
A Riemannian Take on Distance Fields
and Geodesic Flows in Robotics

Journal Title
XX(X):1–26
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Yiming Li1,2,*, Jiacheng Qiu1,* and Sylvain Calinon1,2

Abstract
Distance functions are crucial in robotics for representing spatial relationships between a robot and its environment.
They provide an implicit, continuous, and differentiable representation that integrates seamlessly with control,
optimization, and learning. While standard distance fields rely on the Euclidean metric, many robotic tasks inherently
involve non-Euclidean structures. To this end, we generalize Euclidean distance fields to more general metric spaces by
solving the Riemannian eikonal equation, a first-order partial differential equation whose solution defines a distance field
and its associated gradient flow on the manifold, enabling the computation of geodesics and globally length-minimizing
paths. We demonstrate that geodesic distance fields—the classical Riemannian distance function represented as
a global, continuous, and queryable field—are effective for a broad class of robotic problems where Riemannian
geometry naturally arises. To realize this, we present a neural Riemannian eikonal solver (NES) that solves the equation
as a mesh-free implicit representation without grid discretization, scaling to high-dimensional robot manipulators.
Training leverages a physics-informed neural network (PINN) objective that constrains spatial derivatives via the
PDE residual and boundary/metric conditions, so the model is supervised by the governing equation and requires
no labeled distances or geodesics. We propose two NES variants, conditioned on boundary data and on spatially
varying Riemannian metrics, underscoring the flexibility of the neural parameterization. We validate the effectiveness
of our approach through extensive examples, yielding minimal-length geodesics across diverse robot tasks involving
Riemannian geometry. Additionally, we validate the method in a dynamics-aware motion-planning task for energy-
efficient trajectory generation, with comparisons to baseline approaches.
Project website: https://sites.google.com/view/geodf

Keywords
Differential Geometry, Riemannian Manifold, Distance Field, Geodesic, Eikonal Equation, Gradient Flow, Energy
Conservation

1 Introduction

In robotics, measuring distances constitutes a fundamental
concept for determining spatial relationships and enabling
effective physical and non-physical interactions with the
environment. These metrics provide a systematic means
for quantifying the geometric relationships between various
entities, such as points, poses, shapes or trajectories.
They are widely applicable across robotic tasks, including
inverse kinematics (Chiacchio et al. 1991) and motion
planning (Ratliff et al. 2009). Signed distance fields
(SDFs), in particular, have gained popularity for representing
geometries using implicit functions, as they enable efficient
distance and gradient queries which are suitable to integrate
into learning (Weng et al. 2023), optimization (Li et al.
2024b) and control (Liu et al. 2022).

SDFs are conventionally employed in Euclidean spaces,
representing the shortest distance from any point in the
environment to the boundary of a given object or surface
(Park et al. 2019). However, many robot tasks inherently
operate in non-Euclidean spaces, with manifolds that can
be described implicitly by a smoothly varying weighting
matrix, which locally measures distances. For example,
distance fields can also be applied to joint configuration
space, indicating the minimum joint motion required by

the robot to establish contact with a given point or
object (Li et al. 2024a). In this case, geodesic distance
fields enable the consideration of inertia, stiffness, or
manipulability ellipsoids in the processing, by providing a
Riemannian metric constructed with a smoothly varying,
symmetric, positive definite (SPD) weighting matrix in the
robot configuration space. Riemannian geometry provides a
principled and systematic way to generalize algorithms from
Euclidean spaces to more general manifolds (Calinon 2020).
Figure 1 shows minimal-distance paths in Euclidean space
and on a Riemannian manifold. In the latter, geodesics are
shaped by the manifold’s geometry—for example, when the
Riemannian metric is defined by the robot’s inertia matrix to
reflect its dynamic properties.

While the geometric nature of robot problems on
Riemannian manifolds is well established, many methods

1Idiap Research Institute, Switzerland
2École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
*Equal Contribution

Corresponding author:
Yiming Li, Idiap Research Institute, Centre du Parc, Rue Marconi 19,
Martigny, CH-1920, Switzerland.
Email: yiming.li@idiap.ch

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

https://sites.google.com/view/geodf

2 Journal Title XX(X)

(a) (b)
Figure 1. Minimal distance paths as geodesics in the
Euclidean space (a) and in another Riemannian metric space
(b). The ellipses depict the SPD weighting matrices used to
locally compute distances with this metric (isocontours of
inverse matrices). A Riemannian manifold can be described
intrinsically by the depicted metric. For visualization, it can also
be depicted with corresponding extrinsic geometry in a
higher-dimensional space (see inset), but geodesic computation
does not require this construction and instead only requires the
metric as an intrinsic geometry representation.

for computing geodesics operate on prescribed endpoint
pairs and rely on local optimization (Jaquier and Asfour
2022; Klein et al. 2023; Cabrera and Hatton 2024). These
approaches are computationally intensive, must be re-
run for every new endpoint pair, and do not provide a
global representation of the manifold. As an alternative,
we represent the manifold with a geodesic distance field, a
global and continuous value function that implicitly encodes
geodesics (Crane et al. 2020) and from which minimal
paths are recovered by backtracking. However, constructing
such fields on Riemannian manifolds is challenging due to
nonlinear metrics and complex topology; classical geodesic
ray tracing and geodesic ordinary differential equation
(ODE) integration/shooting are computationally expensive,
sampling dependent, and lack global guarantees (Rawlinson
and Sambridge 2005). Motivated by wavefront propagation
methods that are well established for distance fields in
Euclidean space, we compute the distance field by solving
the Riemannian eikonal equation, a first-order partial
differential equation (PDE) for wave travel time, which
yields an efficient and globally consistent single source
solution (Kimmel and Sethian 1998). This perspective is
closely related to recent implicit shape models based on
SDFs, which appear as viscosity solutions of the eikonal
equation (Gropp et al. 2020; Marić et al. 2024). The resulting
field captures the manifold’s global structure, provides
gradient information for fast queries, and reveals geodesic
flow for straightforward trajectory backtracking. Beyond
geodesic computation, this representation enables learning,
optimization, and control methods based on distance fields
on the manifold. An illustration is given in Figure 2.

Classical PDE solvers for wavefront propagation include
the Fast Marching Method (FMM) (Sethian 1996) and fast
sweeping methods (Zhao 2005), widely used in level set
and Hamilton–Jacobi settings (Osher and Fedkiw 2004).
FMM computes the entire single-source distance field in
a single, monotone outward pass, after which geodesics
to any target are obtained by inexpensive backtracking.
These schemes run on discretized grids or meshes and yield
deterministic solutions under standard conditions, though

Figure 2. Two approaches for computing geodesics on
inhomogeneous manifolds. The traditional method (1)
formulates the problem as an iterative solution to a differential
equation, often using second-order optimization (e.g.,
Gauss-Newton path optimization). This approach requires a
good initial guess and must be solved separately for each point
pair. In contrast, we propose a wavefront propagation approach
that first computes a geodesic distance field from a source point
by solving the Riemannian eikonal equation (2a), then retrieves
geodesics by backtracking along the gradient of this field (2b).
We employ physics-informed neural networks (PINNs) to solve
the eikonal equation, enabling scalable solutions in
high-dimensional settings. This method encodes the manifold’s
intrinsic geometry and yields globally optimal geodesics. It also
offers modularity and efficiency: the distance field can be trained
offline and used online for fast distance and geodesic queries.

fixed resolution limits scalability in high-dimensional spaces.
We build on this framework along two axes. First, we
generalize the eikonal equation from Euclidean spaces to
Riemannian manifolds, enabling geodesic distance fields
and flows in robot configuration spaces with curved, non-
Euclidean geometry. Second, to overcome grid scalability,
we introduce a neural Riemannian eikonal solver (NES)
based on physics-informed neural networks (PINN) (Raissi
et al. 2019; Kelshaw and Magri 2025). NES replaces
the grid with a coordinate-based neural representation,
computes gradients via automatic differentiation, and yields
a continuous field that can be queried at arbitrary resolution.
Crucially, it can be conditioned on start–goal pairs to
produce geodesic flows— which is a challenging problem
for fixed-source PDE solvers. Once trained, NES outputs
arbitrary state-to-goal distance queries with millisecond-
level latency. Training is self-supervised by the eikonal
constraint and boundary conditions, avoiding precomputed
distance labels. We also introduce two NES variants that can
be conditioned on boundary points or on the Riemannian
metric, enabled by the flexibility and differentiability of
neural network representation. In summary, our approach
leverages deep learning to solve the Riemannian eikonal
equation, delivering a scalable, flexible, and real-time
representation of distance fields and geodesic flows that

Prepared using sagej.cls

3

integrates naturally with learning, optimization, and control
in robotics.

To demonstrate the advantages of our neural Riemannian
eikonal solver for distance fields and geodesic flows,
we present examples across common robotics geometries:
energy-aware (kinetic/potential) metrics for dynamics-aware
motion, pullback metrics for task-space minimization, and
tailored metrics for stability shaping and collision avoidance.
We also study dynamics-aware motion formulated as
geodesic minimization under an energy-aware metric that
encodes the system dynamics. NES computes geodesic
flows efficiently for arbitrary source–target pairs, providing a
global, geometry-aware prior toward lower-effort motions; in
practice, the resulting shortest paths often align with energy-
efficient trajectories and are easier to track. We demonstrate
efficient planning and simple tracking on planar robots and
a 7-DoF Franka arm, highlighting scalability, efficiency,
and flexibility. The main contributions are summarized as
follows:

• We propose solving the eikonal equation to obtain
distance fields and geodesic flows for robot problems
on Riemannian manifolds. Unlike geodesic shooting
or optimal-control methods, this approach reframes
geodesic computation as a single global implicit rep-
resentation of the manifold, enabling fast backtracking
and direct integration with planning and control.

• We introduce a Neural Eikonal Solver (NES) that
learns the eikonal PDE in a physics-informed
manner without distance labels, yielding a continuous,
differentiable field with efficient gradient queries. NES
scales to high-dimensional spaces beyond grid-based
solvers. We also present two variants conditioned on
boundary data and on spatially varying Riemannian
metrics, underscoring the flexibility of the neural
parameterization.

• We provide extensive examples across kinematics,
dynamics, motion planning, and control. On energy-
aware manifolds, NES yields shorter paths under the
chosen Riemannian metric and, in our experiments,
achieves lower energy costs than baselines on high-
dimensional systems, with both quantitative and
qualitative comparisons.

The rest of the article is structured as follows: Section 2
introduces the necessary mathematical background, and
Section 3 reviews related work. Section 4 describes our
NES for solving the Riemannian eikonal equation to
compute geodesic distance fields and flows. Section 5
presents extensive examples using our approach across
robot problems involving Riemannian geometry. Section 6
reports experimental results on dynamics-aware motion
generation, demonstrating the effectiveness of our method.
Finally, Section 7 concludes the paper and outlines potential
applications and future directions.

2 Background
In this section, we introduce the mathematical background of
Riemannian manifolds, geodesics, the eikonal equation and
introduce commonly used Riemannian metrics in robotics.

2.1 Riemannian Metrics and Geodesics
A d-dimensional Riemannian manifold M is a topological
space equipped with a smooth metric tensor G(x) defined at
each point x ∈M. The metric tensor G(x) is a symmetric
positive definite matrix that defines the Riemannian metric,
allowing us to calculate distances and angles on the manifold.
For each point x ∈M, there exists a tangent space TxM,
which locally linearizes the manifold.

The inner product of two velocity vectors, u and v, in the
tangent space TxM at a point x ∈M is given by

⟨u,v⟩G = u⊤G(x)v. (1)

Using this inner product, we define the Riemannian norm of
a vector u as

∥u∥G =
√
⟨u,u⟩G. (2)

These definitions allow us to measure vector lengths and
angles within the tangent space TxM. With this, we can
define the Riemannian distance between two points, x1 and
x2, on the given manifold as

U(x1,x2) =

∫ s1

s0

∥γ̇(s)∥G(γ(s)) ds, (3)

where γ(s) is a smooth curve connecting x1 and x2,
with γ(s0) = x1 and γ(s1) = x2. The minimization of
this expression allows us to define geodesic distances and
shortest geodesic paths between two points on the manifold.

2.2 Eikonal Equation
2.2.1 Isotropic eikonal equation The eikonal equation is a
nonlinear first-order partial differential equation (PDE) that
models wavefront propagation. Let Ω ⊂ Rn be the domain,
x1 ∈ Ω a prescribed source, and c : Ω→ (0,∞) a positive
scalar function specifying the travel speed. The standard
form is

∥∇U(x2)∥ = c(x2) s.t. U(x1) = 0, (4)

where U : Ω→ R is the distance-to-source function. Here,
U(x2) is used as a notation instead of U(x1,x2) when the
source x1 is fixed, corresponding to the geodesic γ:

U(x2) = min
γ

∫ 1

0

c(γ(s)) ∥γ̇(s)∥ ds, (5)

Here γ : [0, 1]→ Ω is a path parameterized by s ∈ [0, 1]
with endpoints γ(0) = x1 (source) and γ(1) = x2 (target),
and γ̇(s) denotes its velocity. c(·) specifies the local speed
that shapes the arrival time/distance. The function U(x2)
with fixed source x1 is the single-point solution; for global
distance fields, one can encode U(x1,x2) over arbitrary
source–goal pairs.

2.2.2 Riemannian eikonal equation The isotropic eikonal
equation describes the distance field and yields shortest
paths in Euclidean space. This generalizes to Riemannian
manifolds (Mirebeau 2019; Peyré et al. 2010):

∥∇U(x2)∥G−1(x2) = 1 s.t. U(x1) = 0, (6)

which characterizes wavefront propagation and minimal
distance on a manifold endowed with a Riemannian metric

Prepared using sagej.cls

4 Journal Title XX(X)

defined by G. Unless noted otherwise, we adopt the
unit-weight case c(x2) = 1; any strictly positive field can
be absorbed by rescaling the metric. The corresponding
geodesic distance is

U(x2) = min
γ

∫ 1

0

∥∥γ̇(s)∥∥
G(γ(s))

ds, (7)

which is the minimal Riemannian distance (3). Equation (6)
measures the norm of the covector ∇U with the inverse
matrix G−1, whereas (7) measures the speed of the vector
γ̇ with the metric tensor G. These are dual norms, induced
by G on vectors and by G−1 on covectors. This dual
pairing underlies the Hamilton–Jacobi characterization of
Riemannian distance (Mantegazza and Mennucci 2002) and
is made explicit in dual-metric formulations for eikonal
solvers and geodesic backtracking (Mirebeau 2019).

To backtrack geodesics, we can define the geodesic flow:

V (x2) := G−1(x2)∇U(x2). (8)

From (6) it follows that V is unit-speed with respect to G:

∥V (x2)∥2G(x2)
= V (x2)

⊤ G(x2)V (x2)

=
(
G−1(x2)∇U(x2)

)⊤
G(x2)

(
G−1(x2)∇U(x2)

)
= ∇U(x2)

⊤ G−1(x2)∇U(x2)

= 1.

(9)
Given a target x2 and source x1, a geodesic is recovered by
integrating the flow backward in time

γ̇(s) = −V
(
γ(s)

)
, γ(0) = x2, γ(T) = x1. (10)

Along this backward flow, U decreases at a unit rate. Starting
from U(x2) and terminating at the source where U(x1) = 0,
the elapsed time equals the initial value, i.e., T = U(x2).

A common numerical approach for solving eikonal
equations is the Fast Marching Method (FMM). Like
Dijkstra’s algorithm, FMM relies on discretization and
sequentially propagates information from the boundary or
solved nodes on the mesh (Sethian 1996). This method
extends to non-Euclidean domains, allowing computation
of geodesic distances on manifolds (Kimmel and Sethian
1998). More recent work leverages machine learning to
approximate solutions, producing continuous, differentiable
distance fields in Euclidean spaces (Grubas et al. 2023) as
well as on nonlinear manifolds (Kelshaw and Magri 2025).

2.3 Common Riemannian Metrics in Robotics
In this section, we introduce commonly used Riemannian
metrics that furnish a geometric perspective on robotic
problems. These include metrics that encode intrinsic
kinematic and dynamic properties of the robot, as well as
task-shaped designs. We also clarify the practical meaning
of geodesics on the resulting manifolds and indicate how
they can be computed via solving the Riemannian eikonal
equation.

2.3.1 Kinetic–energy metric. Let q denote the joint con-
figuration and M(q) the inertia matrix. The kinetic–energy
metric is the smooth, symmetric positive-definite matrix that
defines the Riemannian metric (Bullo and Lewis 2004)

Gke(q) := M(q). (11)

The kinetic energy is defined as

T (q, q̇) = 1
2 q̇

⊤M(q) q̇ = 1
2 ∥q̇∥

2
Gke(q)

. (12)

Under the unit–speed condition ∥q̇∥Gke
= 1, geodesics on

this Riemannian manifold coincide with trajectories that
minimize the kinetic–energy functional.

2.3.2 Jacobi metric. The metric defined by Gke(q) =
M(q) captures only the kinetic part of the dynamics and
neglects the potential energy P (q). For a conservative
system with fixed total energy H , the Jacobi metric is defined
by (Casetti et al. 2000):

GJac(q) = 2
(
H − P (q)

)
M(q), H > P (q). (13)

The Hamiltonian satisfies H = T + P and remains constant
along conservative motion (Lutter and Peters 2023).
The Jacobi metric is a conformal transformation of the
kinetic–energy metric and is therefore smooth, symmetric,
and positive-definite on the configuration space manifold.
By the Maupertuis–Jacobi principle, trajectories with fixed
energy H correspond to geodesics on the Riemannian
manifold endowed with this metric (Albu-Schäffer and
Sachtler 2022).

2.3.3 Pullback metric. The pullback operation induces a
configuration–space metric from a task–space metric (Ratliff
et al. 2018). Let φ : Q → X be a smooth task map with
Jacobian J(q), and let GX be a smooth positive–definite
matrix on X . We define

Gpb(q) := J(q)⊤ GX J(q). (14)

as a smooth positive semidefinite matrix. One may add a
small joint–space regularization,

G̃pb(q) := Gpb(q) + λI with λ > 0, (15)

which yields a strictly SPD matrix while preserving
the task–induced geometry. Common choices for GX
include stiffness metrics with GX = Kx, where Kx ≻
0 may be diagonal for per–axis stiffness or a full
SPD matrix capturing cross–axis coupling (Hogan 1985);
and manipulability metrics, either kinematic with GX =
J(q)J(q)⊤ (Yoshikawa 1985) or more general with GX =
J(q)Λ(q)−1 J(q)⊤, where Λ(q) ≻ 0 is a joint–space
weighting, for example Λ(q) = M(q) to account for inertia
in dynamic manipulability (Lachner et al. 2020), though
other choices are possible. Additionally, setting GX = I
yields the Euclidean metric in task space; its pullback
J(q)⊤J(q) measures how joint–space motions map to
task–space displacements. Geodesics under this metric
correspond to joint–space paths that minimize task–space
path length.

2.3.4 Other task-specific metrics. Apart from the metrics
above that reflect the robot’s inherent geometry, one can also
design problem-specific metrics to encode task objectives
directly. These task-specific metrics reshape the manifold so
that geodesics realize desired behaviors. We illustrate this
idea with two examples:

Prepared using sagej.cls

5

Obstacle avoidance. Obstacle avoidance typically relies
on a collision checker or a distance to the nearest obstacle. To
obtain adaptive behavior that is fast when far from obstacles
and slow near boundaries, we introduce a smoothly varying
scale ϕ(x) and a distance-aware Riemannian metric tensor
that penalizes motion along the normal direction to the
obstacle (Klein et al. 2023):

ϕ(x) = f
(
α
(
τ − d(x)

))
(1− ϕmin) + ϕmin,

Gobs(x) = ϕ(x) r1(x)r1(x)
⊤ + r2(x)r2(x)

⊤,
(16)

where f is a smooth monotone function (e.g., the
sigmoid f(z) = 1/(1 + e−z)), d(x) is the signed distance
function, α > 0 controls the transition sharpness, τ sets a
safety margin, and ϕmin ≪ 1 enforces a minimum scale
near obstacles. The vectors {r1(x), r2(x)} form a local
orthonormal frame with r1(x) aligned with∇d(x). Here, we
use x to denote a task–space point, however, the formulation
extends to configuration space q by employing distance
fields for articulated robots (Li et al. 2024b,a). With ϕ
increasing as proximity grows, the metric amplifies the cost
of motion toward obstacles while leaving tangential motion
comparatively less penalized. From a geometric perspective,
this metric warps the local geometry near obstacles, causing
geodesics to bend around them while maintaining clearance.
The induced speed scaling further slows motion in close
proximity, enhancing safety.

Stability-aware passive motion. In motion planning it
is often desirable to bias trajectories toward passively
stable, low–potential–energy regions (Ortega et al. 2002).
A simple and effective construction is to scale the inertia
by a normalized potential, yielding a position-dependent
Riemannian metric tensor

Gsta(q) = M(q)
[
1 + ϵ P̃ (q)

]
,

P̃ (q) =
P (q)− Pmin

Pmax − Pmin
∈ [0, 1], ϵ > 0,

(17)

where M(q) is the physical inertia matrix, P (q) the potential
energy, and ϵ > 0 controls the strength of the stability
bias. Pmax and Pmin are the maximum and minimum
potential energy, respectively. Larger P (q) produces a larger
effective metric and hence longer paths, so geodesics on this
manifold naturally avoid unstable regions while preserving
the coupling encoded by M(q). This metric preserves natural
dynamics via uniform inertia modulation, regulates speed
by slowing motion in high–potential zones, and guides the
system toward low–energy basins.

Embedding stability in the metric makes robustness
intrinsic: the eikonal is solved on a geometry already biased
toward low–energy, stable states. The resulting distance
field and geodesic flow integrate naturally with learning,
planning, and control approaches to incorporate additional
task–specific objectives and constraints.

3 Related Work

3.1 Distance Fields in Robotics
Distance fields are fundamental representations in robotics,
due to their capacity to implicitly encode spatial information
while offering continuous, differentiable representations and

efficient computational properties. This versatility has led
to extensive exploration of signed distance fields (SDFs)
for representing scenes and objects (Millane et al. 2024;
Marić et al. 2024), with demonstrated applications in
collision detection (Macklin et al. 2020), grasp synthesis (Liu
et al. 2021), motion generation (Ratliff et al. 2009), and
manipulation planning (Yang and Jin 2025). Moreover,
distance fields are increasingly utilized as latent geometric
features for downstream tasks such as dynamics models
learning (Driess et al. 2022), grasp pose estimation (Breyer
et al. 2021; Weng et al. 2023), and motion policy
generation (Fishman et al. 2023). Recent advances have
introduced distance fields encoded with joint angles (Liu
et al. 2022; Koptev et al. 2022; Li et al. 2024b), enabling
efficient distance queries between arbitrary points and the
surfaces of articulated robots. Building on this foundation,
our previous work (Li et al. 2024a) extended the concept
of distance fields to the configuration space, wherein the
representation measures the minimal joint motion required
for a robot to reach specified points. The representation of
articulated robots using distance fields can be interpreted
as an implicit forward/inverse kinematics model, facilitating
the utilization of distance and gradient information directly
in joint space. By inherently capturing joint positions and
velocities, this approach opens up new possibilities for
advancing applications in reactive motion planning and
control (Koptev et al. 2024).

3.2 Solving the Eikonal Equation for Distance
Fields

Early work computed travel-time (distance) fields by inte-
grating geodesic ODEs as initial/boundary-value problems
using shooting or ray tracing (Julian and Gubbins 1977).
While effective locally, ray-based methods are sensitive to
initialization and step size. They provide limited coverage
away from sampled rays and can suffer from efficiency and
convergence issues on manifolds with complex geometry or
strong anisotropy (Rawlinson and Sambridge 2005). PDE-
based solvers take a different route: they solve the eikonal
equation, whose viscosity solution is the shortest-path dis-
tance from prescribed sources and whose characteristics
encode front propagation. Such solvers are widely used
in seismic tomography (Lin et al. 2009), rendering (Ihrke
et al. 2007), image segmentation (Alvino et al. 2007), and
collision avoidance (Garrido et al. 2013). The Fast Marching
Method (FMM) (Sethian 1996) computes eikonal solutions
on discretized grids with near-linear complexity, though grid
discretizations face memory and resolution limits in high-
dimensional spaces. Unlike ODE ray tracing, which returns
distances only along sampled geodesics, PDE formulations
yield a global distance field whose gradient flow induces
geodesics.

Recent advances in physics-informed neural networks
(PINNs) enable grid-free eikonal solvers by representing the
solution as a differentiable neural field and training it via
the PDE residual and boundary conditions, with gradients
obtained through backpropagation (Raissi et al. 2019). In
this view, the network provides a continuous scalar field,
while the eikonal constraint in the loss drives it to behave as
a distance-to-go function even without supervised distance

Prepared using sagej.cls

6 Journal Title XX(X)

labels, making its gradients directly usable for geodesic
backtracking. This approach has been applied to isotropic
eikonals (e.g., EikoNet) (Smith et al. 2020). In robotics,
the eikonal constraint also appears when training implicit
signed distance fields for shape representation (Gropp et al.
2020; Xie et al. 2022). For motion planning, NTFields
solves neural eikonal equations under collision-avoidance
constraints and demonstrates fast, scalable generation in
high-dimensional spaces (Ni and Qureshi 2022, 2023).
Beyond Euclidean settings, the eikonal constraint has
been extended to manifolds (Ni and Qureshi 2024). The
Riemannian Fast Marching method adapts fast marching
to anisotropic (Riemannian) metrics (Mirebeau 2019), and
the heat method computes geodesic distances via short-
time heat flow (Crane et al. 2013). More recently, neural
eikonal solvers have been studied directly on manifolds to
compute geodesics and distance fields, further broadening
applicability (Kelshaw and Magri 2025).

3.3 Motion Planning on Manifolds
Recent advances in motion planning leveraged Riemannian
manifolds to tackle complex challenges. Obstacles are often
treated as features that reshape the geometry of the space,
allowing geodesics to naturally navigate around them and
achieve collision-free motion (Ratliff et al. 2015; Laux
and Zell 2021). Building on this concept, Riemannian
motion policies can be used in joint space using a pullback
metric (Ratliff et al. 2018). This framework was later
extended to Geometric Fabrics (Van Wyk et al. 2022)
by incorporating principles of classical mechanics for
more adaptable motion planning. Beyond static obstacle
avoidance, dynamic-aware motions have been explored
through kinetic energy-based Riemannian metrics (Jaquier
and Asfour 2022; Klein et al. 2023), with further extensions
to the Jacobi metric that account for both kinetic and
potential energy, enabling energy-conserving paths (Albu-
Schäffer and Sachtler 2022). Additionally, Riemannian
metrics have been applied to human motion modeling, where
geodesics represent minimum-effort paths in configuration
space (Neilson et al. 2015). These ideas have inspired
methods to transfer human arm motions to robots, facilitating
more natural and human-like behavior (Klein et al. 2022).
Unlike these approaches that focus on local policies
or optimizing for the shortest geodesics, our method
emphasizes constructing a comprehensive distance field over
the entire configuration space, allowing for more flexible and
efficient motion planning.

4 Riemannian Eikonal Solver
In this section, we present the methodology for solving the
Riemannian eikonal equation to compute geodesic distances
and flows. For clarity, we first describe a numerical PDE
solver based on Riemannian Fast Marching (RFM), and
then introduce our Neural Riemannian Eikonal Solver (NES),
which parameterizes the PDE and learns the distance field
and geodesic flows directly. We also present two NES
variants that condition NES on boundary points and metrics.
Because our tasks primarily involve solving the equation on
the configuration-space manifold, we denote configurations

by q unless we explicitly refer to task-space points, which
we denote by x.

4.1 Riemannian Fast Marching
Riemannian Fast Marching (RFM) (Mirebeau 2019) is an
extension of classical Fast Marching Methods for solving the
eikonal equation on anisotropic, inhomogeneous manifolds
endowed with a Riemannian metric. As described in
Section 2.2.2, we seek the single-point solution U(q) such
that ∥∇U(q)∥G−1(q) = 1, and we recover geodesics by
backtracking the unit-G-speed flow (8). Like FMM, RFM
tackles single-source problems by discretizing the manifold
into a grid and applying an upwind finite-difference scheme.
The wavefront starts from a fixed source qs and marches
outward. RFM updates the travel time at each neighbor qn
of a current front point qe via

U(qn) = min
qe∈Qe

(
U(qe) + ∥qn − qe∥G(qe)

)
, (18)

where Qe is the evolving wavefront, qn ∈ Qn = N(qe) is
a neighbor, and ∥qn − qe∥G(qe) is the local metric-induced
norm. A detailed algorithm for computing geodesic distances
on configuration-space manifolds is given in Algorithm 1.
After obtaining U(q), geodesics from an arbitrary point q to
the source qs are retrieved efficiently by backtracking using
(10) and the geodesic field (8).

Algorithm 1: Riemannian Fast Marching
Input: Discretized gridM; matrix G(q); source qs
Output: U(q): geodesic distance from qs to q ∈M
Initialization:
set U(qs) = 0; U(q) =∞ for all q ̸= qs.
set Qe = {qs} wavefront
Propagation Step:
while there exists q ∈M with U(q) =∞ do

for each qe ∈ Qe do
find neighbors Qn = N(qe)
for each qn ∈ Qn do

if U(qn) =∞ then
update U(qn) via (18)
Qe ← Qe ∪ {qn}

Qe ← Qe \ {qe}

Termination: for all q ∈M, U(q) ̸=∞.

As a finite-difference, single-pass method, RFM is
computationally efficient and numerically accurate on grids.
However, the dependence on an explicit discretization limits
scalability for high-dimensional manipulators. We therefore
propose a neural parameterization in the next section to
address this limitation.

4.2 Neural Riemannian Eikonal Solver (NES)
The Neural Riemannian Eikonal Solver (NES) is inspired by
recent developments in solving PDEs through deep neural
networks. Different from classical grid-based approaches, it
operates in a continuous space without explicit discretiza-
tion. Gradients are calculated through network backprop-
agation by automatic differentiation, allowing for high-
dimensional manifolds with continuously varying metrics.

Prepared using sagej.cls

7

Instead of seeking single-point solutions, NES allows for
global geodesic distances for source-goal pairs, where
U(qs, qe) is a function of both source qs and goal qe points,
thanks to the flexible structure provided by neural networks.
Therefore, the Riemannian eikonal equation to be solved is
written as

∥∇qe
U(qs, qe)∥G−1(qe) = 1, s.t. U(qs, qs) = 0. (19)

This equation lets us train a neural field Uθ(qs, qe) directly
from the eikonal constraint: we sample source–goal pairs and
optimize a PDE-residual loss that acts on ∇qe

Uθ. To obtain
a consistent and continuous distance field, we further impose
the following physical constraints:

Symmetry. The geodesic distance from a source point qs
to the destination point qe, and in the other direction are
identical, following the symmetry property that U(qs, qe) =
U(qe, qs). It also applies to their partial derivatives:
∇qe

U(qs, qe) = ∇qe
U(qe, qs). To impose this constraint,

we define a symmetric function usym
θ (Ni and Qureshi 2022)

usym
θ (qs, qe) =

uθ(qs, qe) + uθ(qe, qs)

2
, (20)

where uθ is the output of neural network parameterized by
θ. This equation ensures the symmetry of the network output
with respect to permuted source-to-goal pairs.

Non-negativity and non-singularity. The geodesic
distance is strictly positive between any two distinct points,
and zero when the points coincide. It can be simply achieved
by adding a non-negative activation function σ. However, the
geodesic distance should approach zero for points close to
one another, which might cause singularity issues, leading to
numerical errors in distances and gradients for points close
to the source point. To overcome this problem, we follow the
approach in (Kelshaw and Magri 2025; Smith et al. 2020)
that factorizes the distance function as

Uθ(qs, qe) = ∥qe − qs∥σ
(
usym
θ (qs, qe)

)
, (21)

where σ(·) is a non-negative activation function and ∥qe −
qs∥ is the Euclidean term between two joint configurations
for non-singularity. This equation guarantees the non-
negativity of geodesic distance and implicitly constrains the
gradient pointing to the destination.

Loss Functions. The parameterization involves a multi-
layer perceptron (MLP) neural network, with a batch of
concatenated joint configuration pairs qs and qe as input
and outputs the predicted geodesic distance Uθ(qs, qe).
Ground truth geodesic distances are unknown, and the neural
network is supervised through the physical law defined by
the Riemannian eikonal equation (19). Therefore, for each
source-to-goal point pair, we minimize the loss function

Leik(qs, qe) =
(
∥∇qe

Uθ(qs, qe)∥G−1(qe) − 1
)2

(22)

to construct the geodesic distance field. The partial
derivatives ∇qe

Uθ(qs, qe) are computed through automatic
differentiation. In addition, to produce a smooth geodesic
distance field, we add a regularization term based on the
Laplace-Beltrami operator, which defines the divergence of
the vector field:

Ldiv(qs, qe) =

(
Gij

(
∂2U(qs, qe)

∂qe,i∂qe,j
− Γk

ij

∂U(qs, qe)

∂qe,k

))2

.

(23)

The Laplace–Beltrami term discourages spurious high
curvature and reduces gradient oscillations, yielding more
stable geodesic backtracking. For details on the derivation
of the divergence term, please refer to Appendix C.

The total loss is

Ltotal =
1

N

N∑
n=1

(
Leik + λLdiv

)
, (24)

where N is the batch size and λ weights the divergence
regularization term.

4.3 Conditioned NES
The key advantage of NES over traditional numerical PDE
solvers and optimal control approaches is its grid-free and
end-to-end differentiability, which provides great flexibility
for the neural network parameterization. Building on this
property, we introduce conditioned NES (C-NES), which
contains two variants, either conditioned on boundaries or
conditioned on Riemannian metrics.

4.3.1 Conditioned on boundaries. In the standard NES
formulation, both source and goal lie in the same space
(e.g., the robot’s configuration space), and the solution
traces a minimal–distance curve on that manifold. Many
manipulation tasks, however, involve coupling the task
space and joint space. We address this by conditioning
the boundary on a task–space specification while still
propagating the wavefront in joint space—a hybrid process
that implicitly handles inverse kinematics.

Here, we condition the boundary on a task–space source
point xs. Conceptually, the boundary in configuration space
is the set of configurations satisfying f(q) = xs, where f
is the forward kinematics. In practice, we do not enumerate
these IK solutions. Instead, we use f directly in the network
to anchor the boundary implicitly. The neural network is
parameterized as:

Uθ(xs, qe) =
∥∥f(qe)− xs

∥∥ σ
(
uθ(xs, qe)

)
, (25)

where σ(·) enforces nonnegativity and the Euclidean factor
∥f(qe)− xs∥ drives Uθ to zero whenever the end–effector
reaches the task–space source xs. Because xs (task space)
and qe (configuration space) live in different spaces,
symmetry does not apply; we therefore use the raw output
uθ rather than a symmetrized variant. The corresponding
Riemannian eikonal equation we aim to solve is

∥∇qe
U(xs, qe)∥G−1(qe) = 1,

U(xs, q) = 0 whenever f(q) = xs.
(26)

The wavefront originates on the boundary set {q :
f(q) = xs} in configuration space and propagates outward;
geodesics are recovered by backtracking the flow from the
query configuration qe. Under this formulation, U(xs, qe)
equals the Riemannian distance (under G) from qe to the
IK set. Backtracking the geodesic flow from qe therefore
terminates at an IK configuration that is geodesically closest
to qe. Crucially, this selection is obtained without computing
or sampling all IK solutions—the PDE solution together with
(25) imposes the boundary/source implicitly and recovers the
minimizing IK endpoint via geodesics.

Prepared using sagej.cls

8 Journal Title XX(X)

The training is identical to standard NES (22)–(23), except
the source is specified in task space. The losses are

Leik(xs, qe) =
(
∥∇qeUθ(xs, qe)∥G−1(qe) − 1

)2
,

Ldiv(xs, qe) =
(
Gij(qe)

[∂2U(xs, qe)

∂qe,i∂qe,j
− Γk

ij(qe)
∂U(xs, qe)

∂qe,k

])2.
(27)

4.3.2 Conditioned on metrics. Another variant of C–NES
conditions the eikonal on a parameterized Riemannian
metric. Let the metric depend on a task/physics parameter
ω, written G(q;ω), and let the corresponding distance be
U(qs, qe | ω). The neural parameterization remains as in
(20)–(21); we simply augment the network inputs with ω,
i.e., uθ = uθ(qs, qe, ω), while enforcing symmetry only
over (qs, qe). The parameter ω acts through the metric, so
the eikonal becomes

∥∇qe
U(qs, qe | ω)∥G−1(qe;ω) = 1, U(qs, qs | ω) = 0.

(28)
The training objectives are identical to (22)–(23), evaluated
with the augmented input ω. Conditioning NES on the
Riemannian metric allows a single network to represent a
family of distance fields and geodesic flows. At test time,
we adapt to different metrics by adjusting the parameter ω,
allowing us to interpolate smoothly across geometries by
varying ω.

4.4 Benefits of NES
Building on the RFM approach introduced earlier for solving
the Riemannian eikonal equation, we summarize the key
advantages of NES over classical numerical PDE solvers for
computing distance fields and geodesics:

Grid-free and end-to-end differentiable. NES operates
in continuous space without explicit meshes and is trained
via automatic differentiation. The resulting distance fields
and geodesic flows are end-to-end differentiable, enabling
gradient-based optimization, policy learning, and closed-
loop control within a unified framework.

Scales to high dimensions. By avoiding discretization and
leveraging neural parameterization, NES remains tractable
on high-degree-of-freedom configuration manifolds with
continuously varying metrics, where grid- or mesh-based
methods become impractical due to resolution and memory
constraints. The inference time is also fast once the model is
trained.

Globality. Motivated by Fast Marching, NES enforces
the eikonal PDE as a derivative constraint on U over
the whole domain and approximates its viscosity solution,
producing a single, globally consistent distance potential
on the configuration manifold. In contrast, shooting/BVP
methods require explicit geodesic solves and can become
trapped in local minima.

Flexibility. NES encodes a two-point value function
U(qs, qe) rather than a single-source field, and it naturally
supports conditioning on boundary specifications as well
as on parameterized Riemannian metrics G(·;ω). These
changes are handled by inputs to a single model, whereas
numerical PDE solvers typically require re-discretization or
re-solving the problem to accommodate them.

5 Examples
In this section we illustrate how the proposed methods
produce distance fields and geodesic flows that are directly
useful for robot problems. We present two groups of
examples. First, we validate NES and its conditioned
variant (C–NES) under an energy-related metric that reflects
the robot’s dynamics. Second, we show how different
Riemannian metrics shape distance fields and motions
for various robot applications. We provide quantitative
visualizations to clarify the behavior of the learned fields and
flows.

5.1 NES for Minimal Energy Geodesics
We consider a 2D planar manipulator with two links, each
having a length of l1 = l2 = 2 and masses m1 = m2 = 1
concentrated at each articulation. The joint angle ranges from
−π to π for both links. Consequently, the corresponding
inertial mass matrix M(q) is expressed as:

M(q)=

[
(m1 +m2)l

2
1 +m2l

2
2 + 2m2l1l2 cos(q2) m2l

2
2 +m2l1l2 cos(q2)

m2l
2
2 +m2l1l2 cos(q2) m2l

2
2

]
,

(29)
where q1 and q2 are the joint angles. The configuration–space
manifold is endowed with the kinetic–energy Riemannian
metric Gke(q) = M(q). We visualize the manifold and
metric as ellipsoids in Figure 3(a). Given a fixed source,
we solve the Riemannian eikonal equation using the RFM
approach in Algorithm 1, yielding the distance field (b) and
geodesic flows (c). Panel (d) shows a 3D visualization of the
resulting geodesics, together with a Euclidean reference path
and the corresponding robot motions. Geodesics are curved
paths in configuration space that minimize kinetic energy.

NES Solution . Using the approach in Section 4.2,
we can also obtain solutions through the proposed neural
Riemannian eikonal solver, visualized in Figure 4. Panels
(a) and (b) show the learned distance field and associated
geodesic flows. The differences with RFM in (c) are small,
indicating that the network accurately approximates the
Riemannian eikonal and yields results comparable to the
RFM baseline. Panel (d) shows geodesics between arbitrary
configuration pairs, including symmetric round trips,
underscoring the model’s ability to generalize to arbitrary
source–goal pairs. In contrast, RFM is single–source and
must be recomputed for each new query.

C-NES on the Task-space Boundary. Using the same
kinetic–energy metric, we further show NES conditioned on
a boundary induced by a task–space source, as visualized in
Figure 5. The end–effector target is xs = (2.0, 2.0), shown
in Figure 5(a). This point admits two IK solutions, e.g.,
(q1, q2) = (0, 1.57) and (1.57,−1.57), but these are not
provided to C–NES a priori. C–NES takes (xs, qe) as input;
the resulting distance map is shown in Figure 5(a), and the
corresponding geodesic flows in Figure 5(b). Backtracking
the flow from qe discovers the IK solutions (red stars)
and, upon integration, yields the geodesic that minimizes
kinetic–energy distance. Figure 5(c) displays four motions
that all reach the same end–effector position but start
from different configurations. Due to redundancy, different
geodesic flows terminate at different IKs. The orange
trajectory follows the energetically optimal branch, leading
to IK solutions distinguishing from the others.

Prepared using sagej.cls

9

(a) (b) (c) (d)
Figure 3. (a) Configuration space manifold endowed with a Riemannian metric using inertia as weighting matrix (visualized as
isocontours of inverse matrices). The geodesics on this manifold correspond to minimal kinetic energy paths. By starting from a
given point (red star), we can solve the eikonal equation on this manifold, accounting for the distance field (b) and gradient flow (c),
which can then be used to backtrack geodesics in a very rapid manner (in milliseconds), see colored paths for examples of
retrieved trajectories. Here, the source point is fixed for visualization. By using the proposed Neural Riemannian eikonal Solver
(NES), these points are given as inputs, meaning that geodesics from any starting point to any final point are considered altogether.
(d) Geodesic path (solid line) and Euclidean path (dashed line) on this manifold with corresponding robot motions.

(a) (b) (c) (d)
Figure 4. Solutions of Neural Riemannian Eikonal Solver (NES). (a) and (b) show the distance field and geodesic flow with the
same parameters as Riemannian Fast Marching (RFM). (c) compares the difference with Figure 3 (b) (c), where geodesic flows
produced by NES and RFM are shown in yellow and green, respectively. These three figures demonstrate that the neural network
parameterization can solve the Riemannian eikonal equation, yielding results similar to those of RFM. (d) shows trajectories from
source (green) to goal (orange) points and vice versa, highlighting the generalizability and symmetry of NES for arbitrary joint angle
configuration pairs.

(a) (b) (c)
Figure 5. Given a kinetic-energy metric, (a) and (b) show the distance field and geodesic flow for the target position (2.0, 2.0) in
task space by using C-NES. Here, we do not specify the target joint angles (red stars). These joint angle targets are instead learned
implicitly by the neural network. (c) shows four robot motions in task and configuration spaces (with different colors). We can
observe that the motion solution for the task in orange color differs from the other three, which are automatically computed in
accordance with the distance field and geodesic flow.

C–NES on the Riemannian Metric. A convenient
instantiation of the metric-conditioning is to use the
Jacobi metric derived from Hamiltonian dynamics that
considers both kinetic and potential energy (Section 2.3.2).
Specifically, we set the parameter in (28) to the total
energy, i.e., ω = H , and train our NES conditioned on this

parameter. With this choice, C–NES represents distance
fields and geodesic flows at fixed energy H by simply
augmenting the network input with H , while keeping the
training objectives unchanged. Varying H smoothly deforms
the geometry through the conformal factor 2(H − P). As
H increases, the conformal factor 2(H − P (q)) grows and

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 6. C–NES conditioned on the Jacobi metric
parameterized by the total energy H . Top: distance fields.
Middle: geodesics. Bottom: configuration-space manifolds.

GJac(q;H) more closely resembles a constant scaling of
M(q). Accordingly, the resulting geodesics become closer
to those induced by the kinetic–energy metric Gke; in
the idealized limit H →∞, they coincide. For smaller H ,
the available kinetic energy T = H − P (q) is reduced, so
the induced geodesics correspond to lower–energy motions.
However, if H approaches P (q) anywhere along a path,
the conformal factor 2(H − P) tends to zero and the
Jacobi metric becomes nearly singular, potentially causing
numerical ill-conditioning. Figure 6 visualizes the distance
fields, geodesics, and configuration–space manifolds for total
energies H ∈ {1.2, 1.6, 2.0}Pmax, where Pmax represents
the maximum potential energy.

5.2 Comparison of Distance Field-based
Approaches

We advocate solving the Riemannian eikonal equation to
obtain a global, metrically consistent distance field from
which geodesics are recovered by backtracking. To justify
this choice, we compare NES against two baselines: (i)
geodesic ray tracing (GRT) and (ii) a purely supervised
learning (SL) regression of a distance field. In all methods,
geodesics are extracted a posteriori by backtracking the
resulting field.

Geodesic Ray Tracing (GRT). GRT is a grid-free
baseline that traces geodesic rays outward from multiple
sources and, recursively, from points visited along those
rays (also known as wavefront construction). From each
source, we sample unit directions on the Riemannian unit
sphere and integrate the geodesic ODE at unit metric speed;
each ray assigns an arc length to the points it traverses.
The tentative distance at any location is the point-wise
minimum of accumulated arc lengths over all rays; values at
non-hit locations are interpolated from nearby ray samples.
GRT has two main limitations compared to the eikonal
formulation (Rawlinson and Sambridge 2005):

1. Optimality and consistency. The point-wise mini-
mum over traced rays is a sampling-dependent lower
envelope. The accumulated arc length from the source
to a point x equals the true geodesic distance only up
to the first conjugate point along that ray; beyond this
point, the ray ceases to be minimizing and its length
exceeds the minimal distance (Law 2021). Moreover,
when directions are re-sampled at intermediate points,
segments from different rays can be spliced; such
stitched paths are not guaranteed to be globally opti-
mal and, in general, do not satisfy the eikonal PDE.
Therefore, this approach does not yield a single, glob-
ally consistent distance potential.

2. Efficiency, coverage, and parallelization. Achieving
dense coverage requires fine angular/spatial sampling
and repeated re-seeding from many intermediate
points, which grows with the number of rays and
integration steps (de Kool et al. 2006). Additionally,
because new rays are computed iteratively based on
previously traced rays, the method has sequential
dependencies and data-dependent branching, causing
warp divergence and irregular memory access, which
hampers GPU efficiency (Aila and Laine 2009).
In contrast, eikonal solvers (e.g., Fast Marching)
compute a dense single-source distance field in a
single monotone outward pass, after which geodesics
are recovered by inexpensive backtracking (Kimmel
and Sethian 1998).

Supervised Learning (SL). A direct alternative is to learn
a pairwise distance map by generating ground-truth labels
on the fly and minimizing the discrepancy between predicted
and labeled distances, e.g.,

LMSE = E(qs,q)

[(
Uθ(qs, q)− d̂(qs, q)

)2]
,

where d̂(·, ·) is obtained by a separate procedure (e.g.,
solving a two-point boundary-value problem or running
geodesic front propagation/FMM to create ground-truth
annotations). This approach yields a fast, continuously
differentiable distance oracle at inference time, but has
key drawbacks: (i) computational cost—label generation
dominates training and scales with the number of
source–query pairs; (ii) coverage/bias—supervision is
limited to sampled pairs and inherits any inaccuracies
or sparsity of the data; (iii) no PDE structure—the loss
does not enforce the eikonal metric constraint; and (iv)
flow fidelity—even with accurate distance labels, a neural
regressor can produce different gradients, which can deflect
paths and yield incorrect geodesic flow. In contrast, our NES
eliminates distance labels and trains by enforcing the eikonal
equation and boundary conditions, producing a globally
consistent field whose gradients are directly suitable for
reliable geodesic backtracking.

Evaluation. We evaluate GRT and SL on the same 2D
Riemannian manifold with a kinetic–energy metric. Figure 7
shows distance fields (left) and backtracked geodesics
(right), in comparison to NES (Figure 4a–b). For geodesic
ray tracing, we initialize 64 rays from the source with random
unit directions and integrate the geodesic ODE at unit metric

Prepared using sagej.cls

11

Figure 7. Distance field (left) and geodesics (right). Top:
results obtained by the Geodesic ray tracing (GRT) baseline.
Bottom: supervised regression trained on GRT labels.

Table 1. Comparison of distance-field-based approaches

Method Geodesic Length Runtime (offline/online) Type

RFM 6.44± 2.93 0.58s/0.58s Single-point
NES 6.42± 2.95 5min/0.27s Source-goal
GRT 6.68± 3.11 30min/10.6s Single-point
SL 6.47± 2.98 32min/0.27s Single-point

speed. Every 15 integration steps, we re-seed 16 new rays
at the wavefront (from the tips of active rays) and record
their accumulated arc lengths. We continue until the total
number of rays reaches 5,000. We then interpolate these
samples and take the pointwise minimum across all rays to
form the tentative distance field. Despite dense sampling, the
field exhibits artifacts that induce non-smooth geodesics and
inconsistent gradients (top row). For supervised learning, we
use the GRT field as supervision and train a neural regressor
to produce a continuous distance map. This reduces visible
artifacts and yields smoother flows (bottom row), but inherits
GRT’s coverage/bias and requires costly label generation.

Results. Table 1 summarizes geodesic lengths back-
tracked from the learned distance fields and computation
times—split into offline (data collection/training) and online
(trajectory integration). RFM and NES recover near-optimal
lengths with low online times. GRT yields longer paths
and slower inference despite substantial offline cost. SL
improves geodesic length and matches NES’s online speed,
but requires even more offline time for label generation and
training; the complexity of data generation further limits it
to single-point eikonal formulations. Overall, eikonal meth-
ods produce dense, metrically consistent fields from which
geodesics can be reliably backtracked. NES is preferred over
SL because it enforces the eikonal PDE in the neural network
during training rather than regressing to sampled labels; this
avoids costly label generation, reduces sampling bias, and
imposes a principled, physics-based structure that promotes

globally consistent distance fields and stable geodesic back-
tracking.

5.3 NES for Other Robot Applications
In addition to minimum–energy motions, we present
three further applications that illustrate the generalization
capability of NES across broader robotic problems. These
tasks instantiate different Riemannian geometries discussed
in Section 2.3, including pullback metrics, stability–aware
energy shaping, and obstacle avoidance. In all cases, the
eikonal is solved on the chosen geometry, and geodesics are
recovered by backtracking as in the previous sections.

5.3.1 Task–Space Distance Minimization We apply our
Riemannian distance field framework to generate motions
that minimize task–space displacement. Using the pullback
construction from Section 2.3 with the Euclidean task
metric defined by GX = I, the configuration–space metric
is defined by

Gpb(q) = J(q)⊤ J(q).

The task–space speed induced by a joint velocity q̇ is

∥ẋ∥ = ∥Jq̇∥ =
√
q̇⊤J⊤Jq̇ = ∥q̇∥J⊤J. (30)

The minimum–length task–space path corresponds to
geodesics under this Riemannian metric, which encodes how
joint–space motions translate to task–space displacements.
This formulation minimizes the accumulated task–space
displacement, which is desirable for applications such as
reaching, drawing, or tool usage, in which end–effector
path length matters more than joint–space path length.
The Riemannian formulation ensures that among all
possible paths connecting two configurations, the one that
minimizes task–space travel distance is selected. Note
that the task–space paths are not necessarily straight
lines, especially for the non-redundant manipulators. This
contrasts with task–space interpolation or null–space control,
which enforces Cartesian line segments or waypoints that
may be kinematically infeasible. An illustration of this task
is provided in Figure 8, which depicts the Riemannian
manifold, the geodesic distance field and flow, as well as
the resulting robot motions using the same 2D planar robot.
This formulation can be further extended to incorporate
task–specific metrics by choosing GX ≻ 0 to prioritize
motions along specific task–space directions.

5.3.2 Stability–Aware Energy Shaping We embed pas-
sive stability directly into the planning geometry for a
pendulum–on–cart system with two degrees of freedom: the
cart position x and the pendulum angle q, as illustrated in
Figure 9 (top-left).

As introduced in Section 2.3, we define a position-
dependent Riemannian metric that scales inertia with
normalized potential using (17). Since the state variables
include both cart translation x and pole orientation q, we
define

Gsta(x, q) = M(x, q)
[
1 + ϵP̃ (x, q)

]
,

P̃ (x, q) =
P (x, q)− Pmin

Pmax − Pmin
∈ [0, 1].

(31)

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 8. Illustration of task-space distance minimizing motion
generation. Geodesics on the Riemannian manifold defined by
the metric G(q) = J⊤J correspond to motions minimizing
end-effector displacement in task space, solved by the
Riemannian eikonal equation.

A detailed description is provided in Section 2.3. Figure 9
(top–right) shows three motions starting from different initial
states, all computed under the same energy-shaped metric
(ϵ = 2.0) and same eikonal formulation. As the required
cart translation increases, the geodesic flow relies more on
low–potential configurations: long moves lower the pole and
translate near the down configuration before lifting at the
goal; moderate moves lower it partially; short moves stay
near upright. This behavior requires no mode switching or
heuristics, because we define the Riemannian metric inflates
distances in high–energy regions, trajectories naturally dwell
in low–energy basins and traverse high–energy postures only
when necessary. The corresponding manifold, distance field,
and geodesic flow are shown in Figure 9 (bottom).

5.3.3 Collision avoidance Eikonal-based distance fields
and geodesic flows handle collision avoidance by making
obstacles impassable in the PDE. In the isotropic form
(4), this can be modeled by assigning zero-speed velocity
to points inside obstacles O. This yields global optimal
paths that respect hard collision constraints and have shown
promising results in motion planning (Ni and Qureshi
2022, 2023). The same idea extends from isotropic to
anisotropic settings by replacing the Euclidean norm with
the Riemannian metric. Figure 10 illustrates the distance
field (a) and flows/paths (b) on the same configuration–space
manifold endowed with the kinetic–energy metric described
in Section 5.1, now with obstacles present. Solving the
eikonal equation produces a global distance field and
corresponding optimal paths without additional asymptotic
computational complexity.

However, because proximity to obstacles is not explicitly
encoded, the resulting paths can exhibit vanishing clearance,
which reduces robustness and elevates collision risk.

Figure 9. Stability-aware motion generation for the
pendulum-on-cart system. Top-left : configuration space of the
system. Top-right : representative trajectories from distinct initial
conditions, computed via backtracking geodesic flow without
tuning. Bottom: the Riemannian metric, energy field, and
induced geodesic flow for a fixed goal.

(a) (b)
Figure 10. Solution of the Riemannian eikonal equation in case
of obstacles (black contours). (a) distance field. (b) Geodesic
flow.

To address this limitation, we replace the hard, non-
smooth boundary (i.e., zero-speed zones) with a smoothly
varying weight matrix that continuously reflects proximity
to obstacles, using the Riemannian eikonal formulation
described in Section 2.3. This formulation increases the cost
of moving toward obstacles while preserving flexibility in
tangential directions. As a result, paths naturally bend around
obstacles, effectively maintaining smooth and safe clearance.
Figure 11 compares paths generated by the standard isotropic
eikonal formulation (a) and our Riemannian manifold-
based approach (b). The latter produces trajectories that are
smoother with a more natural usage of obstacle proximity
information.

6 Experiments
We evaluate NES on motion planning problems to
demonstrate its ability to generate dynamics-aware, energy-
efficient trajectories—a long-standing challenge in robotics.

Prepared using sagej.cls

13

(a) (b)
Figure 11. Obstacle-avoidance comparison. (a) Trajectory
generated by the standard isotropic eikonal equation. (b)
Trajectory generated using a Riemannian eikonal formulation.

From a Riemannian-geometry viewpoint, Lagrangian and
Hamiltonian mechanics induce the kinetic-energy metric
and the Jacobi metric respectively (Section 2.3). NES
seeks geodesics under these metrics, yielding paths that
respect system dynamics while reducing energy. The
underlying robot dynamics on configuration manifolds and
the connection between geodesics and optimal control are
summarized in Appendix A.

The experiments are designed to investigate the following
key questions:

• Q1: How effective and efficient is NES in computing
distance fields and geodesic paths on Riemannian
manifolds?

• Q2: How does our method compare to commonly used
approaches for computing geodesic paths?

• Q3: In which ways can the geodesic path on a
Riemannian manifold account for reduced control
inputs?

• Q4: How well can our neural Riemannian eikonal
solver scale to high-dimensional robot manipulation
problems?

• Q5: How effective is our C-NES approach at
propagating wavefronts from joint space to task space?

• Q6: How easily can our approach be integrated into
other motion optimization frameworks to facilitate
dynamics-aware motion planning?

To address these questions, we conducted a series of
experiments in both simulation and real-world settings by
considering two robot manipulators: a 2-DoF planar robot
described in Section 5, and a 7-axis Franka robot. The inertial
mass matrix and potential energy of this robot are derived
from the robot’s Unified Robot Description Format (URDF)
file using the Composite Rigid Body Algorithm (Walker
and Orin 1982), and we modified the implementation by
(Johannessen et al. 2019) to enable batch computation in
PyTorch.

6.1 Baselines
Computing geodesics on a Riemannian manifold is
challenging due to the metric’s nonlinearity and anisotropy.
In Section 5, we demonstrate the effectiveness of NES
for computing distance fields and geodesic flows, and we
compare it with other distance–field–based methods. Here,

we further compare NES with classical approaches that
directly compute geodesics.

Geodesic Shooting (GS): This method solves an initial
value problem by numerically integrating the geodesic
equation forward in time, starting from a given initial
configuration and velocity. A key characteristic of GS is
that it does not require explicit knowledge of the goal
configuration in advance. Instead, it relies on choosing an
initial velocity vector that heuristically points approximately
toward the desired target. That differs from our NES method,
which directly finds the geodesic path between start and goal
pairs.

Optimal Control (OC): This approach formulates
geodesic computation as a boundary value problem
and solves it through iterative optimization techniques.
Specifically, we optimize the objective:

min
{uζ}

∥qN − qs∥2Q + r

N−1∑
ζ=1

u⊤
ζ G(qζ)uζ

subject to qζ = qζ−1 + uζ dζ, ζ = 1, . . . , N

dt =
√
u⊤
ζ G(qζ)uζ dζ,

(32)

where qζ is the system state indexed by the phase parameter
ζ, which serves as a reparameterization of time along
the trajectory corresponding to the arc-length under the
Riemannian metric defined by G. The cost minimizes
the weighted squared distance between the final state qN
and the target qs along with a regularization term on
control effort weighted by G(qζ). The dynamics constraint
describes the discrete evolution of states with respect to ζ.
The time reparameterization equation connects the physical
time increment dt to the control magnitude measured
by the energy metric, ensuring that ζ parameterizes the
trajectory consistently with the system’s geometry and
temporal evolution. We refer to this baseline as the constant
energy path (CEP), as the optimal control approach seeks
the shortest geodesics on the configuration space manifold
defined by the Jacobi metric, representing constant-energy
motion.

A brief overview of these baselines and our approach is
listed in Table 2. In contrast to GS and OC, which rely on
numerical optimization or iterative integration and are often
sensitive to initialization, our NES learns a differentiable
approximation to the geodesic distance field. Once the model
is trained, it can be used to query distances and geodesic
flows efficiently and can be generalized to arbitrary start-to-
goal joint configuration pairs. NES provides a closed-form
policy by evaluating the analytic gradient of the learned field,
enabling fast and generalizable geodesic inference across
the configuration space. Unlike OC-based methods, which
are typically computationally expensive and less flexible
for real-time control, NES supports dynamic, efficient, and
scalable geodesic computation.

6.2 Control Strategies
In our experiments, we exploit a key property of NES: rather
than solving a new geodesic problem for each start–goal
pair, it learns offline a continuous, differentiable distance
field on the configuration manifold. At runtime, we query the

Prepared using sagej.cls

14 Journal Title XX(X)

Table 2. Comparison of Geodesic Computation Methods
Criterion Optimal Control Geodesic Shooting Neural Eikonal Solver (Ours)
Output Policy / Path Policy / Path Field + Policy / Path
Optimality Local Local Approx. Global
Online Cost High Low Low
Init. Sensitivity High High Low
Flexibility Low High High
Differentiability Indirect Indirect Explicit

distance field and its analytic gradient efficiently to recover
geodesic directions, enabling high rate in feedback loops.
Thus, in practice, NES is not only a geodesic solver but also a
compact policy/value representation that integrates naturally
with standard controllers to handle constraints. In other
words, NES provides high-level guidance on the manifold
via the geodesic flow, while a separate low-level controller
enforces actuation limits, kinematic/dynamic constraints,
and tracking accuracy. This separation preserves constraint
awareness encoded in the metric and distance field, and
affords flexibility and adaptability in dynamic environments.

We observed that directly following the learned geodesic
flow −V (q) can lead to numerical instability, especially
when q is close to the target and U(q) approaches zero.
To ensure stable and robust convergence near the target
in our tests, we define a configuration-dependent desired
joint velocity q̇des(q) by blending the learned geodesic
flow direction −V (q) with a simple linear vector (qs − q)
pointing directly toward qs. The blending weight λ(q) is
dynamically adjusted based on U(q), allowing a smooth
transition between global and local guidance:

λ(q) =
β U(q)

1 + β U(q)
,

q̇des(q) = −λ(q)V (q) +
(
1− λ(q)

)
(qs − q).

(33)

Here β > 0 modulates the sensitivity to U(q). When the
robot is far from the target and U(q) is large, λ(q)≈1
and the motion follows −V (q); as U(q) becomes small,
λ(q)→0 and the attraction term ensures stable convergence.

Below, we illustrate representative integrations used in
our experiments, including kinematic and kinodynamic
QP tracking and task-priority control via null-space
projection. Other approaches, such as model predictive
control (MPC) (Koptev et al. 2024) can also be exploited.

6.2.1 Quadratic Programming (QP) The blended velocity
q̇des(q) specifies an instantaneous target motion. We compute
a feasible command that respects limits and dynamics by
solving a QP. We give kinematic (velocity) and kinodynamic
(torque/acceleration) forms.

Kinematic QP Formulation At the joint velocity level,
the control command is the joint velocity q̇ ∈ Rn. This QP
is formulated to compute the feasible joint velocity q̇ that
closely tracks the blended desired velocity q̇des(q), while
satisfying joint velocity and position limits. The objective is
to minimize the weighted squared error between the actual
and desired velocities, with the cost function defined by a
symmetric positive semi-definite matrix H:

min
q̇∈Rn

(q̇ − q̇des(q))
⊤Q(q̇ − q̇des(q)),

s.t. q̇min ≤ q̇ ≤ q̇max,

qmin ≤ q +∆tq̇ ≤ qmax.

(34)

The weighting matrix Q allows prioritizing tracking
accuracy across different joints. Joint position and velocity
limits are applied to constrain the motion within the robot’s
physical limits.

Kinodynamic QP Formulation At the joint torque level,
where the control input is τ ∈ Rn, it is necessary to
incorporate the robot’s dynamics, typically modeled as τ =
M(q)q̈ +C(q, q̇)q̇ + g(q). To utilize the desired velocity
q̇des(q), we first compute a nominal desired joint acceleration
q̈des aimed at tracking the desired velocity over time:

q̈des(q, q̇) =
q̇des(q)− q̇

∆t
, (35)

where ∆t is the control time step. A nominal desired torque
τdes required to achieve the target acceleration is computed
using inverse dynamics:

τdes(q, q̇, q̈des) = M(q)q̈des +C(q, q̇)q̇ + g(q). (36)

We formulate a kinodynamic QP with both joint torque τ and
joint acceleration q̈ as decision variables. This formulation
allows us to explicitly include the robot’s dynamics as an
equality constraint while minimizing the deviation between
the applied torque τ and the nominal desired torque τdes. The
resulting QP is defined as:

min
τ∈Rn

q̈∈Rn

(τ − τdes(q, q̇, q̈des))
⊤Q(τ − τdes(q, q̇, q̈des)),

s.t. τ −M(q)q̈ = C(q, q̇)q̇ + g(q),

τmin ≤ τ ≤ τmax,

q̈min ≤ q̈ ≤ q̈max,

q̇min ≤ q̇ +∆tq̈ ≤ q̇max,

qmin ≤ q +∆tq̇ + 1
2∆t2q̈ ≤ qmax.

(37)
In this formulation, Q is a symmetric positive semi-
definite weighting matrix for the torque error objective.
The constraints enforce the robot’s dynamics, as well as
joint torque, acceleration, velocity, and position limits.
Future joint velocities and positions are approximated
using first- and second-order Euler integration, respectively.
The kinodynamic QP finds the optimal feasible torque
and acceleration pair that satisfies the robot’s dynamics
and physical limits while minimizing the weighted
deviation from the nominal torque required to achieve
the desired acceleration derived from the blended velocity
q̇des(q), offering a simple yet effective framework for
integrating the learned geodesic flows into real-time control
strategies. Furthermore, this framework is extensible and
can incorporate additional constraints, such as collision
avoidance (Li et al. 2024b; Koptev et al. 2022).

Prepared using sagej.cls

15

6.2.2 Task Prioritization In practice, while QP-based
controllers offer flexibility for optimizing multiple objectives
simultaneously, they can yield suboptimal results when
objectives conflict or require strict prioritization. In weighted
optimization schemes, improper tuning of weights can lead
to violations of critical tasks. Task prioritization addresses
this limitation by enforcing a strict hierarchy: higher-
priority tasks are satisfied strictly, while lower-priority
behaviors are projected into the null space of higher-priority
constraints. This method is effective for simultaneous
objective achievement, such as maintaining end-effector
orientation while avoiding obstacles (Khatib 1987; Ratliff
et al. 2018).

Here we integrate the geodesic flow policies learned
by NES into a task prioritization framework to enhance
robotic performance while strictly satisfying the primary
task. Typically, this policy is integrated as a lower-priority
task, contributing to motion generation without violating
higher-priority constraints. Although projecting into the
null space may compromise some global optimality of the
learned policy, the resulting motion remains near-optimal by
leveraging the robot’s residual redundancy.

For a constraint manifold defined by f(q), the joint
velocity q̇ must satisfy:

Jf (q)q̇ = 0, (38)

where Jf (q) ≜
∂f
∂q is the constraint Jacobian. This ensures

all motion remains tangent to the constraint surface. The
desired geodesic flow q̇des is projected into the constraint null
space:

q̇TP = Nf q̇des, (39)

where Nf ≜ I− J†
fJf is the null-space projector, J†

f is the
Moore–Penrose pseudoinverse of Jf , and q̇TP is the task-
prioritized velocity. By integrating our geodesic flow policy
through null-space projection, we achieve simultaneous
constraint satisfaction and trajectory optimization. The
framework ensures strict adherence to constraints Jf (q)q̇ =
0 while preserving the optimized trajectory in the remaining
degrees of freedom. As a result, the robot’s motion retains
the optimality properties of the original policy wherever
feasible, while ensuring that all specified constraints are
strictly satisfied.

6.3 Training Details and Evaluation Metrics
We use a multilayer perceptron (MLP) as the backbone of
our NES to train the neural Riemannian eikonal solver for the
7-DoF Franka robot. The MLP takes concatenated source-to-
goal pairs as input and outputs a scalar Riemannian distance
U , and its gradient is obtained analytically via automatic
differentiation in PyTorch. To better capture the local
geometric structure of the configuration space manifold,
we utilize a geometry-aware sampling strategy—specifically,
the Riemannian Manifold Metropolis-Adjusted Langevin
Algorithm (RM-MALA)—to generate input point pairs that
lie on the manifold. A detailed explanation of this sampling
method is provided in Appendix D. During training, we
randomly sample 50,000 joint configurations qe at each
epoch as wavefront boundary points, drawn from the
distribution produced by the RM-MALA algorithm. The

model is trained for up to 105 epochs using the Adam
optimizer with a learning rate of 0.001, terminating early
upon convergence. Training takes approximately 5 minutes
for the 2-DoF planar robot and around four hours for the 7-
DoF Franka robot, using a single NVIDIA RTX 3090 GPU.

We evaluate our approach using the following metrics:
Geodesic Length: The geodesic length is computed via

(3), which is a basic metric to measure the quality of the
constructed distance field.

Total Torque: We measure control effort as

∥τ∥R ≜
(∫ T

0

τ⊤Rτ dt
)1/2

. (40)

We report two variants: (i) norm torque with R = I (standard
ℓ2 norm); and (ii) active torque with R = q̇q̇⊤, whose
integrand is (τ⊤q̇)2, indicating torque that does mechanical
work). Ideally, for geodesics under the Jacobi metric, the
motion is energy-conserving, so no active work is required,
and this term vanishes; see Appendix A.3 for a detailed
discussion.

Computation Time: We measure the total computation
time required to generate control inputs and produce the full
trajectory.

6.4 Results
6.4.1 Dynamics-aware motions generation on configu-
ration space manifold We first evaluate dynamics-aware,
energy-efficient motion generation on the configuration-
space manifold. Specifically, we compare NES against base-
lines in computing minimum-length paths on the energy-
conserving manifold induced by the Jacobi metric. As dis-
cussed in Section 5.1, we set the total energy to H =
1.2Pmax to remain in a low-energy regime while avoiding
singularities. Table 3 reports results for both 2D and 7D
robotic systems. We randomly sample 100 start-goal pairs
for geodesic computation and compare NES with Geodesic
Shooting (GS), Optimal Control (OC), and RFM. For NES,
we evaluate two tracking controllers described in Section 6.2:
a velocity-based QP controller (Vel) and a torque-based QP
controller (Tau) for following the planned trajectories. From
these experiments, we extract the following key insights:

Energy-efficient motions via geodesic planning (Q1,
Q2): In the 2D planar simulation, NES achieves comparable
geodesic lengths and lower torque consumption than RFM,
and significantly outperforms both GS and OC in terms
of active torque and total control effort. In the 7D case,
NES generates the shortest geodesics and lowest active
torques among all evaluated methods. These results validate
our formulation: instead of solving dynamics-aware motion
planning via trajectory optimization, we compute geodesics
on a configuration-space manifold shaped by the robot’s
energy structure. This leverages the geometry of robot
dynamics to find globally optimal solutions.

Relation to minimum control effort (Q3): Our method
consistently produces trajectories with lower active torque
consumption by planning paths along geodesics on the
energy manifold. This further results in reduced ℓ2 torque,
a standard metric in optimal control for measuring the
control effort. These results align with our theoretical
analysis in Appendix A.3, showing that geodesic paths on

Prepared using sagej.cls

16 Journal Title XX(X)

the energy-conserving manifold often correlate with lower
control effort. Notably, this performance is achieved without
explicitly optimizing torque-based objectives, demonstrating
that our geometric formulation inherently promotes energy-
efficient behaviors.

Decoupling planning and control for scalability and
robustness (Q2, Q4, Q6): A key advantage of our
framework is the clear separation between motion planning
and control. Traditional optimal control tightly couples these
components, solving high-dimensional nonlinear trajectory
optimization problems at runtime while satisfying system
constraints at every timestep. This approach is not only
computationally expensive but also highly sensitive to
initialization, often resulting in suboptimal solutions due
to local minima. In contrast, our NES precomputes a
global distance field and corresponding geodesic paths
over the configuration space manifold. These geodesics
encode dynamic feasibility and energy optimality, serving
as reference trajectories. The control task is then reduced
to a lightweight tracking problem solved by standard QP-
based velocity or torque controllers. This decoupling enables
real-time execution and robustness to disturbances. As
evidenced in Table 3, it substantially improves computational
efficiency, making our method scalable to high-DoF systems
and adaptable in reactive scenarios.

Flexibility and adaptability (Q1): Unlike RFM, which
relies on grid-based discretization, NES learns a continuous
and differentiable representation of the distance field. RFM
must solve the eikonal equation from scratch using iterative
wavefront propagation for each new start point. This process
severely limits its scalability and computational efficiency.
In contrast, NES supports parallel computation over batch
inputs, enabling rapid generalization across a wide range
of initial conditions. It also avoids interpolation errors and
scales effectively to high-dimensional configuration spaces.
As shown in Table 3, NES performs reliably on high-
dimensional platforms where RFM fails.

A comprehensive comparison of our approach and
baselines is shown in Figure 12 (Q2). The ground truth
trajectory is derived from our RFM approach. In (a), we
observe that both NES and optimal control successfully
approximate the energy-optimal path if the start and goal
points are close to each other. However, if the start and goal
points are far apart, as shown in (b), the optimal control
method becomes trapped in a local minimum, while our
NES approach still converges to the near-optimal solution.
In both cases, geodesic shooting finds local minimum
solutions. Figure 12(c) further highlights NES’s robustness
to disturbances. Thanks to its efficient computation and
generalization ability, NES adapts to varying start-to-goal
conditions and maintains reliable performance under the
disturbance.

6.4.2 Correlation with Minimum-Torque Control To fur-
ther verify the connection between geodesics on the energy-
conserving manifold and the minimum control-effort prob-
lem (Q2, Q3), we consider an additional optimal control

problem that minimizes torque:

min
{ut}

∥qT − qg∥2Q +
r

2

T−1∑
t=1

u⊤
t Rut,

s.t. qt+1 = FD(qt,ut),

(41)

where FD(qt,ut) denotes the system dynamics derived
from (47), and Q ⪰ 0, R ≻ 0 are weighting matrices.
We refer to this formulation as the minimum-torque (MT)
problem. Unlike previous baselines, this formulation does
not strictly enforce the Riemannian manifold constraints;
instead, it serves as a proof of concept to illustrate the
relationship between geodesic motions on the energy-
conserving manifold and the minimization of control effort.

We compare NES with a joint-torque controller as the
low-level actuator against this optimal-control formulation
that penalizes control effort. Qualitative comparisons are
presented in Figure 13. Our NES approach consistently
generates trajectories that closely follow geodesics on
the energy-conserving manifold, resulting in paths that
are qualitatively similar to those obtained from the
minimum-torque solution computed via the optimal-
control formulation (as illustrated in Figure 13-left). This
observation supports using geodesics on the energy-
conserving manifold as a geometric prior for optimal-
control objectives that penalize control effort. Although
friction, modeling/tracking errors, and boundary-condition
constraints introduce non-conservative energy expenditure,
the geodesic path still provides a principled heuristic that
serves as a high-quality initial guess close to the optimal
solution. In Figure 13-right, NES outperforms the minimum-
torque solution obtained from optimal control. A critical
limitation of the optimal-control formulation is its reliance
on manual tuning of the weighting matrices Q and R, which
introduces subjectivity and can yield suboptimal solutions if
not tuned carefully. In contrast, NES derives a control policy
inherently aligned with the system’s dynamics, enabling
adaptive and efficient energy use without heuristic parameter
tuning.

6.4.3 Conditioned on Task-space Boundaries We further
evaluate the performance of our proposed C-NES method in
mapping joint space boundaries to task space (Q5). For the
planar robot, we consider only the end-effector position. For
the Franka robot, NES is extended to handle position and
orientation separately, with:

U pos
θ (xs, qe) = ∥f pos(qe)− xpos

s ∥ σ
(
upos
θ (xs, qe)

)
,

U ori
θ (xs, qe) = arccos

(
f ori(qe)

⊤xori
s

)
σ
(
uori
θ (xs, qe)

)
,

(42)
where ∥f pos(qe)− xpos

s ∥ denotes the Euclidean distance in
R3, and arccos

(
f ori(qe)

⊤xori
s

)
corresponds to the geodesic

distance on the S3 manifold. Here, f ori(qe) and xori
s are the

unit quaternions representing the orientation. The total loss
is defined as the sum of the losses and the gradient flow is
computed as a linear combination of gradients from U pos

θ and
U ori
θ , ensuring that both position and orientation contribute to

the result.
A qualitative visualization of the planar robot is shown

in Figure 5. In this example, the target position of the

Prepared using sagej.cls

17

Figure 12. Comparison between our NES with a QP controller and baseline methods. NES matches OC in short-range tasks (a),
outperforms long-range cases (b) by avoiding local minima, and is robust to (c) disturbances.

Table 3. Comparison of Baselines on Energy-Efficient Motion Generation

Method Planar Robot (2D) Franka Robot (7D)
Geodesic Length L2 Torque Active Torque Time (Policy/Path) Geodesic Length L2 Torque Active Torque Time (Policy/Path)

GS 0.99 ± 0.37 88.7 ± 26.5 55.4 ± 19.5 0.001/0.18 8.73 ± 2.16 246.3 ± 82.8 58.9 ± 24.6 0.001/0.18
OC 0.91 ± 0.34 74.7± 20.6 48.2± 15.9 4.43/4.43 8.29 ± 2.34 201.6 ± 68.3 52.0 ± 21.2 6.14/6.14

RFM 0.80 ± 0.22 55.8 ± 14.6 38.9 ± 9.7 0.58/0.58 - - - -
NES+QP (Vel) 0.81 ± 0.22 51.6 ± 11.1 34.2 ± 7.5 0.013/0.27 7.69 ± 2.07 128.9 ± 32.0 30.6 ± 11.6 0.016/0.31
NES+QP (Tau) 0.81 ± 0.22 53.9 ± 13.0 35.6 ± 8.1 0.021/0.40 7.74 ± 2.10 118.0 ± 29.3 30.5 ± 11.4 0.025/0.51

Figure 13. Comparison between our NES with a QP controller
and optimal control approach with minimum torque inputs.

end-effector is set to xs = (2.0, 2.0), as shown in (a).
This inverse kinematics problem has two possible solutions
for the joint angles: q1 = 0, q2 = 1.57 and q1 = 1.57, q2 =
−1.57. Rather than explicitly solving the inverse kinematics
problem, our approach generates the geodesic flow that
iteratively guides the solution towards the minimal geodesic
length, as shown in (a) and (b). In (c), we visualize
four different robot trajectories that all reach the same
end-effector position but originate from different joint
configurations. Due to the system’s redundancy, multiple
joint configurations can map to the same task space position,
resulting in different geodesic flows starting from various
joint angles. Consequently, the orange trajectory represents
an optimal energy path that terminates at a different joint
configuration, distinguishing it from the other three.

Quantitative results are presented in Table 4. We compare
our C-NES method against two baseline methods. The first
is a geodesic shooting approach guided by Gauss–Newton
(GN), a second-order optimization method commonly used
in inverse kinematics. GN optimizes joint configurations
for the inverse kinematics problem. The second baseline
is an optimal control (OC) formulation, where the original
terminal cost term ∥qN − qs∥2Q in (32) is replaced with
a forward kinematics cost ∥f(qN)− xs∥2Q. The RFM

method fails under this setup due to severe grid distortions
introduced by the nonlinear forward kinematics function,
which make solving the eikonal equation intractable. These
results highlight the effectiveness of C-NES in computing
geodesic paths that map joint configurations to end-effector
poses, resulting in energy-efficient motions from joint space
to task space. Importantly, our formulation extends the
classical eikonal equation to incorporate nonlinear forward
kinematics, re-framing the inverse kinematics problem as a
hybrid optimization problem that jointly balances task-space
accuracy and energy optimality. The network learns a global
distance field that encodes energy-efficient solutions in task
space, leveraging the eikonal equation constraint ∥∇U∥G =
1 to capture globally shortest paths across the configuration
manifold.

Table 4. Baseline Comparison for Geodesic Lengths in
Dynamics-aware Motion Generation in Task Space

Method GN+GS OC C-NES
Planar Robot (2D) 0.54± 0.20 0.50± 0.18 0.43± 0.12
Franka Robot (7D) 6.92± 1.71 6.27± 1.60 5.45± 1.47

Table 5. Inference time (s) of NES across Different Batch Sizes.
Batch Size 1 10 102 103 104 105

CPU 0.010 0.012 0.014 0.035 0.249 3.131
GPU 0.027 0.028 0.028 0.028 0.031 0.121

6.4.4 Data and Computational Efficiency We further
validate the data and computational efficiency of our neural
Eikonal solver for geometry-aware motion generation (Q1,
Q4). We analyze both training efficiency and inference time.

Figure 14 presents the training performance of our neural
solver, evaluated by the number of data points required
and total training time. For the planar robot, the network
converges within 5 minutes using up to 3.0× 108 data
points. In contrast, training the Franka robot model takes

Prepared using sagej.cls

18 Journal Title XX(X)

(a) Planar Robot (b) Franka Robot
Figure 14. Evaluation of efficiency for the 2D planar robot and
Franka robot.

approximately 4 hours and requires 5.0× 109 data points.
In both robot experiments, training time scales linearly with
the size of the training dataset.

Table 5 summarizes the inference time per forward pass
across varying batch sizes. The reported times include
neural network evaluation, inertial mass matrix, computation
of the inertial mass matrix and potential energy, and
automatic differentiation to estimate the geodesic flow.
Overall, inference times remain low and stable across both
CPU and GPU platforms, even for batch sizes up to 103,
indicating strong suitability for real-time applications. The
GPU’s parallelism further enhances efficiency at larger batch
sizes. The majority of computational bottlenecks lies in
inverting the matrices to retrieve geodesic flows. Notably, for
a batch size of 1, CPU inference completes in under 0.01
seconds, supporting high-frequency updates of source-to-
goal pairs that are critical for reactive and real-time planning
and control.

6.4.5 Task-prioritized Energy-efficient Motion Policy
Previous experiments have demonstrated NES’s capability
to generate energy-efficient motions that can be effectively
tracked using a QP controller. In this section, we further
evaluate the effectiveness of NES within task-prioritized
control frameworks, focusing on its ability to preserve
natural energy conservation behavior while satisfying
additional constraints (Q6). Specifically, we consider two
representative scenarios: constrained motion and obstacle
avoidance. The constrained motion scenario involves task-
space requirements, such as maintaining a desired end-
effector position and orientation. In contrast, obstacle
avoidance requires generating collision-free trajectories
to ensure safe operation in cluttered environments. The
experimental setups for both scenarios are described in detail
below:

6.4.6 Constrained motion In this setup, the robot’s end-
effector is restricted to moving within a specified plane
while maintaining an orthogonal orientation. The constraint
requires the end-effector to remain in a plane parallel to
the horizontal plane at x = 0.3, with the vertical axis of
the end-effector aligned consistently throughout the motion.
To achieve energy-efficient movement, our NES policy is
designed to operate within the null-space of the primary
task. The Jacobian associated with this constraint defines
a subspace of the robot’s full Jacobian, allowing NES to
optimize energy usage without violating the primary task
requirements.

6.4.7 Obstacle avoidance This scenario focuses on
achieving energy-efficient motion while preventing colli-
sions with surrounding obstacles. Building on prior work (Li
et al. 2024b), we utilize a distance function and its gradient
to monitor proximity to obstacles. When no obstacles are
within the predefined safety margin, the robot follows the
NES-generated energy-efficient policy. However, if an obsta-
cle enters a predefined safety zone, the collision avoidance
strategy constrains NES within the null-space, ensuring safe,
collision-free trajectories without compromising the primary
task.

Figure 15. Trajectories generated by task-prioritized
energy-efficient motion policy and baseline. Top: Constrained
motion in which the end-effector is perpendicular to a plane.
Bottom: Obstacle avoidance. Red and blue curves depict the
GS and NES paths operating in the null-space of each principal
task.

We begin by randomly sampling 100 joint configuration
pairs that satisfy the above two constraints. For each pair,
we apply the NES algorithm to compute energy-aware
policies. We use geodesic shooting as the baseline because
it is also a reactive approach. Both NES and geodesic
shooting policies are projected into the null-space of the
primary tasks. Table 6 presents the experimental results on
average geodesic lengths for each method. As expected,
introducing constraints will increase geodesic lengths on
the configuration space manifold as the space of feasible
solutions is restricted. Despite this, the NES-generated
motion policies continue to outperform geodesic shooting in
terms of energy efficiency. Figure 15 compares trajectories of
task-prioritized motions with and without our energy-aware
motion policy, demonstrating the effectiveness and flexibility
of NES in combination with other motion policies for real-
time, adaptive, and energy-efficient robot control.

Table 6. Geodesic lengths for task-prioritized energy-aware
motion policies under the Jacobi metric.

Method No Constraint Obstacle Constrained Motion
GS + TP 7.94±1.67 8.52±1.83 8.75±1.83

NES + TP 7.67±1.70 7.86±1.85 8.20±1.86

Prepared using sagej.cls

19

Figure 17. Joint positions for Euclidean and NES-generated
paths.

6.4.8 Robot Experiments Finally, we conduct robotic
experiments to demonstrate the efficacy of our approach;
refer to the accompanying video (Q4). In the experiments,
we employ the QP controller with joint velocity inputs to
track the geodesic flow generated by the NES framework.
Two scenarios are evaluated for energy-conserving paths:
with and without gravity compensation. In the first scenario,
gravity compensation is applied externally via the controller,
so the Riemannian metric reflects only kinetic energy. In the
second, both kinetic and potential energy are incorporated
into the geodesic computation, resulting in full energy
conservation (Jacobi metric).

Figure 16 presents key frames of the robot trajectories
generated by NES under both metrics. For comparison,
we include the results from the geodesic shooting (GS)
approach, where the initial velocity is directed toward the
goal point and scaled to satisfy the manifold constraints.
On both manifolds, GS produces a straight-line Euclidean
path with differences lying in joint velocities to satisfy
the underlying Riemannian metric constraint. To visualize
differences more clearly, Figure 17 plots the joint positions
for all three trajectories. Although all trajectories share the
same start and goal configurations, the NES-generated paths
exhibit more natural behavior with curved trajectories in
configuration space, better reflecting energy-efficient motion
consistent with the geometry of the underlying manifold.
Similarly, robot motions and joint positions for task-space
motion generation are visualized in Figures 18 and 19.
Although the target joint configuration is unknown, the
gradient flow produced by our C-NES allows the robot to
reach the solution iteratively along the path of minimal
geodesic distance. Due to the redundancy of the robot, the
resulting trajectories differ and converge to distinct final joint
configurations, all satisfying the same task-space goal.

We further visualize the variations in energy and torque
during the robot’s motion to assess the energy efficiency
of our approach. Figure 20 (a) shows the energy and
torque variations on the Riemannian manifold with Jacobi
metric (solid lines), compared to the Euclidean path (dashed
lines). On the manifold equipped with the Jacobi metric,
the total energy—comprising both kinetic and potential
components—is expected to remain constant. Rather than
directly moving toward the goal, the NES-generated path
initially reduces the robot’s potential energy, converting it
into kinetic energy and resulting in a curved path. Therefore,
we observe lower energy and reduced torque consumption.

(a) NES-generated path with kinetic energy metric.

(b) NES-generated path with Jacobi metric.

(c) Euclidean path.
Figure 16. Snapshots of robot motions for C-space path
planning. Initial and final frames are displayed in solid color.
Intermediary frames are transparent.

Similarly, Figure 20 (b) illustrates kinetic energy-efficient
trajectories for the task-space motion generation problem
using C-NES. In this case, the kinetic energy remains
constant at each time step. It exhibits more effective
utilization of kinetic energy compared to the geodesic
shooting path with Gauss-Newton optimization. While it
may require higher torque at the beginning to maintain
kinetic energy, it compensates by reducing energy and torque
demands later in the motion, ultimately producing a more
efficient trajectory to reach the goal.

To further evaluate performance at scale, we simulate
100 randomly sampled start-to-goal configuration pairs and
record energy and torque cost during trajectory execution.
Results are summarized in Table 7. At each time step, joint
positions and velocities are used to compute the energy,
while the total torque is obtained by summing the actuator
torques applied throughout the trajectory execution. Across
both Riemannian metrics, NES consistently achieves lower
overall energy cost and reduced torque inputs compared to
GS. Its variant, C-NES, also outperforms GS with Gauss-
Newton optimization in task space. These results highlight

Prepared using sagej.cls

20 Journal Title XX(X)

(a) The solution of C-NES with the kinetic energy metric.

(b) The solution of C-NES with the Jacobi metric.

(c) The solution of the Gauss-Newton method.
Figure 18. Snapshots of robot motions for inverse kinematics.
Initial and final frames are displayed in solid color. Intermediary
frames are transparent.

Figure 19. Joint positions for inverse kinematics solved by
Gauss-Newton and C-NES with kinetic energy metric and
Jacobi metric.

the strength of the NES framework in producing dynamics-
aware, energy-efficient motions that are well-suited for real-
world control and planning tasks.

(a) NES and Euclidean paths with Jacobi metric.

(b) C-NES and Gauss-Newton paths with
kinetic energy metric.

Figure 20. Variation of energy and torque among different
paths and Riemannian metrics.

Table 7. Total Energy and torque cost during the robot’s motion.
Kinetic Energy Metric Jacobi Metric
Energy Torque Energy Torque

C-Space GS 1.53± 0.62 13.4± 6.89 2.82± 0.85 12.8± 5.17
NES 0.62± 0.18 5.14± 1.92 1.42± 0.46 6.68± 2.54

Task-space GS + GN 0.20± 0.09 1.56± 0.62 0.51± 0.23 2.12± 1.08
C-NES 0.15± 0.07 1.26± 0.56 0.37± 0.11 1.75± 0.88

It is important to note that, in practical mechanical
systems, actuators cannot perfectly share or recycle power.
Negative mechanical work is often dissipated locally,
and opposed closed-force loops can generate internal
forces with near-zero net mechanical work while still
incurring nontrivial electrical losses. Consequently, geodesic
optimality (minimal length under the chosen Riemannian
metric) does not, in general, coincide with minimal execution
effort. We therefore use geodesics as a principled heuristic:
a global, geometry-aware reference that can guide the
robot toward lower-energy motions and inform trajectory
generation. Although not universally aligned with all
actuator cost models, this approach is grounded in a well-
established geometric framework and yields geometrically
optimal paths for analyzing and planning robot motion when
both kinetic and potential energy are modeled. In addition,
the total energy H can be provided as a conditioning input
to NES, allowing the geodesic flow to adapt dynamically to
changes in energy, as described in Section 5.1.

7 Conclusion
In this article, we presented an approach to compute
Riemannian distance functions by formulating the problem
as wavefront propagation and solving the corresponding
Riemannian eikonal equation. We proposed a neural
Riemannian eikonal solver (NES) that learns a mesh-
free, continuous, and differentiable implicit field, enabling

Prepared using sagej.cls

21

efficient queries of distances and geodesic flows in high-
dimensional configuration spaces, with globally consistent
distance and flow fields. In addition, we introduced
NES variants that can be conditioned on boundary data
and/or on Riemannian metrics. Our method integrates
with planning, control, and optimization as a principled
geometric prior. We demonstrated the effectiveness of the
approach in constructing distance fields and geodesic flows
across kinematics, dynamics, motion planning, and control
problems—including high-dimensional manipulators—with
quantitative and qualitative comparisons to established
baselines. Finally, we conducted extensive experiments on
energy-aware manifolds induced by kinetic and potential
energy; the resulting geodesics provide informative guidance
toward lower-energy and lower-torque motions, highlighting
the practicality of our approach.

A limitation of our approach lies in training the neural
Riemannian eikonal solver. Once trained, the model can
be reused across multiple queries, enabling efficient and
real-time applications. However, the lack of prior data and
the strongly anisotropic nature of the Riemannian metric
pose significant challenges for the training. While our
formulation theoretically allows for global optimal solutions,
its practical performance can sometimes unexpectedly fall
short. Future work will focus on improving the robustness
and accuracy of the training process to enhance overall
reliability. Additionally, we plan to extend our framework to
broader metric spaces beyond Riemannian manifolds. The
eikonal equation itself can be generalized to other types of
partial differential equations relevant to robotics, including
those arising in dynamic systems modeling (Lutter et al.
2018), value function computation in dynamic programming,
and reinforcement learning. These extensions could unlock
new applications for geometry-aware learning in complex
robotic environments.

8 Acknowledgments

This work was supported by the China Scholarship Council
(No.202204910113), by the Swiss National Science Founda-
tion (HORACE project), and by the State Secretariat for Edu-
cation, Research and Innovation in Switzerland for participa-
tion in the European Commission’s Horizon Europe Program
with the INTELLIMAN project (HORIZON-CL4-Digital-
Emerging Grant 101070136) and the SESTOSENSO project
(HORIZON-CL4-Digital-Emerging Grant 101070310). We
also thank Dr James Hermus for insightful discussions and
helpful suggestions.

References

Aila T and Laine S (2009) Understanding the efficiency of ray
traversal on GPUs. In: Proc. High Performance Graphics. pp.
145–149.

Albu-Schäffer A and Sachtler A (2022) What can algebraic
topology and differential geometry teach us about intrinsic
dynamics and global behavior of robots? In: The International
Symposium of Robotics Research. Springer, pp. 468–484.

Alvino C, Unal G, Slabaugh G, Peny B and Fang T (2007) Efficient
segmentation based on eikonal and diffusion equations.

International Journal of Computer Mathematics 84(9): 1309–
1324.

Breyer M, Chung JJ, Ott L, Siegwart R and Nieto J (2021)
Volumetric grasping network: Real-time 6 dof grasp detection
in clutter. In: Proc. Conference on Robot Learning (CoRL). pp.
1602–1611.

Bullo F and Lewis AD (2004) Geometric Control of Mechanical
Systems: Modeling, Analysis, and Design for Simple Mechani-
cal Control Systems, volume 49. Springer Science & Business
Media.

Cabrera A and Hatton RL (2024) Optimal control of robotic
systems and biased riemannian splines. ESAIM: Control,
Optimisation and Calculus of Variations 30: 36.

Calinon S (2020) Gaussians on riemannian manifolds: Applications
for robot learning and adaptive control. IEEE Robotics &
Automation Magazine 27(2): 33–45.

Casetti L, Pettini M and Cohen E (2000) Geometric approach
to hamiltonian dynamics and statistical mechanics. Physics
Reports 337(3): 237–341.

Chiacchio P, Chiaverini S, Sciavicco L and Siciliano B (1991)
Closed-loop inverse kinematics schemes for constrained
redundant manipulators with task space augmentation and
task priority strategy. The International Journal of Robotics
Research 10(4): 410–425.

Crane K, Livesu M, Puppo E and Qin Y (2020) A survey of
algorithms for geodesic paths and distances. arXiv preprint
arXiv:2007.10430 .

Crane K, Weischedel C and Wardetzky M (2013) Geodesics in heat:
A new approach to computing distance based on heat flow.
ACM Transactions on Graphics (TOG) 32(5): 1–11.

de Kool M, van der Hilst RDJ and Nolet G (2006) A practical
grid-based method for tracking multiple refraction arrivals.
Geophysical Journal International 167(1): 253–270.

Driess D, Ha JS, Toussaint M and Tedrake R (2022) Learning mod-
els as functionals of signed-distance fields for manipulation
planning. In: Proc. Conference on Robot Learning (CoRL).
pp. 245–255.

Fishman A, Murali A, Eppner C, Peele B, Boots B and Fox D
(2023) Motion policy networks. In: Proc. Conference on Robot
Learning (CoRL). pp. 967–977.

Garrido S, Malfaz M and Blanco D (2013) Application of the
fast marching method for outdoor motion planning in robotics.
Robotics and Autonomous Systems 61(2): 106–114.

Girolami M and Calderhead B (2011) Riemann manifold langevin
and hamiltonian monte carlo methods. Journal of the Royal
Statistical Society Series B: Statistical Methodology 73(2):
123–214.

Gropp A, Yariv L, Haim N, Atzmon M and Lipman Y (2020)
Implicit geometric regularization for learning shapes. In:
Proc. Intl Conf. on Machine Learning (ICML), Proceedings of
Machine Learning Research, volume 119. pp. 3789–3799.

Grubas S, Duchkov A and Loginov G (2023) Neural eikonal solver:
Improving accuracy of physics-informed neural networks for
solving eikonal equation in case of caustics. Journal of
Computational Physics 474: 111789.

Hogan N (1985) Impedance control: An approach to manipulation.
part i–theory. Journal of Dynamic Systems, Measurement, and
Control 107(1): 1–7.

Prepared using sagej.cls

22 Journal Title XX(X)

Ihrke I, Ziegler G, Tevs A, Theobalt C, Magnor M and Seidel HP
(2007) Eikonal rendering: Efficient light transport in refractive
objects. ACM Transactions on Graphics 26(3). Proc. ACM
SIGGRAPH 2007.

Jaquier N and Asfour T (2022) Riemannian geometry as a unifying
theory for robot motion learning and control. In: The
International Symposium of Robotics Research. Springer, pp.
395–403.

Johannessen LMG, Arbo MH and Gravdahl JT (2019) Robot
dynamics with urdf & casadi. In: International Conference on
Control, Mechatronics and Automation (ICCMA).

Julian B and Gubbins D (1977) Three-dimensional seismic ray
tracing. Journal of Geophysics 43(1): 95–113.

Kelshaw D and Magri L (2025) Computing distances and means
on manifolds with a metric-constrained eikonal approach.
Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 481(2312): 20240270.

Khatib O (1987) A unified approach for motion and force control of
robot manipulators: The operational space formulation. IEEE
Journal on Robotics and Automation 3(1): 43–53.

Kimmel R and Sethian JA (1998) Computing geodesic paths on
manifolds. Proceedings of the National Academy of Sciences
95(15): 8431–8435.

Klein H, Jaquier N, Meixner A and Asfour T (2022) A riemannian
take on human motion analysis and retargeting. In: Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS).
pp. 5210–5217.

Klein H, Jaquier N, Meixner A and Asfour T (2023) On the design
of region-avoiding metrics for collision-safe motion generation
on riemannian manifolds. In: Proc. IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems (IROS). pp. 2346–2353.

Koptev M, Figueroa N and Billard A (2022) Neural joint
space implicit signed distance functions for reactive robot
manipulator control. IEEE Robotics and Automation Letters
8(2): 480–487.

Koptev M, Figueroa N and Billard A (2024) Reactive collision-free
motion generation in joint space via dynamical systems and
sampling-based mpc. The International Journal of Robotics
Research 43(13): 2049–2069.

Lachner J, Schettino V, Allmendinger F, Fiore MD, Ficuciello
F, Siciliano B and Stramigioli S (2020) The influence of
coordinates in robotic manipulability analysis. Mechanism and
Machine Theory 146: 103722.

Laux M and Zell A (2021) Robot arm motion planning based
on geodesics. In: Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA). pp. 7585–7591.

Law M (2021) Jacobi fields, conjugate points and some
applications. URL https://mike-law.github.io/

files/jacobi_fields.pdf.
Li Y, Chi X, Razmjoo A and Calinon S (2024a) Configuration space

distance fields for manipulation planning. In: Proc. Robotics:
Science and Systems (RSS).

Li Y, Zhang Y, Razmjoo A and Calinon S (2024b) Representing
robot geometry as distance fields: Applications to whole-body
manipulation. In: Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA). pp. 15351–15357.

Lin FC, Ritzwoller MH and Snieder R (2009) Eikonal tomography:
surface wave tomography by phase front tracking across a
regional broad-band seismic array. Geophysical Journal
International 177(3): 1091–1110.

Liu P, Zhang K, Tateo D, Jauhri S, Peters J and Chalvatzaki G
(2022) Regularized deep signed distance fields for reactive
motion generation. In: Proc. IEEE/RSJ Intl Conf. on Intelligent
Robots and Systems (IROS). pp. 6673–6680.

Liu T, Liu Z, Jiao Z, Zhu Y and Zhu SC (2021) Synthesizing diverse
and physically stable grasps with arbitrary hand structures
using differentiable force closure estimator. IEEE Robotics and
Automation Letters 7(1): 470–477.

Lutter M and Peters J (2023) Combining physics and deep learning
to learn continuous-time dynamics models. The International
Journal of Robotics Research 42(3): 83–107.

Lutter M, Ritter C and Peters J (2018) Deep lagrangian networks:
Using physics as model prior for deep learning. In: Proc. Intl
Conf. on Learning Representations (ICLR).

Macklin M, Erleben K, Müller M, Chentanez N, Jeschke S and
Corse Z (2020) Local optimization for robust signed distance
field collision. Proceedings of the ACM on Computer Graphics
and Interactive Techniques 3(1): 1–17.

Mantegazza C and Mennucci AC (2002) Hamilton–jacobi equations
and distance functions on Riemannian manifolds. Applied
Mathematics & Optimization .

Marić A, Li Y and Calinon S (2024) Online learning of continuous
signed distance fields using piecewise polynomials. IEEE
Robotics and Automation Letters (RA-L) 9(6): 6020–6026.

Millane A, Oleynikova H, Wirbel E, Steiner R, Ramasamy V,
Tingdahl D and Siegwart R (2024) nvblox: GPU-accelerated
incremental signed distance field mapping. In: Proc. IEEE Intl
Conf. on Robotics and Automation (ICRA). pp. 2698–2705.

Mirebeau JM (2019) Riemannian fast-marching on Cartesian grids,
using Voronoi’s first reduction of quadratic forms. SIAM Jour-
nal on Numerical Analysis 57(6): 2608–2655. URL https:

//hal.science/hal-01507334v4/document.
Neilson PD, Neilson MD and Bye RT (2015) A Riemannian

geometry theory of human movement: The geodesic synergy
hypothesis. Human movement science 44: 42–72.

Ni R and Qureshi AH (2022) NTFields: Neural time fields for
physics-informed robot motion planning. In: Proc. Intl Conf.
on Learning Representations (ICLR).

Ni R and Qureshi AH (2023) Progressive learning for physics-
informed neural motion planning. In: Proc. Robotics: Science
and Systems (RSS).

Ni R and Qureshi AH (2024) Physics-informed neural motion
planning on constraint manifolds. In: Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA). pp. 12179–12185.

Ortega R, Van Der Schaft A, Maschke B and Escobar G (2002)
Interconnection and damping assignment passivity-based
control of port-controlled hamiltonian systems. Automatica
38(4): 585–596.

Osher S and Fedkiw R (2004) Level set methods and dynamic
implicit surfaces. Applied Mechanics Reviews 57(3).

Park JJ, Florence P, Straub J, Newcombe R and Lovegrove S (2019)
Deepsdf: Learning continuous signed distance functions for
shape representation. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). pp. 165–174.

Peyré G, Péchaud M, Keriven R and Cohen LD (2010) Geodesic
methods in computer vision and graphics. Foundations and
Trends® in Computer Graphics and Vision 5(3–4): 197–397.

Raissi M, Perdikaris P and Karniadakis GE (2019) Physics-
informed neural networks: A deep learning framework for

Prepared using sagej.cls

https://mike-law.github.io/files/jacobi_fields.pdf
https://mike-law.github.io/files/jacobi_fields.pdf
https://hal.science/hal-01507334v4/document
https://hal.science/hal-01507334v4/document

23

solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics 378: 686–707.

Ratliff N, Toussaint M and Schaal S (2015) Understanding the
geometry of workspace obstacles in motion optimization. In:
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA). pp.
4202–4209.

Ratliff N, Zucker M, Bagnell JA and Srinivasa S (2009) CHOMP:
Gradient optimization techniques for efficient motion planning.
In: Proc. IEEE Intl Conf. on Robotics and Automation (ICRA).
pp. 489–494.

Ratliff ND, Issac J, Kappler D, Birchfield S and Fox D (2018)
Riemannian motion policies. arXiv preprint arXiv:1801.02854
.

Rawlinson N and Sambridge M (2005) The fast marching method:
an effective tool for tomographic imaging and tracking multiple
phases in complex layered media. Exploration Geophysics
36(4): 341–350.

Sethian JA (1996) A fast marching level set method for
monotonically advancing fronts. proceedings of the National
Academy of Sciences 93(4): 1591–1595.

Siciliano B, Khatib O and Kröger T (2008) Springer handbook of
robotics, volume 200. Springer.

Smith JD, Azizzadenesheli K and Ross ZE (2020) Eikonet: Solving
the eikonal equation with deep neural networks. IEEE
Transactions on Geoscience and Remote Sensing 59(12):
10685–10696.

Spong MW, Hutchinson S and Vidyasagar M (2006) Robot
modeling and control, volume 3. Wiley New York.

Van Wyk K, Xie M, Li A, Rana MA, Babich B, Peele B, Wan Q,
Akinola I, Sundaralingam B, Fox D, Boots B and Ratliff ND
(2022) Geometric fabrics: Generalizing classical mechanics to
capture the physics of behavior. IEEE Robotics and Automation
Letters 7(2): 3202–3209.

Walker MW and Orin DE (1982) Efficient dynamic computer
simulation of robotic mechanisms. Journal of Dynamic
Systems, Measurement, and Control 104(3): 205–211.

Weng T, Held D, Meier F and Mukadam M (2023) Neural grasp
distance fields for robot manipulation. In: Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA). pp. 1814–1821.

Xie Y, Takikawa T, Saito S, Litany O, Yan S, Khan N, Tombari
F, Tompkin J, Sitzmann V and Sridhar S (2022) Neural fields
in visual computing and beyond. Computer Graphics Forum
41(2): 641–676.

Yang W and Jin W (2025) ContactSDF: Signed distance functions
as multi-contact models for dexterous manipulation. IEEE
Robotics and Automation Letters 10(5): 4212–4219.

Yoshikawa T (1985) Manipulability of robotic mechanisms. The
International Journal of Robotics Research 4(2): 3–9.

Zhao H (2005) A fast sweeping method for eikonal equations.
Mathematics of computation 74(250): 603–627.

Prepared using sagej.cls

24 Journal Title XX(X)

Appendix

A Robot Dynamics on Configuration Space
Manifolds

A.1 Lagrangian Mechanics
The Lagrangian is a scalar function defined on the tangent
bundle of the configuration manifold G, given by:

L (q, q̇) = T (q, q̇)− P (q) , (43)

where q is the configuration, q̇ is the velocity, T is the kinetic
energy, and P is the potential energy. The kinetic energy is
typically expressed as:

T (q, q̇) =
1

2
q̇⊤M(q)q̇, (44)

with M(q) representing the configuration-dependent inertia
matrix. The action functional S, defined over a trajectory
q(t) between times t0 and t1, integrates the Lagrangian along
the path:

S (q) =

∫ t1

t0

L (q(t), q̇(t)) dt. (45)

When potential energy is ignored, this functional reduces
to the kinetic-energy functional, with M(q) acting as
the kinetic-energy metric. According to the principle of
stationary action, the physical trajectory is one that makes
the action stationary, i.e., δS = 0. This leads to the
Euler–Lagrange equations:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (46)

Substituting the Lagrangian into the Euler–Lagrange
equations yields the system’s second-order dynamics:

M(q)q̈ +C(q, q̇)q̇ + g(q) = 0, (47)

where C(q, q̇)q̇ groups the Coriolis and centrifugal terms
arising from Ṁ(q)q̇ and ∂M

∂q . g(q) = ∂P
∂q is the generalized

gravitational force.

A.1.1 Derivation of Equation of Motion We derive the
equation of motion from Equation (46). The partial derivative
of the kinetic energy T with respect to q̇i is:

∂T

∂q̇i
=
∑
j

Mij q̇j . (48)

Taking the total time derivative yields:

d

dt

(
∂T

∂q̇i

)
=
∑
j

Mij q̈j +
∑
j,k

∂Mij

∂qk
q̇k q̇j . (49)

Next, we compute the partial derivative of T with respect to
qi:

∂T

∂qi
=

1

2

∑
j,k

∂Mjk

∂qi
q̇j q̇k. (50)

The kinetic part of the Euler–Lagrange equation is then given
by:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi

=
∑
j

Mij q̈j +
∑
j,k

(
∂Mij

∂qk
− 1

2

∂Mjk

∂qi

)
q̇j q̇k

=
∑
j

Mij q̈j +
∑
j,k

(
1

2

∂Mij

∂qk
+

1

2

∂Mik

∂qj
− 1

2

∂Mjk

∂qi

)
q̇j q̇k.

(51)
Since the potential energy P depends only on q, we have:

∂P

∂q̇i
= 0,

∂P

∂qi
= gi. (52)

Combining the kinetic and potential terms, the full equation
becomes: ∑

j

Mij q̈j +
∑
j,k

Γi,jk q̇j q̇k + gi = 0, (53)

where the Christoffel symbol Γi,jk is defined as:

Γi,jk =
1

2

(
∂Mij

∂qk
+

∂Mik

∂qj
− ∂Mjk

∂qi

)
. (54)

The term
∑

j,k Γi,jk q̇j q̇k corresponds to the Coriolis and
centrifugal forces, i.e., the i-th component of C(q, q̇)q̇.
In vector form, this yields the standard form of the robot
dynamics (Siciliano et al. 2008):

M(q)q̈ +C(q, q̇)q̇ + g(q) = 0. (55)

A.2 Hamiltonian Mechanics
The Hamiltonian function H(q,p) represents the total
energy of a mechanical system (Lutter and Peters 2023). It
is defined as the sum of kinetic and potential energy.

H(q,p) = T (q, q̇) + P (q) =
1

2
p⊤M−1(q)p+ P (q),

(56)
where p ∈ Rn is the generalized momentum, given by

p =
∂L

∂q̇
= M(q)q̇. (57)

The Hamiltonian and Lagrangian are related via a Legendre
transform:

H(q,p) = p⊤q̇ − L(q, q̇), (58)

where q̇ = M−1(q)p. Substituting the Euler–Lagrange
equations yields Hamilton’s equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (59)

These equations describe the evolution of the system in phase
space (q,p). In the absence of non-conservative forces, the
Hamiltonian H is conserved, reflecting conservation of total
mechanical energy.

Prepared using sagej.cls

25

A.2.1 Geometric Formulation and Maupertuis’ Principle
When H(q,p) is constant along a trajectory, the action
integral can be reformulated in a time-independent form.
This leads to Maupertuis’ Principle (Albu-Schäffer and
Sachtler 2022):

SM (q) =

∫ q2

q1

p⊤dq, (60)

which states that the true path connecting q1 and q2
corresponds to a minimum or a saddle point of the
action functional. This reformulation provides a geometric
viewpoint on robot dynamics, enabling the study of energy-
conserving paths using tools from Riemannian geometry
and algebraic topology. In this setting, constant-energy
trajectories correspond to geodesics under the Jacobi
metric (Casetti et al. 2000)

GJac(q) = 2
(
H − P (q)

)
M(q), (61)

which is a conformal scaling of the kinetic-energy metric.

A.2.2 Derivation of Jacobi metric To derive the Jacobi
metric, we can reparameterize the trajectory q(t) using the
arc-length s, with

q′ =
dq

ds
, q̇ =

dq

dt
=

dq

ds

ds

dt
= q′ ds

dt
. (62)

Then, the kinetic energy becomes

T =
1

2
q̇⊤M(q)q̇ =

1

2

(
q′ ds

dt

)⊤

M(q)

(
q′ ds

dt

)
=

1

2

(
ds

dt

)2

q′⊤M(q)q′.

(63)

By energy conservation,

H = T + P (q) ⇒ T = H − P (q). (64)

Equating both expressions for T , we get:

1

2

(
ds

dt

)2

q′⊤M(q)q′ = H − P (q). (65)

Solving for dt gives:

dt =

√
q′⊤M(q)q′

2(H − P (q))
ds. (66)

The action integral becomes:

SM (q) =

∫
p⊤dq =

∫
p⊤q′ ds =

∫
q̇⊤M(q)q′ ds

=

∫ s2

s1

(
q′ ds

dt

)⊤

M(q)q′ ds

=

∫ s2

s1

(
ds

dt

)
q′⊤M(q)q′ ds.

(67)
Substituting the expression for dt, we have:

SM (q) =

∫ s2

s1

√
q′⊤ (2(H − P (q))M(q)) q′ ds

=

∫ s2

s1

∥q′∥GJac(q)
ds.

(68)

Thus, energy-conserving paths correspond to geodesics
under the Jacobi metric GJac(q), offering a geometric
interpretation of conservative dynamics (Casetti et al. 2000).

A.3 Geodesics as Optimal Control Solutions
We now explore the geometric connection between energy
conservation and optimal control strategies that minimize
control input. Specifically, we show how minimizing control
input leads to energy-preserving trajectories consistent with
geodesic motion under the Jacobi metric. The time derivative
of the Hamiltonian expression in (56) is

Ḣ =
d

dt

(
1

2
q̇⊤M(q)q̇

)
+

d

dt
P (q)

= q̇⊤M(q)q̈ +
1

2
q̇⊤Ṁ(q)q̇ + q̇⊤∇qP (q).

(69)

Substituting the dynamics from (47) with external torque τ :

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ , (70)

we obtain:

Ḣ = q̇⊤ [τ −C(q, q̇)q̇ − g(q)] +
1

2
q̇⊤Ṁ(q)q̇ + q̇⊤g(q)

= q̇⊤τ − q̇⊤C(q, q̇)q̇ +
1

2
q̇⊤Ṁ(q)q̇.

(71)
Using the skew-symmetry property for rigid-body sys-
tems (Spong et al. 2006)

q̇⊤
(
Ṁ(q)− 2C(q, q̇)

)
q̇ = 0, (72)

we conclude that
Ḣ = q̇⊤τ . (73)

This equation represents the instantaneous power input to
the system. When Ḣ = 0, the torque τ is orthogonal to the
velocity q̇, meaning it does not change total energy—only a
redirection of motion, consistent with geodesic motion under
the Jacobi metric (61). For a proof of the skew-symmetry
property, see Appendix B.

From the perspective of classical optimal control,
minimizing control effort is typically formulated as

min
τ

∫ T

0

τ⊤Rτ dt, (74)

where R ⪰ 0 is a symmetric weighting matrix. Most
often, this matrix penalizes control effort uniformly in all
directions, i.e., the identity matrix. However, this formulation
does not distinguish between torque that alters system
energy and torque that merely redirects motion. To reflect
the underlying physics more faithfully, we can consider
minimizing the square of the instantaneous power input

min
τ

∫ T

0

Ḣ2 dt = min
τ

∫ T

0

(
q̇⊤τ

)2
dt. (75)

This criterion penalizes only the component of torque
that performs mechanical work (i.e., the portion aligned
with the system velocity). This aligns with the standard
optimal control problem (74) with R = q̇q̇⊤. In contrast
to conventional ℓ2 minimization that treats all directions
equally, this criterion is more natural and physically
grounded. As a result, geodesics under the Jacobi metric
naturally emerge as solutions to this optimal control problem,
highlighting the deep connection between energy-efficient
control and geometric mechanics.

Prepared using sagej.cls

26 Journal Title XX(X)

B Derivation of Skew-Symmetric Matrix
Assume the (i, j)-th element of the matrix Ṁ(q)−
2C(q, q̇) is denoted as nij . From Equations (49) and (51),
we obtain:

nij =
∂Mij

∂qk
q̇k −

(
∂Mij

∂qk
+

∂Mik

∂qj
− ∂Mjk

∂qi

)
q̇k

=

(
∂Mjk

∂qi
− ∂Mik

∂qj

)
q̇k.

(76)

By interchanging the indices i and j, we obtain:

nji =

(
∂Mik

∂qj
− ∂Mjk

∂qi

)
q̇k = −nij . (77)

Therefore, the matrix Ṁ(q)− 2C(q, q̇) is skew-symmetric.

C Laplace-Beltrami Operator
The Laplace-Beltrami operator is a second-order differential
operator that generalizes the classical Laplace operator from
Euclidean space to Riemannian manifolds. This extension
is essential for analyzing functions on curved spaces, as it
accounts for the geometry of the manifold. The Laplace-
Beltrami operator allows us to compute the divergence of
the gradient in more general spaces and is given by the
expression

∆f =
1√
|G|

∂

∂i

(√
|G|Gij ∂

∂j
f

)
, (78)

where Gij are the components of the inverse of the metric
tensor and |G| is the determinant of G.

An alternative, more compact form of the Laplace-
Beltrami operator can be derived from (78):

∆f =
1√
|G|

∂

∂i

(√
|G|Gij ∂

∂j
f

)
= (

∂

∂i
Gij)

∂

∂j
f +Gij 1√

|G|

(
∂

∂i

√
|G| ∂

∂j
f

)
+Gij ∂2

∂i∂j
f

= (
∂

∂i
Gij)

∂

∂j
f +Gij 1√

|G|

(
1

2
(
∂

∂i
Gkl)Gkl

√
|G| ∂

∂j
f

)
+Gij ∂2

∂i∂j
f

= (
∂

∂i
Gij)

∂

∂j
f +

1

2
Gij(

∂

∂i
Gkl)G

kl ∂

∂j
f +Gij ∂2

∂i∂j
f

= Gij ∂2

∂i∂j
f −GijΓk

ij

∂

∂k
f

= Gij

(
∂2

∂i∂j
f − Γk

ij

∂

∂k
f

)
.

(79)

D Geometry-Aware Sampling
We present the Riemannian Manifold Metropolis-Adjusted
Langevin Algorithm (RM-MALA) for geometry-aware
sampling on the Riemannian manifold. A detailed algorithm
is shown in Algorithm 2.

D.1 Target Probability Density Function (PDF)
In each tangent space, an infinitesimal space is induced by
the Riemannian metric dM(q) =

√
|G(q)|dq, bridging the

target probability density function (PDF) ρ(q) with respect
the Lebesgue measurement dq, to the PDF p(q) with respect
to dM(q) by

ρ(q) = p(q)
√
|G(q)|. (80)

D.2 Sampling on the Riemannian manifold
The objective is to sample variables on the Riemannian
manifold from the PDF ρ(q), while taking into account
the local geometric structure. Given the Riemannian metric
tensor, we adopt the Metropolis-adjusted Langevin Monte
Carlo algorithm on the Riemannian Manifold (Girolami and
Calderhead 2011). The algorithm describes the Langevin
diffusion process on the Riemannian manifold in a stochastic
differential equation (SDE)

dq(t) =
1

2
∇̃qL(q(t)) + db̃(t), (81)

with ∇̃qL(q(t)) representing the natural gradient
equipped by the Riemannian metric tensor ∇̃qL(q) =
G−1(q) ∇qL(q), where

L(q) = log ρ(q). (82)

The equation of the Brownian motion db̃(t) is given by

db̃i(t) =
1√

|G(q(t))|

D∑
j=1

∂

∂qj

(
(G−1(q(t)))ij

√
|G(q(t))|

)
dt

+
(√

G−1(q(t))db(t)
)
i
,

(83)
where b(t) is the normal Brownian motion. Assuming p(q)
is a constant, the natural gradient is expressed using (80):

∇̃qL(q) = G−1(q)∇q

√
|G(q)|. (84)

In (81), db̃(t) defines the Brownian motion on the
Riemannian manifold.

After applying the first-order Euler integration with the
fixed step size ϵ to the SDE (81), we have

q(t+1) = µ(q(t), ϵ) +
(
ϵ
√

G−1(q(t))z(t)
)
, (85)

where µ(q(t), ϵ) is the mean of the Gaussian distribution
associated with the sampled variable

µ(q(t), ϵ) = qi(t) +
ϵ2

2

(
G−1

(
q(t)

)
∇qL

(
q(t)

))
i

− ϵ2
D∑

j=1

((
G−1

(
q(t)

))∂G(q(t))
∂qj

G−1
(
q(t)

))
ij

+
ϵ2

2

D∑
j=1

(
G−1

(
q(t)

))
ij
Tr

((
G−1

(
q(t)

))∂G(q(t))
∂qj

)
(86)

and z is a random variable sampled from the standard normal
distribution z ∼ N (z|0, I).

Finally, the probability of the sampled variable follows the
Gaussian distribution

p (q(t+1)|q(t))=N
(
q(t+ 1)|µ(q(t), ϵ), ϵ2G−1 (q(t))

)
.

(87)
The acceptance of the sampled variable is finally calculated
with

α =L(q(t+ 1)) + log p(q(t)|q(t+ 1))− L(q(t))
− log p(q(t+ 1)|q(t)).

(88)

Prepared using sagej.cls

27

Algorithm 2: RM-MALA
Input: G(q): Riemannian metric function
L(q): Proposed likelihood function
nburn: Burn-in steps
nsample: Sample steps
ϵ: Step size
Output: Q: A set of sampled points q
Initialization:
set Random points q ∈ [−π, π)
Sampling Step:
for i from 1 to nburn + nsample do

Sample new point qnew through (85)
if qnew /∈ [−π, π) then

qnew = arctan2 (sin (qnew) , cos (qnew))

Calculate the proposed log-likelihood logL(q)
and logL(qnew) through (82)

Calculate the transition likelihood p (qnew|q) and
p (q|qnew) through (87)

Calculate the acceptance ratio α through (88)
Draw a random number t ∈ [0, 1)
if eα ≥ t then

q = qnew
if i ≥ nburn then

Add qnew into set Q

else
qnew is not accepted

Prepared using sagej.cls

	1 Introduction
	2 Background
	2.1 Riemannian Metrics and Geodesics
	2.2 Eikonal Equation
	2.2.1 Isotropic eikonal equation
	2.2.2 Riemannian eikonal equation

	2.3 Common Riemannian Metrics in Robotics
	2.3.1 Kinetic–energy metric.
	2.3.2 Jacobi metric.
	2.3.3 Pullback metric.
	2.3.4 Other task-specific metrics.

	3 Related Work
	3.1 Distance Fields in Robotics
	3.2 Solving the Eikonal Equation for Distance Fields
	3.3 Motion Planning on Manifolds

	4 Riemannian Eikonal Solver
	4.1 Riemannian Fast Marching
	4.2 Neural Riemannian Eikonal Solver (NES)
	4.3 Conditioned NES
	4.3.1 Conditioned on boundaries.
	4.3.2 Conditioned on metrics.

	4.4 Benefits of NES

	5 Examples
	5.1 NES for Minimal Energy Geodesics
	5.2 Comparison of Distance Field-based Approaches
	5.3 NES for Other Robot Applications
	5.3.1 Task–Space Distance Minimization
	5.3.2 Stability–Aware Energy Shaping
	5.3.3 Collision avoidance

	6 Experiments
	6.1 Baselines
	6.2 Control Strategies
	6.2.1 Quadratic Programming (QP)
	6.2.2 Task Prioritization

	6.3 Training Details and Evaluation Metrics
	6.4 Results
	6.4.1 Dynamics-aware motions generation on configuration space manifold
	6.4.2 Correlation with Minimum-Torque Control
	6.4.3 Conditioned on Task-space Boundaries
	6.4.4 Data and Computational Efficiency
	6.4.5 Task-prioritized Energy-efficient Motion Policy
	6.4.6 Constrained motion
	6.4.7 Obstacle avoidance
	6.4.8 Robot Experiments

	7 Conclusion
	8 Acknowledgments
	A Robot Dynamics on Configuration Space Manifolds
	A.1 Lagrangian Mechanics
	A.1.1 Derivation of Equation of Motion

	A.2 Hamiltonian Mechanics
	A.2.1 Geometric Formulation and Maupertuis' Principle
	A.2.2 Derivation of Jacobi metric

	A.3 Geodesics as Optimal Control Solutions

	B Derivation of Skew-Symmetric Matrix
	C Laplace-Beltrami Operator
	D Geometry-Aware Sampling
	D.1 Target Probability Density Function (PDF)
	D.2 Sampling on the Riemannian manifold

