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Abstract

This paper discusses the problem of 3D indexing. That is, given a collection
of 3D object models (CAD models, formalized as collections of labeled 3D
points), an indexing algorithm may perform off-line pre-processing to gen-
erate a data structure that allows it to decide quickly whether a given 2D
image was contains any of the objects represented by the 3D models.

We first review and develop some mathematical machinery. Next, the index-
ing problem is related to well-known point-location and search problems in
computational geometry. Based on such relationships, a number of asymp-
totically optimal indexing algorithms are discussed.

We then observe that all algorithms related to this problem that have been
developed in computer vision as well as in computational geometry show
either suboptimal (near-linear) complexity in the number of 3D models, or
require a super-polynomial amount of space to represent the result of the
pre-computation.

Such computational limitations are illustrated by a discussion of several com-
monly used approaches to 3D indexing (view-based indexing, indexing by
invariants).

We conclude with the speculation that, ultimately, the situation for 3D index-
ing algorithms is likely to remain analogous to that of high-dimensional geo-
metric query problems: while asymptotically efficient algorithms are known
even in high dimensions, most practical applications use linear time algo-
rithms and are content with methods that give significant constant-factor
speedups.

Keywords: 3D model base indexing, view sets, point location algorithms,
algebraic varieties, arrangements, visual object recognition, invariants, geo-
metric hashing, 3D object recognition, computational complexity, computa-
tional geometry, computer vision.



1 Introduction

Motivation [t is generally expected that future systems for visual object
recognition will have to cope with very large model bases, possibly contain-
ing hundreds of thousands of geometric shapes. But research in algorithms
for visual object recognition has concentrated on methods for matching a
single image against a single model (although this has been changing over
recent years). Using such recognition algorithms directly for the recognition
of objects from large model bases would lead to a linear complexity of the
recognition system in the number of models. Some researchers, driven by
practical necessity, have come to conclude that significant gains in recogni-
tion speed can be made if we do two things. First, we can take advantage
of the fact that the model base is usually (nearly) static. This means that
we can perform a significant amount of off-line pre-processing in order to
achieve faster on-line recognition. Second, we can attempt to find recogni-
tion algorithms that operate on multiple models simultaneously and whose
complexity in the number N of models is sublinear. We will call recognition
methods that allow pre-processing indexing methods.

A number of different indexing methods have been proposed in the litera-
ture. Individual authors have generally been enthusiastic about the efficacy
of their method for large model bases. Unfortunately, experimental support
for such optimism has been relatively limited (even databases containing a
few hundred objects are unusually large for current experiments). Further-
more, only the asymptotic complexity (often “average case”) of individual
algorithms has been carried out, usually without even an explicit statement
of the computational model used.

Goals This paper seeks to provide a common framework in which to an-
alyze and compare indexing algorithms. Furthermore, we develop simple
asymptotic bounds on the complexity of the indexing problem through the
application of recently developed algorithms in computational geometry to
the indexing problem.

It should be emphasized that the simple algorithms presented in this paper
are only intended to illustrate asymptotic complexity bounds, and are not
intended for practical application (with the exception of view-based indexing,
which already has proven its applicability in several circumstances). The
situation is analogous (and related, as we will see) to the situation with
algorithms for nearest-neighbor lookup in high dimensional Euclidean spaces:
a number of asymptotically efficient algorithms are known, but in practice,
linear search seems to be the best exact (as opposed to heuristic) algorithm.

Essential for the formal complexity analysis of any recognition algorithm is



the choice of an error and imaging model. The error model used is that
of bounded error, which is in wide use and has proven its utility in many
practical recognition systems and theoretical analyses of the recognition sys-
tem. Our imaging model is that of 3D rigid body rotation with orthographic
projection. Throughout most of the paper, we will assume that all corre-
spondence are known.

This formalization of recognition is decidedly too optimistic: correspondences
are not known in practice, and real cameras do not use orthographic projec-
tion. However, this strengthens many of the results: if an indexing algorithm
(e.g., recognition by invariants) already fails to give a substantial speedup
when correspondence are known, it is not going to do so when correspondence
are unknown.

Approach We begin by analyzing the computational and geometric as-
pects of the indexing problem. We observe that (because of output com-
plexity) Q(log N) constitutes a lower bound for the indexing problem. This
raises the important question of whether this bound can be achieved (by an
optimal indexing algorithm).

We then examine the properties of view sets, i.e., the set of views that an ob-
ject can give rise to under different transformations, surveying and discussing
both old and new results.

Using view sets, we can reformulate the indexing problem as a set member-
ship or point location problem with pre-processing. By showing that view
sets form an arrangement of algebraic varieties, we can apply recently devel-
oped algorithms from computational geometry to achieve O(log N) indexing,
where N is the size of the model base. This is an optimal indexing algorithm
by our definition above.

However, the algorithms used in the construction of an optimal indexing algo-
rithm are general-purpose point location algorithms with poor space bounds
and high complexity in the size of each model. Therefore, we will examine
some ways in which this complexity can be reduced, by taking advantage of
the special properties of view sets (as opposed to general algebraic sets), and
by considering approximations.

One particularly important approximation that is already widely used as a
heuristic in computer vision is the view-based approximation (also known as
multi-view representations). We will relate indexing methods based on the
view-based approximation to the geometric view of view sets developed in
this paper.

Finally, we will compare the performance and complexity of several major
approaches to the indexing problem, and we will point out directions for



further research.

2 Geometry

Bounded Error Recognition Before discussing the indexing problem,
we have to define precisely what we mean by “3D recognition”. The most
commonly used approach is the following.

A camera generates an image (or view) of an object in the real world. Objects
are described by 3D object models. We assume that objects do not change
their identity under 3D rigid body motions. In different words, object identity
is invariant under 3D rigid body transformations. Furthermore, in order
to allow for the possibility of modeling and sensing error, we allow slight
deviations between the image of an object predicted from its model and its
actual image.

For concreteness, we consider object models and images that consist of point
features. That is, a model is a finite set of points in IR”, and an image is a
finite set of points in IR, It is important to realize that the framework we
will develop below is equally applicable to more complicated features. For
example, if we use curves described by 4th degree polynomials as features,
each feature is a (single) point in IR'.

Furthermore, for the time being, we will assume that the segmentation (“fig-
ure/ground”) and correspondence problems have been solved. This assump-
tion is commonly made in the analysis of indexing algorithms. Usually, so it
is argued (e.g., Jacobs, 1988, Grimson, 1990), segmentation and correspon-
dence information can be (and must be) derived from the image, and any
remaining ambiguity can be resolved by trying different possibilities.

Another way of looking at this assumption is that the input to the indexing
algorithm consists of a curve, represented as a spline of degree 1 (the methods
discussed below also work in principle for splines of higher degree). This view
may make the approach more palatable to those that consider the use of, say,
invariants on algebraic curves as input to an indexing algorithm; using a curve
described by a larger number of parameters as input is really equivalent to
assuming knowledge of image segmentation and the correspondence between
a number of image and model points.

It we make these assumptions, we can mathematically formalize the recog-
nition problem as follows. Assume that the model and the image consist
each of K points. Then, a model can be described as a point in R** (also
called model space) and an image can be described as a point in IR2E (also
called view space). Let us use the notation my for the location of feature



in the model, and my;, ¢ = 1...3, for its 3 coordinates. Define b and by,
¢ =1...2, analogously for image features.

We declare a match between a model and an image if there exists a trans-
formation T'€7 that transforms model into the image to within given error
bounds ¢ and under an error model d. Note that T is a function from IR®
into IR%. To simplify notation, we denote the transformed vector b defined
by bi, = T'my, simply as T'm, keeping in mind that T" is applied to each of the
k point features of m.

With this notation, we define a predicate “match” between a model m and
an image (view) b:

match(m,b) := 3T €T d(Tm,b) < € (1)

Error Models We will consider two error models d. The first is the error
model associated with least-square matching, d .,: the total error is equal
to the square root of the sum of the squares of the errors associated with
each model feature:

K
d 1q(b,0) = JZ 16 — B[ (2)
k=1

The second is the error model associated with bounded error matching, d ..:
the total is the maximum of the errors associated with each model feature:

d ue(b, V) = max by — by (3)

It is not difficult to see that both of these error models define metrics in view

space. For example, we can rewrite d as:

1sq

d (b, b)) = > (bri—b,)? (4)

k=1..K,i=1...2

This is, of course, simply the Euclidean distance of b and ¥ considered as
vectors in IR*".

This is a useful observation, since it implies an intuitive and useful relation-
ship between the error-free recognition problem and the problem of recog-
nition in the presence of error; we will also take advantage of this fact for
the view-based indexing methods described below, since the point location
algorithms in view-based indexing methods rely on metric properties of view
space.

Note that the single inequality d ,.(b,b")* < € involving the non-polynomial



function max can be considered a collection of K inequalities, one for each
k=1,...,K,in each of which b and b’ occur only in a quadratic. This means
that in the subsequent considerations, when we derive results using d .,
analogous results involving K inequalities (instead of a just single inequality),

hold for d ..

Transformations Let us now turn to the question of classes of transfor-
mations 7. Transformations are made up of two parts: a fixed camera model
that describes how the scene in front of the camera is projected onto the im-
age plane, and a variable part that describes the relative position of camera
and object.

For our camera model, we will be using weak perspective. That is, we model
the camera as orthographic projection with a change of scale. Like our choice
of point features, this is mainly for concreteness and simplicity; the arguments
we make below also work for perspective projection or even more complicated
(algebraic) camera models.

The transformations under which we consider 3D objects invariant are 3D
rigid body transformations, defined by rotation matrices R and translations
t. Therefore, we define the set of transformations 7" as follows:

T = {t(p) = P(rRp + 1) : r€R, RER>*® 1 €IR®, °_ RiyRj, = 6u} ()

1 00
010

there is a set of 6 quadratic constraints imposed on the nine parameters of

R.

We could also use Euler angles for parameterization; if we let s; and ¢; stand
for the sine and cosine of Euler angle ¢, respectively, this gives rise to the
following definition:

In this definition, P = ), i.e., orthographic projection. Note that

T" ={t(p) = P(rR(s,c)p+1) :reR, S,C,tElRS,S? +ct =1} (6)

Here, we impose 3 constraints on the 6 parameters defining K.

The quadratic constraints imposed on the form of R complicate algorithms
and analysis considerably. Several researchers have therefore studied the case
of affine or linear 3D transformations, in which those constraints are dropped
(from the large literature, the most relevant to our discussion here is Ullman
and Basri, 1989). We define the corresponding set of transformations 7
under a weak perspective camera model as follows:

T'={t(p) = P(Rp+1):rcR, RER>’ 1 cR?} (7)



To simplify notation, we will also drop the translational component from
these definitions; analogous results to those stated below hold if translation
is being considered. Then, the set 7" becomes:

T = {t(p) = PTRp : TE'R, RE'RBXB, Z?:l Rij‘RJ‘k = 52k} (8)
In this case, the set 7¢ simply reduces to the space of 2 x 3 matrices:

7" = R> (9)

Canonicalization A geometric property of the recognition problem that
many indexing algorithms take advantage of is that certain (though not all)
3D rigid body transformations can be compensated for in a model indepen-
dent way by transforming the image. Concretely, in the case of 77, i.e., rigid
3D body transformations, 2D equiform transformations of the object in the
image plane (i.e., translation, rotation about the optical axis, and changes of
scale) can be compensated for by 2D equiform transformations of the image.
This follows easily from general considerations of symmetry of the system
camera—object. In the case of 3D rigid body transformations, we can derive
the result more specifically by considering an Euler-angle parameterization
of the 3D rotation matrix.

This process lets us account for 4 of the 6 parameters that determine the
relative pose of image and camera. It is well known that the remaining
2 parameters can be identified naturally with the surface of a 2-sphere known
as the viewing sphere (cf. Horn, 1985).

Compensating for 2D equiform transformations of an object in a bottom-up
(model-independent) way is referred to as canonicalization. Because different
3D objects may have identical 2D views (see, for example, Ullman, 1979),
it is clear that canonicalization cannot be extended to compensate for arbi-
trary 3D transformations: a particular view that is shared by two different
3D objects would have to be canonicalized in two different ways (recently,
this simple observation has been strengthened in the context of research on
viewpoint invariants; see Burns et al., 1990, Clemens and Jacobs, 1991, Moses

and Ullman, 1991).

The observation that we can only compensate for 4 of the 6 parameters of
3D rigid body transformations naturally has lead researchers to the notion
of view-based indexing, in which the remaining 2 parameters that have not
been canonicalized for, are simply represented by sampling (“sampling of
the viewing sphere”). We will provide references and analyze view-based
indexing methods in more detail below.

A common way of implementing canonicalization under 2D equiform trans-



formations is to use an alignment method, i.e., to pick two point features in
the image and to transform the whole image so that those features lie on the
origin and the point (1,0).

It should be noted that even in the case of canonicalizing for 2D equiform
transformations, canonicalization can only be approximate in the presence
of error. That is, there is no recognition algorithm based on canonicalization
that solves a recognition under error exactly. The reasoning is the same
as in the case of the impossibility of canonicalizing for all 6 parameters of
3D rigid transformations: two different models might share some views in
the presence of error. Any such shared view would have to be canonicalized
in two different ways. Intuitively, the reason for this is that the alignment
points themselves are subject to a certain amount of unknown error.

3 View Sets

Definition A key idea for the approach to indexing described in this paper
is that the definition of recognition given in Equation 1 can be rewritten as
a set membership problem:

match(m, b) := beB,, (10)

In this equation, we call B,, the view set for the given model. Intuitively,
what we are saying is that B,, is the set of all possible views that can be
generated by the model m under the given set of transformations and error
model, and that a view (image) matches a model if only if it is contained in
the set of views generated by that model.

Of course, many researchers have implicitly precomputed, represented, and
approximated view-sets in any number of ways, including hash tables, arrays,
and linear spaces (see the section on view-based indexing below). In fact,
it can be argued that any recognition algorithm that performs some kind
of preprocessing represents properties of view sets that are helpful for later
membership queries. Some properties of view sets have also been used in
establishing a number of theoretical results (see, for example, Ullman and
Basri, 1989, Lamdan et al., 1990, Moses and Ullman, 1991, and Clemens and
Jacobs, 1991).

What we will see in this paper is that view sets can be described exactly in
terms of simple algebraic expressions, and that such representations can be
used for asymptotically optimal indexing algorithms. Furthermore, a better
understanding of the exact shape of view sets (even in the presence of errors)
may help to design better actual recognition systems that may represent view
sets only approximately.



Now, if we expand Equation 10, it appears that it is not particularly well
suited to algorithmic membership queries. The reason is that the definition
of the set B,, contains an existential quantifier:

B,, = {b€R*" : 3T T d(Tm,b) < ¢} (11)

Let us see whether we can eliminate this quantifier.

Linear Case Consider the case where 7 = T*. In this case, it can be shown
(Ullman and Basri, 1989) that, in the error free case and for sufficiently large
K, the view set is a 6-dimensional linear space. Let w;(m), ¢ = 1...6, be
an orthonormal basis for this space (for convenience, we will leave out the
dependence on m for now). Then,

BY = {beR*™ 3T cR™® Tm = b} (12)
{(beR*N : 3N, €R,i=1...6 ZG:AZ»wZ»:b} (13)
=1
{beR*™ : b — 26:(6 ~w;)w; = 0} (14)
- (15)

Here, we take advantage of the fact that the expression b — 3%, (b - w;)w;,
call it e, gives the component of the vector b that lies outside the linear space
B . Note that the last of these expressions does not contain any existential
quantifier anymore.

Based on this expression for e, it is not difficult to extend the quantifier-
free version of B’ to the case in which we allow for error ¢ under the error
measure d .. Namely, we require that ||e|| < ¢, or, equivalently, that:

Bﬁf = {bElRZK (b — 26:(6 Swi)w;)® < €} (16)

=1

Nonlinear Case In the case of 77, i.e., rigid body transformations, the
resulting equations are, unfortunately, significantly more complicated. How-
ever, there are general procedures for eliminating the set of existential quan-
tifiers (Tarski, 1948, Jacobson, 1974, Collins, 1975, Chazelle, 1985). In prac-
tice, we can carry out such computations using systems for symbolic math-
ematics (e.g., MACSYMA). In this way, we arrive at a set of polynomial
inequalities ® such that B} can be written as follows:

B = {bcR*™ : ®(b,¢)} (17)



Of course, in order to be able to perform this elimination, we need a sufficient
number of starting equations, i.e., K must be large enough. In fact, K should
be as large as the minimum number of points needed to determine a unique
pose.

While ® has a rather complicated form, there are some important general
observations we can make about B . First, recall that in the error-free case
(and neglecting translations), B/, is given by the set of vectors b that satisfy
bri; = >_; Rijmy ;. If we re-order and rename the indices, what this says is
that B] is the image of the set of all transformation matrices & € 7 under
a linear map, say, M, defined by my ;.

In general, M may not have full rank (i.e., rank 6). However, we know that
in many cases (“non-degenerate models”) any image of a model uniquely de-
termines the transformation matrix R. In different words, for such models,
there is a 1-1 correspondence between views b and transformations K. By
definition of B] , R is also mapped onto B] . Because B] is a linear trans-
formation of the manifold of transformations R, most of the structure of this
manifold therefore carries over to B .

We can make an analogous argument in the presence of canonicalization,
i.e. in the case where we compensate for rotations around the camera axis
before performing computing the view set. We mentioned above that after
canonicalization, the remaining 2 parameters describing the relative position
of camera and object can be identified with the surface of a 2-sphere (53),
called the viewing sphere, and by an argument analogous to the one given
above, in the presence of canonicalization and the absence of error, view sets
of non-degenerate objects under rigid body rotation are therefore isomorphic
to S,.

In the presence of error, the structure of the view set becomes more compli-
cated. However, as we observed above, the commonly used error measures
d 1sq

under rigid body rotations in the presence of error € is simply the dilation of

and d .. define metrics in view space. Hence, the view set of an object

the view-set for the error free case with an e-ball.

We remarked above that 7% C T*. 1t is easy to see that this property
carries over to view sets for both cases, B7, C B’ (even in the presence of
error, because dilation with the same set preserves set inclusion). Because
the structure of B is significantly simpler than the structure of B’ , testing
for membership in B’ can be a fast way to exclude membership in B’
suggesting a multi-stage approach to indexing. Note, however, that there
are some common classes of objects (e.g., cubes, bricks, and lozenges) that
have identical view sets under affine transformations, but are completely
distinguishable under rigid body transformations.

10



Other Features We noted above that we might use more complex features
like, parameterized polynomial curves or splines, as input for our recognition
algorithms. Without wanting to discuss these more complicated cases in
greater detail, it should be noted that the concept of a view set, and hence
the algorithms below, apply to these cases as well. View space becomes the
parameter space for the curve, and view sets become the allowable sets of
parameters under which a distorted version of the curve still matches the
model under our error model.

4 Indexing by Point Location

Chazelle, 1985, has recently described a general-purpose point location algo-
rithm that lets us solve the following problem.

Assume we are given a collection P = {Py,..., Py} of N rational, r-variate
polynomial of degree < d. These generate an arrangement, i.e., a minimal
collection A of connected regions in IR" over each of which the sign of each of
the polynomials remains constant (see Edelsbrunner, 1987 for an introduc-
tion to arrangements). During a pre-processing stage, the algorithm assigns
labels to the cells of the arrangement A and generates an intermediate data
structure. Based on this data structure, given a point in IR", the point lo-
cation algorithm can determine in time O(log V) the label of the cell in the
arrangement generated by the polynomials.

Not coincidentally, the form in which we have transformed the recognition
system above fits this algorithm exactly. Assume that we are given models
myq,...,my, and consider first the linear case 7*. In Equation 16, we saw
that b was a member of the view set for m if it satisfied the polynomial
inequality (b— 35, (b-w;(m))w;(m))? < 2. So, first, we simply set P,(b) =
(b — 320, (b - wi(my))wi(m,))? — 2. Then, during the preprocessing step,
we label each cell of the arrangement generated by the P, by the set of P,
that are negative on that cell. When faced with a new view, the indexing
algorithm retrieves that label (in time O(log N)) and returns it.

We can make an analogous argument for the more complicated case of 77,
essentially by using the formula ® in the definition of B in Equation 17
for each P,. Note that, in general, it is not obvious that the elimination
of the existential quantifier from Equation 1 results in a single polynomial
(in-)equality (rather than a collection of polynomial (in-)equalities and logical
connectives). The algorithm described by Chazelle, 1985, can cope with this
more general case (for the specific case of indexing under 3D rigid body
transformations, this does not appear necessary).

A technical issue of some interest is the following. In principle, the number

11



models that match a particular cell might be as large as N and the output of
the indexing algorithm itself might be as large as N. How can we then say
that the indexing algorithm can work in time O(log N)? The answer is the
following. While a cell might represent a match consisting of as many as N
models, it can be shown that the number of cells in the arrangment A grows
only polynomially in N, and if we choose our labels efficiently, a unique label
for any cell in A therefore can have size O(log V). The fact that the output
complexity of the indexing algorithm might be large and dominate the cost
of indexing is therefore an artifact of the “natural” representation that we
have chosen for its output, namely a list of matching models. To avoid this,
we might either allow the indexing algorithm to return a concise, suitably
“encoded” representation of the set of matching models, we might take the
size of the output into consideration as part of the complexity (stating that
the complexity is O(log N + W), where W is the length of the output, or we
might simply restrict ourselves to considering sets of objects such that only
a bounded number of models share any particular view (we call such objects
distinct).

The above considerations show that there exists an optimal indexing algo-
rithm, i.e., a recognition algorithm with preprocessing whose complexity in
the size of the model base is logarithmic. However, the general purpose
point-location algorithm used in establishing this fact may not practical, due
to its complicated structure and high constants.

One particular problem is the fact that the best known upper bound on the
size of the pre-processed output (the space requirement of the indexing algo-
rithm) is doubly exponential in the number of features K. Specifically, our
case, this means an upper bound of O(N22K+6) (though this bound is likely
to be far from tight). This looks rather imposing; however, often, existing
indexing algorithms assume that K is small and constant (e.g., many index-
ing algorithm based on invariants assume that K is 1 and rely on complex
features instead).

Note that if we are willing to accept exponential complexity in K, indexing
is still possible in logarithmic time even in the case of point features and if
no correspondence information between image and model points is known.
The idea is simply to represent all possible permutations of the K features
explicitly as distinct models in the model base.

Obtaining better bounds and reducing the complexity for point algorithms
like the one we used above is an active area of research (cf., for example,
Clarkson, 1987, as well as related work in motion planning, e.g., Schwartz
and Sharir, 1983). In addition to such efforts, the indexing problem is con-
siderably more constrained than the problems for which the general purpose
algorithms have been designed. FExamples of such additional constraints that

12



we might take advantage of are the following. First, all the polynomials P,
have the same form. Furthermore, as we saw above, the region on which
each polynomial is negative is the dilation by a small amount € of a very
low-dimensional algebraic set (a 6-dimensional linear space in the case of T°
and a 2-dimensional surface contained in a 6-dimensional linear space in the
case of 77) in view space. Finally, tradeoffs between higher (although still
polylogarithmic) time complexity and the amount of space needed for the
intermediate representation may be possible.

There are two approaches that are worth considering for taking advantage of
such special properties. The first approach is to solve the case of indexing for
transformations in 7 in logarithmic time with smaller space requirements;
since many objects are dissimilar under affine transformations, this might be
sufficient for achieving fast indexing for real model bases. Another approach
is view-based indexring, a well-known, heuristic method for 3D object recog-
nition that can be re-interpreted in a point location framework. This is what
we will discuss in the next section.

5 View-Based Indexing

The idea behind view-based indexing is to use a 2D indexing algorithm to
match the input image against a large collection of 2D views stored for each
model.

View-based indexing is actually not a new technique; multi-view representa-
tions have been used extensively in computer vision (for a review, see Korn
and Dyer, 1987). Some recent work on view-based methods for indexing
specifically include Lamdan and Wolfson, 1988, Breuel, 1990a, Clemens and
Jacobs, 1991, Stein and Medioni, 1991, and Flynn and Jain, 1992.

However, even though view-based indexing has been used previously in a
number of recognition systems, it has not previously been related to the
geometric view of indexing that we have taken in this paper. It turns out
that interpreting the technique in the point-location framework discussed
above shows that it is, in fact, very similar to “true” 3D-based indexing
systems, while at the same time being empirically robust, efficient, and easy
to implement.

To analyze this relationship between view-based methods and point-location
methods for indexing, we need to make more precise what we mean by a
view-based recognition or indexing method. The basic idea is that, in order
to recognize a 3D object in a 2D image under bounded error €, we match
a collection of 2D views under bounded error ¢, where ¢ is usually slightly
larger than e. A an analysis of the formal relationship between the two

13



approaches can be found in Breuel, 1992.

View-based methods do not take any direct advantage of the structure of
the view set or even of the fact that it is contained in a low-dimensional
linear subspace of view-space. However, view based indexing can still be
understood easily in such a framework.

For the purposes of this discussion, let us assume that the input to the
preprocessing stage of the indexing method is error free (e.g., a CAD model).
As is common in multiview recognition methods, a large number of views are
generated by deterministic or stochastic sampling of the viewing sphere and
stored. View-based indexing now proceeds by matching these individual
views under error bound ¢ against an unknown input view. For every stored
view that matches the image, a match to the corresponding model is declared.

As we noted above, view-based techniques for 3D object recognition are not
new, but analyzing them in the theoretical framework we have developed
above clarifies their relation to other 3D indexing methods.

First, recall that bounded error matching or least-square matching defines
a metric in view space. Each view that is matched under an error bound ¢
therefore corresponds to a é-ball in view space. The effect of sampling the
(error-free) view set for a 3D object model and matching the samples under
an error bound ¢ is therefore to cover the view set with é-balls (in the metric
in view space).

View-Based Approximation Now, it is important to note that, unlike
the point location algorithm discussed in the previous section, view-based
indexing is only an approximation to the indexing problem. The reason is
that the view set of a 3D object cannot (in general) be represented as the
union of a finite number of 6-balls.

However, by choosing the size and placement of the 6-balls, we can make the
approximation arbitrarily close, and we can make tradeoffs between positive
mistakes (incorrectly recognizing an object that is not present) and negative
mistakes (failing to recognize an object that is actually present). Negative
mistakes are usually much more serious in practice than positive mistakes,
and hence we would like to make the probability of negative mistakes zero.

Geometrically, positive mistakes correspond to regions in view-space that are
covered by the 6-balls of the view-based approximation but not by the view
set of the corresponding model. Conversely, negative mistakes correspond to
regions in view-space that are covered by the view set for some object but
not by the union of the corresponding 6-balls.

Since we want to achieve zero negative mistakes, we must cover the view set
for each object completely by é-balls. In different words, we must approxi-

14



mate view sets from the outside.

Both the number of é-balls needed to cover the view set and the probability of
positive mistakes depend on the choices of 6 and e. Large 6 mean that we need
few 0-balls to cover each view set, but they also mean a high probability of
mistakes. Small 6 mean that we need many 6-balls to cover each view set, but
that the probability of positive mistakes can be made small. Furthermore,
by choosing ¢ closer to €, we can make the probability of positive mistakes
arbitrarily small (an analysis of the probability of complete coverage can be

found in Breuel, 1989, and Breuel, 1990a).

Range Query Algorithms Algorithmically, “covering view sets by é-
balls” means the following. Given that we have reformulated the indexing
problem as the problem of determining membership in the view set, under
the view-based approximation, indexing then becomes the problem of deter-
mining whether a input view is contained in one of the é-balls covering a
view set. In different words we want to find those centers of 6-balls that are
within a distance of ¢ of an input view.

The problem of indexing under the view-based approximation is therefore
simply a 2K-dimensional range query problem. The most common ap-
proaches to solving such problems are binning, k-D trees, and range trees
(for detailed discussions and references, the reader is referred to the litera-
ture; e.g., Preparata and Shamos, 1985, Samet, 1990).

As we noted above, view based approaches to indexing have been taken previ-
ously. The algorithms for point location used in such approaches to indexing
have usually been based on binning (Breuel, 1990b, Clemens and Jacobs,
1991). Among known range query algorithms, binning methods solve the
range query problem fastest, both asymptotically and in practice. However,
in the presence of error, their space requirements are exponential in K (see
Breuel, 1990b for a more detailed analysis of the space requirements of such
algorithms).

Using k-D trees for solving the point location problem results in a space re-
quirement of O(K N,). This is clearly a tight, optimal bound. For k-D trees,
the average case time complexity for a query is O(log N,); unfortunately,
the worst case time complexity, while sublinear, is only guaranteed to be

O(K N, %),

The third range query data structure, the range tree, guarantees asymp-
totic time complexity O(logk N,). However, its space requirements can be
exponential in K, namely O(N, log™ N,).

In summary, from a complexity point of view, the view-based approximation,
i.e., approximating the view-set of an object by a collection of é-balls in view
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space, somewhat simplifies the indexing problem and lets us use range query
algorithms rather than general point location algorithms in order to achieve
fast indexing.

It is important to realize, that even in the simpler case of indexing under the
view-based approximation, there are no known algorithms that have optimal
logarithmic time (in V) model base access and polynomial space requirements
in K in the presence of error; this is true even if correspondences between
model and image features are known.

Number of Views In order to compare the complexity of indexing under
the view-based approximation with the complexity of indexing based on point
location, described in the previous section, we need to know how N, depends
on N. This question is relatively easy to answer if we fix ¢, say, at 2,
and if we use canonicalization (see Section 2)) to account for 2D equiform
transformations of the image. Then, it can be shown that the number of
5-balls to cover the view set is proportional to §2%; for fixed § in the absence
of occlusions, there is an upper bound independent of A on the number of é-
balls needed (see Breuel, 1990a; in the presence of occlusions, the number of
views needed depends on K, see Ikeuchi and Kanade, 1988, for an asymptotic

bound).

Effects of the View-Based Approximation One important question
that remains what effect the approximate nature of view-based methods has
on the ability of the indexing algorithm to distinguish different objects. The
magnitude of this effect can be estimated in several ways (for a more detailed
analysis, see Breuel, 1992). First, we can compare it to the effects of other,
commonly made approximations in computer vision. It can be argued that
for a choice like 6 = 2¢, the effect of the view-based approximation is no
d e,
or alignment) or an independence assumption among the error vectors for
each of the features. Second, we can show that by increasing K slightly, we

more significant than a choice of metric or similarity measure (d .,

can compensate for the small increase in the probability of mistakes under a
view based approximation. Third, by choosing smaller 6, we can reduce the
probability of mistakes arbitrarily (at the expense of more space).

6 Indexing by Invariants

An important approach to indexing is that based on invariants (Mundy and
Zisserman, 1992, is a comprehensive collection of papers in the field).

The idea behind indexing by invariants is to identify functions for a whole
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class of objects with the property that these functions are constant over the
view set of each object. Because for unrestricted collections of objects, view
sets can intersect (i.e., different objects can have identical views), clearly
there exist no invariants that are universally applicable (see also Burns et
al., 1990, Clemens and Jacobs, 1991, Moses and Ullman, 1991). Therefore,
invariants are specific to classes of objects and, in practice, be developed by
hand (or semi-automatically, using algebraic manipulation packages).

Another complication with using invariants for indexing is that invariants
have primarily been developed for the error-free case. This has several prob-
lematic consequences. First, it is not difficult to see that there are no exact
invariants (of algebraic curves, points, or even just smooth curves) that can
be expressed as algebraic functions for any non-trivial error models, since
such invariants would have to be constant over some small ball in view-space,
which, by Taylor expansion, would imply that they are constant everywhere
and make them rather uninteresting for indexing purposes. This observation,
of course, does not preclude the existence of invariants expressed using non-
algebraic (e.g., semi-algebraic) functions, but it does suggest that approaches
towards finding invariants for interesting classes of objects in the presence of
error may require rather different approaches from those currently taken.

Related to this problem is the following. Assume that we are interested in
invariants for a parameterized collection C of objects (e.g., planar quadratic
curves viewed from different viewpoints). Let us assume that the relationship
between parameters and views of an object is “smooth” (uniformly continu-
ous), and that we are using a “smooth” error measure for comparing views.
Now, consider two objects A and B with very similar parameter values.
Then, if we are given some error-free view of B, we can either interpret this
view as coming from B, or as coming from A with a small amount of error
added (small because of the continuity of the error measure). Therefore,
under the above smoothness assumptions, there cannot exist any invariant
function for distinguishing objects in C under error. In different words, any
class of objects for which we can identify invariant functions in the presence
of error must consist of a discrete collection of objects.

We might try to avoid this problem by considering approximate invariants
(see Moses and Ullman, 1991), i.e., functions that vary only slowly in the
presence of small amounts of error. However, it can be seen that indexing by
(approximate) invariants then turns into a general point location problem,
not obviously easier than the direct point location formulation of 3D indexing
given above.

From the above considerations, we can infer that indexing by invariants in
the presence of error requires that we consider only “discrete” classes of
objects and use indexing functions that are not algebraic. But this is pretty
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much what indexing by point-location described in Section 4 does: given a
collection of discrete objects, it computes a semi-algebraic function which,
when applied to a view, returns a constant identifying which object(s) the
view belongs to.

Altogether, indexing and recognition by invariants may be a useful practical
tool to obtain significant constant factor speedups in the recognition of some
classes of objects. But questions like those raised above about location error
and model variation must be addressed.

7 Discussion

In this paper, we have studied one particular aspect of the problem of vi-
sual object recognition—that of determining quickly whether an collection of
image features could have been derived from one of a large number (N) of
given model features under 3D rigid body transformations and known cor-
respondences. This formalization of the indexing problem (including the
assumption of known correspondences) forms the basis for a lot of work on
fast visual object recognition from large model bases. In this paper, we have
described and analyzed two algorithms that solve this problem in optimal
(logarithmic) time in N.

The first algorithm is based on a reformulation of the 3D indexing problem as
a high-dimensional point location problem. This approach has allowed us to
give an asymptotically optimal O(log N') (though not necessarily practical)
algorithm for solving the 3D indexing problem.

Furthermore, we have considered one particularly important simplification
of the 3D indexing problem, namely indexing under the view-based approxi-
mation. We have seen that indexing under the view-based approximation is
equivalent to a high-dimensional point location problem. This has allowed
us to relate the complexity of indexing under the view-based approximation
to the complexity of a variety of existing range query algorithms.

In the analysis of these indexing algorithms, we have collected and developed
a number of fundamental concepts that help us better understand the na-
ture of the indexing problem. The understanding that indexing is a special
case of point-location and range-query algorithms is of great practical and
theoretical significance. On the one hand, such algorithms are constantly be-
ing improved, because they have a wide variety of applications, and, on the
other hand, lower bounds that are being discovered for point-location and
range-query algorithms may be translatable into lower bounds for the index-
ing problem. Furthermore, the geometric approach based on view sets helps
us understand the tradeoffs and nature involved in various approximations
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(like view-based indexing) better.

As stated in the beginning, the goal of this paper was not to present a
practical indexing algorithm. In fact, the paper has developed a number of
asymptotically optimal (i.e., logarithmic in the number of models) indexing
algorithms, most notably, one based on Chazelle’s point location algorithm
and another (approximate) based on the view-based approximation.

On the other hand, we have also seen that the indexing problem is closely re-
lated to! high-dimensional geometric query problems for which usually linear-
time methods are being used, because the asymptotically logarithmic-time
algorithms that are known either do not reach the asymptotic regime for
realistic problem sizes or have unacceptably high space overhead.

Ultimately, I expect the situation to be similar for indexing in visual ob-
ject recognition. There will likely be a number of algorithms, like indexing
based on invariants or geometric hashing, that greatly reduce the constants
of the complexity of linear search, but do not lead to significantly sublinear
performance.
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