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Abstract—Automatic face recognition systems are widely used
in different applications which require authentication. Among
various types of attacks against face recognition systems, mor-
phing attacks have become a major concern, where face images
of two subjects are combined into a face morph image which is
submitted for enrolment. In a successful attack, both contributing
subjects can then authenticate against the morph reference. In
this work, we propose a new method to generate face morphs
based on inversion of the optimal morph embeddings. To this
end, we first find the optimal morph embeddings using the face
embeddings of two source face images and then use state-of-the-
art template inversion techniques to generate the morph. We use
three different template inversion methods: the first one exploits
a fully self-contained embedding-to-image inversion model, while
the second and third leverage the realistic image generation of a
pretrained StyleGAN network and a foundation model based on
diffusion models, respectively. Furthermore, we use optimization
methods to improve the performance of template inversion meth-
ods in the generation of face morph images from optimal morph
embeddings. In our experiments, we evaluate the performance
of generated face morph images and compare them with state-
of-the-art morph generation methods, showing the superiority
of our method. We showcase that our method can outperform
state-of-the-art deep-learning-based morph generation methods,
both in white-box and black-box attack scenarios, and compete
with state-of-the-art landmark-based morph generation methods.
Moreover, we perform a practical print-scan attack to simulate
a real-world scenario and compare our method with previous
methods in the literature, demonstrating the effectiveness and
superiority of our method. The source code of our proposed
method and all experiments are publicly available.

Index Terms—Face Recognition, Embedding, Generation,
Morph Attack, Optimal Morph, Template Inversion.

I. INTRODUCTION

ACE recognition (FR) systems have become a ubiquitous

solution for automatic authentication in various applica-
tions, such as unlocking smartphoneﬂ e-bankingﬂ automated
border controﬂ etc. In spite of advancements in developing
face recognition systems over the past decades, these systems
are vulnerable to different types of attacks. Among those,
morphing attacks in particular are a major concern. In mor-
phing attacks, faces of two contributing subjects are mixed
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Fig. 1: Morph attack based on optimal morph embedding: 1)
Morph Generation: face embeddings are extracted from the
source face images using a face recognition network Fj g,
available to the adversary. Then, an optimal morph embedding
is computed in the embedding space. Finally, the optimal
morph embedding is fed to a template inversion model Gy to
generate a candidate morph image. 2) Attack: the generated
morph is registered as biometric reference in a database using
a distinct face recognition network Fiuee, the target of the
attack. In successful attacks, both contributing subjects can
authenticate against the stored reference e.g., share a passport.

to form a so-called morph, which is then submitted as a
reference for enrolment in a FR system (e.g., as a passport
photo). Later, during the verification stage (e.g., while holding
passport at border control), both contributing subjects can then
be authenticated by the FR system in a successful attack,
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which poses a critical security issue to the FR system as it
breaks the fundamental “one passport - one identity” principle.
Face morphs can be generated at the image-level by inter-
polating the facial landmarks and blending the texture infor-
mation (landmark-based methods) [1]. Alternatively, several
methods have been proposed using deep learning techniques,
by interpolation or optimization in the latent space of a face
generator network based on Generative Adversarial Networks
(GANSs) [2], [3] or diffusion models [4], [5] (latent-based
methods). By leveraging the power of face generator networks,
latent-based methods can generate high-quality face images.
However, interpolation in the latent space of a face generator
network is not theoretically guaranteed to smoothly interpolate
the identity information in the resulting image. Potentially
because of this, it is observed that latent-based methods have
inferior performance compared to landmark-based methods.
Instead of using the latent space of a face generator network,
what if we use could use a different representation space, in
which the identity can really be smoothly interpolated, and
from which it is still possible to generate face images? We
could then interpolate an optimal morph representation in this
space and subsequently generate more successful face morphs.
As a matter of fact, the embedding space of a face recognition
model, which is used for distinguishing the identity in FR
systems, can be the best candidate to represent identities and
compute optimal morph representations by interpolation. We
can find a theoretical optimal morph embedding between face
embeddings of two contributing subjects, which has the same
distance with both embeddings. However, the generation of
face images from a face embedding is not straightforward
and requires further efforts. Nevertheless, recent works in
the field of face template inversion have demonstrated the
feasibility of reconstructing face images from face embeddings
with significant identity preservation performance [6]—[23]].
The template inversion methods can provide new opportunities
for exploring the embedding space of face recognition models,
and also enables one to perform desired arithmetic operations
in the embedding space before going back to the image space.
In this paper, we propose a novel method to generate
morph images, by calculating an optimal morph embedding
and then reconstructing its corresponding face image using
template inversion methods. Fig. [] illustrates the generation
of face morphs with our proposed method and the attack sce-
nario. We use three state-of-the-art template inversion methods
to generate morph images as three deep morphing attacks.
However, these methods also have some errors caused by
imperfections in the performance of the template inverter,
which leads the generated morph images to not exactly map
back to the same embedding as the input to the inverter
(optimal morph embedding). To address this issue, we apply
optimizations in each of the template inversion models to fine-
tune the morph, such that the generated face morphs have
more similar embeddings to the optimal morph embeddings.
In our experiments, we evaluate the performance of generated
morph images and compare with previous morph attacks on
the Face Research Lab London dataset (FRLL) [24] and Face
Recognition Grand Challenge (FRGC) [25] datasets. We also
perform a more realistic evaluation of our method by printing

and then scanning the morphs (similar to what would happen
in a real world passport application scenario), and compare
to previously proposed morphing attacks. Our experiments
demonstrate superiority of our proposed morph generation
method and also show the significant vulnerability of FR
models.

In summary, our contributions are as follows:

« We propose a new method to generate morphs, by inter-
polating source embeddings into an optimal embedding in
the face embedding space, and generating morph images
using template inversion methods. To our knowledge this
is the first work on generation of morph images using
template inversion and interpolating in the embedding
space of FR models.

o We consider for this purpose three different template
inversion techniques. For each case, we also extend the
process with an optimization step to further improve the
resulting morph.

o« We provide extensive experimental evaluation, demon-
strating the superior effectiveness of our proposed method
compared to state-of-the-art morph attacks. In particular,
we perform a print-scan evaluation of generated morph
images, which demonstrates the superiority of our method
and shows the vulnerability of FR systems in practical
scenarios.

The remainder of the paper is organized as follows. In
Section [T} we review related works about morph generation as
well as face template inversion. Then, in Section [[T]| we explain
in detail the concept of optimal morph embedding and describ
our proposed method to generate morphs from optimal morph
embeddings. In Section we report our experimental results
and discuss our findings.

II. RELATED WORK

In this section, we review the related work in the literature
on generation of face morphs (Section and template
inversion methods to reconstruct face images from facial
embeddings (Section [[I-B).

A. Morph Generation

The idea of morphing attacks has first been introduced
in 2014 by [1], which suggests a scenario where a wanted
criminal and an accomplice create a fake image (the morph)
mixing their two faces. After the accomplice uses this morph to
apply for a passport, both contributing sources can then share
it, enabling the criminal to go unnoticed through automated
border control (ABC) gates. The feasibility of this attack is
demonstrated by manually generating morphs, enrolling them
in a FR system and showcasing that both source identities
can then successfully authenticate against the morph. The
morphing approach introduced in [[1] is nowadays known
as landmark-based morphing. The general idea is to label
specific face landmarks in both source images, warp the
images to align those landmarks, and then average the pixels.
The original process involved a lot of manual work and
suffered from visible so-called ghosting artifacts on the non-
aligned boundary of the face. Subsequent works proposed an



automated approach [26], and solved the ghosting artifacts
issue by blending the morphed face back into one of the source
images [27].

More recently, a new family of morphing generators has
emerged, based on deep learning approaches (deep morphs).
At a high-level, all methods rely on a similar idea:

1) Define a meaningful latent space for representing face
images, such that both image-to-latent encoding and
latent-to-image decoding are available.

2) Encode the source images into their latent representa-
tion.

3) Generate a latent morph by interpolating between the
latent sources.

4) Decode the latent morph into a face image.

In some cases, the latent morph can be fine-tuned by optimiza-
tion, aiming to maximize the identity similarity of the decoded
face morph to both sources’ faces. Importantly, this additional
step requires the introduction of a face recognition network as
a part of the morph generation pipeline, to evaluate the loss
in the optimization process.

The first proposed deep morphing method was introduced
in [2]. They trained a generative adversarial network (GAN)
for face generation, jointly with an encoder into the latent
space of the GAN. They used the resulting latent space for
face representations and the synthesis network of the GAN as
the decoder. A main limitation of their approach is the low
resolution of the resulting images, which are among others
not ICAO-compliant. Higher resolution morphs were achieved
in following works by exploiting the StyleGAN model [28],
a powerful high-resolution face generator. Faces are again
encoded in the latent space of the GAN, specifically in the W
space [29] or the W+ space [30]. In the absence of an image-
to-latent encoder, the encoding is performed by optimization,
looking for a latent able to accurately decode into the target
face. Building on this, [3]] first introduced the latent morph
fine-tuning process (by optimizing the input of the generator
using a biometric loss to further guarantee the resulting image
is an effective morph), and showed its impact on the morph’s
effectiveness. Further developments in GANs for faces will
naturally have applications in morph generation by using
similar processes. For example, StyleNAT [31] proposed a
transformer-based architecture for the generator, although to
the best of our knowledge no work has yet evaluated the
impact of this specific new design on morph effectiveness.

More recently, approaches relying on diffusion probabilistic
models (DPM) as the main generative backbones have been
proposed. While DPMs are typically not associated with a
structured latent space, [32] introduces a diffusion autoencoder
which enables encoding of real images into a semantically
structured latent space. Using this new latent space for per-
forming the latent morph interpolation [4] and [5] indepen-
dently propose a similar diffusion-based deep morphing attack.

All those proposed methods (especially when not including
a latent morph fine-tuning step) strongly rely on a property of
linear perceptual continuity of the latent space: when moving
regularly along a segment in the latent space, the perceptual
changes in resulting decoded image also look regular. There
is thus an assumption that the halfway point in between

two source latents will decode into a satisfying morph, with
roughly equivalent perceptual similarity to both source images.
However, this perceptual similarity is occurring at the level
of generic image features, not specifically of the identity.
In other words, one can expect the morph to “look similar
overall” to both sources, but not necessarily to “look similar in
identity”. While those two notions can in many cases roughly
align (which is proven by the success of aforementioned deep
morphing works), they are still conceptually different. This
thus raises the question of finding a latent space with stronger
conceptual guarantees that gradually moving along a segment
actually will correspond to a gradual change in the identity
of the generated image. As it happens, there exists a very
natural space for this: the embedding space of a pretrained face
recognition network. Encoding faces in this embedding space
and performing the interpolation there provides the strongest
theoretical guarantee that the resulting morph will be very
effective [33]], [34]]. One remaining crucial ingredient to use
this space for morph generation in practice is a decoder from
face embeddings to face images, also known as a template
inversion system.

B. Template Inversion

There are several methods in the literature for reconstructing
face images from facial embeddings (also known as facial
templates), which are mainly proposed for template inver-
sion (TI) attacks against face recognition systems [6]—[23]].
These methods can be categorized into optimization-based and
learning-based methods. In the optimization-based methods,
a separate optimization should be solved for generating a
face image from each embedding, while in learning-based
methods a neural network is trained which is later used for
face reconstruction in the inference stage. Therefore, learning-
based methods often have less execution time in the inference
stage. Template inversion methods can also be categorized into
white-box and black-box methods, based on the amount of
knowledge available from the face feature extractor model of
FR systems. In white-box methods, such as [6], [12], all the
parameters and internal functioning of the face feature extrac-
tor model are known, and therefore the feature extractor model
can be used in gradient-based optimization to reconstruct face
images or for training a face reconstruction network. On the
other hand, in black-box methods, such as [8], [9]], [19], the
internal functioning of the face feature extractor model is
unknown. Consequently, the feature extractor model cannot be
used in the training process of the face reconstruction network;
however, it can be applied in non-gradient-based optimization
approaches. Since in the white-box methods more knowledge
of the feature extractor model is available, it is expected (and
also shown in [[7]], [21]]) that white-box methods achieve better
reconstruction performance than black-box methods. While
majority of methods are proposed for only white-box or black-
box scenarios, there are few methods that can be used for both
white-box and black-box template inversion [7]], [9]], [21].

We can also categorize template inversion methods by their
output (i.e., generated face images), based on the resolution
and quality of reconstructed face images. Specially, methods



TABLE I: Template Inversion methods in the literature.

Ref. Method Reconstruction Reconstruction White-box/ Available
Basis Quality Resolution Black-box source code

6] optim./learning low low white-box X
7 learning low low both X
18 learning low low black-box 4
9] learning low low both X
T12] learning low low white-box v/
113 learning low low black-box v
“[14] Tearning + optim. high low black-box X
116 learning low low black-box X
18 learning high high black-box v
T119] optimization high high black-box v
"[20]  optimization high high black-box I3
21 learning high high both v
23 learning high high whitebox v

that are based on convolutional neural networks, such as [§]],
[12], often generate low-quality images which have blurriness
or other artifacts. For instance, the method in [[12] has the
state-of-the-art reconstruction performance in terms of identity
preserving, but the reconstructed face images manifest blurry
and unrealistic images. In contrast, most GAN-based methods
yield high-quality and realistic (i.e., human-face-like) images.
Specially, some methods used StyleGAN to reconstruct face
images from facial templates, which generate high-resolution
and realistic face images. For instance, in [19], [20] authors
solved an optimization on the input space of StyleGAN to
find the latent code that can generate a face image which
has a similar embedding. In [21]], authors trained a network
to map face embeddings to the intermediate latent space of
StyleGAN, and then used the remaining network of StyleGAN
to generate face image. The template inversion methods based
on StyleGAN leverage the power of high-resolution face
generation of StyleGAN, while other methods in the literature
generate low-resolution face images. Recently, in [23]], CLIP
[35]] and Stable Diffusion [36] models were fine-tuned on
42 million face images from WebFace260M dataset [37] to
generate face images from embeddings of a face recognition
model. Table [] summarizes the template inversion methods
proposed in the literature.

[II. METHODOLOGY

We introduce a novel method for generating deep morphing
attacks, which is grounded in the concept of optimal morph
embedding. We first describe the threat model for the morph
generation. We then present our definition of optimal morph
embedding and the concept of generating face morphs from
optimal morph embeddings in Section Finally, in Sec-
tion [[II-C| we describe our method to generate face morphs
from optimal morph embeddings using template inversion
methods.

A. Threat Model

We consider a morph attack against a face recognition
system based on the following threat model (illustrated in
Fig. [T):

e Adversary’s goal: The adversary aims to create a face

morph image Iyoph, mixing the identities from two
source images I, I, which are for two different subjects;

then enroll Iy, into a face recognition database (e.g.,
passport creation). Afterhand, the goal is for both con-
tributing subjects to successfully authenticate against the
stored reference (e.g., enabling them to share the passport
to go through an automated border control gate).

e Adversary’s knowledge: The adversary is assumed to have
the following information:

— The adversary has access to a face recognition net-
work F,4, and a template inversion network Grr,
which is able to invert face embeddings extracted
by F, adv-

— The adversary may also have a white-box knowledge
of the target face recognition system Fiuee (i.e.,
white-box scenario), and can use it in morph gener-
ation process (i.e., Figy = Flager). Otherwise, if the
adversary does not have a white-box knowledge of
the target face recognition system Fiage (i.€., black-
box scenario), the target face recognition system
Flarger cannot be used by the adversary, and therefore
the adversary uses an off-the-shelf face recognition
model as Fiqy (i.e., Fagy 7 Frarget)-

e Adversary’s capability: The adversary can submit the
generated morph for enrollment into a target face recog-
nition system Fiygee. We consider two scenarios for the
enrolment process:

1) The adversary can submit Iorpn as a digital image
for enrollment.

2) The adversary needs to print the image Iiorph, Which
will be then scanned for enrollment (print-scan).

o Adversary’s strategy: The adversary’s strategy is to com-
pute face embeddings from both contributing subjects
using F,q, and average them to obtain an optimal morph
embedding, then invert this embedding back into Jporpn
using the template inverter Gry.

B. Optimal Morph Embedding and Optimal Face Morph

Let us consider I; and I, as two source images whose
morph we want to generate. Also, let Fyq,(.) denote a feature
extractor used by the adversary, which extracts n-dimension
face embeddings * = F,(I) € X C R"™ from given
face image I. Given a distance function d(.,.), the optimal
morph embedding x* can be defined as the face embedding
whose distance to the embeddings of both source images is
minimized. In other words, the optimal morph embedding can
be defined as:

x* = argmin [d(z1, x) + d(x2, T)], (1
xeX

where €1 = Fo,(I1) and @3 = F,4,(I2) are face embeddings
of source images I; and I, respectively. Without loss of
generality, we can assume that facial embeddings are nor-
malise therefore the space of facial embeddings X C R"
covers a unit hypersphere or n-ball, i.e., ||z|| = 1,Vx € X.
Now, if we consider the cosine distance as our distance

4If embedding x extracted by Fyqy(.) is not normalised, we normalise it
so that ||z|| = 1.



metric d(-, -) for the normalized face embedddings, the optimal
morph embedding has the same distance with both x; and
xo. Therefore, based on the following lemma, for n > 2,
there can be an infinite number of answers for optimal morph
embeddings.

Lemma 1. Given two points 1 and xo on the unit n-sphere
S(=1) (ie., the boundary of an n-ball) in R"™ with n > 2,
there exists an infinite number of points &* on S that
have the same cosine distance to both x1 and .

Proof. The set of points * € S(™~1) lies on the intersection
of n-sphere S("~1) and the hyperplane in R” that - (x; —
@2) = 0 that has a same cosine distance to both x; and x,.
The intersection of the n-sphere S(™~1) and the hyperplane
forms an (n — 2)-dimension sphere. For n > 2, an (n — 2)-
dimension sphere contains an infinite number of points, and
therefore there are infinite points on the n-sphere S("~1) that
have the same cosine distance to both x; and x». O

Corollary 1. A particular answer for the optimal morph
embedding is the normalised average embedding:

T+ To
@1 + 22|

2

Lavg =

The normalised average embedding has the same cosine
distance to both ; and x» and also is on the unit n-sphere. It
is also very easy to calculate, and therefore for simplicity, we
consider the normalised average embedding &, as an optimal
morph embedding in our experiments (i.e., T* = Tayy).

An ideal morphing algorithm would generate face morphs
whose embeddings match an optimal morph embeddings x*.
Nevertheless, while the optimal embedding can theoretically
be computed, it has been considered as only a theoretical
construct [33]], and transforming the optimal embedding back
into the image space is a priori non trivial. However, consider-
ing recent advancements in template inversion techniques, we
can invert embeddings and generate a face image which has
the desired embedding. Therefore, we believe that generation
of almost optimal face morphs from optimal embeddings
can be feasible. Hence, we leverage state-of-the-art template
inversion methods to generate face morph based on optimal
morph embeddings. Let Gi(.) denote a template inversion
model which reconstruct face image I = Gri(x). Then, we
can use the template inversion model Gri(.) to generate an
approximation of the optimal face morph Iy from the
optimal morph embedding x*:

Imorph = GTI(:B*) (3)

Our hypothesis is that the resulting images are strong
candidates for highly effective morphing attacks. To generate
face morphs from optimal morph embeddings, we build upon
our three different template inversion methods introduced in
[12], [21]], [23]] as described in Section

C. Generation of Face Morphs using Face Template Inversion

To generate the face morphs from the optimal morph
embeddings, we employ state-of-the-art white-box template
inversion methods proposed in [[12] (for low-resolution morph

generation), [21] (for high-resolution GAN-based morph gen-
eration), and [23] (for high-resolution diffusion-based morph
generation). The adoption of a white-box template inversion
particularly has advantages in our problem of morph gener-
ation, because we initially have two face images and extract
their embeddings with a known feature extractor model F4y.
Therefore, it is reasonable to consider a white-box template
inversion method and utilize a feature extractor that the
adversary has white-box knowledge of its model.

The low-resolution template inversion method, referred to
as base-inversion in the rest of the paper, consists of a self-
contained decoder that maps from the face embedding space
back to the image space. While it is expected to be highly
accurate, it may generates images of limited quality and
resolution as elaborated in Section The high-resolution
template inversion method based on StyleGAN, referred to
as GAN-inversion in the rest of the paper, learns a mapping
from the face embedding space into the intermediate latent
space of a pretrained StyleGAN model. This approach allows
us to leverage the high resolution and realism of StyleGAN
generated images, even though it might come at the cost of a
less accurate inversion. The high-resolution template inversion
method based on diffusion model, referred to as diffusion-
inversion in the rest of the paper, projects FR embeddings to
the latent space of a pretrained CLIP model and generates
images with Stable Diffusion model, which have high image
quality. Therefore, each of these approaches can have their
merits depending on whether the primarily goal is to fool a
FR system or a human operator.

To train the template inversion models, as a preprocessing
step, we first normalize the facial embeddings to have them lie
on the embeddings hypersphere (as explained in Section[[II-B),
and then train our template inversion networks. After train-
ing our template inversion models, we can generate morph
image I ., = Gm(z") as described in Eq. [3} For each
of our template inversion methods, we also propose different
optimisation-based approaches to improve the performance of
template inversion technique.

1) Low-resolution Template Inversion (Base-inversion): To
train the low-resolution template inversion method based on
[12], we use a convolutional neural network with skip con-
nections on the convolution blocks as the network structure.
After the template inversion model is trained, it can be used to
reconstruct face image from face embeddings. However, simi-
lar to any other neural network, the trained template inversion
model suffers from some errors in the output (generated face
images), in the way that the generated face image does not
have exact same embeddings as the input face embeddings. To
reduce such errors, we consider the template inversion model
as a face generator network and optimize the input embedding
so that the reconstructed face image has embeddings closer
to the optimal morph embeddings. To this end, we use an
iterative gradient descent optimization based on Algorithm [I]
to solve the following optimization on the embeddings space
A to find new embedding g, that can generate the face image
Torph, opt = GTI(m(’;pt) which has embedding closer to optimal
morph embedding x*:



Algorithm 1 Optimization on the input (embedding) of tem-
plate inversion network

1: Inputs:
2 x™ : target optimal morph embedding
3:  Gm(.) : template inversion network
4 Faav(.) : face recognition network (used for morph generation)
5.  A: learning rate
6:  nir : number of iterations
7: Output:
8 I morph
morph)
9: Procedure:
10 T+ x"
11:  Forn =1, .., nj do

: generated face image (approximation of optimal

12: cost « ||z* — [Fuy o Gri)(z)||2
13: x + x — Adam(Vcost, \)
14: End For

15: Tivorph <— GT[(:E)
16: End Procedure

Algorithm 2 Optimization on the W/ W space of StyleGAN
in morph generation using template inversion network based
on StyleGAN (GAN:-inversion)

1: Inputs:

2 x™ : target optimal morph embedding

3: Mmi(.) : mapping network of template inversion method

4: Ssyieaan(.) : synthetic network of StyleGAN

5 Fiav(.) : face recognition network (used for morph generation)

6 S : original (W) or extended (OW7) intermediate latent space
of StyleGAN

7: A :learning rate

8:  miy : number of iterations

9: Output:

0: Imorph
morph)

11: Procedure:

12: w — MTI(iB*)

13:  Forn=1,.., ny do

: generated face image (approximation of optimal

14: cost «— ||&™ — [Fiav © Ssiyrecan] (w)]|2
15: w < w — Adam(Vcost, \), weS
16: End For

17: Inmorph < SsiyleGan(w)
18: End Procedure

x5, = argmin |[x* — [Fagy © Gri](2)]|2 )
x

We use the Adam [38]] optimizer for 100 iterations with the
learning rate of 2.5 x 1073 to solve this optimisation and find
a better approximation of the optimal face morph.

2) High-resolution GAN-based Template Inversion (GAN-
inversion): To train the high-resolution template inversion
method based on [21f], we use the same GAN training
proposed in the original work. The method in [21]], used
StyleGAN3 [39], as a pre-trained face generation network,
and employed the Wasserstein GAN (WGAN) [40] algorithm
to learn a mapping Mr(.) from face embeddings to the
intermediate latent space WV of StyleGAN3. Then, the generate
intermediate latent code w = Mry(x) € W C RY6*512 jg fed
to the synthesis network of StyleGAN Ssyyiegan(.) to generate
the reconstructed face image I-= Gri(xz) = Ssyrecan(w)
using the synthesis network of StyleGAN3.

After the template inversion model is trained, it can be used
to generate face morphs from optimal morph embedding x*
as follows:

Imorph = GTI(w) = [SStyleGAN o MTI](:B*) (5)

However, similar to low-resolution template inversion, the
trained model may have some errors in preserving the em-
bedding in the generated face images. Therefore, we can
optimize input to the template inversion network using the
same optimization in Eq. 4] and Algorithm [T} Alternatively,
we can optimize the generated intermediate latent code w =
M (x) before feeding to the StyleGAN synthesis network
Ssiylegan and use the optimised intermediate latent code wop
in the intermediate latent space WV to generate face image
Tnorph, opt = SsiyleGan(Wopt) Which has embedding closer to
optimal morph embedding «* using the following equation
and as presented in Algorithm [2}

Wopy = arg min ||z* — [Fay © Ssyiegan) (w)]]2,  w € W (6)
w

To ensure that w,p remains in the original intermediate
latent space W of StyleGAN, we optimise one dimension of
w latent code and repeat the optimised vector to have final
vector in W C R16%512,

Alternatively, we can solve the same optimization as in
Eq. @ but in the extended intermediate latent W of Style-
GAN. To this end, instead of optimizing one dimension and
repeating it, we can optimize all the values in the latent
code w independently. Therefore, we can find the optimised
intermediate latent code wqyp using the following equation and
as presented in Algorithm

wopt = arg mlnHw* - [Fadv o SStyleGAN](w)||27 w e WJF
w

@)

To solve the optimization in Algorithm [2] for both Eq. [6]
and Eq. [6] we similarly use the Adam [38] optimizer for 100
iterations with the learning rate of 2.5 x 1072 to solve this
optimisation and find a better approximation of the optimal
face morph.

3) High-resolution Diffusion-based Template Inversion
(diffusion-inversion): To generate high-resolution morph im-
ages using diffusion models, we use the pretrained model
of identity-conditioned face generator proposed in [23[]. The
model is based on CLIP [35] and Stable Diffusion [36]
models conditioned on the identity features extracted by a
FR model (referred to as Insightface FR in the rest of the
paper) and fine-tuned on 42 million face images from Web-
Face260M dataset [37]]. Given a normalized face embedding
T € AXusightface and a random noise . € N, the model
can generate face image I = D(x,n,t) with similar FR
embeddings, where ¢ is the number of denoising iterations for
the diffusion model. Therefore, to generate a morph image,
we need to calculate the optimal morph embedding based
on embeddings extracted from two source images using the
Insightface FR as Fy4y, and then generate a morph image with
the diffusion model.

The generated images with this method are realistic and
have high resolution. However, similar to previous methods,



the face embedding of the generated face image I has some
differences with the initial embedding x. While in previous
methods (base-inversion and GAN-inversion), we propose to
perform iterative optimizations to improve the inversion and
face generation process, it is computationally difficult to
perform similar optimization for the diffusion-based morph
generation. Because, the generation of morph images from
optimal morph embedding using the diffusion model, the gen-
erative model itself is based on an iterative denoising process
and requires the use of the diffusion model multiple time-
steps to denoise and generate each single image. Therefore,
calculating gradients over different time-steps requires more
computation, and also iterative optimization on input noise
(such as Algorithm |I) will require much more runtime and
resources. To mitigate this issue and to improve the quality of
morph generation using diffusion model, we apply a greedy
optimization and use k different noise vectors to generate
morph image I = D(x*,n,t) with each noise n, and then
select the generated image whose embedding @ = Fyqy(I) is
the most similar to the optimal morph embedding x*. In our
experiments, we generate each image with { = 25 iterations
and generate £ = 10 images for each given optimal morph
embedding.

IV. EXPERIMENTS

We aim to evaluate the effectiveness of our proposed mor-
phing attacks. The effectiveness of a morphing attack depends
on its ability to fool both a face recognition system (e.g.,
at an automated border control gate), and a human operator
(e.g., the administrative employee receiving and processing the
image submitted for a passport application). We compare the
performance of our attack across those two aspects against
previous attacks proposed in the literature. Code to reproduce
our experiments is publicly release(ﬂ

The ability of the attack to fool FR systems is evaluated
through the mean of a vulnerability analysis, which simulates
attacks by enrolling the morphs into a biometric verification
system, then evaluating what percentage of them allow both
contributing subjects to successfully authenticate. While in
some cases, passport application photos can be submitted
in digital format, they might sometimes have to rather be
printed and physically sent to the processing office, where
they will be scanned for redigitalization. Independent vulner-
ability analyses should thus be performed using the morphs
either in their digital form, or after performing this print-scan
operation for a more real-world setting. These analyses are
performed in Section We first compare several variants
of our proposed attack to evaluate the importance of the input
optimization step for the effectiveness of the attack. We then
compare our proposed attack to previously proposed ones, both
considering deep morphing and landmark-based morphing.
Finally, we select a subset of attacks which are subjected
to a print-scan process, and evaluate whether our conclusions
change in this more realistic setting.

The ability of the attack to fool humans has two compo-
nents. First, the morphed image should be sufficiently realistic

Shttps://gitlab.idiap.ch/bob/bob.paper.tifs2025_inversion_morphing

looking to not raise suspicion. Secondly, it might also be
necessary that the morph is good enough of a lookalike to
both source identities (or at least of the accomplice’s identity).
While this is in principle already evaluated in the FR vulnera-
bility analysis, there might be cases where human perception
of identity differs from that of the automated system. Those
aspects are discussed in Section first with a qualitative
discussion of the morphed faces, then with an quantitative
evaluation of the morphs realism using the Fréchet Inception
Distance (FID) metric.

For comparison with previous research, we include in par-
ticular in the analysis three deep morphing attacks methods,
which all rely on exploiting the latent space of a pretrained
StyleGAN model. The SG-W [29] and SG-W+ [30] methods
do so by projecting the source images in the W (resp. W+)
latent space, then interpolating between the resulting latent
and regenerating an image from the interpolated latent. The
MIPGAN method [3]] similarly finds a good latent for the
morph, but does so by an optimization process including a
biometric loss, thus providing better guarantee of the effec-
tiveness of the attack. More recently proposed, the MorDIFF
method [4] replaces the GAN-generator with a diffusion-based
one, specifically a diffusion autoencoder [32]. Like for SG-
W and SG-W+, the morphs are obtained by encoding the
source images, this time in the latent space of the diffusion
autoencoder, then interpolating between the encoded latents
and decoding into an image. We also compare our methods
to two landmarks-based (LB) methods, mainly complete mor-
phing [26] (LB-Complete) which creates morphs by aligning
face landmarks of the two sources through face warping
then averaging the pixels, and combined morphing [27] (LB-
Combined) which additionally blends back the morphed face
into one of the source image, to remove unwanted ghosting
artifacts. Those landmark-based morphing approaches can be
considered state of the art in morphing attacks, in terms of
effectiveness (and in particular have been evaluated to be
more effective than deep morphing approaches). All morphing
attacks considered in this work are summarized in Table [[II
We present in Fig. |2| examples of the resulting morphs using
each of the considered methods.

A. Effectiveness on face recognition systems

We evaluate the ability of our proposed morphing attacks to
fool face recognition systems through a vulnerability analysis
study, whose point is to simulate morphing attacks on a
FR system and evaluate the rate of successful attacks. To
this end, first, a set of morphs are created from a list of
pairs from a source dataset. Those morphs are enrolled as
reference in a FR system, simulating a passport application.
A specific operating threshold for the FR system is calibrated
on a bonafide evaluation protocol, with a tolerance for a
false match rate (FMR) of 1072, following the FRONTEX
guideline [41]]. For each morphs, probes from both contributing
subjects are then presented to the system, trying to authenticate
under the same registered identity represented by the morph.
The morph is considered successful if both subjects manage
to authenticate. This is usually evaluated through the Mated
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Fig. 2: All types of considered deep morphs for two different
pairs of source identities.

Morph Presentation Match Rate, described in , for which
we consider both the MinMax and ProdAvg variants. Those
two variants differ in their handling of the case where several
probes of each contributing subjects are presented to the
system, with the possibility than only a portion of those probes
are successfully matched to the morph reference.

In practice, we create attacks using two source datasets:
the Face Research Lab London (FRLL) dataset and
the Face Recognition Grand Challenge (FRGC) dataset.
For FRLL, we select the same morphing pairs as in AMSL
, an other morph dataset. For the vulnerability evaluation,
we probe the system with all available frontal poses of the
contributing subjects. When working with FRGC, we reuse
both the morphing pairs and the probes from [3].

For the LB-Combined method which can generate two

TABLE 1II: Overview of the considered morphing methods.
The first block contains all considered inversion attacks, which
are all our contribution. The second block lists previously pro-
posed methods which we include in our work for comparative
purposes.

Name Approach
I-AF/EF Base inversion of optimal template (FR-dependent)
+ Opt-X + optimization of the inverter’s input
GI-AF/EF GAN-inversion (W) of optimal template (FR-
dependent)
+ Opt-X/W/W+ + optimization of the inverter’s input (X) or the syn-
thesis network input (W, W+)
DI-IF Diffusion-inversion of optimal template

Encoding and interpolation in StyleGAN2 W space
Encoding and interpolation in StyleGAN2 W+ space
Optimization in StyleGAN2 W+ space

Encoding and interpolation in the latent space of a
Diffusion Autoencoder

|| LB-Complete Landmarks-based complete morph
|| LB-Combined

Landmarks-based combined morph

morphs per pair (depending on which source image the mor-
phed face is blended back in), we arbitrarily select only one
of those, to have a number of morphs comparable with other
methods. Overall, this leads to a total of 1140 morphs for
FRLL (per morphing method), and 2521 for FRGC. We make
use of two open-source FR systems for the analysis: ArcFace
(AF) [43], and ElasticFace (EF) [44]. Given inversion morphs
necessitate a FR system for the generation itself, we generate
independent morph sets using each of those models. We then
use the same two models for simulating the considered attacks
and evaluating their effectiveness. This approach in particular
enables comparison between white-box attack scenarios (FR
system available at morph generation time, i.e., when the same
network is used for generation and evaluation), and black-box
attack scenarios (when the attacked network differs from the
one used for generation). On that aspect we also note that
MIPGAN makes uses of the ArcFace network for computing
the biometric component of the loss when fine tuning the latent
morph; for this reason, we classify a MIPGAN attack on the
ArcFace system as white-box. For calibrating the operating
threshold we use the FRGC Experiment 2 protocol and operate
at a tolerated FMR of 1073,

Finally, we strengthen our analysis by also including a
closed-source commercial of-the-shelf (COTS) FR system
against which we evaluate morphing attack effectiveness in the
most realistic attack scenario, i.e., with print-scanned attacks.
For this system, we use the operating threshold provided in the
official documentation, again with a tolerated FMR of 1073,

1) Importance of fine-tuning the input to the inverter:
Using this means of analysis, we first evaluate the importance
of fine-tuning the latent morph representation on the attack
effectiveness. As explained in Section [[II-C} this is done by
optimizing the input to the inverter with the aim of better
ensuring the generated morph maps back to the optimal morph
embedding. Moreover, for GAN-inversion, this optimization



TABLE III: Effect of optimizing the input to the inverter on the
attack effectiveness. We distinguish white-box [J and black-
box M attacks.

MinMax-MMPMR (%)
FRLL FRGC

ProdAvg-MMPMR (%)

FRS Attack FRLL FRGC

AF O I-AF
O I-AF-Opt-X
O GI-AF
O GI-AF-Opt-X
O GI-AF-Opt-W
0O GI-AF-Opt-W+
W I-EF
W I-EF-Opt-X
B GI-EF
B GI-EF-Opt-X
B GI-EF-Opt-W
B GI-EF-Opt-W+
EF O I-EF
O I-EF-Opt-X
O GI-EF
O GI-EF-Opt-X
O GI-EF-Opt-W
O GI-EF-Opt-W+
B [-AF
N [-AF-Opt-X
B GI-AF
B GI-AF-Opt-X
M GI-AF-Opt-W
B GI-AF-Opt-W+

97.54
100.00
52.02
91.75
88.77
99.91
90.70
98.86
17.19
62.46
56.32
95.35
96.67
100.00
33.68
80.35
75.79
99.21
91.75
97.19
39.74
68.51
71.49
92.46

89.88
99.80
41.81
80.72
79.06
98.53
79.65
94.01
12.77
47.32
44.39
83.74
87.78
99.52
27.45
61.13
61.96
93.57
75.09
83.22
27.37
47.56
52.76
77.07

94.47
99.91
42.46
86.54
83.09
99.04

74.76
98.07
21.95
64.13
61.57
92.92
85.57 61.46
97.98 85.57
11.93 4.84

53.29 30.81
48.46 2747
92.57 71.44
93.00 74.58
99.87 95.72
26.47 13.69
73.49 45.88
69.10 45.38
97.94 85.33
86.80 58.25
95.18 71.40
31.80 13.93
63.57 34.68
65.99 36.00
90.13 62.48

can actually be performed in intermediate spaces, either WV or
W+, given that the optimal morph embedding is first mapped
to the W space before being synthesized as an image. The
results of the vulnerability evaluation across those different
approaches are presented in Table We observe that in all
cases the optimization process increases the effectiveness of
the attack. For base inversion methods, while the effectiveness
is already high without the optimization, including it further
pushes the MMPMR close to the maximum. For GAN-
Inversion, the effect is even more drastic, with around 3 to
6 times more attacks being successful with the optimization.
We also observe in this second case that performing the
optimization in YW+ achieves the best result by far.

One could also be worried that including the optimization
step would start overfitting the attack to the used FR system,
especially considering the fact it is already used to train
the inverter. But, we observe that this is not the case: even
in black-box attack scenarios, the optimization step leads to
much higher attack effectiveness. This suggests that the image
modifications brought by the optimization are actually able to
generalize to other FR systems.

2) Comparison with other methods: We pick the best
performing configurations of inversion morphs (with and with-
out optimization), and compare their effectiveness to that of
previous methods from the literature. The results are presented
in Table We are in particular interested in the performance
of our methods compared against MIPGAN and MorDIFF,
(which are considered state of the art prior to this work
for deep morphing using respectively GANs and Diffusion
models), and against the landmarks-based methods which have
been shown in the literature to always perform better than deep
morphing methods.

First focusing on the base inversion morphs, we observe

that despite their limited visual realism, they perform ex-
tremely well against FR systems. In the white-box scenario,
the ArcFace-based inversion with or even without fine-tuning
beats MIPGAN. In the black-box scenario, base inversion
without fine-tuning is already competitive with MIPGAN, and
gets meaningfully stronger after fine-tuning, which makes it a
leading method for deep morphing effectiveness. Moreover,
base inversion actually reaches a performance somewhere
inbetween LB-Complete and LB-Combined morphs. To the
best of our knowledge, this is the first deep-learning based
morphing method which actually manages to achieve compet-
itive effectiveness with respect to landmark-based morphing.

Focusing now on GAN-Inversion, we observe that without
fine-tuning the method is only mildly effective, both in the
white-box and black-box scenario, with MMPMR values lying
inbetween SG-W and SG-W+ morphing. However, applying
the input optimization steps (specifically optimizing in the
W+ space) brings the performance at competitive levels. In
the white-box scenario, it actually provides a performance
close to be competitive with base inversion, but with the
advantage of a much higher realism, as showcased in Section
IV-B| and in particular beating MIPGAN and MorDIFF. In
the black-box scenario, it reaches slightly better performance
than MIPGAN and MorDIFF, but slightly below the landmark-
based methods. Finally, the diffusion-inversion also performs
quite competitively, notably more effective than the base-
inversion and GAN-inversion without input optimization step
in the black-box scenario, and only marginally weaker than
the same method with input optimization. We can expect
than performing input optimization for the diffusion-inversion
method would further push the morph effectiveness, however
as mentioned earlier, this process is non-trivial due to compu-
tational requirements.

Comparing with the visual aspects of the morphs (which
is discussed more in depth in Section we notice that
the attack effectiveness seems somewhat uncorrelated to the
visual realism of the morphs. Given the nature of inversion
morphing (using a FR system at generation time), one can
wonder whether it is more akin to an adversarial attack,
i.e., the high effectiveness of the morph is not linked to
actual face semantic attributes in the generated image, but
rather to humanly imperceptible noise patterns introduced in
the image which somehow manage to fool the FR system.
This phenomenon might explain as mismatch between the
effectiveness of those morphs on humans versus on systems.

The fact that the attack generalizes well in black-box
scenarios is a first hint against this adversarial hypothesis,
showing the morphs actually contain some meaningful high-
level identity information able to fool a variety of FR networks.
However, we can further test this hypothesis by doing a print-
scan analysis. In this context, the morphs are printed and
redigitalized before being enrolled in the system. This study
has two main interests: first, it is a better simulation of a
real-world scenario, in which a submitted passport picture
can typically be subject to such print-scan process before
enrolment. Secondly, the print-scan process has potential to
degrade certain features of the image, causing a decrease in
its vulnerability. With our inversion morphs in particular, if



TABLE IV: Comparison of the effectiveness of the best morph
generation methods. We distinguish white-box [J and black-
box M attack scenarios.

MinMax-MMPMR (%) ProdAvg-MMPMR (%)

FRS Attack FRLL FRGC FRLL FRGC

AF O I-AF 97.54 89.88 94.47 74.76
O I-AF-Opt-X 100.00 99.80 99.91 98.07
O GI-AF 52.02 41.81 42.46 21.95
[0 GI-AF-Opt-W+ 99.91 98.53 99.04 92.92
O MIPGAN - 73.22 - 54.77
W I-EF 90.70 79.65 85.57 61.46
B [-EF-Opt-X 98.86 94.01 97.98 85.57
W GI-EF 17.19 12.77 11.93 4.84
B GI-EF-Opt-W+ 95.35 83.74 92.57 71.44
W DI-IF 97.11 84.69 94.56 71.09
B SG-W 1.05 4.32 0.64 1.44
B SG-W+ 62.63 60.10 53.71 39.97
B MorDIFF 90.09 74.81 84.32 58.06
B LB-Complete 99.21 95.48 98.16 87.51
B LB-Combined 93.95 84.97 91.23 70.68

EF O I-EF 96.67 87.78 93.00 74.58
O I-EF-Opt-X 100.00 99.52 99.87 95.72
O GI-EF 33.68 2745 26.47 13.69
O GI-EF-Opt-W+ 99.21 93.57 97.94 85.33
W [-AF 91.75 75.09 86.80 58.25
W I-AF-Opt-X 97.19 83.22 95.18 71.40
B GI-AF 39.74 2737 31.80 13.93
B GI-AF-Opt-W+ 92.46 77.07 90.13 62.48
W DI-IF 92.11 72.19 87.85 56.25
W SG-W 3.07 10.19 2.06 3.56
B SG-W+ 72.28 67.63 62.81 48.90
B MIPGAN - 75.80 - 60.10
B MorDIFF 89.74 76.76 83.42 60.81
W LB-Complete 99.47 96.63 98.51 89.33
B LB-Combined 95.96 87.58 93.33 75.54

their effectiveness was due to some fine adversarial signal, a
print-scan process could likely degrade such subtle patterns:
hence, it is important to check how the attack performance
varies in this setting, to evaluate how robust it is to mi-
nor degradations. We specifically select the best performing
base inversion and GAN-Inversion attacks from Table
the best performing StyleGAN-based approach (MIPGAN),
the diffusion-based approach (MorDIFF) and both landmark-
based approaches, and restrict the analysis to FRGC morphs
only. The morphs are printed as a grid of 35mm x 35mm
then rescanned at a resolution of 300 DPI, using a Kyocera
TASKalfa 2554ci (laser printer + scanner). Fig. [3| showcases
the resulting morphs after print-scan processing. The probes
for the vulnerability study are kept digitalized, to simulate a
live capture and comparison at an automated border control
gate. This experiment is a simulation of a real-world attack,
and to make it even more realistic, as part of the analysis
we also include a commercial of-the-shelf (COTS) system,
where we have only API accesﬂ The print-scan evaluation
with COTS model provides the strongest estimate of morphing
attack effectiveness by attacking a completely closed-source
system. The results of the vulnerability analysis are presented
in Table [Vl

We observe that while degraded, the performance of our
morphing attacks is still preserved in this print-scan setting.
The I-EF-Opt-X system performance degradation is even
low enough that the method actually becomes stronger than

SNote that the API only provides us comparison scores, and we even do
not have access to embeddings of the commercial model.

TABLE V: Vulnerability analysis on a subset of attacks using
the FRGC source dataset, in a print-scan setting. We distin-
guish between white-box [] and black-box W attack scenarios.

FRS  Attack MinMax- ProdAvg-
MMPMR MMPMR
(%) (%)
AF 0 MIPGAN 62.16 43.65
O I-AF-Opt-X 99.09 95.33
O GI-AF-Opt-W+ 97.26 90.19
B MorDIFF 66.56 48.48
W [-EF-Opt-X 91.51 81.09
B GI-EF-Opt-W+ 81.63 68.49
W DI-IF 80.56 65.67
B LB-Complete 88.22 75.17
B LB-Combined 72.03 55.42
EF O I-EF-Opt-X 100.00 99.11
O GI-EF-Opt-W+ 98.73 95.46
B MorDIFF 90.32 77.90
B MIPGAN 87.70 77.14
B [-AF-Opt-X 95.04 87.12
B GI-AF-Opt-W+ 93.34 83.59
B DI-IF 88.22 77.46
B LB-Complete 97.86 93.89
B LB-Combined 93.45 84.52
COTS M MorDIFF 81.59 69.62
B MIPGAN 73.38 60.14
B [-AF-Opt-X 82.82 71.92
W [-EF-Opt-X 81.44 71.46
B GI-AF-Opt-W+ 74.61 61.95
B GI-EF-Opt-W+ 70.84 59.14
W DI-IF 91.39 83.03
B LB-Complete 94.09 86.91
B LB-Combined 77.23 64.33

landmark based morphing in this setting. It is non-trival to
understand how this phenomenon can occur, but it at least
suggests that the relevant face patterns in the morph are
extremely robust even to print-scan degradation. In parallel, the
GAN-Inversion morphs with fine-tuning stay more effective
than MIPGAN and MorDIFF ones in this setting, and the
GI-EF-Opt-W+ configuration in particular actually reaches a
better performance than LB-Combined morphs in the black-
box scenario.

The global effectiveness of all considered morphing attacks
is further demonstrated by their success rate when attacking
the COTS system. We observe that LB-Complete attacks are
the most effective ones in this scenario, but inversion-based
methods (specifically diffusion-inversion and base-inversion)
are the next best ones, notably outperforming LB-Combined
and MIPGAN attacks. Compared to MorDIFF, base-inversion
achieves competitive performance but the diffusion-inversion
outperforms MorDIFF by a large margin. This evaluation
further demonstrates that even though white-box access to
a singular face recognition system is necessary to generate
inversion-based morphs, the resulting attacks keep their effec-
tiveness even on a completely unrelated, closed-source system.

B. Perceptual analysis

We now aim to discuss perceptual aspects of the generated
morphs, and in particular the 3 following points: whether the
morphs can be perceptually perceived as a good lookalike to
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Fig. 3: Examples of the selected subset of morphing attacks before and after print-scan (PS).

both source identities, whether they are prone to be used in a
real-world attack scenario, and finally whether they showcase
sufficient overall realism.

On the aspect of assessing whether the morph can be
considered a good lookalike to both identities, we observe
that the inversion morphs behave somewhat differently than
other methods. Indeed, as previous methods typically ensure
a global image similarity of the morph to source identities,
not only do they provide “intermediate” facial features, but
also similar looking face shape, facial expression, and hair. In
contrast, with inversion morphing, mainly the central portion
of the face is an mixture of the facial features of both sources;
however surrounding elements like the face shape or the hair,
and certain covariates, like the expression or pose, can be
relatively different. See for example Fig. 2a] in which GAN-
inversion morphs showcase a somewhat rounder face shape
than the source identities, and a smiling expression. This is
not necessarily surprising, given the morph generation process.
First, the inverted FR system typically only pays attention to
a tight crop of the face, hence boundary features such as the
exact cheeks shape or the hair should not matter. Moreover, an
ideal FR system being independent from the face expression,
there is no reason to invert a given embedding into specifically
a neutral expression.

On the aspect of real-world application of inversion morphs
in a real-world attack scenario, we can highlight two main
limitations of the current methods. First, the non-uniform
background in some cases (especially with GAN-inversion)
might be problematic as it might not satisfy passport photo
standards in many countries. This is only a small issue given
some background post-processing should not be particularly
difficult to achieve. Secondly, the non-neutral expression is
also probably not compatible with photo passport standards.
There, further work might be needed. One possibility would be
to constrain the template inversion network to produce images
with only neutral expression. For GAN-Inversion, another
possibility would be to edit the W representation of the latent
morph in to neutralize the expression, as proposed for example
in [45]. Finally, an approach enabling for GAN-Inversion
morphs to better resemble the source dataset would be to
actually fine-tune the GAN generator on the source dataset,
such as is done for MIPGAN. However, we hypothesize
that this fine-tuning might be overall too destructive, due
to catastrophic forgetting of the original weights, potentially
leading to a decrease in realism of the generated image; as a
matter of fact, we observe in many MIPGAN images blurry

artifacts around the face which are normally absent from
StyleGAN generated image, and might have been caused by
a degradation of the generator’s ability when fine-tuning it.

On aspects of realism, we observe that the GAN-inversion
morphs are quite sharp an realistic looking, comparable to
other StyleGAN-based approaches. They could even be con-
sidered to compare favorably against MIPGAN morphs, for
which blurry contours are sometimes observed around the face.
They also compare favorably to LB-Complete morphs given
those latter ones contain ghosting artifacts. In contrast, base
inversion morphs are of lower quality overall: while the center
of the face itself is quite sharp, contours are relatively blurry.
Some post processing, for example aiming to blend the face
morph onto one of the source images, is probably necessary
for those morphs to actually manage to fool a human evaluator.

An exact quantitative evaluation of the morphs’ realism
would require to run a perceptual study on human subjects,
however we can get a first insight on the topic using the
Fréchet Inception Distance metric (FID) which maps
human judgement relatively well and has been used in the
literature for realism evaluation (e.g., , ). It estimates the
perceptual distance between two sets of images by extracting
their feature representations using a pretrained Inception net-
work, fitting a Gaussian to both distributions, then computing
the Fréchet distance between those. To compute the FID score,
we use for each dataset the full set of real data (all source
images used for morphing plus all the probes used in the
vulnerability study, see Section [[V-A) as the bonafide sets,
and the generated morphs with each individual attack as the
fake set. The results are presented in Table[VI] The FID results
confirm the relatively clear-cut observation that base inversion
morphs are not of the greatest realism (high FID), but we
actually also observe that the GAN-Inversion and diffusion-
inversion morphs are not performing as well as StyleGAN
or landmark-based morphs. One possible explanation is that
while often used for that purpose, the FID technically does
not measure exactly “realism”, but rather differences between
the bonafide and fake set: as we commented before, inversion
morphs being less constrained, they do not preserve some
image elements like background, expression or pose, which
sets the morph distribution further away from the source
distribution, in contrary to other morphing methods which
constrain both the identities and other image factors.



TABLE VI: Fréchet Inception Distance (FID). A lower value
indicate an estimated stronger perceptual realism, i.e., lower
is better.

Attack FRLL FRGC
I-AF 270.14 264.60
I-EF 269.87 259.52
I-AF-Opt-X 271.19 265.14
I-EF-Opt-X 268.28 265.24
GI-AF 96.33 64.05
GI-EF 92.02 76.73
GI-AF-Opt-W+ 87.99 62.99
GI-EF-Opt-W+ 82.56 70.79
DI-IF 124.57 116.56
SG-W 25.99 21.31
SG-W+ 23.75 17.76
MIPGAN - 35.52
MorDIFF 58.79 81.65
LB-Complete 42.86 30.48
LB-Combined 27.87 28.36

C. Detectability

We also evaluate the detectability of the generated morphs.
This is done using publicly available morphing attack detectors
and running them as is on our data. We consider MixFaceNet-
SMDD [47], a detector trained on the SMDD dataset as a
binary classifier , and SPL-MAD [48]], which is a one class
detector, i.e., it models the distribution of bonafide images and
detect morphing attacks as out-of-distribution samples. Table
[VII presents the detection performance of those two models on
each type of considered attacks (using always the same set of
bonafide samples). We specifically report the Detection Equal
Error Rate (D-EER), which corresponds to the error rate when
at an operating threshold where both the proportion of attacks
classified as bonafide and the proportion of bonafide classified
as attacks are equal.

We first observed that base-inversion morphs are very effec-
tively detected, which is likely related to their low resolution
and subpar realism. However, both GAN-Inversion morphs and
Diffusion-inversion morphs pose a high challenge for both
detectors. This is notably despite the detectors performing
decently on other GAN-based morphs (e.g., MIPGAN), and
and other diffusion-based morphs (e.g., MorDIFF). We also
observe that despite their high effectiveness, landmark-based
morphs are typically well detected by available detectors. This
is likely due to them appearing first historically, and thus being
systematically considered in the development of morphing
attack detectors.

As inversion-based morphs have been showcased to be
simultaneously effective to fool face recognition systems, and
not easily detected by existing detectors, it suggests that
future improvements on the detectors might need to consider
inversion morphs as an additional possible attack.

V. CONCLUSION

We introduced a new deep morphing method which works
by approximating the optimal face morph using template

TABLE VII: Detection Equal Error Rate (D-EER), in %, using
publicly available morphing attack detectors. For each attack,
the same set of bonafide is used and correspond to frontal
samples extracted from the source dataset which is also used
to create the morphs.

Attack Model MixFaceNet SPL-MAD [48]
Dataset SMDD [47]
I-AF-Opt-X FRLL 0.09 0.00
FRGC 0.92 0.08
1-EF-Opt-X FRLL 0.49 0.00
FRGC 0.86 0.08
GI-AF-Opt-W+ FRLL 49.57 70.63
FRGC 53.57 67.76
GI-EF-Opt-W+ FRLL 55.46 75.53
FRGC 67.88 78.18
DLIF FRLL 70.14 74.40
FRGC 84.72 70.31
MIPGAN FRGC 24.54 15.48
MorDIFF FRLL 2.18 0.53
FRGC 8.88 1.19
FRLL 4 .
LB-Complete 045 0.00
FRGC 2.37 0.16
LB-Combined FRLL 1.65 0.00
FRGC 10.81 0.51

inversion methods to reconstruct an image from the optimal
morph embedding. We showcased in particular three distinct
template inversion systems, one based on a fully trained
embedding-to-image synthesis network, one other exploiting
the latent space of a pretrained face GAN for the synthesis,
helping to increase the realism of the morphs, and another
based on probabilistic diffusion face generator model. In each
case, we also proposed two generation settings, one where
default output of the template inverter is used, and one where
it is fine-tuned or optimised to better correspond to the optimal
morph embedding, which we have shown to be extremely
effective on the morphs capability to fool FR systems.

We have demonstrated both inversion and GAN-Inversion
attacks are state of the art in terms of attack effectiveness
against FR systems, not only beating previously introduced
deep morphing approaches, but also reaching a competitive
effectiveness with respect to landmark-based morphing, which
is entirely novel for deep morphs, to the best of our knowledge.
Moreover, we showcased that the attack generalizes well to
black-box scenarios (where the FR system used for generation
differs from the attacked one), and is robust to a print-
scan degradation. These observations hold even when attack-
ing a closed-source commercial off-the-shelf system. Finally,
we observed that preexisting morphing attack detectors are
performing poorly on the GAN and Diffusion variant of
the proposed inverted morphs, which adds another aspect of
concern.

We should note that inversion morphs however have some
shortcomings, mainly the fact that they either showcase too
low realism (for base inversion morphs), or too unconstrained
faces (for GAN-Inversion morphs, the face shape, face expres-



sion, pose, and background in particular make them potentially
difficult to actually use for a passport application). Some
of those limitations might be relieved in the future through
post-processing operations (for example, the background can
be post-processed to make it uniform, or the expression of
GAN-Inversion morphs can be edited by moving along a
expression-neutralizing direction in the W latent space of
the auxiliary StyleGAN). Moreover, we want to highlight
the strong connection between template inversion research
and morphing attack generation: each inversion system has
a direct application to morphing using this same process of
inverting the optimal morph embedding. Therefore, we can
expect that as progress is done in template inversion, the
resulting inversion morphs might become more and more
realistic, constrained, and effective.

Overall, this work demonstrates such inversion-based
morphs have strong potential to be used in actual real-world
scenarios, and thus that research on morphing attack detec-
tion should bring particular care to this new proposed type
of attack. In this paper, we considered a particular answer
for optimal embedding (i.e., normalised average embedding),
however as stated in Lemmal[l] there can be an infinite number
of answers for the optimal morph embeddings, which may
lead to stronger morph attacks and require further research in
future.
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