MEMO #93-06
June 1993

IDIAP =——

Recognition of Handprinted Digits'
using Optimal Bounded Error Matching

Thomas M. Breuel
IDTAP, C.P. 609, 1920 Martigny, Switzerland
tmb@idiap.ch

ABSTRACT

This paper describes a system that recognizes hand-printed digits. The system
is based on optimal bounded error matching, a technique already in common
use in general-purpose 2D and 3D visual object recognition systems in cluttered,
noisy scenes. In this paper, we demonstrate that the same techniques achieve
high recognition rates (up to 99.2%) on real-world data (the NIST database of
hand-printed census forms and the CEDAR database of digits extracted from
U.S. mail ZIP codes).

As part of the system, we describe a post-processing step for k-nearest neighbor
classifiers based on decision trees that can be used (in place of the usual heuristic
methods) for setting thresholds and improves recognition rates significantly.

Keywords: ZIP codes, digit boundary, unconstrained handwritten digit recognition, pre-
segmented handwritten digit recognition, nearest neighbor classification, decision trees,
classification trees.

LA version of this paper has appeared in ICDAR, *93 (Breuel, 1993).

1 Introduction

The off-line recognition of handwritten text has been the subject of intense research for
many years (for recent reviews, see Chatterji, 1986, Davis and Lyall, 1986, Govindan and
Shivaprasad, 1990, Impedovo et al., 1991, R. Allen Wilkinson et al., 1992). An important
subproblem is the problem of recognizing handprinted digits. This is not only because
there exist a significant number of practical applications for a system that can reliably
recognize (strings of) handwritten digits, but also because because it is an important test
case for more general recognition problems.

In order to achieve high recognition rates and high throughput, many systems for recogniz-
ing handwritten digits have made strong assumptions about the input data. Examples of
such assumptions are that the input consists of fully segmented characters and that each
character consists only of a single connected region. Such assumptions allow the use of ap-
proaches such as global features (moments, topological features, Fourier descriptors) that
are not well suited to general visual object recognition problems because of the presence of
clutter, occlusions, and noise in more realistic images. In addition, such an approach also
makes the resulting systems be not very robust in the presence of violations of the basic as-
sumptions. This can present a serious practical problem, since, for example, segmentation
may well be the step that is limiting overall recognition rates, or since cluttered, degraded,
or low-quality documents, or manually corrected characters may cause such systems to fail.

In this paper, I present the results of applying a general-purpose vision system to the
problem of handwritten digit recognition. The vision system used in this work (Breuel,
1992b) has already been successfully applied to the recognition of 3D objects, and has
shown to be able to cope with occlusions, clutter, and considerable noise and variation
(often induced in 3D scenes by changes of illumination and shadowing). The vision system
relies only on very simple, low-level features. Basically, objects are represented by their
edges or boundaries (these can, of course, be curved), and recognition is achieved by
identifying the model view for which the largest fraction of its boundary can be brought into
correspondence with boundaries in the image, subject to given error bounds. Essentially
the same system is being used for the character recognition experiments described here.

Our goal in this paper is to show that one can achieve excellent recognition rates with a
general purpose recongition system, without having to rely on domain specific features or
representations.

We ultimately hope to be able to take advantage of the ability of such systems to cope
with clutter and occlusion in order to improve recognition in complex or degraded docu-
ments. On the other hand, character recognition (in context) is a good task for assessing
quantitatively and improving the ability of general purpose recognition systems to cope
with multiple objects and clutter.

2 System Overview

2.1 Matching

Small amounts of noise were removed from the raw character images using morphological
processing. A bounding box was calculated. The image was resampled uniformly in x
and y such that the bounding box fit into a 48x48 box. After resampling, the image was
convolved with a Gaussian of width 2.0. The Laplacian of the resulting smoothed image
was computed. The zero crossings of the Laplacian were approximated using a polygonal
chain of segments of fixed length (2 pixels). These chain segments were used as input to
the matching algorithm.

Note that no slant normalization or thinning was carried out. Inspection of the database
suggested that character identity was not complete invariant under either kind of trans-
formation. For example, certain types of digits “77 and “1” seem distinguishable mainly
by a slightly larger slant of the digit “7”. Not correcting for slant avoids this problem (an-
other approach would have been to carry out slant correction and make the amount of the
correction available to the classifier). Similarly, a thinning step eliminates all information
relating to stroke width. But certain pairs of digits, for example, a digit “6” with a very
small, filled loop at the bottom and a slightly curved digit “1” are indistiguishable after
thinning. The boundary representation used in the system avoids this problem.

The matching method used by the system is that of optimal bounded error matching.
Optimal bounded error matching has been used extensively in 2D and 3D recognition
systems (see Grimson, 1990 for an extensive bibliography). The optimal bounded error
matching problem can be solved by a variety of algorithms. One of the algorithms that
is best suited when matching involves a large number of simple features is the recently
developed RAST algorithm (Breuel, 1992a), which was used in the system described here.

To illustrate the approach, let us formalize the optimal bounded error matching problem.
Let a feature be a point in IR? with associated information such as orientation (we call this
associated information the feature label). We say that two features are compatible if their
associated information satisfies some prespecified constraints.

Given a set of model features {my,...,m;}, a set of image features {by,...,8}, and a set
of error bounds {ey, ..., ¢}, the RAST algorithm finds a translation 7' such that a maximal
number of compatible image and model features are brought into correspondence under
the given error bounds:

T ma, — bg,|| < €5, (1)

Here, o and 3 are 1-1 functions from IN" to IN® and IN', respectively, where r is the
maximal number of features that can be brought into correspondence. Note that the
RAST algorithm can also be used to find optimal transformations in more general cases,
such as matching under equiform transformations or 3D transformations.

The recognition system used as features the locations and associated orientations of the

segments of the polygonal approximation returned by the Laplacian edge extractor. The
collection of these features is therefore a representation of the boundary (or edges) of the
input character, augmented by additional information. Two such features were considered
compatible if their orientation was within 23 degrees of one another. The error bounds were
chosen to be 5 pixels. Note that none of the system parameters have yet been optimized
by exploring the parameter space. Some improvement in recognition rate from choosing
better parameter values is to be expected.

An example of an optimal bounded error match is shown in Figure 1.

Each match was assigned a quality of match, which was the minimum of the fraction of the
model matched by the image and the fraction of the image matched by the model. Note
that this quality of match measure tends to degrade gracefully as more of the instance of
a model in an image becomes occluded or as spurious features are added to the image.

2.2 Classification

(Classification was carried out in two stages. The first stage was a k-nearest neighbor
classifier. The k outputs from the k-nearest neighbor classifier were then used as input to
a decision tree algorithm, which made the final decision about the identity of the input
character.

The database for the k-nearest neighbor classifier was constructed by “compression”. That
is, for the construction of the database, the algorithm started with an empty database and
sequentially considered examples from a training set. If a character was classified correctly
using the examples in the database built so far, no action was taken. If the character was
misclassified, it was added as a new prototype to the database. The database of models
was constructed entirely before the second stage classifier, the tree classifier, was built; the
classification that was used during the construction of the database was simply nearest
neighbor classification. Nearest neighbor classification tends to have an error rate that is
about 24 times as large as that of the tree based classifier. This means that the database
is probably somewhat larger than it needs to be. The number of characters in the database
is shown in column “#proto.” in Table 1.

For the experiments, k was chosen to be 10. That is, for each character, the 10 nearest
neighbors (under the quality of match measure described above) from the database were
output. Among these, the two most frequent classifications were determined, and for each
of the classifications, the number of matches corresponding to that classification, and the
minimum, maximum, and average quality of match was determined.

This information was used to build a decision tree (Breiman et al., 1984) that could make
one of three choices: (1) the input character belongs to most frequent classification (among
the k nearest neighbors), (2) the input character belongs to the second most frequent
classification, or (3) the character belongs neither to the first or the second most frequent
classification. When the output of the decision tree was (3), then the input character could

either be rejected, or it could be assigned arbitrarily to the most frequent vote. Relatively
few characters were in this third class, and, for simplicity, for the experiments described in
this paper, we therefore arbitrarily assigned characters in class (3) to class (1) (resulting
in somewhat higher error rates), rather than reporting separate rejection rates.

Both the k-nearest neighbor classification and the decision tree were cross-validated. The
nearest neighbor classifier was cross-validated by simply not allowing a character to match
against itself in the database (the “leave one out” technique). For the decision tree, five-fold
cross validation was used (for more details on the cross validation procedure, the reader
is referred to the book by Breiman et al., 1984). This allows us to give statistically valid
performance estimates of the recognizer using the whole training set, rather than explicitly
setting aside a certain part as “testing data”. However, as a “sanity check”, the data was
also split manually into training and test data in several cases.

2.3 Database

For training and testing the system, the NIST (National Institute of Standards and Tech-
nology, Garris and Wilkinson, 1992) and CEDAR (Center for Excellence in Document
Analysis and Recognition, CEDAR, 1992) databases were used. Both databases contain
presegmented, preclassified alphanumeric, handprinted characters. In both cases, there
were no constraints on the writing instrument or writing style. However, the writers who
provided the data for the NIST database did so specifically for the purpose of building a
database for testing systems for the recognition of handprinted characters. The CEDAR
database, in contrast, was collected from actual envelopes processed by the US post office.
For the work reported here, only the presegmented digits contained in these databases were
used.

The NIST database used the same acquisition, segmentation, and classification procedure
for the whole dataset (a separate set of test data collected from a different writer population
has recently also become available). The NIST database contains a total of 223125 digits
representing 2100 writers. For the experiments reported here, an arbitrarily selected subset
of 20790 digits from the database representing 2079 writers was used, one digit of each class
per writer.

It is important to note that as a consequence of this selection, the cross validation (of
the nearest neighbor classifier and the tree classifier) also took place across writers. That
is, during the cross validation, digits written by one writer were never classified based on
information derived from digits of the same class written by the same writer.

The CEDAR database consisted of three parts. These parts were acquired, segmented,
and/or classified differently from one another at CEDAR: a training set of 18468 characters
from 4000 address blocks, and a test set of 2711 characters, acquired and processed at a
later date. The test set was present in two copies. The first copy (henceforth referred
to as “CTEST”) was obtained by automatic segmentation of ZIP codes. The second

copy (henceforth referred to as “CGTEST”), consisting of 2213 digits, was obtained by
manually removing ambiguous, ill segmented, or misclassified digits. For further details of
the segmentation procedure and the manual preparation and classification of the data, the
reader is referred to the database documentation.

In reporting results (Table 1), characters in the range 0-20790 refer to characters from the
NIST database, while characters in the range of 20790-35500 refer to characters from the
CEDAR database (all ranges are exclusive at the top).

3 Results

System recognition rates. The results of applying the recognition system to the NIST
and CEDAR databases of handprinted digits are shown in Table 1. The “parts used”
columns in the table show what parts of the database were used to build the database of
prototypes for the k-nearest neighbor algorithm, for the training of the tree-based classifier,
and for testing. Note again (see above) that even in the cases in which the “testing” set and
the “knn” or “tree” sets overlap, the recognition rates are cross validated and constitute a
good estimate of the performance of the recognition system on new data.

In experiments E1 and E2, training and testing was carried out on parts of the same
database, i.e., on characters that were acquired and segmented under identical conditions.
In experiments E3 and E4, training was carried out on a database that consisted to ap-
proximately 60% of digits from the NIST database and to approximately 40% of digits
from the CEDAR database training set. These sets of digits are generally well segmented
and classified (probably less than 0.5% serious segmentation errors or misclassifications
for the NIST database). Furthermore, testing was carried out on sets of digits that were
acquired and processed under conditions identical to those for large numbers of digits in
the training set. This is reflected in the high rate of correct classification of 98.4%-99.2%.

In both cases, performance was slightly worse when the testing set was disjoint from the
set of characters used for building the database and the decision tree, but this does not
appear to be due to a failure of cross validation. Rather, in the case of E3 vs. E4, this is
probably due to the different amounts of training data used for building the tree (10000
examples in the case of E3 vs. 20500 samples in the case of E4). In the case of E1 vs. E2,
separate tests suggest that the digits numbered 18790-20790 are somewhat more difficult
to recognize than the digits numbered 10000-18790.

On the CGTEST set, the system achieved a recognition rate of 98.3%. Many of these errors
seem to be due to characters with very unusual aspect ratios or slants. On the CTEST
set, the recognition rate was significantly lower: 97.0%. Not surprisingly, since the input
was segmented automatically, on examination of the misclassified characters, we find that
this is to a significant degree due to poorly segmented input characters (often resulting in
unrecognizable or ambiguous shapes).

The fact that the test set CTEST has a significantly larger proportion of ill-formed char-
acters is likely responsible for the difference in recognition rates between E7 and ES. We
can view the tree-based post-processing of the output of the k-nearest neighbor classifier
as an automatic way to set “thresholds”, but if the training set does not contain enough
malformed characters, a statistically valid decision tree cannot set these thresholds accu-
rately.

From Table 1, we can see that in 1.6% of the cases, neither the first nor the second choice
of the k-nearest neighbor classifier was correct. Because of this, class (3) of the output of
the tree classifier had a significant size. If we allow the system to reject characters, the
overall performance for E7 is the following: 96.9% correct, 2.3% error, 0.8%, rejected.

Of these 0.8% of rejected digits, 0.7% are digits that actually need to be rejected (since
they are neither the first nor the second choice of the output of the k-nearest neighbor
algorithm), and 0.1% are errorneously rejected first or second choices.

Tree-based decision rules. [t is interesting to ask how important the effect of the
two classification methods (k-nearest neighbor, tree-based decision rules) is on the overall
performance of the system. We can see this by examining the columns “majority” and
“first or second” in Table 1. The column “majority” simply gives the performance of a
k-nearest neighbor classifier for £ = 10, while the column “first or second” describes the
theoretical upper limit for the performance of the tree-based classifier. We can see from
this that an increase in the recognition rate of around 0.5% is average. In several cases,
the recognition rate was increased by almost 1% (E2, E4, and ET7). In the case of E2, this
resulted in cutting the error rate in half.

Examples of Errors Figure 2 shows the complete set of characters for which neither
the first nor the second choice of the k-nearest neighbor classifier was correct in experiment
E1. From this, we can see that several errors were due to malformed digits or segmentation
errors (7,9, 10, 11). One error was due to a misclassified digit in the database (4). Another
error was due to an unusual slant (13). Two errors were due to qualitative variations in
style that were apparently underrepresented in the training set (the “barred 17, examples
2 and 5). The remaining five digits, while perhaps still classifiable by a human reader,
involve rather subtle distinctions in character shape. For example, in the case of digit
number 8, if the intersection between the two strokes occurred just a little bit higher, the
digit would be classified as a “7” by a human reader as well.

4 Discussion

Let us try to relate the approach to character recognition described in this paper to other
existing approaches.

Template matching is one of the most commonly used recognition algorithms. And, indeed,
the method described here is quite similar to template matching: as in template matching,
the input character is compared to a number of prototypes (“templates”), and the best
matches are used to classify the input.

The crucial difference between template matching and the method described in this paper
lies in the representation of characters and the similarity measure used. Template matching
commonly uses the correlation (or matched filtering) of the input and prototype (possibly
after some signal processing). If we want to achieve larger error bounds, we have to dilate
the input character. This means that character shape and the effects of shape variation
can be related in complicated ways.

Optimal bounded error matching using boundary representations, on the other hand, lets
us set error bounds directly (in fact, we can choose different error bounds for different parts
of a model or image). Furthermore, boundary representations let us express, through the
use of labels, important constraints such that (for example) approximately vertical and/or
convex parts of a model boundary should only match approximately vertical and /or convex
parts of an image boundary.

At the other end of the spectrum, we find feature based methods? Such methods rely on
the extraction of “characteristic properties” of characters. Examples of features are global
topological properties, the presense and absence of a variety of local configurations of lines
(e.g., junctions and terminators), moments, Fourier boundary descriptors, and various
projections and crossings (Chatterji, 1986, contains an extensive review of different kinds
of features used for character recognition).

The driving principle behind feature-based recognition methods is data reduction. That
is, variation that is inessential to the identity of a character is to be discarded during
the feature extraction process. Unfortunately, it seems that all the input data describing
a character can be essential for determining its identity and no information should be
discarded before the classification process.

We can view the boundary representations used in this work as a way to perserve a com-
plete representation of character shape, which is additionally enriched and annotated by
additional information that captures many of the same shape properties that are used by
feature based representations. As such, it follows the design principles suggested by Marr,

1982.

Another important aspect of the system is the use of an automatically generated decision
tree for post-processing of the output of the k-nearest neighbor classifier. This provides
an automated alternative to manual and/or heuristic choices of thresholds and voting
strategies and seems to result in noticeably better performance. We expect that this

2The “features” of “feature based methods” usually represent larger scale characteristic properties of
characters and are to be distinguished from the “features” used in representing boundaries representations
in this system, which are local and individually carry virtually no information about character identity.
This is an unfortunate convergence of terminology.

technique will be useful for other systems based on k-nearest neighbor classification as
well. Results with the decision tree learning algorithm also suggest that using training
data of higher quality than testing data may not be an optimal choice. While manually
verified training data may constitute a good data set to choose character prototypes from,
rejection thresholds should be set on data with the same fraction of “bad” characters as
the testing data (and the data in the application of the system, of course).

As we already noted before, another important aspect of the approach described here is
that boundary representations and bounded error matching have explicitly been designed
to cope with clutter and occlusions. Note that little can be inferred about the degree
to which the current system can deal with clutter and occlusion from the performance
of the system on the CTEST database, which actually does contain a significant number
of poorly segmented characters. The reasons are that (1) the segmentation algorithm,
when 1t fails, often introduces much graver mutilation than are to be expected from other
degradations of the input, and (2) the majority of characters (even in the CTEST database)
contain no clutter or occlusions, and the system chooses prototypes and sets parameters
for the undegraded and uncluttered case. This aspect of the system needs to be explored
experimentally in future work, using training data that contains contextual information.

There have been a few attempts, similar in spirit to the one described in this paper, at
applying more general representations of shape together with matching algorithms from
computer vision to the character recognition problem. Edelman et al., 1990, use a variation
on the alignment method (Huttenlocher and Ullman, 1987) for the problem of recognizing
cursive handwriting. Recognition by alignment is very similar to the bounded error recog-
nition method described here, but it requires the extraction of alignment points. Mitchell
and Gillies, 1989, are concerned with the recognition of complete ZIP codes from given
address blocks; the digit recognition component of their system is “painstakingly crafted
using an iterative refine and test methodology”. Both systems show the promise that the
use of more general techniques from computer vision hold for the recognition of hand-
writing, but, unlike the work presented here, they have not yet demonstrated competitive
performance on standard recognition tasks.

The above results demonstrate that optimal bounded error recognition using labeled bound-
ary features can achieve excellent recognition rates for handwritten digit recognition. This
constitutes a first step towards building a high recognition rate recognizer for the con-
siderably harder problem of off-line recognition of unrestricted, unsegmented handprinted
characters.

References

Breiman et al. L., 1984, Classification and Regression Trees, The Wadsworth statis-
tics/probability series, Wadsworth, Belmont, CA.

10

Breuel T. M., 1992a, Fast Recognition using Adaptive Subdivisions of Transformation
Space, In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition.

Breuel T. M., 1992b, View-Based Recognition, In MVA °92, IAPR Workshop on Machine
Vision Applications.

CEDAR , 1992, CEDAR CDROM 1: USPS Office of Advanced Technology Database
of Handwritten Cities, States, ZIP Codes, Digits, and Alphabetic Characters, 5.25”
CD-ROM with documentation, available from: Jonathan J. Hull, Associate Director,
CEDAR, 226 Bell Hall, State University of New York at Buffalo, Buffalo, NY 14260-000,
hull@cs.buffalo.edu.

Chatterji B., 1986, Feature extraction methods for character recognition, IETFE Technical
Review, vol.3, no.1:9-22.

Davis R., Lyall J., 1986, Recognition of handwritten characters - a review, Image and
Vision Computing, vol.4, n0.4:208-18.

Edelman S., Ullman S., Flash T., 1990, Reading cursive handwriting by alignment of letter
prototypes, International Journal of Computer Vision, 5:303-331.

Garris M. D., Wilkinson R. A., 1992, NIST Special Database 3: Binary Images of Handwrit-
ten Segmented Characters, 5.25” CD-ROM with documentation, available from: Standard
Reference Data, national Institute of Standards and Technology, 221/A323, Gaithersburg,
MD 20899.

Govindan V., Shivaprasad A.; 1990, Character recognition-a review, Pattern Recognition,

vol.23, no.7:671-83.
Grimson E., 1990, Object Recognition by Computer, MIT Press, Cambridge, MA.

Huttenlocher D. P., Ullman S., 1987, Object Recognition Using Alignment, In Proceedings
of the International Conference on Computer Vision, pages 102-111, London, England,
IEEE, Washington, DC.

Impedovo S., Ottaviano L., Occhinegro S., 1991, Optical character recognition-a survey,
International Journal of Pattern Recognition and Artificial Intelligence, vol.5, no.1-2:1-24.

Marr D., 1982, Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information, W.H. Freeman and Company, San Francisco.

Mitchell B., Gillies A., 1989, A model-based computer vision system for recognizing hand-
written ZIP codes, Machine Vision and Applications, vol.2, no.4:231-43.

R. Allen Wilkinson et al. , ed., 1992, The First Census Optical Character Recognition
System Conference, U.S. Department of Commerce, National Institute of Standards.

11

parts used correct /error
knn tree testing system | majority | 1st or 2nd | #proto.
E1 | 0-18790 | 10000-18790 | 18790-20790 | 98.6/1.4 | 98.2/1.8 | 99.4/0.6 612
E2 | 0-20790 | 1000020790 | 10000-20790 | 99.1/0.9 | 98.2/1.8 | 99.6/0.4 664
E3 | 0-30000 | 20000-30000 | 30000-35500 | 98.4/1.6 | 98.3/1.7 | 99.7/0.3 910
E4 | 0-35500 | 15000-35500 | 30000-35500 | 99.2/0.8 | 98.3/1.7 | 99.7/0.3 1038
E5 | 0-35500 | CGTEST CGTEST |98.2/1.8 | 97.9/2.1 | 99.5/0.5 1038
E6 | 0-35500 | 15000-35500 | CGTEST | 98.3/1.7 | 97.9/2.1 | 99.5/0.5 1038
E7 | 0-35500 CTEST CTEST 97.0/3.0 | 96.1/3.9 | 98.4/1.6 1038
E8 | 0-35500 | 1500035500 CTEST 96.7/3.3 | 96.1/3.9 | 98.4/1.6 1038

Table 1: Recognition rates.

if first-votes <5.5
if second-max <8017.5

decide 1 (889/950)

if second-max >8017.5

if first-max <8326

decide 2 (76/88)

if first-max >8326

1f second-avg <8349.12

decide 1 (82/83)

1f second-avg >8349.12
1f first-max <8866.5

decide 2 (7/7)

if first-max >8866.5

decide 1 (4/5)

if first-votes >5.5
decide 1 (7642/7657)

Table 2: Example of the kinds of decision rules generated by the CART algorithm.

12

Figure 1: An example of the boundary representation of the top two matches of prototypes
(dotted outline) against an input character (grey).

> 41 ¢ 97 ¢ £ L

1497.2 2(152.3 2897 4(4>7.1 hig7.g Bi1E.2 7{436,2

Y Y 9 7 9 7

90417,3 90330.4 10¢437.9 11496,7 12¢918.3 138,71

Figure 2: All characters in E1 that were misclassified by both the first and the sec-
ond choice. The format of the annotation under each character is “number(correct-
classfication) first-choice,second-choice”.

13

4,
b,

L 0 4 8 s 7

146365 2(m0.2 3447 448383 B¢B)5.6 B{7¥7.9 FihinE BLZI3.6
3}

S L 3 6 2 2 4 4
9¢535.3 10{636.4 114838.9 12¢030.8 13{232.3 14¢232.5 15(2)2.3 16{424.9
17¢99.4 184737.9 194939.4 ‘ 20{(131.6 214737 .9 22(636.3 23(66.0 24(88.5

Jd F ¢ 9 4 4 2 D
250000 .4 26488.9 274000.6 28(919.7 290424 .9 304434.9 3{2¥2.3 32¢5:5.3

N &2 3 0O e 8 5 S

33774 34000,3 364838,3 3EC0N0,7 Z7(000,8 3803)5,8 38(8)5,3 40(55,8

Figure 3: Some characters in E1 that were classified correctly by the £&-NN method as the
first choice. The format of the annotation under each character is the same as in Figure 2.

