
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GEOMETRY-AWARE POLICY IMITATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a Geometry-aware Policy Imitation (GPI) approach that rethinks im-
itation learning by treating demonstrations as geometric curves rather than col-
lections of state–action samples. From these curves, GPI derives distance fields
that give rise to two complementary control primitives: a progression flow that
advances along expert trajectories and an attraction flow that corrects deviations.
Their combination defines a controllable, non-parametric vector field that directly
guides robot behavior. This formulation decouples metric learning from policy
synthesis, enabling modular adaptation across low-dimensional robot states and
high-dimensional perceptual inputs. GPI naturally supports multimodality by pre-
serving distinct demonstrations as separate models and allows efficient compo-
sition of new demonstrations through simple additions to the distance field. We
evaluate GPI in simulation and on real robots across diverse tasks. Experiments
show that GPI achieves higher success rates than diffusion-based policies while
running 20× faster, requiring less memory, and remaining robust to perturbations.
These results establish GPI as an efficient, interpretable, and scalable alternative
to generative approaches for robotic imitation learning.

1 INTRODUCTION

Robots are increasingly expected to perform complex tasks in unstructured environments, rang-
ing from dexterous manipulation to interactive collaboration. Imitation learning offers a promising
path toward this goal, as it enables robots to acquire policies directly from expert demonstrations
without relying on explicit dynamics models or simulation. Existing imitation approaches can be
grouped into three families. Explicit policies treat imitation as supervised regression from states to
actions (Calinon et al., 2007). They are fast at inference but struggle with multimodality and gener-
alization. Implicit policies learn energy functions over state–action pairs (Florence et al., 2022), but
are hard to train and slow to optimize at deployment. Generative policies, such as diffusion or flow-
matching models (Chi et al., 2023; Lipman et al., 2023), excel at modeling multimodality but remain
computationally heavy and brittle under distribution shifts. Despite their differences, all three ap-
proaches compress demonstrations into parametric models that must be retrained to incorporate new
data and that often discard the geometric structure underlying expert behavior.

We argue that imitation learning can be made more direct, interpretable, and efficient by adopting
a geometric approach. At its core, imitation means: (i) following the expert’s direction of motion,
while (ii) approaching expert states as closely as possible. Viewed this way, a demonstration is
not just a collection of samples but a geometric curve in state space, annotated with tangents that
indicate expert actions. This perspective motivates our approach, Geometry-Aware Policy Imita-
tion (GPI). GPI represents demonstrations as distance fields that can be projected onto the robot’s
actuated subspace, where control is applied. From these fields naturally emerge two complemen-
tary primitives: a progression flow that advances along expert trajectories, and an attraction flow
that pulls current states toward them. Superimposing these flows defines a controllable vector field
that drives imitation (Li & Calinon, 2025). This approach provides an approximation that reduces
deviation while advancing along expert behaviors (Figure 1). In addition, the policy is guided by a
distance field composition that retrieves flow fields from the most similar demonstrations, promoting
coherent behavior and enabling robustness even under unknown dynamics.

A key strength of GPI is its decoupling of imitation into two modular components: (i) metric learn-
ing, which defines how states are represented and compared; and (ii) behavior synthesis, which
constructs policies directly from distance and flow fields. This separation offers substantial flexibil-
ity: low-dimensional states can use Euclidean or geodesic distances, while high-dimensional obser-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of Geometry-Aware Policy Imitation (GPI). GPI treats demonstrations as geometric
curves that induce distance fields in the full state space. (Top) The state space is projected onto the robot’s ac-
tuated subspace, where control is applied. The projected distance field gives rise to two complementary flows:
an attraction flow from the negative gradient (red arrow) and a progression flow from trajectory tangents (yel-
low arrow). Together, they define a dynamical system that reduces the distance to demonstrations and advances
along them, thus imitating expert behavior. The resulting action u is executed through the system’s dynamics,
yielding state evolution

∫
f(x, u) dt in the full state space. Multiple demonstrations can be composed naturally

via Boolean operations on distance fields. Despite unknown system dynamics, the resulting trajectory aligns
closely with the most similar demonstration as determined by the distance metric. (Bottom) On the PushT
benchmark, GPI achieves multimodal imitation with a higher reward, runs 20–100× faster than diffusion poli-
cies (DDIM with 10 steps), and requires substantially less memory.
vations can rely on latent embeddings from pretrained or task-specific encoders. Policy synthesis
itself is non-parametric and lightweight, enabling efficient composition of demonstrations without
retraining and supporting multimodality by preserving distinct trajectories as separate flows (Pari
et al., 2022). Moreover, because GPI only requires a state representation that supports distance
computation, rather than directly fitting a full policy function, the learning problem is considerably
simpler than in generative models. Lightweight encoders are typically sufficient, which reduces
training complexity and enables fast inference at deployment.

We evaluate GPI extensively in both simulation and on real robots. In simulation, we bench-
mark across diverse domains—including planar pushing, 6-DoF manipulation, and dexterous hand
control—with state spaces ranging from low-dimensional control vectors to raw vision inputs. For
visual observations, we study multiple feature representations, from pretrained encoders to self-
supervised embeddings. On real hardware, we demonstrate GPI on both a Franka arm and the
Aloha bimanual system, showing that it scales robustly beyond controlled environments.

In summary, our contributions are:

i) Geometry-Aware Policy Imitation (GPI), which represents demonstrations as geometric
curves that induce composable distance fields, providing a unified representation for both met-
ric reasoning and action synthesis;

ii) A simple and modular formulation, where state representation relies only on a suitable dis-
tance metric and action synthesis is realized through compositions of control primitives. Both
components are lightweight, flexible, and grounded in well-studied principles;

iii) Extensive validation in simulation and on real robots, showing that GPI achieves higher per-
formance and enables efficient policy imitation—over 20× faster than state-of-the-art diffusion
policies—while remaining interpretable and multimodal.

2 GEOMETRY-AWARE POLICY IMITATION

GPI constructs policies directly from demonstrations by representing them as geometric curves in
state space. Each demonstration induces a distance field that encodes state similarity and gives rise
to two complementary control primitives: (i) a progression flow that advances along demonstrated
motions, and (ii) an attraction flow that corrects deviations by pulling states toward the trajectory.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Their superposition defines a dynamical system that imitates expert behavior. Local policies derived
from individual demonstrations are then composed via distance-based weighting, producing a coher-
ent global policy that is efficient, interpretable, and robust to perturbations. Figure 1-top illustrates
these components schematically.

2.1 METHOD

We are given N expert demonstrations D = {Γ(i)}Ni=1, where each Γ(i) is a trajectory consisting of
a sequence of states and actions

Γ(i) = {(x(i)
t ,u

(i)
t)}Ti

t=0, (1)

with states x(i)
t ∈ X , actions u(i)

t ∈ U , and horizon Ti.

State and actuated subspace. A state x may include both environment variables (e.g., object poses,
images) that are unactuated, and robot variables that are directly actuated by control inputs. We
denote by x′ = P (x) the projection of x onto the actuated subspace X ′ ⊆ X , where P : X → X ′

is the projection operator. Each trajectory Γ(i) can then be viewed as a geometric curve in state
space, which induces a distance field d(xo | Γ(i)) measuring the proximity between a query state
xo and the demonstration.

Action space. We assume velocity control in the actuated subspace, i.e., ut = ẋ′
t. Each demon-

stration Γ(i) then defines a curve x
(i)
t whose actions u(i)

t are the tangent directions in X ′. Velocity
control is used here for clarity, but it is not a prerequisite: the formulation extends naturally to
accelerations or torques, which can be executed through the robot’s kinematics or dynamics models.

Policy as flow field in actuated space. From the distance field d(xo | Γ(i)) induced by a demon-
stration Γ(i), we derive two complementary flows in the actuated subspace: Progression flow, given
by the demonstrated tangent action u

(i)
κ(xo)

= ẋ
′(i)
κ(xo)

, which advances along the expert trajectory;
and Attraction flow, obtained from the partial derivative of the distance field with respect to actuated
coordinates, −∇x′

o
d(xo | Γ(i)), which corrects deviations by pulling states back toward demonstra-

tions. Their superposition defines a policy in the actuated subspace:

πi(xo) = λ1(xo)u
(i)
κ(xo)

− λ2(xo)∇x′
o
d(xo | Γ(i)), (2)

where κ(xo) = argmint d(xo,x
(i)
t) denotes the nearest demonstrated state, and λ1, λ2 ≥ 0 are

weights—either constant or distance-dependent chosen so that attraction dominates far from demon-
strations, while progression dominates near them. This policy has been shown to yield a stable first-
order dynamical system that asymptotically converges to the demonstrated trajectory if the state
and action variables are continuous (Li & Calinon, 2025)1. This can be achieved by representing
a discrete trajectory with continuous functions such as splines. Thus, the robot’s behavior remains
robust, predictable, and safe even under environmental changes or perturbations.

Composition across demonstrations. To obtain a global policy, we compose local flow-based
policies across multiple demonstrations. Given the K nearest demonstrations, the global policy is

π(xo) =

K∑
i=1

wi(xo)πi(xo), wi(xo) =
exp

(
− β d(xo | Γ(i))

)∑K
j=1 exp

(
− β d(xo | Γ(j))

) , (3)

where πi(xo) is the local policy induced by demonstration Γ(i), d(xo | Γ(i)) is the distance from
query state xo to the trajectory Γ(i), and β > 0 is a temperature parameter controlling the sharpness
of selection. This distance-based composition ensures that flows are retrieved from the most relevant
demonstrations, yielding coherent behavior even under unknown dynamics. A detailed description
of GPI is provided in Algorithm 1 (Appendix B).

2.2 CHOICE OF DISTANCE METRIC

A central design choice in GPI is the distance metric d(xo | Γ(i)), which measures the similarity
between a query state and a demonstration. The state naturally consists of two complementary

1See Appendix A for the proof.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Typical ways to obtain latent embedding z from raw inputs x. (i) train a task-specific lightweight
model to capture task-relevant features; (ii) use a VAE to learn task-agnostic features; or (iii) apply a pretrained
model to obtain features without additional training.

parts: the robot-actuated variables (e.g., joint angles, end-effector pose) and the environment-related
variables (e.g., object poses, images). Accordingly, the distance metric can be decomposed into a
robot feature drob and an environment feature denv, where the former also shapes the attraction flow
in actuated space and the latter only influences demonstration selection and weighting.

Robot distance drob. For joint or end-effector positions x ∈ Rn, Euclidean distance is standard:

dEuc(x1,x2) = ∥x1 − x2∥2. (4)

For end-effector orientations represented as quaternions, geodesic distances on S3 respect rotational
geometry:

dquat(x1,x2) = 2 arccos(|⟨x1,x2⟩|) . (5)
These two cases cover the most common representations in joint space and task space for robotics.

Environment distance denv. This compares task-relevant but indirectly controllable variables, such
as object poses or scene images. For low-dimensional object poses, denv can be computed with Eu-
clidean or geodesic distances, reusing the formulations above. For high-dimensional observations,
it is common to define denv in a latent space. Let z = Ψ(x) denote the latent embedding of x. Then

denv(x1,x2) = denv(z1, z2) , (6)

where z1 = Ψ(x1) and z2 = Ψ(x2) are latent embeddings produced by a parametric model Ψ that
maps raw observations to a latent space, and d(·, ·) denotes a suitable distance (e.g., Euclidean or
cosine). This formulation supports multiple sources of embeddings: (i) task-specific models, where
z could encode predicted object poses or desired robot actions learned via supervision; (ii) latent
variables from variational autoencoders (VAEs) trained with self-supervised objectives (Kingma &
Welling, 2013); and (iii) pretrained vision or multimodal encoders such as SAM (Kirillov et al.,
2023), DINO (Siméoni et al., 2025), and CLIP (Radford et al., 2021), see Figure 2 for an overview.
Classical dimensionality-reduction methods, such as principal component analysis (PCA), can also
be used to obtain a compact latent feature (Hotelling, 1933).

While both drob and denv contribute to the overall distance metric, their roles differ: denv influences
only the similarity ranking across demonstrations, whereas drob additionally shapes the attraction
flow in the actuated subspace. This decomposition makes explicit how environmental features guide
demonstration selection, while robot features govern the actual corrective control.

2.3 A 2D EXAMPLE

To illustrate GPI, we consider a simplified 2D setting where the state consists only of actuated
variables x′. This abstraction is common in kinematic planning tasks, where environment dynamics
are ignored. In this case, the distance field reduces to the robot-related term, d(xo) = drob(x

′
o),

so that state evolution and policy flows are fully contained in the same space. While prior work
typically trains diffusion or flow-matching models for policy generation in this setting (Jiang et al.,
2025), GPI instead addresses the problem in a fully non-parametric manner, relying directly on the
distance and flow fields.

Figure 3(a) shows two demonstrations forming a Y-shaped pattern: Γ(1) (green) and Γ(2) (blue)
overlap initially and then diverge into separate branches. Temporal progression is indicated by
transparency from t = 0 to t = 1. Each demonstration induces a Euclidean distance field whose
valleys align with its trajectory; composing them yields a global distance field (Figure 3b) visualized
as an energy landscape with dense corridors along the demos and a natural decision boundary at the
bifurcation. Figures 3(c,d) show the resulting flow fields: each row includes the single-demo flow
(left) and the composed flow (both demos), with rollout trajectories overlaid on the energy land-
scape (right). Panel (c) depicts the progression flow, which follows the local tangent of the nearest

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Demonstrations (c) Flow field with action u = ẋ

(b) Energy landscape (d) Flow field with u = λ1ẋ− λ2∇xd

Figure 3: From demonstrations to policy flows. (a) Demonstrations. (b) Energy from composed distances.
(c) Progression-only flow u = ẋ may drift off the demonstrations. (d) Adding attraction u = λ1ẋ − λ2∇xd
pulls states toward the demonstrations and along them, ensuring convergence.

demonstration; Panel (d) augments this with an attraction term that pulls states toward the trajec-
tories, ensuring stable convergence. The rollout trajectories (red) show the integrated trajectories
in two cases. From this perspective, diffusion policies perform well because their denoising steps
implicitly induce an attraction flow toward demonstrations rather than relying solely on progression.

By representing demonstrations as distance and flow fields, policy imitation shifts from fitting a
parametric model to geometric reasoning grounded in similarity, curvature, and composition, yield-
ing several benefits: Efficiency—new demonstrations enrich the distance field by adding basins of
attraction without retraining, and inference reduces to distance evaluations plus weighted averag-
ing of expert actions, making it lightweight and parallelizable; Flexibility—decoupling similarity
measurement from action synthesis keeps the framework modular, allowing task-specific distance
metrics and flow compositions; Multimodality—each demonstration defines its own distance and
flow field, preserving distinct behaviors so the policy branches smoothly toward the nearest demon-
strated mode instead of averaging conflicting actions; Interpretability—the distance metric reveals
which demonstrations influence the current action, while actions remain a linear superposition of
demonstrated behaviors and corrective flows, ensuring safe, bounded outputs.

3 EXPERIMENTAL RESULTS

3.1 SIMULATION EXPERIMENTS

We first evaluate GPI on the PushT benchmark, a widely adopted task in which a robot must push a
T-shaped object into a target configuration (Chi et al., 2023). This environment is particularly suit-
able for evaluation: it has well-established baselines for comparison, requires handling inherently
multimodal pushing strategies, and involves contact-rich dynamics that cannot be solved by simple
kinematic planning.

For state-based inputs, demonstrations consist of the agent position, the object position, and the
object orientation. Distances are computed as a weighted combination of these components. The
actuated subspace corresponds to the agent position, with its first-order derivative (velocity) serving
as the action. Note that the original environment specifies actions in position control, which we adapt
to velocity control for consistency with our flow-based formulation. Control policies are synthesized
from the flow fields induced in the actuated subspace by corresponding demonstrations, and then
executed in the environment with unknown interaction dynamics. For vision-based inputs, the state
comprises the agent pose and an RGB image. Distances are computed jointly over the agent pose and
an image embedding. To align with the state-based formulation, we train a lightweight task-specific
model to produce the image embedding as the predicted object pose.

Experiments were conducted on an NVIDIA RTX 3090 GPU. Further details appear in Appen-
dices C.1 and C.2. We report performance using three complementary metrics: (i) Average / maxi-
mum reward, evaluated over multiple random seeds and environment variations, following the same

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on Push-T (state-based vs. vision-based).

Push-T (state-based) Push-T (vision-based)

Method (Avg./Max.) score (%) Training / Inference Time Memory (Avg./Max.) score (%) Training / Inference Time Memory

DDPM 82.3 / 86.3 1.0 h / 641 ms 252 MB 80.9 / 85.5 2.5 h / 647 ms 353 MB
DDIM 81.5 / 85.1 1.0 h / 65 ms 252 MB 79.1 / 83.1 2.5 h / 67 ms 353 MB
FMP 77.6 / 80.2 1.0 h / 58 ms 251 MB 75.1 / 79.3 2.5 h / 60 ms 352 MB
SFP 83.1 / 87.8 0.8 h / 51 ms 240 MB 77.5 / 81.2 2.0 h / 55 ms 341 MB
GPI (Ours) 85.8 / 89.0 0 h / 0.6 ms 0.7 MB 83.3 / 86.9 0.3 h / 3.3 ms 44 MB

protocol as the baselines; (ii) time, including training time and per-step inference time; and (iii)
memory footprint, including memory cost for model parameters and stored demonstrations. We
compare GPI against Diffusion Policy (DP) (Chi et al., 2023), Flow Matching Policy (FMP) (Zhang
& Gienger, 2024), and Streaming Flow Policy (SFP) (Jiang et al., 2025). All baselines are im-
plemented using their official public codebases. For DP, we evaluate both a 100-step Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) and a 10-step Denoising Diffusion Implicit
Model (DDIM) (Song et al., 2021). Following standard practice, DP and FMP predict an H-step
action sequence (H = 8), whereas SFP and GPI naturally support reactive planning and operate
with a one-step horizon (H = 1). Results are summarized in Table 1. GPI achieves higher success
rates across all tasks than these baselines while being substantially more computationally efficient.

In the state-based setting, inference involves only low-dimensional, non-parametric distance evalua-
tions and flow field composition, resulting in a latency of 0.6ms—nearly 100× faster than diffusion-
or flow matching–based baselines. Although GPI requires storing all demonstrations for distance
measurement, the overall memory footprint remains lower than that of training large neural poli-
cies2 Moreover, the underlying computations are lightweight and naturally parallelizable, further
contributing to its efficiency. For vision-based inputs, we employ a ResNet-18 encoder trained
solely for feature extraction rather than precise action prediction, which simplifies training and im-
proves efficiency. As a result, training completes in only 0.3 hours and inference runs at 3.3ms per
step. Memory requirements are also reduced, since we store only the lightweight encoder and latent
embeddings of demonstrations rather than raw images or large policy networks. Additionally, this
modular structure allows the visual encoder to be reused across different tasks.

Figure 4: Robustness to action horizons.

We further conduct a series of ablations to high-
light the distinctive properties of GPI:

Robustness. We evaluate GPI’s robustness
along three complementary dimensions.

Planning horizon: GPI is reactive by default
(H = 1), but it can also be extended to a
receding-horizon scheme by updating the dis-
tance every H steps. As shown in Figure 4,
performance remains stable for horizons up to
16, showing GPI can operate either as a purely
reactive controller (robust to external distur-
bances) or as a receding-horizon planner (with
improved temporal consistency).

Number of neighbors: In action composition,
we compare K = 1, 3, 5, 10. As shown in Fig-
ure 5, the curves are nearly overlapping in both relative and absolute state settings, confirming that
performance is largely insensitive to the choice of K. In addition, we also ablate the softmax tem-
perature β used in (3) for composing demonstrations, and the results are reported in Appendix D.4.
This highlights the reliability of GPI’s local composition mechanism.

State representation: We compare object-centric (relative) and global (absolute) state formulations
(Figure 5). Both achieve strong performance, but relative states consistently yield slightly higher
scores, especially in data-scarce regimes. This suggests that GPI is robust to representation choices,
with relative states offering an advantage when demonstrations are limited.

2See Appendix D.1 for a detailed explanation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1K 5K 10K 20K 50K 100K 160K
Number of Demonstrations

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Relative State

k=1
k=3
k=5
k=10

1K 5K 10K 20K 50K 100K 160K
Number of Demonstrations

R
ew

ar
d

Absolute State

k=1
k=3
k=5
k=10

Figure 5: Robustness of GPI with respect to demonstrations, K (neighbors), and state representations.

Distance metrics. We evaluate how the choice of distance metric and the relative weighting between
robot and environment components affect performance; detailed ablations and results are reported
in Appendix D.3.

Scalability with data sizes. A distinctive advantage of GPI is that, being non-parametric and
training-free in the state-based setting, it enables direct study of how performance scales with the
number of demonstrations, without the need for retraining. To this end, we augment the dataset with
up to 160K samples regenerated from the original diffusion policy work and evaluate how perfor-
mance evolves as the demonstration set grows. This setting is particularly suitable for GPI, since
demonstration density directly influences both the distance query and the selection of actions in the
composed policy. As shown in Figure 5, success rates increase consistently as the dataset expands
from 1K to 20K demonstrations, after which performance begins to saturate. This trend reveals two
key insights: (i) larger demonstration sets provide denser coverage of the state space, thereby reduc-
ing approximation errors introduced by the chosen distance metric, and (ii) our approach can serve
as a practical diagnostic tool—indicating how many demonstrations are sufficient to achieve reliable
policy performance before training parametric models. The method also accommodates incremental
incorporation of new demonstrations, without the need for full retraining. For a detailed analysis of
latency and memory scalability as the number of demonstrations and the latent dimension increase,
please refer to Appendix D.2.

0.00.10.20.30.40.5
Noise Level

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ew

ar
d

Reward
Diversity 50

100

150

200

250

D
iv

er
si

ty

Figure 6: Noise-level ablations for score and diver-
sity.

Stochasticity and multimodality. To in-
duce stochasticity and multimodality, we inject
Gaussian noiseN (0, σ2) into the query state in
the actuated space (corresponding to the agent’s
position). This perturbation alters the effec-
tive distance fields used in composition, thereby
modifying the synthesized flow field and in-
ducing multimodal behavior. In Figure 6, we
compare the average score achieved under dif-
ferent noise levels. To quantify diversity, we
measure the average distance among trajecto-
ries generated with different random perturba-
tions sampled from the same noise distribution.
The results show that larger noise values in-
crease trajectory diversity but degrade perfor-
mance, whereas smaller noise levels yield more deterministic behavior. Importantly, GPI exhibits
multimodal behavior even under low noise (e.g., σ = 0.2), as illustrated in Figure 1 (bottom left).
Beyond Gaussian perturbations, stochasticity can also be enhanced by randomly subsampling the
set of demonstrations at each inference time. We found that this strategy can improve performance
in practice, for instance, by helping the robot escape from regions where it would otherwise become
stuck.

Natural composition of control primitives. We interpret progression and attraction as two ba-
sic control primitives that can be naturally combined within the flow field. By varying their rel-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ative weights (λ1, λ2), we interpolate between velocity-like (progression-driven) and position-like
(attraction-driven) control. As shown in Figure 7, GPI maintains consistently high scores across a
wide range of weightings, demonstrating flexibility in composing these primitives at test time rather
than relying solely on fixed neural network outputs. In this view, progression promotes forward
motion and task advancement, while attraction provides goal alignment and stability.

Figure 7: Ablations on two control primitives.

Generalization across tasks. We evaluate GPI
on RoboMimic (Lift, Can, Square) (Mandlekar
et al., 2021) and Adroit (Door, Pen, Ham-
mer, Relocate) benchmarks (Rajeswaran et al.,
2018), spanning state spaces of 9–46 dimen-
sions and action spaces of 7–30. GPI consis-
tently matches or exceeds the performance of
Diffusion Policy without requiring any para-
metric training (Table 2), demonstrating robust
generalization across diverse domains. The
snapshots of those tasks are shown in Figures
11 and 12 (in Appendix D.5) respectively. Ad-
ditionally, we test GPI on 2D Maze task (Chen
et al., 2025; Janner et al., 2022) and visual-
ization results in shown in Figure 13 in Ap-
pendix D.6.

Table 2: Task description and performance on Robomimic and Adroit Hand benchmarks.

Robomimic Adroit Hand

Task / Method Lift Can Square Door Pen Hammer Relocate

Description
State Dim 9 16 16 39 45 46 39
Action Dim 7 7 7 28 24 26 30
Demonstrations 300 300 300 5000 5000 5000 5000

Results
DP 1.00 0.94 0.87 1.00 0.89 0.83 0.91
Ours 1.00 0.96 0.82 1.00 0.95 0.88 0.91

Generalization across visual representa-
tions. As discussed in Section 2.1, GPI naturally accommodates multiple choices of latent em-
beddings, including task-specific encoders, VAEs, and pretrained models. We evaluate four variants
on PUSHT: (i) a ResNet feature (He et al., 2016) pretrained within the Diffusion Policy implemen-
tation, with PCA applied for dimensionality reduction; (ii) an unsupervised variational autoencoder
(VAE) trained solely on RGB images, serving as a task-agnostic feature extractor; and (iii) a pre-
trained Segment Anything (SAM) model (Kirillov et al., 2023) followed by a pose-estimation mod-
ule whose predicted object pose serves as the embedding. Implementation details are provided in
Appendices C.3 (ResNet+PCA), C.4 (VAE) and C.5 (SAM). Additionally, we compare our VAE-
based encoder to a self-supervised Bootstrap Your Own Latent (BYOL) encoder (Grill et al., 2020)
for feature extraction, which is also used in VINN (Pari et al., 2022) for non-parametric policy
synthesis.

Table 3: Performance of various visual rep-
resentations on the pushT task.

Feature Extractor Avg. Score
Diffusion Policy 85%
Task-specific Head 87%
ResNet+PCA 84%
VAE 88%
Pretrained SAM 41%
BYOL feature 67%

Results in Table 3 show that GPI with the same ResNet
features followed by PCA achieves performance compa-
rable to Diffusion Policy, which uses the same ResNet
features with a diffusion head. Interestingly, a lightweight
VAE encoder trained only for reconstruction also yields
strong performance. With the KL regularizer encouraging
latents to stay near the priorN (0, I), it produces a smooth
latent space in which linear interpolations tend to remain
on-manifold. This VAE trains in ∼ 0.3 hours and runs at
∼4 ms per inference—comparable to our task-specific vi-
sual head (Table 1). In contrast, a self-supervised BYOL
feature performs worse than the VAE on PUSHT. A plau-
sible explanation is that the VAE’s reconstruction objective encourages latent codes to retain and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

smoothly parameterize scene geometry, which is particularly well matched to GPI’s distance fields
and flows, whereas BYOL emphasizes invariance to augmentations and may discard some of this
geometric information. Finally, even an off-the-shelf pretrained SAM model within the GPI frame-
work achieves a 41% average score without any fine-tuning. This variant underperforms our other
encoders, likely due to sensitivity to segmentation quality and the downstream pose estimation mod-
ule; we expect that task-specific fine-tuning would improve its performance.

3.2 ROBOT EXPERIMENTS

To further evaluate GPI, we conduct robot experiments on two challenging tasks:

Figure 8: Real-robot flipping task. GPI successfully completes the
task via multimodal behavior (Top 3 rows) and demonstrates robust-
ness to visual disturbances (Bottom).

(i) Box flip. The robot must
flip a box by exploiting con-
tacts among the end-effector, the
box, and an aluminum crossbeam,
which is challenging due to un-
known, highly nonlinear dynam-
ics. We collect 121 demonstra-
tions on an ALOHA platform (Al-
daco et al., 2024). The dataset con-
tains over 50, 000 RGB images and
action pairs. A lightweight neu-
ral network takes a raw RGB im-
age as input and predicts an action;
this predicted action serves as the
image embedding. Distances are
computed jointly over the robot joint configuration and the action embedding to construct the dis-
tance field, from which the flow field is derived for the robot’s execution. We observe an infer-
ence time of approximately 7 ms and a memory footprint of 140 MB, comprising 139 MB for the
feature-extraction model and 1 MB for storing latent features. In 50 flip trials, 39 are successful,
corresponding to a 78% success rate. A trial is counted as successful if the robot flips the box to the
target orientation within 500 control steps at 50 Hz. During these experiments, we also introduce
occlusions and external disturbances; GPI still reliably completes the flip, indicating robustness to
sensing and dynamics perturbations.

(ii) Human–robot fruit handover. A human hands fruit to the robot. The robot must exe-
cute a smooth, anticipatory interaction while synchronizing its timing with the human and re-
maining robust to unpredictable motions and sensing noise. This task is run on a Franka robot.

Figure 9: Real robot experiment on human-robot inter-
action task.

We collect a single demonstration to align the
robot’s motion phase with the human hand tra-
jectory. At execution time, a pretrained CLIP
model (Radford et al., 2021) provides a fruit-
detection score, which we combine with the de-
viation from the demonstrated hand trajectory
to define the distance field. This field deter-
mines the robot’s phase and progression; the
robot follows the progression flow until the de-
sired phase is reached, yielding synchronized
and fluid handovers. We observe 46 successful
handovers out of 50 trials, resulting in a 92%
success rate. A trial is counted as successful
if the robot correctly recognizes the fruit and
anticipates and adapts to the human hand mo-
tion to complete the delivery. During execution,
we vary the object shapes and initial positions
while still using only a single demonstration, and the policy consistently completes the task, demon-
strating robustness and generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

More details about the robot platform, experimental setup, and training details are illustrated in
Appendices C.6 and C.7, respectively. The robot behavior during two tasks is shown in Figures 8, 9
and the attached video.

4 RELATED WORK

Among approaches to acquiring robotic skills—reinforcement learning (Sutton & Barto, 1998)
and optimal control (Bertsekas, 1995), imitation learning (IL) (Osa et al., 2018) stands out for not
requiring explicit task models or cost functions, making it especially appealing when dynamics
are hard to model. Even when such models exist, demonstrations can accelerate and improve
solutions (Nair et al., 2018; Razmjoo et al., 2021). Early approaches focus on time-dependent
dynamical movement primitives, such as Dynamic movement primitives (DMP) (Ijspeert et al.,
2013) and Probabilistic Movement Primitives (ProMP) (Paraschos et al., 2013), or time-independent
dynamical systems (Khansari-Zadeh & Billard, 2011). They provide well-established approaches
and efficient frameworks, but are usually limited in capturing complex, multi-modal demonstration
patterns. Recent learning-based approaches, such as Implicit Behavior cloning and Diffusion policy,
address this issue and have demonstrated impressive performance across a range of tasks (Florence
et al., 2022; Chi et al., 2023; Zhang & Gienger, 2024). However, these methods introduce challenges
such as hard to train, slow inference, and need multi-step inference (LeCun et al., 2006; Du &
Mordatch, 2019; Song & Ermon, 2019; Nijkamp et al., 2020; Zhang & Gienger, 2024). GPI bridges
dynamical systems and modern learning by representing demonstrations as distance fields—linking
naturally to metric learning for high-level scene representations while inducing flow fields for
low-level control. The closest prior, VINN (Pari et al., 2022), learns visual representations via
self-supervision and retrieves policies with kNN, achieving strong visual imitation. In contrast, GPI
supports diverse latent representations and synthesizes policy flows—demonstrating effectiveness
on tasks with complex dynamics.

5 LIMITATION AND CONCLUSION

We present Geometry-aware Policy Imitation (GPI), which treats demonstrations as geometric
curves that induce a distance field and policy flows. This perspective yields a simple, flexible,
efficient, multimodal, and interpretable policy that composes behaviors and integrates with diverse
latent representations. Our approach has a few limitations that are worth exploring in future work:

Choice of distance metric and representation. The metric and visual representation are the key
design levers that shape the induced flows. In this work, we rely on simple, manually specified met-
rics and off-the-shelf encoders. Making these components learnable and co-optimizing them with
policy synthesis—potentially conditioned on task or context—could further improve robustness and
out-of-distribution generalization while preserving the geometric structure that makes GPI inter-
pretable. Another promising direction is to leverage large models to provide task-relevant robotic
features (Intelligence et al., 2025; Barreiros et al., 2025).

Scene dynamics and stability. Our current results follow the standard imitation learning paradigm:
environment dynamics and unactuated components are treated as unknown, and policies are learned
purely from data rather than from a full dynamics model. A natural extension is to incorporate known
or learned dynamics models into the flow construction and analyze when the resulting closed loop
is provably stable and robust, for example via Lyapunov or contraction certificates with perturbation
and model-mismatch bounds. This could provide stronger guarantees in safety-critical settings.
Our Lyapunov-style analysis assumes a smooth distance field in the actuated subspace, so it does
not formally extend to discretized or non-smooth demonstrations, even though our time-discretized
benchmarks remain empirically robust.

Scalability of demonstrations. GPI stores only latent features and distances are computed in a
single batched operation, leading to favorable latency and memory scaling in our empirical study.
However, the memory footprint still grows linearly with the number of stored states. Future work
could reduce this dependence via compact implicit distance parameterizations while preserving ge-
ometric fidelity and fast retrieval.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jorge Aldaco, Travis Armstrong, Robert Baruch, Jeff Bingham, Sanky Chan, Kenneth Draper, De-
bidatta Dwibedi, Chelsea Finn, Pete Florence, Spencer Goodrich, et al. Aloha 2: An enhanced
low-cost hardware for bimanual teleoperation. arXiv preprint arXiv:2405.02292, 2024. 9

Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau, Hongkai Dai, Ching-
Hsin Fang, Kunimatsu Hashimoto, Muhammad Zubair Irshad, Masha Itkina, et al. A care-
ful examination of large behavior models for multitask dexterous manipulation. arXiv preprint
arXiv:2507.05331, 2025. 10

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Volumes I and II. Athena Sci-
entific, Belmont, MA, 1st edition, 1995. 10

Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing, and generalizing a
task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics), 37(2):286–298, 2007. 1

Boyuan Chen, Diego Martı́ Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. Advances in
Neural Information Processing Systems, 37:24081–24125, 2025. 8, 22

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023. 1, 5, 6, 10

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019. 10

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on robot learning, pp. 158–168. PMLR, 2022. 1, 10

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020. 8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016. 8

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 6

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of Educational Psychology, 24(6):417–441, 1933. 4

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural computation, 25(2):
328–373, 2013. 10

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. \pi {0.5} a vision-language-
action model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025. 10

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022. 8, 22

Sunshine Jiang, Xiaolin Fang, Nicholas Roy, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Sid-
dharth Ancha. Streaming flow policy: Simplifying diffusion / flow-matching policies by treating
action trajectories as flow trajectories. arXiv preprint arXiv:2505.21851, 2025. 4, 6

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

S Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical systems with
Gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011. 10

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013. 4

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In 2023
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3992–4003. IEEE Com-
puter Society, 2023. 4, 8

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006. 10

Y. Li and S. Calinon. From movement primitives to distance fields to dynamical systems. IEEE
Robotics and Automation Letters (RA-L), 2025. 1, 3

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In 11th International Conference on Learning Representations, ICLR
2023, 2023. 1

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In Conference on Robot Learning (CoRL), 2021.
8

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and P. Abbeel. Overcoming
exploration in reinforcement learning with demonstrations. International Conference on Robotics
and Automation (ICRA), pp. 6292–6299, 2018. 10

Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent
non-persistent short-run MCMC toward energy-based model. In Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pp. 11588–11600, 2020. 10

Takayuki Osa, Fabio Pardo, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Foundations and Trends in Robotics, 7(1-2):
1–179, 2018. doi: 10.1561/2300000053. 10

Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic move-
ment primitives. Advances in neural information processing systems, 26, 2013. 10

Jyothish Pari, Nur Muhammad (Mahi) Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The Surprising Effectiveness of Representation Learning for Visual Imitation. In Proceedings of
Robotics: Science and Systems, New York City, NY, USA, June 2022. doi: 10.15607/RSS.2022.
XVIII.010. 2, 8, 10

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Proceedings
of the 38th International Conference on Machine Learning, volume 139 of ICML, pp. 8748–8763,
2021. 4, 9

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. Robotics: Science and Systems XIV, 2018. 8

A. Razmjoo, T. S. Lembono, and S. Calinon. Optimal control combining emulation and imitation
to acquire physical assistance skills. In 20th International Conference on Advanced Robotics
(ICAR), pp. 338–343. IEEE, 2021. 10

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Théo Moutakanni, Leonel Sentana,
Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3, 2025. URL https://arxiv.org/
abs/2508.10104. 4

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021. 6

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019. 10

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1st edition, 1998. 10

Fan Zhang and Michael Gienger. Affordance-based robot manipulation with flow matching. arXiv
preprint arXiv:2409.01083, 2024. 6, 10

13

https://arxiv.org/abs/2508.10104
https://arxiv.org/abs/2508.10104

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A CONVERGENCE OF THE FLOW POLICY

We prove convergence of the policy introduced in Section 2.1, which combines progression and
attraction flows to form a stable dynamical system in the actuated subspace. For clarity, we rewrite
the flow policy (equation 2) as

ẋ = λ1ẋt∗ − λ2∇d(x), (7)
where d(x) is the distance to the demonstration, ∇d(x) its gradient, ẋt∗ the tangent velocity at the
projection point xt∗ , and λ1, λ2 ≥ 0 weight progression and attraction.

We analyze stability using the Lyapunov function

V (x) = 1
2d

2(x) ≥ 0, (8)

which vanishes only on the demonstration. Its time derivative is

V̇ (x) = d(x)∇d(x)⊤ẋ. (9)

Substituting the dynamics gives

V̇ (x) = d(x)∇d(x)⊤
(
λ1ẋt∗ − λ2∇d(x)

)
. (10)

To simplify this expression, we use the fact that the projection point xt∗ is defined as the minimizer
of the squared distance

∥xt − x∥2. (11)
At this minimizer, the derivative with respect to t must vanish:

(xt∗ − x)⊤ẋt∗ = 0. (12)

This condition implies that the displacement vector xt∗ − x, and therefore the gradient ∇d(x), is
orthogonal to the trajectory tangent ẋt∗ :

∇d(x)⊤ẋt∗ = 0. (13)

With this orthogonality property, the Lyapunov derivative reduces to

V̇ (x) = −λ2d(x)∥∇d(x)∥2 ≤ 0, (14)

with equality only if d(x) = 0. This shows that the system is globally stable and asymptotically
converges to the demonstrated trajectory in the actuated space.

Assumptions and scope. This analysis is carried out for a continuous-time system in the actu-
ated subspace, assuming a smooth demonstration trajectory and a well-defined, differentiable dis-
tance field around it. The result should therefore be interpreted as a convergence guarantee for
this idealized setting. In practice, GPI is implemented in discrete time and with time-discretized
demonstrations; the same flow construction is used, and we empirically observe stable rollouts in all
benchmarks.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B GPI ALGORITHM

Algorithm 1 Geometry-Aware Policy Imitation

Require: D = {Γ(i)}Ni=1, each Γ(i) = {(x(i)
t ,u

(i)
t)}Ti

t=0; projection P ; encoder Ψ; robot/environ-
ment distances drob, denv; mixing αrob, αenv > 0; weights λ1(·), λ2(·); temperature β; top-K

Ensure: Control u ∈ X ′ at query xo

1: x′
o ← P (xo), zo ← Ψ(xo)

2: for all i ∈ {1, . . . , N} (parallel over demonstrations) do
3: Per-time distances

d
(i)
rob ←

(
drob(x

′
o,x

′(i)
t)

)
t
, d(i)

env ←
(
denv(zo,Ψ(x

(i)
t))

)
t

4: Combined distance: d(i) ← αrobd
(i)
rob + αenvd

(i)
env

5: Nearest time index and scalar distance:

κ(i)(xo)← argmin
t

d
(i)
t , d(xo | Γ(i))← min

t
d
(i)
t

6: Progression flow: u
(i)
κ ← u

(i)

κ(i)(xo)
= ẋ

′(i)
κ(i)(xo)

7: Attraction flow: u
(i)
att ← −∇x′

o
drob

(
x′
o,x

′(i)
κ(i)(xo)

)
8: Local policy:

πi(xo) ← λ1
(
d(xo | Γ(i))

)
u(i)
κ + λ2

(
d(xo | Γ(i))

)
u
(i)
att

9: Top-K selection by demonstration distance: IK ← indices of the K smallest d(xo | Γ(i))

10: Softmax weights over selected demos: wi(xo)←
exp

(
− β d(xo | Γ(i))

)∑
j∈IK

exp
(
− β d(xo | Γ(j))

) (i ∈ IK)

11: Global policy: u = π(xo) =
∑
i∈IK

wi(xo)πi(xo)

12: return u

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

C.1 PUSHT TASK WITH STATE-BASED INPUTS

For low-dimensional states, each demonstration is represented as

x
(i)
t = [xa, ya, xb, yb, θb] ∈ R5,

where (xa, ya) denote the agent position, (xb, yb) the block position, and θb the block orientation.
The associated action specifies the target location for a low-level controller:

u
(i)
t = [xtarget, ytarget],

which we rewrite for velocity control as the relative displacement:

u
(i)
t = [xtarget − xa, ytarget − ya].

All state variables are normalized to [0, 1] before computing distances. The distance field d(x,Γ(i))
is defined as the weighted sum of three components:

d(x,x
(i)
t) = wobj ∥(xb, yb)−(x(i)b , y

(i)
b)∥2+wagt ∥(xa, ya)−(x(i)a , y(i)a)∥2+wθ ang(θb, θ

(i)
b), (15)

where ang(·, ·) denotes angular distance. Unless otherwise stated, the weights are set to wobj =
wagt = wθ = 1.0.

Each demonstration induces a distance field and an associated flow policy. At inference time, the
global policy is formed by composing the K nearest demonstration policies, with λ1 = λ2 = 1.0.
Evaluation is performed on environment seeds 500–510 using three distinct policy seeds.

We further explore several variants to improve the flexibility of GPI:

Relative vs. absolute state representation. The PushT task involves nonlinear contact dynam-
ics, so the choice of state representation is important. In the relative variant, the agent position is
expressed in the object’s coordinate frame:

p̃a = R(−θb)
(
(xa, ya)− (xb, yb)

)
, (16)

where R(−θb) is the SE(2) rotation matrix aligning the block’s orientation to the x-axis. The
demonstrated action ut is similarly transformed. During execution, the predicted action ũ is mapped
back to global coordinates via the inverse transformation:

u = R(θb) ũ+ (xb, yb). (17)

Smooth flow fields. When the action horizon is set to 1, the controller is highly reactive and may
produce abrupt changes whenever the nearest demonstration switches. To mitigate this, we apply
first-order smoothing to the action sequence:

usmooth
t = αut + (1− α)usmooth

t−1 , (18)
where α ∈ [0, 1] is a smoothing parameter.

Recent-action suppression. To mitigate oscillatory behavior arising from repeatedly selecting near-
identical actions, we maintain a sliding-window memoryM of the most recent M actions. During
action selection, if the candidate ut lies within a tolerance ϵ of any element inM, it is suppressed
and the next-best candidate from the composed policy is chosen. This mechanism enforces diversity
over short horizons, prevents immediate backtracking to previously executed actions, and ensures
the policy explores novel trajectories while preserving responsiveness.

Perturbed query states. To evaluate robustness, we perturb the query agent position with additive
Gaussian noise:

x̃′ = x′ + ϵ, ϵ ∼ N (0, σ2I), (19)
where x′ = (xa, ya) is the agent substate. The noise variance σ2 is annealed over time, decaying
from σ = 0.1 at the beginning of execution to σ = 0.001 at later steps. This perturbation injects
stochasticity into the query states, which increases variability in the retrieved flows and can induce
multimodal behaviors.

Subsampled demonstrations. For efficiency and robustness, instead of using all demonstrations,
we randomly sample a subset Γsub ⊂ Γ at each query. The global policy is then composed over Γsub.
Empirically, we find that subsampling does not reduce performance; in some cases, the induced
stochasticity even helps the agent escape undesirable cycles or “stacked” behaviors.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 PUSHT TASK WITH VISION-BASED INPUTS

In the PushT environment, observations consist of an RGB image I together with agent positions
(xa, ya). Each demonstration state is represented as

x
(i)
t = [xa, ya, I].

Vision encoder. To obtain compact image features, we use an encoder ψ with a ResNet-18 backbone
(group normalization) and a projection head (MLP with sizes [512, 256, 128, 3]). The encoder is
trained with a mean squared error (MSE) loss to predict the object position and orientation:

ψ(I) ≈ [xo, yo, θo], LMSE = 1
B

B∑
i=1

∥∥x(i)
pred − x

(i)
target

∥∥2
2
.

Training is performed for 200 epochs using the Adam optimizer with a learning rate of 0.001.

Distance metric and policy synthesis. After training, each demonstration image is embedded as

z
(i)
t = ψ(I

(i)
t),

and for a query state xo = [xa, ya, I],
zo = ψ(I).

Distances are defined in this learned feature space and policy synthesis then proceeds identically to
the state-based inputs.

C.3 PUSHT TASK WITH RESNET-18 ENCODER AND PCA

We construct a compact observation embedding by reusing the same ResNet-18 encoder from
the Diffusion Policy implementation (task-pretrained on PUSHT). At inference, this encoder is
frozen and used as a fixed feature extractor. We aggregate features over a short temporal win-
dow (obs horizon = 2), apply PCA for dimensionality reduction on the image features, and
concatenate with the last two agent positions (normalized and reweighted to balance scale). Each
demonstration is thus represented in this joint embedding space. At test time, the current observation
is embedded in the same way, and the closest demonstration under cosine similarity is identified. The
policy then follows the flow induced by this demonstration, with progression and attraction weights
set to λ1 = λ2 = 1.0.

Per-timestep features. Given an image I and agent position [xa, ya], we extract a 512-D descriptor
ψ(I) with the frozen ResNet-18 backbone (final FC removed; BatchNorm→ GroupNorm as in the
diffusion policy).

Temporal windowing and dimensionality reduction. With obs horizon T = 2, we flatten the
last T descriptors and apply IncrementalPCA to project them to 16 principal components:

zt = PCA16([ψ(It−1), ψ(It)]) ∈ R16.

Concatenation with agent positions. To balance image and agent information, we concatenate the
PCA embedding zt with the normalized agent positions from the last two steps. All embeddings are
L2-normalized before similarity computations.

Policy selection. At test time, the query embedding is compared to the demonstration database using
cosine similarity, and the flow is executed with λ1 = λ2 = 1.0. To prevent degenerate repeats, the
selected pair is removed from the database at the next step.

C.4 PUSHT TASK WITH VAE

We construct a compact observation embedding using a convolutional variational autoencoder
(VAE) trained directly on PUSHT images. At inference, we discard the decoder and use only the
encoder to produce latent codes, which are concatenated with scaled agent positions to form the fi-
nal embedding. The global policy then follows the flow induced by the closest demonstration under
cosine similarity, with progression and attraction weights set to λ1 = λ2 = 1.0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Per-timestep features. Given an image It with pixel values normalized to [0, 1], the VAE encoder
outputs a Gaussian posterior

zt ∼ qϕ(z | It), zt ∈ Rd,

with diagonal covariance. At inference, we use only the posterior mean µt as the latent feature.

Retrieval. At test time, we encode the current observation window to obtain zt, normalize it, and
compute cosine similarity against the stored database features. The demonstration with the highest
similarity is selected, and its associated action sequence defines the flow. Cosine similarity achieved
slightly higher performance (average return ≈ 0.88) compared to Euclidean distance (≈ 0.85).

Training Setup. We train the VAE with a standard Gaussian prior p(z) = N (0, I) and a Gaussian
reconstruction likelihood p(x | z) = N

(
x̂(z), τ2I

)
with fixed τ = 2 × 10−1. This choice of τ

balanced the reconstruction and KL terms: with τ = 0.2 both the reconstruction loss and the KL
divergence decreased steadily, whereas using smaller τ values led to optimization stalling (neither
term decreased). Training was performed for 25 epochs with the Adam optimizer (learning rate
1× 10−4). At inference, we discard the decoder and use only the encoder’s posterior mean.

C.5 PUSHT TASK WITH SAM-BASED POSE EMBEDDING

We estimate object pose directly from images using a pretrained SAM/SAM2 pipeline (no fine-
tuning). From each frame we obtain a binary mask of the T-block, from which we extract its centroid
(xb, yb) and axial orientation θb (defined modulo π). Combined with the agent position (xa, ya), this
yields the state

xt = [xa, ya, xb, yb, θb] ∈ R5.

All variables are normalized to [0, 1] before distance computations; angular differences use the same
axial angular distance as in the state-based setup. Distances and policy composition follow the same
formulation, with weights wobj = wagt = wθ = 1.0 and flow execution with λ1 = λ2 = 1.0.

Per-timestep pose extraction. Given a SAM mask, the centroid is

(xb, yb) = centroid(mask),

and the orientation is computed from second-order moments of foreground pixels. Let µpq denote
centralized moments; the principal axis corresponding to the largest covariance eigenvalue indicates
the elongation direction. We define

θb = 1
2 atan2

(
2µ11, µ20 − µ02 + ε

)
,

wrap θb to (−π, π], and treat it as axial (modulo π) for angular distance.

Retrieval and policy selection. At test time, we form xt = [xa, ya, xb, yb, θb], apply the same
normalization as above, and compute distances to all stored demonstration states using the state-
based metric. We retrieve the K nearest neighbors (default K = 1) and execute the composed flow
with λ1 = λ2 = 1.0.

Tracking and prompting details. We use SAM2’s video predictor (sam2.1 hiera tiny) to
track the T-block across frames, re-prompting each step with a skeletal outline derived from the
most recent pose estimate to stabilize mask propagation. To compensate for a small systematic bias
in predicted centroids, we apply a constant offset correction to (xb, yb), calibrated on seeds 500–700.

Limitations. Performance depends on segmentation quality; occlusions and viewpoint changes can
induce drift in the estimated pose, which in turn affects retrieval and control.

C.6 ROBOT-FLIP TASK

Robot teleoperation: We utilized a bimanual robotic system configured with a ViperX300s (fol-
lower) and a WidowX250 (leader), along with a RealSense D405 camera from a top-down view. The
system is built on an open-source platform. By using robot teleoperation, we collected 121 demon-
strations, each contains 200 to 1000 timesteps to complete the flip task. The dataset is structured
in an HDF5 format and includes robot actions and observations, where observations are composed
of effort, images, joint angles, and joint velocities. Specifically, we teleoperated the leader robot
(WidowX250) to control the follower (ViperX300s) robot for manipulation tasks (flip the box). The

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

camera records images at an 848×480 resolution with a 30 Hz frequency, and then crops them to a
320×240 resolution for policy training.

Policy imitation. The policy imitation process is similar to the pushT task with vision-based inputs.
Specifically, we use a vision encoder that takes RGB images as input and predicts the desired robot
action as a latent embedding using an MSE loss. Training is performed for 100 epochs using the
Adam optimizer with a learning rate of 0.0001. After training, we calculate the latent feature of
each demonstrated image as a feature database. The online inference involves the computation of a
distance field that includes both distance measurement in this latent space and an additional distance
metric for joint position displacement, guiding the flow field and policy composition. Both attraction
and progression parameters are set to 1.0 during execution. To ensure the temporal consistency, the
task is run with horizon=100.

RealSense D405

BoxWidowX250 ViperX300s

Camera view

Figure 10: ALOHA teleoperation platform.

C.7 HUMAN–ROBOT INTERACTION TASK

We use the openai/clip-vit-base-patch32 CLIP model for vision–language grounding.
Positive and negative text prompts for hand–held object detection are listed below.

Text prompts.

pos_prompts = [
"a photo of a hand holding a banana",
"a hand holding an apple",
"a human hand holding an orange",
"a hand holding a pear",
"a hand holding a strawberry",
"a hand holding grapes",
"a hand holding a piece of fruit",
"a person’s hand holding a fruit",
"close-up of a hand holding a fruit",

]

neg_prompts = [
"an empty hand",
"a hand with nothing in it",
"a hand holding a baseball",
"a hand holding a black ball",
"a hand holding a blue cup",
"a hand holding a plastic cup",
"a hand holding adhesive tape",
"a hand holding a tape roll",
"a hand holding a screwdriver",
"a hand holding a tool",
"a hand holding a non-fruit object",

]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MEMORY COST

The state-based PUSHT dataset has 25,000× 7 = 175,000 elements, requiring 175,000× 4 ≈ 0.67
MB with float32, consistent with the observed 0.7 MB. For comparison, an MLP with layers
[7, 512, 256, 128, 1] has 168,449 parameters (≈ 0.64 MB), which is at a similar scale. However,
typical models are far larger than simple MLP; e.g., a state-based diffusion policy exceeds 200 MB.

Although GPI’s memory grows linearly with the number of demonstrations, this is practical in our
setting: robot actions are low-dimensional, and high-dimensional observations are stored as compact
latent features. Inference is lightweight, parallelizable, and can use subsampling or approximate
nearest-neighbor search to bound latency. As we demonstrated in the paper, GPI achieves orders-of-
magnitude gains in efficiency over standard baselines in common imitation-learning settings.

D.2 COMPLEXITY AND SCALABILITY

Complexity of one control step. All demonstrations are stored in a tensor of shape (NT,D), where
N is the number of demonstrations, T is the trajectory length, andD is the state / feature dimension.
Given the current observation of shape (1, D), we compute its distance to all stored states in a single
batched operation. The complexity of this retrieval step is therefore O(NTD), implemented in
parallel on GPU. Once the top-K neighbors are selected, combining their flows to compute the final
control command is O(KD), which is negligible for small K compared to the retrieval cost.

Empirical scalability. To make the scaling explicit, we report retrieval latency and memory usage
as we vary the number of stored states from 102 to 106 and the feature dimension D from 5 to
512. Latency is measured in milliseconds (ms) on a single GPU, and memory usage is reported in
megabytes (MB). We measure the cost of computing Euclidean distances between a single query
state and all stored features, which is the component that grows with the database size:

Table 4: Retrieval latency and memory usage for a single query as a function of the number of stored states and
feature dimension D. Each entry reports latency (ms) / memory (MB).

states D = 5 D = 32 D = 128 D = 512

1× 102 0.039 / 0.00 0.033 / 0.01 0.034 / 0.05 0.033 / 0.20
1× 103 0.039 / 0.02 0.036 / 0.12 0.035 / 0.49 0.039 / 1.96
1× 104 0.033 / 0.19 0.037 / 1.22 0.068 / 4.88 0.217 / 19.6
1× 105 0.051 / 1.91 0.221 / 12.2 0.517 / 48.8 1.973 / 196
1× 106 0.291 / 19.1 1.920 / 122 4.891 / 488 19.26 / 1955

Even with very large databases (106 states) and high-dimensional features (D = 512), retrieval
remains below 20 ms with about 2 GB (approximately 1955 MB) of memory, which is compatible
with typical real-time manipulation settings.

D.3 ABLATIONS ON DISTANCE METRICS

In all experiments, the metric used by GPI is constructed from simple and physically motivated
components: Euclidean distance for robot states (e.g., joint angles, end-effector positions), geodesic
distance for quaternions, and cosine similarity for latent visual embeddings. These choices follow
the geometry and physical meaning of each state component. All state dimensions are normalized
before distance computation, which further reduces sensitivity to manual tuning.

To assess sensitivity to the specific form of the metric, we perform an ablation on the PushT task
comparing L1 distance, L2 distance, and cosine similarity, both in the original state space and in a
VAE-based latent space. The average rewards are summarized in Table 5.

In the state space, both L1 and L2 distances perform well, indicating that GPI is not sensitive to
the exact choice of norm as long as the metric is consistent with the underlying state geometry. In
the latent space, cosine similarity performs best, with L1 and L2 still competitive, consistent with

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Average reward for different distance metrics on the pushT task.

Metric State space Latent space (VAE)
L1 norm distance 88 81
L2 norm distance 86 85
Cosine similarity 88 87

standard practice for feature embeddings. Even when directly using cosine similarity in the state
space, performance remains reasonable. Overall, these results indicate that GPI does not rely on
fragile, hand-tuned metrics and works reliably with simple, task-aligned distances.

We also study how the relative weighting between the environment distance denv and the robot dis-
tance drob influences performance on PushT and Robomimic tasks. We define the combined metric

d = wrob drob + wenv denv, (20)

and vary the ratio wenv/wrob. The results are given in Table 6. Performance is clearly degraded when
the environment weight is extremely small or large (e.g., wenv/wrob = 0.01 or 100), but remains
high over a broad intermediate range (approximately wenv/wrob ∈ [0.1, 10]), with the best results
typically obtained near equal weighting (around 0.5–1.0). These trends confirm that the metric and
its weighting are important design choices, but also show that GPI remains robust to a wide range
of relative weightings between robot and environment distances.

Table 6: Evaluation of robot–environment distance weighting on various benchmarks.

wenv/wrob 0.01 0.1 0.5 1.0 5.0 10.0 100.0

PushT 0.38 0.76 0.83 0.87 0.80 0.80 0.54
Lift 0.68 0.85 0.98 1.00 0.83 0.78 0.52
Can 0.61 0.73 0.88 0.96 0.79 0.58 0.18
Square 0.23 0.55 0.72 0.82 0.63 0.51 0.16

D.4 ABLATION ON COMPOSITION HYPERPARAMETERS

We ablate the softmax temperature β used in (3) for composing the top-K demonstrations on PushT
(state-based). As shown in Table 7, performance remains stable over several orders of magnitude of
β.

Table 7: Effect of the softmax temperature β on PushT.

β 10−4 10−3 10−2 10−1

Avg. Score 85.1± 1.2 84.8± 0.9 85.8± 1.2 85.6± 1.4

D.5 ROBOMIMIC AND ADROIT HAND TASKS

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: Snapshots of experimental results for Lift, Can, and Square tasks on Robomimic environments.

Figure 12: Snapshots of experimental results for Door, Hammer, Pen, and Relocate on Adroit hand tasks.

D.6 2D MAZE

We evaluate our approach on the 2D Maze benchmark, previously used by (Chen et al., 2025; Janner
et al., 2022). Unlike these methods, our approach is training-free: at test time we select a suffix of a
single demonstration using a simple distance metric and execute it. Concretely, for demonstration i
of length H and timestep k, we minimize

D(i, k) = 10 ∥x0 − x
(i)
k ∥2 + 5 ∥xg − x(i)

g ∥2 + 0.1 (H − k),

where x0 is the initial state, x(i)
k is the k-th state of demonstration i, xg is the task goal, and x

(i)
g is the

goal state associated with demonstration i. The final term penalizes long remaining horizons; since
2D Maze demonstrations can include detours, this bias favors suffixes that proceed more directly
to the goal. After selecting (i⋆, k⋆), we execute the suffix {x(i⋆)

k⋆:H} as the plan. In doing so, our
method also recovers the effective task horizon H − k⋆, something most alternative approaches
cannot determine directly. Instead, they must either: (i) assume a long horizon and truncate once

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

the task is completed, (ii) assume a short horizon and repeat until completion, or (iii) try multiple
horizons and select the smallest successful one.

•
Start End

Figure 13: Results on 2D Maze using our method. Without any training, a simple distance-based criterion
achieves a 100% success rate across all tasks, with an average inference time of 0.08 seconds.

E REPRODUCIBILITY STATEMENT

We will release our code, configuration files, and evaluation scripts upon publication. Key imple-
mentation details and protocols are documented in the main text and appendix to facilitate reproduc-
tion in the interim.

F USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs (e.g., ChatGPT and Claude) to rephrase and polish the manuscript and to assist with
coding tasks. All LLM-generated code was reviewed, edited, and integrated by the authors; the
LLM did not design algorithms or produce experimental results.

23

	Introduction
	Geometry-Aware Policy Imitation
	Method
	Choice of Distance Metric
	A 2D Example

	Experimental Results
	Simulation Experiments
	Robot Experiments

	Related Work
	Limitation and Conclusion
	Convergence of the Flow Policy
	GPI algorithm
	Implementation details
	PushT task with state-based inputs
	PushT task with vision-based inputs
	PushT task with ResNet-18 encoder and PCA
	PushT task with VAE
	PushT task with SAM-based pose embedding
	Robot-flip task
	Human–robot interaction task

	Additional experimental results
	Memory cost
	Complexity and scalability
	Ablations on distance metrics
	Ablation on composition hyperparameters
	Robomimic and Adroit Hand tasks
	2D maze

	Reproducibility Statement
	Use of Large Language Models (LLMs)

