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Abstract
The evaluation of fairness models in Machine Learning involves complex challenges, such as defining appropriate
metrics, balancing trade-offs between utility and fairness, and there are still gaps in this stage. This work presents
a novel multi-objective evaluation framework that enables the analysis of utility-fairness trade-offs in Machine
Learning systems. The framework was developed using criteria from Multi-Objective Optimization that collect
comprehensive information regarding this complex evaluation task. The assessment of multiple Machine Learning
systems is summarized, both quantitatively and qualitatively, in a straightforward manner through a radar chart and a
measurement table encompassing various aspects such as convergence, system capacity, and diversity. The framework’s
compact representation of performance facilitates the comparative analysis of different Machine Learning strategies for
decision-makers, in real-world applications, with single or multiple fairness requirements. In particular, this study focuses
on the medical imaging domain, where fairness considerations are crucial due to the potential impact of biased diagnostic
systems on patient outcomes. The proposed framework enables a systematic evaluation of multiple fairness constraints,
helping to identify and mitigate disparities among demographic groups while maintaining diagnostic performance. The
framework is model-agnostic and flexible to be adapted to any kind of Machine Learning systems, that is, black- or
white-box, any kind and quantity of evaluation metrics, including multidimensional fairness criteria. The functionality
and effectiveness of the proposed framework are shown with different simulations, and an empirical study conducted on
three real-world medical imaging datasets with various Machine Learning systems. Our evaluation framework is publicly
available at https://pypi.org/project/fairical.
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1. Introduction

The increasing integration of Machine Learning (ML) sys-
tems in day-to-day activities offers significant opportunities,
but it also raises critical concerns regarding demographic
fairness and equity (Xinying Chen and Hooker, 2023;
Pessach and Shmueli, 2022; Starke et al., 2022; Rabonato
and Berton, 2025). Fairness in ML pertains to the ethical
imperative of ensuring that algorithms and models do
not discriminate or display bias, against individuals or

groups based on lawfully demographic attributes such as
race, gender, age, and/or other characteristics (Barocas
et al., 2023). Fairness is a multi-faceted and complex
concept with nuances directly linked to the situation consid-
ered (Castelnovo et al., 2022; Pessach and Shmueli, 2022).
Consequently, balancing and measuring multiple fairness
criteria simultaneously, both at a group and individual
level, is a challenging task, resulting in different definitions
of fairness appropriate for different contexts (Dutt et al.,
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2023).
While Multi-Objective Optimization (MOO) provides

a mathematical foundation for balancing objectives in
conflict, fairness in ML extends beyond conventional op-
timization paradigms. Equity encompasses multiple, often
conflicting notions, such as group or individual fairness and
equality of opportunity, that reflect distinct ethical and so-
cial considerations. These criteria cannot be meaningfully
represented by a single objective function, as optimizing
for one dimension of fairness may amplify disparities in
another. In this respect, ML based approaches that model
and evaluate the utility-fairness trade-off across multiple
objectives can provide valuable insight into how fairness
manifests under different operational and demographic
conditions. However, as highlighted by Selbst et al.
(2019) in five traps, over-abstracting fairness into purely
mathematical formalizations can have a risk of detaching
it from the reality. Therefore, such analyses should be
interpreted as structured, assumption-bound explorations
of fairness dynamics, rather than universal solutions to the
fairness problem in ML.

An unintended outcome when optimizing for a balanced
treatment between genders is the variation in predictive
performance across other groups of demographic attributes.
Many techniques in real-world scenarios improve fairness at
the expense of model utility, with the minimum possible
error of any fair classifier bounded by the difference in
base rates (Zhao and Gordon, 2022). This fundamental
tension in algorithmic fairness has been previously explored
to improve the understanding of model bias and the limits
of artificial intelligence (AI) (Wei and Niethammer, 2022;
Wang et al., 2020). Model biases can be introduced
through the optimization of certain objectives, hyperparam-
eter tuning, or simply due to the inherent characteristics
of the datasets used to train the models (Yang et al.,
2024), such as biased training data, sampling bias, label
bias, exclusion, or historical bias. For example, if features
correlated with sensitive attributes (e.g., gender, race) are
considered during training, the models might latch onto
these attributes, potentially resulting in demographically
biased outcomes.

The selection and modeling of fairness criteria are
relatively new research directions that require clear def-
initions on the mathematical expression of demographic
equity. Most ML approaches are currently evaluated
without considering any fairness criteria (Akter et al., 2022;
Lu et al., 2020). In recent years, some works started
using unique levels of fairness and utility, which fail to
characterize ML systems at every level of the utility-fairness
trade-off, thus limiting subgroup and intersectional evalua-
tion (Buolamwini and Gebru, 2018). The situation worsens
when multiple fairness and utility criteria come into play,
as the fairness-aware stakeholders and decision-makers

may want to ensure, beyond utility, that multiple fairness
criteria are satisfied, such as race, gender, and age aiming
to provide fair ML services in production under different
demographic settings.

In medical imaging, fairness challenges become more
prominent because diagnostic processes often involve mul-
tiple and conflicting clinical and operational objectives, as
ML models are increasingly used to support decisions in
almost every field, such as radiology, ophthalmology, and
dermatology. Furthermore, variations in data acquisition
conditions, patient demographics (e.g., the deployment of
diagnostic tools in a hospital that tends to a heterogeneous
community), and disease prevalence can lead to systematic
biases in model predictions. For instance, screening models
for ophthalmology risk must retain high sensitivity to avoid
missed cases, while also ensuring that performance does
not systematically degrade for specific demographic sub-
groups. A representative example arises in glaucoma, an
eye disease that exhibits a higher prevalence among Black
populations, and within this group, male individuals show
greater vulnerability compared to females (Khachatryan
et al., 2019; Luo et al., 2024). The high prevalence of
glaucoma contrasts with the scarcity of available data from
the Black community, contributing to disparities in model
performance across racial groups and even between genders
within the same group. This mismatch highlights the
necessity of evaluating ML models not only for diagnostic
utility but also for their equitable behavior across different
demographic attributes. Consequently, utility (diagnostic
performance) and multiple fairness constraints must be
considered simultaneously. A principled way to analyze
such conflicting requirements is to employ multi-objective
formalizations, where each fairness criterion and the utility
metric are treated as separate but jointly optimized objec-
tives rather than in isolation.

On the other hand, the development of ML systems
addressing multiple objectives has been extensively studied
in the context of MOO systems. In such cases, performance
is evaluated by considering all possible trade-offs between
the individual objectives, resulting in an N-dimensional
graph. This evaluation strategy can provide a basis to bet-
ter articulate user preferences in model comparison (Gong
and Guo, 2023). Although multi-objective measurements
have been used in recent works to incorporate single
fairness constraints into developed models (Little, 2023),
to the best of our knowledge, there are no frameworks
that enable a comprehensive comparison of ML systems
under multiple utility and fairness criteria. In particular,
multiple fairness considerations based on MOO become
even more critical in the context of medical imaging. A
framework that accounts for multiple fairness constraints
simultaneously is therefore essential to ensure equitable
diagnostic performance across different patient subgroups
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characterized by demographic attributes.
Conceptually, fairness in ML can be regarded as a

multidimensional evaluation problem rather than a single
optimization objective. Instead of focusing on maximizing
a particular fairness metric, it is often more informative
to examine how ML systems perform across a spectrum of
utility-fairness trade-offs. Such an analysis enables a clearer
understanding of both ideal cases, where equity across
demographic groups is maximized and practical situations
in which certain fairness dimensions may be compromised
due to data, operational, or design constraints. Considering
fairness in this way allows researchers and practitioners to
interpret model behavior within an explicit space of trade-
offs, rather than through isolated or averaged/maximized
performance scores. This perspective establishes the
conceptual foundation for evaluating fairness-aware ML
systems in a structured, multi-objective manner, before
introducing any specific methodological framework.

In this work, we present an evaluation framework,
supported by MOO principles, for the challenging task
of comparing ML systems under multiple utility-fairness
trade-offs. This approach allows the comparison of multi-
ple systems in a common multidimensional space, where
multiple concurrent fairness criteria can come into play.
The framework’s applicability is demonstrated through use
cases based on medical imaging, where fairness constraints
play a crucial role in ensuring equitable diagnostic perfor-
mance. Our contributions can be summarized as follows:

• A model- and task-agnostic evaluation framework with
a compact yet comprehensive representation, both qual-
itatively and quantitatively, of multiple utility-fairness
trade-offs resulting from the deployment of ML systems,
facilitating system performance analysis and comparison.

• The framework integrates multiple fairness metrics into
the evaluation process, providing a more nuanced and
multi-faceted assessment of model performance.

• A detailed analysis of the proposed framework and
rationale through simulations of typical ML systems on
synthetically generated data.

• An empirical study based on three real-world medical
imaging datasets demonstrating the effectiveness of the
proposed framework.

• An open-source implementation of the framework allow-
ing reproduction of results established in this article, and
further reuse1.

While the framework is demonstrated in the context
of medical imaging, its formulation is model-, metric-,
and domain-agnostic, and can be readily applied to other
1. https://pypi.org/project/fairical

high-stakes ML systems (e.g., decision-support in finance,
hiring, criminal justice, or homeland security applications
for biometrics) where multiple fairness and utility objectives
may be in conflict. By providing a unified view of utility-
fairness trade-off, the framework establishes a generalizable
flow for cross-domain benchmarking and transparent model
selection across diverse application areas.

The paper is organized as follows: Section 2 reviews
previous works tackling the evaluation of utility-fairness
trade-off systems. Section 3 thoroughly describes the
proposed evaluation framework, with a set of use cases
and MOO principles behind it. The applicability of the
framework in real-world scenarios is shown in Section 4,
with the analysis of ML systems for three medical imaging
tasks. Finally, a discussion and conclusion with the key
points and limitations from this study are presented in
Section 5 and Section 6.

2. Background and Related Work

Fairness in machine learning can be categorized based on
criteria, sources of bias, perspectives, methodologies, and
trade-offs. Fairness criteria include demographic parity,
equality of opportunity, equalized odds, and predictive
parity (Hardt et al., 2016; Agarwal et al., 2018), each
focusing on equitable outcomes or error rates across
groups. Sources of bias can stem from data (e.g.,
under-representation) (Garin et al., 2023), algorithms (e.g.,
prioritizing accuracy/utility over fairness) (Buolamwini and
Gebru, 2018), or human involvement (e.g., subjective
labeling) (Zhang et al., 2024). Perspectives of fairness
include individual fairness (similar individuals receive similar
predictions) (Dwork et al., 2012; Petersen et al., 2021),
group fairness (equitable treatment across groups) (Diana
et al., 2021; Chan et al., 2024), and subgroup fairness (ad-
dressing intersectional identities) (Kuratomi et al., 2025).
Methodologies to enforce fairness involve pre-processing
data (e.g., balancing representation) (Jang and Wang,
2023; Liu et al., 2021; Lahoti et al., 2020), in-processing
adjustments (e.g., modifying loss functions) (Jovanović
et al., 2023; Roy and Boddeti, 2019), and post-processing
predictions (e.g., calibration techniques) (Hardt et al.,
2016; Kim et al., 2020; Jang et al., 2022). Achieving
fairness often involves trade-offs, such as balancing it with
utility (Liu and Vicente, 2022; Wang et al., 2021) and
interpretability (Jo et al., 2023).

Fairness-aware evaluation has an increasing attention
in medical imaging tasks, where model predictions can
directly affect downstream diagnostic decisions. Recent
studies have shown that performance can vary across
demographic groups due to acquisition protocols, device
related differences, or data imbalance, motivating the
inclusion of fairness metrics alongside performance metrics.
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For instance, in glaucoma detection, ML systems have been
evaluated not only for accuracy but also for their fairness
performance using equity scaling measurements (Luo et al.,
2024) or with respect to demographic features such as
gender (Akter et al., 2022). Similarly, multi-objective for-
malizations have been explored to jointly optimize imaging
quality, diagnostic performance and fairness (Lu et al.,
2020). However, these works typically address a single
fairness notion and do not provide a general framework
capable of comparing multiple ML systems under several
concurrent fairness constraints, which is the gap our
framework aims to bridge.

While several tools and frameworks exist for fairness
assessment, their scope differs significantly from the eval-
uation problem addressed in this work. For instance,
Fairlearn and its dashboard (Weerts et al., 2023) and
FACET (Gustafson et al., 2023) provide analytics for
understanding model behavior across demographic groups,
but they evaluate individual model performance rather
than assessing the aggregated structure of a utility-fairness
trade-off system achieved with our framework. This
is an important aspect as the assessment of individual
models drawn from a hypothesis class H may be unstable,
whereas evaluating the joint behavior of an entire set
of models provides a more stable, comprehensive and
complete representation of the fairness performance of
the ML system in consideration. Little (2023) proposes a
metric that summarizes the utility-fairness trade-off along
a single fairness criterion; however, it does not generalize to
multi-objective scenarios (multiple utility/fairness). Liu and
Vicente (2022) model utility-fairness interactions from a
multi-objective perspective, but their formalization focuses
on optimization rather than evaluation, and does not
provide model-agnostic tools for analyzing the geometry
or quality of the trade-off optimality. To the best of
our knowledge, no existing framework offers a unified,
multi-objective evaluation protocol capable of assessing
multiple utility and fairness criteria jointly, and this aspect
motivates the contribution of our proposed framework.

Whereas ML systems are typically developed (and
evaluated) using a single utility criterion, they are often
deployed in scenarios where multiple objectives must be
respected. A modern example of this condition relates
to the deployment of ML systems under one or multiple
demographic fairness constraints (Liu and Vicente, 2022;
Zhang et al., 2021; Padh et al., 2021). In this context,
we argue that evaluation techniques cross-pollinated from
multi-objective optimization (MOO) offer a rich set of
primitives allowing for a comprehensive performance char-
acterization under multiple criteria that can streamline
system evaluation in this realm.

The principal aim of MOO is to find solutions that lie
on, or are proximate to, the set of the optimal performance

points called the Pareto Front (PF), resulting in a spectrum
of ideal trade-offs among the various objectives. This
methodology equips decision-makers with the means to
select the most favorable compromise amidst conflicting
goals, fostering more informed and balanced decision-
making (Wu and Azarm, 2001). The trade-off selection
procedure in MOO is therefore critical and affects the
quality of service for the deployed system, especially in the
case of conflicting objectives. Assessing the quality of these
trade-off systems is comparative and encompasses criteria
such as proximity to the Pareto optimal set (convergence),
the distribution/spread of the points in the objective space
(diversity), and the cardinality of solutions (capacity) (Zit-
zler et al., 2003). These criteria are evaluated by MOO
specific performance indicators that have been studied in
previous works (refer to Section 3.2.1 for details) (Tan
et al., 2002; Wu and Azarm, 2001; Van Veldhuizen and
Lamont, 2000; Coello Coello and Reyes Sierra, 2004).

Even though the modeling of trade-off for demographic
fairness-accuracy PF is well-known (Wei and Niethammer,
2022; Zietlow et al., 2022), performance indicators for
the quality of the PF have rarely been exploited in the
context of fairness. Yang et al. (2023) developed a bias
mitigation framework that incorporated the Area Under
the Curve (AUC) metric, while considering both inter- and
intra-group AUC simultaneously. However, the bias mitiga-
tion framework does not provide an evaluation protocol for
the utility-fairness trade-off; instead, it leverages the AUC
to address fairness performance. Little (2023) proposed
a scalar measure of the area under the curve from the
trade-off between fairness and accuracy. The generated
curve outlines the empirical Pareto frontier consisting of
the highest attained accuracy within a collection of fitted
models at every level of fairness. Although Little (2023)
focuses on similar issues as in this study, it does not
address the challenge of comparing multiple ML systems
in high dimensions. Additionally, the analysis of the PF is
superficial, ignoring important performance indicators for
diversity and capacity, providing an incomplete evaluation
of compared ML strategies. To tackle the aforementioned
issues, a more flexible evaluation framework is needed to
accommodate different fairness criteria and utility metrics,
facilitating a straightforward comparison and analysis of
results from different algorithms. The method should
be model-agnostic, allowing for real-world comparisons
among trade-off systems that may have been optimized
using different objectives. Furthermore, since the utility
goals of the model across multiple objectives often diverge
from fairness goals, performance indicators of the optimal
PF solutions can provide a deeper understanding of the
trade-offs across these objectives (Wang et al., 2021). The
proposed evaluation framework bridges the gap between
these issues and their solutions, providing a comprehensive
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h1(x) +

Xtest
Ytest

Atest

ŷx

Figure 1: Black-box system evaluation (Scenario 1).

guideline on how this can be achieved in the following
sections.

While prior works typically quantify fairness outcomes
into a scalar metric or report the best performing ML
system, such simplifications may create ambiguity on the
relationship between different demographic attributes. The
evaluation perspective considered in this study bridges this
gap by encouraging analysis across the full spectrum of
utility-fairness trade-offs.

3. Methodology

In MOO, each individual objective is considered a distinct
characteristic that needs to be optimized to its fullest
potential. The trajectory of the optimization is determined
by the objective functions in a cooperative way. Conflicting
objectives increase the complexity of optimization forcing
cooperation, thus making it harder to achieve optimal
solutions. This trade-off is measured at evaluation time
by using multiple metrics directly related to each of the
objectives. Likewise, utility and fairness can result in
conflicting objectives challenging the optimization of both
through the same ML strategies. A good level of utility
is typically achieved by sacrificing fairness or through less
biased models that might reduce utility.

The proposed evaluation framework considers the trade-
off between objectives for assessment and evaluates the
performance of each dimension with a performance metric
tailored for it. There are no limitations on using per-
formance measurements, so any typically used metric is
applicable.

3.1 Use Cases

To formalize the proposed method, we evaluate three ML
use cases, which are based on two scenarios as black-box
and white-box, typically found in the literature, exclusively
from a deployment perspective. We explicitly assume
that the ML models are trained and one is only seeking
to characterize their performance from a multi-objective
perspective including the model’s utility and one to many
fairness objectives.

h2(x) +

Xtest
Ytest

Atest

τ

x ŷ

Figure 2: White-box system evaluation (Scenario 2).

The first type of scenario considers a “black-box” ML
system h1(x) ∈ H to provide binary outcomes for an
input x such that ŷ = h1(x) where ŷ ∈ {0, 1}. To
measure the approximate Pareto solution S, we assume
the availability of a dataset Xtest that carries annotations
for all considered objectives, i.e., the expected output of
the classification Ytest, and demographic attributes Atest.
Fig. 1 contains a representation of this scenario in two
optimization dimensions as ω1 and ω2. As there is no
tuning possibility to select the model (τ = ∅), this test
evaluates the solution in the deployed ML system as it is
provided.

The second scenario defines the evaluation in a “white-
box” manner for an ML system h2(x) ∈ H that is
tunable over prediction scores (logits) as ŷ = h2(x) where
ŷ ∈ [0, 1]. Model selection in S may be achieved via τ
so that a set of non-dominated solutions filtered by this
parameter is available for performance assessment of the
given ML system by using Xtest alongside Ytest and Atest.
This scenario is illustrated in Fig. 2 for two optimization
dimensions, ω1 and ω2.

In the following, we demonstrate each combination of
these two scenarios in three assessment based use cases.
We work with two synthetically generated approximate PF
solutions, System1 and System2, which represent different
systems across the use cases, and evaluate them in a
two-dimensional setting to simulate an assessment in one
direction as utility and the other as fairness. Thus, we
have an overall insight into the comparative trade-off
performance of different ML systems by applying possible
evaluation strategies commonly encountered during the
assessment.

3.1.1 UC-1 - The comparative evaluation of two
black-box systems

In this use case, System1 and System2 are considered in a
black-box manner to assess their comparative performance
using the proposed evaluation framework. Since both
systems are assumed to be black-box, we only have
the model for each as provided and assess the trade-off
performance without any tuning.
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3.1.2 UC-2 - The comparative evaluation of one
black-box system with one white-box system as a
hybrid case

This is the use case where the comparative performance
of System1 and System2 is evaluated in a hybrid manner
by applying black-box and white-box scenarios. System1 is
assumed to be deployed as it is without any tuning capa-
bility (black-box), and System2 can be modified to have
different settings based on user preference (white-box).

3.1.3 UC-3 - The comparative evaluation of two
white-box systems

This use case considers the assessment of System1 and
System2 as white-box by tuning them according to speci-
fied preferences. Thus, we demonstrate how the trade-off
capacities of the systems can be assessed when tuning
is feasible and how model selection is achieved by fully
leveraging their capabilities.

We perform simulations for these use cases in Sec-
tion 3.6 to exemplify them quantitatively so that it is
clarified how the proposed evaluation framework can be
applied for such different assessment strategies given ML
systems in comparison. These simulations are based on
the synthetically generated systems, System1 and System2,
and exhibit the PF trend with non-dominated and domi-
nated points as expected from the utility-fairness trade-off
systems.

3.2 MOO Based Performance Indicators
Central to MOO is the concept of the Pareto Front (PF),
which delineates the set of all Pareto optimal solutions.
A solution is deemed Pareto optimal if no other solution
can enhance one objective without degrading another. In
this regard, solutions residing on the PF are referred to as
non-dominated solutions. More formally, given two points
x, x′ in the multidimensional solution space Ω (x, x′ ∈ Ω),
the sample x is said to dominate x′ (x ≺ x′), if x is no
worse than x′ in all considered objective dimensions and is
strictly better in at least one of them. Geometrically, this
implies that x lies farther from the reference point r ∈ R,
also known as the nadir point, which represents the worst
possible outcome in the objective space. In a minimization
problem, for example, x provides a smaller combined value
for the target objective compared to x′, see the illustration
in Fig. 3.

The Pareto optimal set (P) is the set containing all
the solutions that are non-dominated with respect to Ω,
defined as:

P := {x ∈ Ω | @x′ ∈ Ω such that x′ ≺ x} (1)
Pareto optimal solutions are called the Pareto set and
the image of the Pareto set constructs the Pareto Front

(a) Minimization problem (b) Maximization problem

Figure 3: Dominance in bi-objective minimization (a) and
maximization (b) problems: x′ is dominated by x with
respect to the reference point r.

(PF) (Audet et al., 2021). We note that, in real-world
problems, the PF is rarely achievable. We refer to
suboptimal solutions approximating the PF as S (Zitzler
et al., 2003) as shown in Fig. 4. We propose expanding
on this approach for evaluating ML systems under multiple
fairness constraints. This approach is analogous to the
analysis of Receiver Operating Characteristic (ROC) or
detection-error trade-off curves in classical ML.

Whereas interpretation of a solution set S consider-
ing two optimization dimensions (ω1, ω2) is straightfor-
ward (Little, 2023), concurrent analysis of multiple fairness
constraints is typically done (Buolamwini and Gebru, 2018;
Luo et al., 2024) as a single degree of fairness by treating
equity performances in isolation from one another. In
this type of analysis, the dependency/correlation between
different fairness criteria is not considered and the eval-
uation remains oversimplified. However, in a multi-task
setting, every objective may conflict with each other, as
one may not be improved without deteriorating others.
This dependency between objectives, as is also the case
for multiple fairness criteria alongside utility, should be
projected into one shared space so that the multiple
degrees of evaluation may be achieved in a fused way.
To address this, we propose to characterize the solution
set S, representing an ML system using multiple criteria
from MOO. These indicators will be assembled in an
easy to interpret table and a plot. Qualitative analysis
can still be carried out when the number of concurrently
analyzed objectives is small (N = 2) or when visual
clutter is minimal in systems with N > 2. In all cases,
the proposed evaluation framework via a PF characteristic
remains usable.

3.2.1 The Performance Indicators
In the design of metrics for MOO, four complementary per-
formance criteria are typically considered to analyze the PF
optimality: convergence, diversity, convergence-diversity,
and capacity (or cardinality) (Audet et al., 2021; Jiang
et al., 2014). Measuring strict convergence, which denotes
the proximity of the solution to the true PF, is not often
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(a) Minimization problem (b) Maximization problem

Figure 4: The approximate PF S is shown for both bi-
objective minimization (a) and maximization (b) tasks: x′

i

is dominated by xj with respect to the reference point r.

attainable; we therefore focus on the other three properties,
and describe them next.

Diversity This indicator measures how well the non-
dominated points are distributed or spread along the
candidate solution set. Uniform Distribution (UD) and
Overall Pareto Spread (OS) are some diversity measure-
ments based on distribution and spread characteristics,
respectively.

The UD indicator (Tan et al., 2002) evaluates the de-
viation characteristic of the distribution for non-dominated
solutions, denoted as Xn, and is formulated as:

UD(S, σ) = 1
1 + Dnc(S, σ)

(2)

where

Dnc(S, σ) =

√√√√√ 1
|Xn| − 1

|Xn|∑
i=1

(
nc(xi, σ) − µnc(x,σ)

)2
(3)

and

nc(xi, σ) = |{x ∈ Xn | ∥x − xi∥ < σ}| − 1 (4)

σ is the niche radius that is problem dependent and can be
adjusted based on the distribution of the candidate solution
in the space. µnc(x,σ) is the mean of the niche counts, nc,
and is defined as

µnc(x,σ) = 1
|Xn|

|Xn|∑
j=1

nc(xj , σ) (5)

The UD indicator is expected to be higher for a more
uniform solution set. This indicator evaluates how uniform
the solution set is spanned in the metric space based
on an upper-bound distance, σ. For instance, a system
with the highest UD value among others exhibits the
best performance as its solutions are the most uniformly
distributed. Having a trade-off system with a higher UD
value corresponds to a more uniformly spanned set of
non-dominated points. This increases the likelihood of

achieving a desired combination of utility with fairness in
tuning, compared to a system with a lower UD. Although
the UD measures the coverage of the solution space by the
candidate set, it fails to characterize PF as any type of
uniformly distributed solution (whether Pareto optimal or
not) may yield high performance in terms of this indicator.

The OS indicator (Wu and Azarm, 2001) assesses the
spread of the solutions obtained by the trade-off system.
For a minimization problem evaluated in N different
dimensions, this indicator is formulated as:

OS(S, P) =
N∏

i=1

∣∣∣∣∣∣
max
s∈S

si − min
s∈S

si

max
p∈P

pi − min
p∈P

pi

∣∣∣∣∣∣ (6)

where the nominator and denominator are the absolute
difference between the worst and best points for the
candidate solution S and Pareto optimal set P, respectively.
A higher OS value indicates a more widely spread solution.
This indicator assesses how well the points from the
candidate set spread towards the ideal of the optimal PF.
For instance, a system with a higher OS score compared
to others has more points close to the ideal point and
fewer ones near the nadir (here, we can access the nadir
and ideal points without having the exact PF solution, so
there is no requirement to know the PF a priori). Having
a higher OS value exhibits a more spread characteristic
for non-dominated solutions, leading to an improvement
in tuning performance for the trade-off system when the
selection of models around the ideal point is expected. In
this study, OS is in the range of [0, 1] and there is no
transformation applied as it is scaled compatible with other
indicators. Similarly to distribution, this measurement
also fails to analyze Pareto optimality in a comprehensive
manner as it only assesses the extreme cases without
considering the entire PF space. In Fig. 5, both UD and OS
indicators are exemplified in synthetically generated data.
System1 is said to have less uniformity but more spread
than System2 as its points are more equally distributed,
UDSystem1 = 0.54 < UDSystem2 = 0.64, (Fig. 5a)
and closer to the extreme points, OSSystem1 = 0.45 >
OSSystem2 = 0.05, (Fig. 5b).

During the study, we observed that OS can decrease
drastically when any objective fails to cover the full
extent of the true PF. This sensitivity arises from the
multiplicative characteristic of OS as a small value in one
dimension sharply reduces the final score. To smooth
this behavior, we introduce the Average Spread (AS) as
a less sensitive variant of OS. AS simply replaces the
multiplicative operator with summation, and is defined as:

AS(S, P) = 1
N

N∑
i=1

∣∣∣∣∣∣
max
s∈S

si − min
s∈S

si

max
p∈P

pi − min
p∈P

pi

∣∣∣∣∣∣ (7)
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Figure 5: Diversity: (a) System1 (blue) provides solutions
that are less uniformly distributed than System2 (red) and
therefore has lower UD. (b) System1 (blue) better covers
the extremes of the PF approximations and therefore has
better spread (larger OS) than System2 (red).

Convergence-Diversity This measurement evaluates
both convergence and diversity together so that the
proximity (convergence) alongside the distribution/spread
(diversity) of the candidate solution set is projected into
a single scalar score. This unary metric measures the
volume of the objective space covered by an approximation
set, relying on a reference point for calculation. The
Hypervolume (HV ) (Zitzler and Thiele, 1998) takes
distribution, spreading, and convergence into account at
the same time, making it unique in this regard. Recognized
for its distinctive properties, HV is Pareto-compliant,
ensuring that any approximation set achieving maximum
quality for a MOO contains all Pareto optimal solutions.
The reference point can be simply attained by constructing
a solution of worst objective function values. Given a
minimization based MOO problem with two objectives, as
shown in Fig. 6, it is expected to have solution sets with
points that are in the best achievable state in the objective
space. This should be the case even if the objectives are
conflicting with each other. PF is one possible setting for
such cases with non-dominated solutions. In Fig. 6, x1
and x2 are two non-dominated solutions drawn from the
PF-like solution set (represented as a dashed curve) with
one dominated solution, x′

3. The performance of such
a solution set may be evaluated by the HV indicator to
analyze how optimal the set is in terms of convergence
and diversity. By discarding the dominated solution x′

3,
which should not be part of an optimal solution set, the
HV indicator is calculated as the union of two volumes
constructed between each of the non-dominated solutions,
x1 and x2, and the reference point r that is chosen as one
of the poorly performing solutions in the space. The HV
formulation is then as follows:

HV = vol1 ∪ vol2 = VOL
( 2∏

i=1
[xi

1, ri] ∪
2∏

i=1
[xi

2, ri]
)

(8)

f1

f 2

r(r1, r2)

x1

x2

x3́vol1

vol2

Figure 6: An approximate PF solution with two non-
dominated solutions. HV is calculated as the union of
two volumes associated with these solutions.

The formulation in (8) may be generalized as (Navon et al.,
2020):

HV (S) = VOL

⋃
x∈S
x≺r

N∏
i=1

[xi, ri]

 (9)

In this study, HV is on the scale of [0, 1] as every point in
the solution space is represented by measurements between
0 and 1. An illustrative example in Fig. 7 shows how two
systems are evaluated in terms of HV. System1 occupies
a larger volume in 2D space compared to System2 as it
is further away from the reference point. HV reflects this
situation with HV System1 = 0.55 > HV System2 = 0.21.

Capacity (or Cardinality) This measurement quantifies
the number of non-dominated points in the candidate
solution set. The Overall Nondominated Vector Generation
(ONVG) and Overall Nondominated Vector Generation
Ratio (ONVGR) are commonly used capacity indicators.
ONVG, proposed by Van Veldhuizen and Lamont (2000),
is the number of non-dominated solutions, Xn, in the
candidate solution set, S, and is formulated as:

ONVG(S) = |Xn| (10)

As similarly proposed by Van Veldhuizen and Lamont
(2000), ONVGR is the ratio of the non-dominated solution
cardinality to that of S, and is defined as:

ONVGR(S) =
∣∣∣∣Xn

S

∣∣∣∣ (11)

Both ONVG and ONVGR yield higher scores for
solution sets with greater capacity. These capacity-based
indicators do not provide an extensive analysis like con-
vergence or diversity do; they are only used as auxiliary
indicators when other measurements are not discriminative.
For instance, we can select a system with a higher ONVG
over other systems when the convergence and diversity are
the same for all. Furthermore, they may help analyze the
effectiveness of the optimization, as a higher number of
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Figure 7: Convergence-Diversity: System1 (blue) covers a
larger volume of the solution space than System2 (red),
relative to the reference r (top-right). Thus, System1
performs better in terms of HV.

non-dominated points compared to dominated ones is a
good indicator of how well the objective is approximated.
Having a larger number of non-dominated points may
also improve tuning the trade-off system as the possibility
of finding an expected combination of utility alongside
fairness would increase due to more optimal solutions in the
objective space. We apply a transformation for ONVG by
normalizing over the maximum value of it for the systems
as ÔNVG = ONVG

max(ONVG) to make it in the same range as
others. On the other hand, ONVGR is in the range of [0, 1]
with 0 and 1 indicating the absence of the non-dominated
and dominated solutions, respectively. However, these
measurements fail to capture PF optimality as the number
of solutions does not provide information about the Pareto
characteristic. Fig. 8 highlights that System1 exhibits a
more capacity characteristic compared to System2 in terms
of ONVG and ONVGR as it has more non-dominated
solutions, ONVGSystem1 = 8 > ONVGSystem2 = 2, and a
bigger ratio on overall solutions, ONVGRSystem1 = 0.80 >
ONVGRSystem2 = 0.66.

3.3 Radar Chart: Compact Visualization

The assessment of a utility-fairness trade-off system with
the aforementioned performance indicators can be reported
as a measurement table. However, it’s also possible to
convey this information in different ways such as the
illustration in a chart summarizing all the performance
indicators. A radar (spiderweb) chart is such a compact
plot that compares different characteristics in the same
projection and allows for easy comparative analysis of
several systems over the same attributes.

The qualitative analysis resulting from the comparison
of utility-fairness trade-offs with a radar chart makes it
possible to select the optimal ML system showing more
capacity, diversity, and convergence-diversity. This overall
characteristic of the systems can also be quantified by
calculating the areas occupied by each of them in the radar
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Figure 8: Capacity: System1 (blue) has more capacity than
System2 (red) as it provides more non-dominated solutions,
absolutely (ONVG), and relative to the total number of
solutions per system (ONVGR).

chart. The calculation of these areas allows for different
systems to be comparable over very compact quantities
compressed by the performance indicators in the table.

We consider the areas in the radar chart as polygons
and use the Surveyor’s formula (Braden, 1986) for calcu-
lation. Given a polygon Poly with n ordered points as
counterclockwise in the Cartesian coordinate system, vi ∈
V , we define Poly = v1, v2, . . . , vn alongside vi = (xi, yi).
As we work in the polar coordinate system to represent the
systems in the radar chart, we define vi = (ri, Θi) where ri

is the radius and Θi is the angle. In this stage, we need to
convert the point in polar coordinates to the counterpart in
Cartesian one by xi = ri cos(Θi) and yi = ri sin(Θi). After
switching to the Cartesian coordinate system, we apply the
Surveyor’s formula as shown below:

∆Poly = 1
2

{∣∣∣∣∣x1 x2
y1 y2

∣∣∣∣∣+ . . . +
∣∣∣∣∣xn−1 xn

yn−1 yn

∣∣∣∣∣+
∣∣∣∣∣xn x1
yn y1

∣∣∣∣∣
}
(12)

where |.| is the 2 × 2 determinant. The calculation of Area
(∆) is then min-max normalized by ∆̂ = ∆−min(∆)

max(∆)−min(∆) to
transform the area range to [0, 1]. Given a pentagon with
5 dimensions as shown in Fig. 9a, the theoretical lower and
upper bounds of the area are 0.00 and ≈ 2.37, respectively.
This is analogous to the concept of the Area Under
the Curve (AUC) over Receiver Operating Characteristic
(ROC), where an area of 1.00 is expected to be the best
situation for a system. In the illustrative example of
Fig. 9a, it can be easily seen from the radar chart that
System1 outperforms System2 in every dimension. This
can be verified by their respective areas of 0.84 and 0.04
(Table 9b). We can also clearly observe that System1 is
closer to the ideal performance than System2, relying only
on these areas.

3.4 Deduplication of Solutions
In our study, each point on the utility-fairness trade-off
curve corresponds to an ML model generated under a
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(a) Dominance of System1 (blue) with respect to System2
(orange) is clearly visible as it occupies a larger volume of the
plot. Normalized MOO indicators are used to bind axes to the
[0,1] scale, improving visual analysis.

Convergence-Diversity Capacity Diversity
Distribution Spread

System HV ̂ONVG ONVGR UD AS ∆̂
System1 0.93 1.00 0.90 0.85 0.89 0.84
System2 0.18 0.50 0.15 0.07 0.14 0.04

(b) Quantitative results for (a) alongside the inner area of the radar chart.

Figure 9: A sample evaluation with the proposed radar
chart. The radar chart provides a summarized assessment
of the optimal utility-fairness trade-offs from the evaluated
ML systems.

specific preference vector. These points form a solution
set, S, in a multi-objective space, where the dimensions
represent utility and fairness metrics. However, multiple
preference vectors may cause to build ML models that
exhibit nearly identical behavior, and the resulting trade-off
system may have (near-)duplicate points in S. Such
redundant ML models distort performance indicators by
artificially increasing density or changing the characteristics
of the approximated PF.

To alleviate this issue, we use a deduplication operator,
denoted by deduplicateε(.), which filters out ML models
that lie within ε-neighborhood of each other given a
utility-fairness trade-off system. We leverage the DBSCAN
clustering algorithm (Schubert et al., 2017) to retain only
the representative ML models by eliminating redundant
ones. Given S = s1, s2, . . . , sM ⊂ RN where M and N re-
fer to the number of solutions and objectives, respectively,
applying deduplication operator, S′ = deduplicateε(S),
eliminates models in similar performance within ε formu-
lated as below:

|si − sj | > ε, si, sj ∈ S′ (13)

We empirically set ε = 1e − 6 based on experiments
conducted on synthetic and real-world datasets.

3.5 A Priori and A Posteriori Analysis
In ML evaluation, it is essential to distinguish between a
priori and a posteriori analysis, as each serves a different
role in assessing the generalization and stability of the
systems in comparison. In the context of demographic fair-
ness, we adapt this concept into our evaluation framework
to achieve a similar analysis on utility-fairness trade-off
systems compatible with ML assessment.

In our context, a priori analysis refers to identifying
Pareto-optimal operating points by using a validation set,
prior to observing the final test data. This procedure allows
the selection of operating combinations of thresholds and
sub-ML models (derived from the trade-off system) that
constitute the estimated non-dominated solution set on the
validation set. The goal of this analysis is to perform a real
deployment scenario in which system parameters must be
fixed before test-time evaluation. In contrast, a posteriori
analysis relies directly on test-set evaluations and assesses
the performance of all sub-ML models without any pre-
selection. While a posteriori evaluations provide a complete
characterization of the attainable utility-fairness spectrum,
they do not represent a real generalization scenario, since
the selection step is already considered with test data.

Our framework supports both protocols: a priori eval-
uation performs a realistic operating mode, whereas a
posteriori evaluation provides a full diagnostic understand-
ing of the system’s trade-off characteristics. To have a
priori evaluation in practice, we allow users to assess two
subsets as validation and test by using the same trained
ML model. Based on the validation set, the framework can
determine the threshold/sub-ML combinations that define
the Pareto-optimal estimate. These selections can then be
directly applied to the test set to measure how well the
trade-off structure generalizes. In Section 4.3, we provide
use cases for both analyses based on real-world medical
problems.

3.6 Simulations for Use Cases
The first use case, UC-1, focuses on black-box testing of
System1 and System2, corresponding to the first scenario
(Fig. 1). As both systems have just 1 non-dominated
solution, they have the same ÔNVG and ONVGR values
of 1.00 and 0.50 respectively. In terms of the diversity
measurements, it is not possible to evaluate both systems
as there exists only 1 non-dominated solution. System1
has a higher HV score than System2 because its non-
dominated solution is farther from the nadir point than the
non-dominated solution of the other, resulting in a larger
volume. Table 10b and Fig. 10a show this comparison
quantitatively and qualitatively. The radar chart in Fig. 10a
illustrates the performance gap and HV dominance of
System1 over System2. The difference in the area is
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(a) Dominance of System1 (blue) with respect to System2
(orange) is clearly visible from the non-overlapped area.

Convergence-Diversity Capacity Diversity
Distribution Spread

System HV ̂ONVG ONVGR UD AS ∆̂
System1 0.35 1.00 0.50 1.00 0.00 0.27
System2 0.04 1.00 0.50 1.00 0.00 0.21

(b) Quantitative results for (a) as black-box.

Figure 10: Simulation for UC-1.

∆̂ = ∆̂1 − ∆̂2 = 0.27 − 0.21 = 0.06 and it arises solely
from the HV differences between the two systems. In
this case, the proposed evaluation framework simplifies
the comparison using a single indicator, HV, as the other
indicators do not play a role in the model selection decision.

In the second use case, UC-2, we perform hybrid testing
with black- (System1, Fig. 1) and white-box (System2,
Fig. 2) cases. 8 different non-dominated solutions are
considered out of 25, adjusting τ for System2 against a
single non-dominated solution for System1, as it is not
tunable. Table 11b contains the indicator scores for both
systems. System2 outperforms System1 for ÔNVG as it
has more non-dominated solutions but results in a lower
HV with a score of 0.09. The distribution indicator is not
informative as UD is same for both systems, and the spread
is better for System2 with an AS of 0.26 compared to 0.00
for System1. This can be observed in the radar chart shown
in Fig. 11a. We can end up with a decision that System2
outperforms System1 overall, as seen in the difference of
the areas ∆̂ = ∆̂2 − ∆̂1 = 0.43 − 0.12 = 0.31.

The last use case, UC-3, considers white-box testing for
both System1 and System2, matching the second scenario
(Fig. 2). 10 and 6 different non-dominated solutions were
considered out of 25 for System1 and System2, respectively.
As seen in Table 12b, System1 outperforms System2
in terms of ÔNVG, ONVGR, HV, and AS with same
performance in terms of UD. This can also be interpreted
through a visual inspection of the radar chart in Fig. 12a.
Finally, the areas of both systems confirm this as well,
∆̂ = ∆̂1 − ∆̂2 = 0.61 − 0.31 = 0.30.

We can derive some conclusions about performance
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(a) Dominance of System2 (orange) with respect to System1
(blue) is visible as it occupies a larger volume of the plot.

Convergence-Diversity Capacity Diversity
Distribution Spread

System HV ̂ONVG ONVGR UD AS ∆̂
System1 0.24 0.12 0.50 1.00 0.00 0.12
System2 0.09 1.00 0.89 1.00 0.26 0.43

(b) Quantitative results for (a) as black- and white-box.

Figure 11: Simulation for UC-2.

indicators based on the observations regarding the use
cases above. Firstly, the black-box case only gives a partial
characterization of the assessment since the ML systems
are not tunable. In this case, we obtain non-discriminative
values for ÔNVG, ONVGR, UD, and AS as seen in Fig. 10.
Secondly, diversity is another issue when working with a
low number of solutions. A system with only 1 solution
does not allow to evaluate AS as there must be at least
two solutions to measure the distance between the extreme
points from the system and PF. A single point solution
generates an AS score of 0.00 as seen in System1 shown in
Table 11b. Thirdly, HV may be the first decision point to
select the system, which exhibits more PF characteristics,
as it covers every aspect of convergence, diversity and
capacity. There may be opposite cases between HV and
the other indicators as seen in Fig. 11. A good indication
of ÔNVG, ONVGR, UD, and AS does not work as well
as evaluating the performance over HV, which has been
proven to be a more reliable measurement for PF (Audet
et al., 2021; Jiang et al., 2014).

4. Empirical Validation

In this section, we demonstrate the effectiveness of the
proposed evaluation framework empirically using three
fairness-aware medical imaging datasets.

4.1 Dataset Description

To empirically validate the proposed evaluation frame-
work, we use three medical imaging datasets with demo-
graphic attributes: the Harvard Glaucoma Fairness (HGF)
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(a) Dominance of System1 (blue) with respect to System2
(orange) is clearly visible from the non-overlapped area as it
occupies a larger volume of the plot.

Convergence-Diversity Capacity Diversity
Distribution Spread

System HV ̂ONVG ONVGR UD AS ∆̂
System1 0.54 1.00 0.91 1.00 0.46 0.61
System2 0.02 0.60 0.86 1.00 0.18 0.31

(b) Quantitative results for (a) as white-box.

Figure 12: Simulation for UC-3.

dataset (Luo et al., 2024), the Shenzhen Chest X-ray
dataset (Jaeger et al., 2014), and the mBRSET retinal
dataset (Wu et al., 2025). These datasets were selected
because they jointly capture demographic and clinical
diversity, and enable the evaluation of utility-fairness
trade-offs under both modality-based and population-based
conditions.

Harvard Glaucoma Fairness (HGF). The HGF dataset
includes cases with a retinal nerve disease called glaucoma
as well as samples of healthy patients. Glaucoma is
twice as common in Black patients compared to other
races, and more prevalent in men (Khachatryan et al.,
2019; Luo et al., 2024). The dataset comprises 3300
two-dimensional retinal nerve fiber layer thickness (RNFLT)
maps from three racial groups, namely Asian, Black, and
White, with a resolution of 200×200 pixels. Color intensity
represents retinal nerve fiber thickness in micrometers
around the optic disc. The glaucoma/non-glaucoma
ratio in the dataset is 53.0%/47.0%. The prevalence
of glaucoma in Asians, Blacks, and Whites in the HGF
dataset is equally balanced at 33.3%, and the gender
distribution is as 54.9% and 45.1% for females and males,
respectively. The ophthalmologic images from HGF are
linked to sensitive attributes for race, gender, age, and
ethnicity. This dataset provides a clear setting for assessing
demographic disparities, as the higher glaucoma prevalence
among Black patients contradicts the relative scarcity of
such samples in ophthalmology data. This fact creates a
fairness challenge that represents real-world imbalance in
healthcare AI systems and provides a solid use case for our

(a) HGF RNFLT map. (b) Shenzhen X-ray. (c) mBRSET fundus.

Figure 13: Sample images from the datasets used in the
empirical study: (a) RNFLT map from HGF for glaucoma
detection; (b) chest X-ray from Shenzhen for pulmonary
disease screening; and (c) retinal fundus image from
mBRSET for diabetic retinopathy classification.

framework.

Shenzhen Chest X-ray Dataset. The Shenzhen dataset
is a public chest X-ray collection designed for computer-
aided screening of pulmonary diseases, particularly tuber-
culosis (TB). The dataset contains 662 frontal chest X-rays
with a distribution of normal and TB-positive cases as
326 and 336, respectively. Image resolutions vary with
an approximation of 3000 × 3000 pixels. The dataset
has sensitive attributes for age and gender, providing
a complementary use case for evaluating fairness across
clinical subgroups with chest radiographs.

mBRSET Retinal Dataset. The mBRSET dataset is a
retinal imaging resource and designed to enable the bench-
marking of automated ophthalmologic screening models
under different demographic conditions. The dataset con-
sists of 5164 retinal images from 1291 subjects, including
fundus photography modality. Each sample is annotated
for ocular diseases such as diabetic retinopathy and macular
edema, alongside demographic attributes such as patient
age, gender, and obesity. The image resolution varies in
height and width, ranging from 874 and 951 to 2304 to
2984 pixels, respectively. The dataset exhibits a gender
imbalance, with female patients compared to male ones
as 65.1%/34.9%. The patient age has an average of 61.4
years with a standard deviation of 11.6.

By jointly employing these three datasets, our empiri-
cal evaluation covers complementary fairness perspectives
across medical imaging. HGF provides a clear setting for
analyzing demographic and disease prevalence imbalances
in glaucoma with race and gender labels. The Shenzhen
dataset extends this perspective by providing chest X-ray
imagery annotated with sensitive attributes such as gen-
der, enabling fairness assessment in a different clinical
modality. Finally, mBRSET provides clinical diversity
across ocular conditions by having a broader diagnostic
context with different retinal diseases. Together, these
datasets enable a more comprehensive examination of how
the proposed framework evaluates utility-fairness trade-offs
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across different medical imaging modalities, disease types,
and demographic distributions.

4.2 System Definitions and Configuration

To properly demonstrate the capabilities of the proposed
evaluation framework, we formulate the utility-fairness
trade-off as a bi-objective optimization problem through
two distinct systems denoted as System1 and System2,
which differ from the systems considered in previous
experiments. For the HGF dataset, both systems are
developed using Pareto HyperNetworks (PHNs), which
are based on hypernetworks (Ha et al., 2016), and are
designed to learn Pareto-optimal solutions across multiple
objectives (Navon et al., 2020). The PHN formulation
allows the generation of sub-neural networks (sub-NNs)
that represent different levels of compromise between diag-
nostic utility and fairness, enabling continuous exploration
along the PF. In particular, each sub-NN corresponds to a
specific utility-fairness trade-off level, i.e., one sub-model
represents a diagnostic performance with higher utility but
lower fairness, whereas another has higher equity at the
cost of classification accuracy. Each objective combination
is represented by a preference vector that encodes the
relative weighting between the two objectives. In the HGF
setting, all sub-NNs are evaluated directly on the test
set, and the full spectrum of utility-fairness outcomes is
characterized as a posteriori, without a validation-driven
selection of operating points.

Each PHN employs a ResNet-18 backbone as a shared
encoder that generates parameters for sub-NNs correspond-
ing to different preference vectors. A total of 25 preference
vectors are uniformly sampled from a Dirichlet distribution
with α = 0.2 to represent distinct utility-fairness trade-offs.
The utility objective is defined by Binary Cross-Entropy
(BCE) loss, and the fairness objective is modeled using
a differentiable relaxation over Equalized Odds (EO) crite-
rion, which captures disparities in true positive and false
positive rates (TPR, FPR) across demographic subgroups.
The combined objective is jointly optimized through back-
propagation to dynamically generate Pareto-optimal solu-
tions that balance diagnostic utility and fairness.

For the mBRSET and Shenzhen datasets, System1 and
System2 use two different model architectures. System1 is
based on the DenseNet topology (Huang et al., 2017), and
this setting follows a training mechanism performed directly
under a bi-objective loss combining BCE for utility and
EO-based fairness penalties to represent an independent
ML model that corresponds to a specific preference. Unlike
the joint optimization characteristic of the PHN, here, each
utility-fairness trade-off is modeled as a separate ML model.
System2 employs a LoRA-enabled ViT-Small model (Hu
et al., 2022; Dosovitskiy, 2020), where low-rank adaptation

layers are inserted into the self-attention blocks to enable
lightweight fairness-aware fine-tuning. For both datasets,
the hyperparameters (e.g., learning rate, optimizer, and
batch size) follow a fixed configuration within each system.
For the mBRSET, PF operating points are selected on a
validation set and then evaluated on the test set, following
a priori analysis of the utility-fairness trade-offs, whereas
for Shenzhen, all operating points are evaluated directly on
the validation set, corresponding to an a posteriori analysis.

System1 serves as a baseline fairness configuration
across all datasets. It focuses on optimizing fairness with
respect to a binary sensitive attribute in each case. For the
HGF dataset, this system minimizes EO disparities between
male and female patients, targeting gender fairness. For
the mBRSET, the system similarly minimizes EO dispar-
ities between obese and non-obese patients, capturing
obesity-related fairness. For the Shenzhen dataset, the
system again focuses on gender fairness by minimizing EO
disparities between same subgroups.

System2 extends this baseline to investigate dataset
specific demographic variation. In the HGF setting, this
system shifts the fairness objective from gender to race
by minimizing EO disparities between Asian, Black, and
White subgroups. For the mBRSET dataset, the LoRA-
enabled ViT-Small model uses the same EO-based obesity
fairness objective. Similarly, for the Shenzhen dataset, the
same topology minimizes EO disparities between male and
female patients.

All systems within the same dataset share identi-
cal training procedures and hyperparameters to ensure
comparability. For PHN-based systems, optimization is
performed using Adam optimizer with a learning rate of
1e − 4 and batch size of 256. DenseNet- and LoRA-
ViT-Small-based systems employ dataset-specific but fixed
hyperparameters across System1 and System2 using Adam
optimizer with a batch size of 16. However, learning rates
differ as 5e − 5 and 1e − 4 for the mBRSET and Shenzhen
datasets, respectively. This shared setup ensures that
differences in observed performance arise solely from the
fairness objective being optimized to provide a controlled
analysis of utility-fairness trade-offs.

4.3 Evaluation Results

The comparative evaluation of the DenseNet- and LoRA-
ViT-Small-based systems on the mBRSET dataset is il-
lustrated in Fig. 14, which reports the distribution of
utility (F1-score) and fairness outcomes (equalized odds
difference (EOD) for the obesity attribute) across all ML
models in the trade-off system. We note that group-wise
comparisons based on prevalence-sensitive metrics such as
F1-score should be interpreted with caution, as they are
influenced by the underlying base rate (class ratio) and
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(c) Quantitative results.

Figure 14: DenseNet/LoRA-ViT-Small on mBRSET.

may partially reflect distributional characteristics rather
than purely model-induced disparities. The curves show
that System2 has lower EOD scores for a broader range of
utility levels, indicating improved fairness consistency under
varying preference settings. Table 14c further summarizes
the evaluation for PF. System2 achieves higher scores in
both ÔNVG and UD. The HV metric also favors System2
(0.70 vs. 0.64), reflecting a closer alignment with the ideal
reference point. In contrast, System1 exhibits a higher
ONVGR and AS values. When aggregated using the area
score ∆̂, System2 achieves 0.44 compared to 0.40 for
System1, confirming that System2 exhibits a higher overall
trade-off performance structure when balancing diagnostic
utility and obesity fairness on this dataset.

The performance of the DenseNet- and LoRA-ViT-
Small-based systems on Shenzhen dataset is summarized
in Fig. 15 that visualizes the utility performance (F1-score)
and fairness disparity (min-max difference for the gender
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Convergence-Diversity Capacity Diversity
Distribution Spread

System HV ̂ONVG ONVGR UD AS ∆̂
System1 0.86 1.00 0.15 0.68 0.22 0.29
System2 0.79 0.64 0.10 0.65 0.45 0.26

(c) Quantitative results.

Figure 15: DenseNet/LoRA-ViT-Small on Shenzhen.

groups). As shown in the plots, System1 demonstrates
a more favorable balance between fairness variability and
utility consistency. Specifically, System1 maintains a
higher performance on the F1-score without hitting very
low scores while achieving comparable EOD values against
System2. A quantitative comparison using PF-based indi-
cators is provided in Table 15c. System1 achieves higher
performance in ÔNVG with ONVGR, and outperforms
System2 in UD and HV (0.86 vs. 0.79). While System2
exhibits a larger AS indicating a broader spread of trade-off
solutions, its distribution characteristic is weaker. Aggre-
gating all indicators through the area score shows System1
achieving 0.29 compared to 0.26 for System2, validating
that System1 provides a higher trade-off structure for
gender fairness in the Shenzhen dataset.

For the HGF experiment, Fig. 16 summarizes the
evaluation of the two PHN-based systems considering one
utility performance (accuracy) and two fairness metrics
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(c) Quantitative results.

Figure 16: PHN on HGF.

(EOD for the gender and race). Visual inspection alone
illustrated by the 3D performance plot in Fig. 16a is insuf-
ficient to reliably differentiate the systems when multiple
fairness criteria are considered alongside utility. At this
point, the radar visualization in Fig. 16b provides a clearer
qualitative aspect by showing a slight performance im-
provement for System2 over System1. This observation is
further confirmed by the quantitative indicators reported in
Table 16c. Although there is an inconsistency between HV
and the other performance indicators (ÔNVG, ONVGR
and UD), an area of 0.35 over 0.28 shows that System2
constitutes the better-performing utility-fairness trade-offs
than System1. In this case, it is not possible to differentiate
the systems over AS as they both exhibit average spreads
of 0.15 and 0.16. Finally, it is straightforward to interpret
that both systems are far from optimality as they are well
below the ideal performance of ∆̂ = 1.00.

Table 16c also reports the performance of individual
sub-NNs generated by the PHN (Models 1, 10, and 25),
providing concrete examples of model-level behavior within
each utility-fairness trade-off system. These examples illus-
trate how operating points guided by preference along the
PF can differ substantially in their balance between utility
and fairness. For instance, in System1 (gender fairness),
the first sub-model achieves high utility (accuracy (Acc) =
0.78 and F1-score (F1 ) = 0.77), but exhibits demographic
disparity (demographic parity difference (DP) = 0.07

and equalized odds difference (EOdd) = 0.09), whereas
later models, such as 25th sub-NN, perform substantially
reduced unfairness (DP = 0.00 and EOdd = 0.00) at
the cost of lower accuracy and F1-score (Acc = 0.54 and
F1 = 0.70). A similar trend is observed for System2
(race fairness), where earlier preference vectors favor utility
while later ones build more equitable outcomes across racial
groups. However, evaluating these systems solely through
individual model outputs is insufficient, as meaningful
assessment requires understanding their behavior under
multiple fairness criteria. Although System1 and System2
are trained and evaluated on gender and race fairness,
respectively, a complete analysis also demands examining
cross-criterion disparities to capture the broader fairness
landscape. These examples highlight how the proposed
framework supports aggregated, system-level interpretation
rather than relying on isolated operating points. Ultimately,
this reinforces that fairness-aware evaluation must adopt a
multi-objective perspective that jointly reflects utility and
multiple fairness criteria.

5. Discussion
This work presents the requirements and advantages of
an evaluation framework assessing multidimensional utility-
fairness trade-offs obtained with ML systems. The frame-
work enhances the comparison of different modeling strate-
gies, with the goal of selecting optimal solutions for real-
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world applications that require the assessment of multiple
fairness criteria. The ease of use and effectiveness of the
proposed framework are explored through comprehensive
simulations and empirical studies using medical imaging
datasets designed to test fairness optimization approaches.
Unlike previous evaluation frameworks, this work provides
a series of steps for the selection process of ML systems in
the context of multidimensional fairness exploring different
criteria, supported by MOO principles. Characterizing the
optimal PF is particularly useful in tasks where contradic-
tory fairness performance indicators cannot be avoided, and
trade-offs should be tuned to specific fairness requirements
from decision-makers. Our framework could guide the
tuning of ML systems to different notions of fairness for any
sensitive attribute and metric in a simple and transparent
manner. Fairness is interpreted as a multidimensional
evaluation space, and the spectrum of trade-offs is cap-
tured across demographic attributes rather than enforcing
a single optimal fairness configuration, which may fail to
represent the overall capability of a fairness-aware ML
system.

While the utility-fairness trade-off is commonly re-
ported in fairness-aware ML studies, it does not universally
manifest across all settings. As discussed in previous
works (Chouldechova, 2017; Kleinberg et al., 2016), dif-
ferent fairness definitions such as independence, separa-
tion, and sufficiency are mutually incompatible under cer-
tain statistical assumptions, which means that optimizing
multiple fairness notions simultaneously is impossible to
achieve. Furthermore, recent works also show that the
perceived utility-fairness tension may not always exist when
dataset-level biases are addressed (Wick et al., 2019; Dutta
et al., 2020). Conversely, a more recent work by Dehdash-
tian et al. (2024) suggests that utility-fairness trade-offs
can indeed arise from intrinsic dataset characteristics
by empirically observing the persistence of such tension.
Taken together, these findings indicate that utility-fairness
interactions are highly context dependent and influenced by
both data distribution and model assumptions. In this on-
going research landscape, our model- and metric-agnostic
evaluation framework contributes by providing a structured
way to capture a snapshot of how different methods achieve
the balance/compensation between utility and fairness.
By quantifying these dynamics in a unified evaluation
space, the framework allows for a systematic comparison of
fairness-aware ML systems independent of their underlying
architectures or optimization strategies, and it provides
a baseline for future work that needs a benchmark for
multi-objective fairness evaluation. Moreover, the frame-
work is designed flexibly for practitioners so that they can
select and evaluate the specific utility-fairness trade-offs
relevant to their application, rather than imposing any
pre-determined balance among objectives or assuming a

universal trade-off structure.
As mentioned in Section 2, the comprehensive analysis

of PFs in multiple dimensions is a limitation of previously
proposed fairness evaluation approaches. A summarized
objective representation of performance indicators from the
PFs, both as a radar chart and as a measurement table,
overcomes the limitations from visualizing performance
plots in multiple dimensions resulting from the assessment
of different ML systems. Furthermore, analogous to AUC
over ROC, our evaluation framework can transform the
qualitative trend into a quantitative measurement, thus
gathering all necessary information for the interpretation
of the performance gap between the trade-off systems in
consideration and against an ideal solution.

Beyond the medical imaging domain, the proposed
framework has broader implications for fairness evaluation
across ML applications, as our approach generalizes the
evaluation process by integrating multiple fairness and
utility criteria within a single multi-objective formulation,
independent of the domain under consideration. This
generalization enables the framework to serve as a common
evaluation protocol for comparing utility-fairness trade-offs
in different contexts, such as financial risk assessment and
biometric systems. In this regard, our results complement
existing fairness benchmarking protocols by providing a
structured, quantitative, and qualitative means of summa-
rizing utility-fairness trade-off performance across domains.

There may be some limitations of the proposed eval-
uation framework. A restriction is the exponential cost
for computing the MOO-based performance indicators as
the number of objectives increases (Audet et al., 2021).
This scalability challenge is particularly relevant when
fairness must be evaluated across many demographic axes
or multiple fairness notions simultaneously, which may arise
in complex real-world deployments. However, we argue
that the majority of tasks studied in the literature focus
on a small set of sensitive attributes, i.e., gender, age, and
race. The use of alternative performance indicators, such
as Inverted Generational Distance (IGD) (Coello Coello and
Reyes Sierra, 2004), could be explored to improve efficiency.
Another issue to consider is the equal weighting of all
performance indicators, which normalizes the contribution
of the different indicators in the final evaluation. This
may not be desirable in situations where an indicator
can evaluate the systems in suboptimal performance and
needs to have less impact on the final decision compared
to others. The proposed evaluation framework could
be extended to support the dynamic weighting of the
indicators, so that the re-weighting can be performed
based on the use case. As another limitation, there may
also be situations in which the indicator measurements
are the same or not feasible (refer to AS and UD in
Fig. 10) for all systems in comparison. In this case,
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such an indicator is not informative for the final decision
and the proposed framework simplifies the evaluation to
the joint contribution of the rest. This issue could be
alleviated by using different indicators that discriminate
more, as the proposed framework supports seamlessly
including/excluding different types of indicators. Finally,
as emphasized by Selbst et al. (2019), algorithmic modeling
and evaluation of fairness cannot be fully abstracted from
its social context. Accordingly, the proposed evaluation
framework should be interpreted as an assessment tool for
examining utility-fairness trade-offs under clearly defined
assumptions and constraints, rather than as a universal
fairness solution applicable to all real-world scenarios.

6. Conclusions

This paper proposes a multi-objective evaluation framework
for utility-fairness trade-offs resulting from ML systems,
using performance indicators based on MOO. The proposed
framework is model- and task-agnostic, allowing for high
flexibility in the comparison of ML strategies, even when
they have been optimized for different objectives. This is
an adaptive assessment framework that supports any kind
of performance indicators, including the proposed method,
for convergence, diversity and capacity analysis. The
proposed framework is able to perform a comprehensive
analysis of ML systems with a measurement table and
radar chart, overcoming the limitations resulting from the
qualitative assessment of solutions with multiple fairness
requirements. These tools provide a structured and visual
means to evaluate and compare multiple fairness metrics
in ML systems. The measurement table allows for a clear,
organized presentation of the data, while the radar chart
offers a visual representation of how well the system per-
forms across various utility and fairness criteria using MOO
indicators. The effectiveness of the evaluation approach is
verified by performing simulations and empirical analyses
for a variety of use cases, with both black- and white-box
ML systems. In particular, the empirical results on medical
imaging based use cases illustrate how the framework
can expose fairness disparities between diagnostic models,
guiding the selection of appropriate trade-offs for ML
systems in healthcare applications. The proposed system
is made available for public access to be applied in the
context of multi-objective evaluation for any domain.
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