base counterparts, particularly in W2V2-960h, with perfor-
mance gains being marginal at best. Notably, fine-tuning on
more speech data, such as the 960-hour W2V2, sometimes
leads to a decline in performance in later layers, as seen on
IMV and Abzaliev. This suggests that fine-tuning on speech
may push models to learn task-specific features that don’t
generalize as well to certain bioacoustic tasks.

Interestingly, for non-fine-tuned models, earlier layers often
capture enough general acoustic features to perform ade-
quately. However, for fine-tuned models, selecting the optimal
layer becomes more important, as different layers may capture
more specialized representations that could benefit certain
tasks. This points to the fact that fine-tuning creates more task-
specific representations, making careful layer selection more
necessary for specific bioacoustic tasks.

C. Comparative Analysis

Finally, we look at the general classification performance.
Table III tabulates the result of the layers yielding the highest
scores from the different features.

TABLE III
UAR SCORES [%] ON THE BEST FEATURE LAYER, ON Test.

BEST PERFORMANCE IS BOLDED, SECOND BEST IS UNDERLINED.

Type F IMV Watkins Abzaliev

PT

AVES 62.54 94.95 54.23
HuBERT 64.35 94.18 47.96
WavLM 58.98 94.78 43.97
W2V2 62.40 94.25 48.95

PT + FT
WavLM-100h 60.93 93.93 47.90
W2V2-100h 63.44 91.77 44.91
W2V2-960h 61.25 91.42 44.36

Fusion 62.48 94.78 48.95

We can observe that the best scores are from the AVES
and HuBERT models, both of which consist of the same
architecture, pre-text task, and loss function. HuBERT and
AVES yield very comparable performances for both IMV and
Watkins, indicating that HuBERT’s representations are robust
for call-type classification tasks across different species. AVES
achieves a higher score on the Watkins dataset, suggesting that
for this specific task, pre-training on bioacoustic data yields
a small but notable improvement for species classification.
Additionally, we can clearly observe that all the best scores
are from the PT category, as well as the second best scores
with the marginal exception W2V2-100h on the IMV dataset.
This demonstrates that further fine-tuning pre-trained speech
models on an ASR task does not consistently bring us any
advantage over the pre-trained alone for bioacoustics classi-
fication tasks. It suggests that the pre-trained representations
may already be optimized, and fine-tuning might not always
yield significant benefits. Lastly, we observe that a fusion of
all features over their best layers doesn’t yield a more salient

representation than the best performing model, although it can
outperform some of the others.
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Fig. 5. Confusion matrices of the best feature layers’ fusion.

Figure 5 shows the classifier’s performance of the fusion
features through confusion matrices. We can observe a good
classification alignment for the three datasets. For IMV, there
is a noticeable trend of false positives for call-type ID 2,
likely due to its high occurrence in the dataset, and wide
spectral range, causing an overlap of acoustic features with
the other classes. The Watkins dataset is unsurprisingly the
easiest to classify, likely because of the clear acoustic and
spectral differences in the various species vocalizations, as
well as the high variance in segment lengths. Class ID 13 only
had two samples which results in an empty row. For Abzaliev,
we observe some confusion between the different barks (IDs
0–5) which may contain overlapping acoustic features. Some
classes had very few samples (ID 6), or were removed during
data preprocessing (ID 7), resulting in empty rows.

IV. CONCLUSION

This paper presented a comparison of self-supervised learn-
ing models pre-trained on human speech and animal vocal-
izations for bioacoustic tasks. Through two distinct lines of
investigation, we first examined the impact of pre-training do-
mains by comparing models pre-trained on human speech and
animal vocalizations. The results indicated that pre-training
on bioacoustic data mostly yields comparable performance to
pre-training on speech, but can offer limited advantages in
select contexts. In our second line of investigation, we explored
whether fine-tuning pre-trained speech models on ASR could
further enhance their ability to capture structured patterns
in animal vocalizations. We found that fine-tuning yielded
inconsistent results, suggesting that the general-purpose rep-
resentations learned during pre-training may already be well-
suited for bioacoustic tasks, and further fine-tuning on speech
does not consistently provide additional benefits.

In conclusion, our results highlight the utility of pre-trained
speech models for bioacoustic tasks, even without further fine-
tuning. Future work could explore attention mechanisms in
SSL models to gain deeper insights into how these models
interpret and process specific features of animal vocalizations.
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