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ABSTRACT

In this paper, we propose view-based recognition, a method for 3D object recognition
based on multi-view representations. We analyze view-based recognition and compare its
performance theoretically and empirically with one of the most commonly used method
for 3D object recognition, 3D bounded error recognition. In particular, we show that the
probability of false positive or false negative matches in a view-based recognition system
is not substantially different from the probability of similar errors in other commonly used
recognition systems. Furthermore, we derive an upper bound on the number of views needed
to be stored by a view-based recognition system in order to achieve zero probability of false
negative matches. Sitmulations and experiments on real images suggest that these estimates
are conservative and that view-based recognition is a robust and simple alternative to the
more traditional 3D shape based recognition methods.

Introduction

In this paper, I describe and analyze a view-based recognition (VBR) system for the
recognition of 3D objects in 2D images.

Unlike previous 3D recognition systems, which have generally combined both view-
based and 3D model-based approaches,»” this system uses a strictly view-based approach
to the representation of 3D objects. That is, a model of a 3D object consists simply of a
collection of 2D views of the 3D object. In order to recognize objects in images, all the
views representing each 3D object are compared against the image using a 2D matching
algorithm.

View-based approaches to 3D object recognition have several important advantages
over 3D model-based approaches. VBR greatly simplifies model acquisition problem, the
representation of partial object models, the representation of smooth surfaces, and the
modeling of effects such as lighting and shadows. In practice, VBR turns out to be very
robust and easy to implement. And, VBR allows us to address questions such as similarity
measures and recognition by parts in a simpler 2D (rather than 3D) framework.

LA version of this paper has appeared in MVA "92 (Breuel, 1992).



Despite these obvious advantages, the acceptance of view-based methods has been
hindered by concerns about the space- and time-requirements of such methods (“how many
views are needed?”), and by the approximate and seemingly heuristic nature of view-based
approach. To address these concerns, I present a number of theoretical and empirical
results.

Bounded Error Recognition

The formalization of the 3D recognition problem that we chose here is that of bounded
error recognition. Bounded error recognition has been studied extensively in the computer
vision literature and forms the basis of many different recognition systems (Grimson® gives
an extensive review and references).

The idea behind 3D recognition under bounded error is the following. First, we assume
that objects have visual characteristics (features) that can be localized in images and
transform as if they were rigidly attached to the object as the object undergoes 3D rigid
body transformations.

In order to account for variability in object shape, limited sensor resolution, and sen-
sitivity of the feature extraction process to lighting, we do not require that features occur
in the image exactly in the positions predicted by the mathematical model of the ob-
ject. Instead, we allow them to be displaced by a small, bounded amount from their true
locations.

Mathematically, we can formalize the bounded error recognition model as follows. As-
sume the object model consists of a collection {m;} of points in IR®. An image consists of a
collection {b;} of points in IR*. A bounded error match consists of a set of correspondences
Ji (usually, 1-1 but not onto) between model features and image features together with a
3D rigid body transformation T3 such that ||PTsm; — b;|| < €, where P is the camera
model—usually orthographic or perspective projection—and ¢ is an error bound.

View-Based Recognition

Asin the 3D bounded error recognition case, we assume that images consist of features.
However, rather than using object models that represent objects as collections of 3D points,
we use object models that represent objects as collections of views, where each view is a
collection of feature locations in IR?. We declare a match between a the model and the
image if for any view of the object, we can find a bounded error match under 2D equiform
transformations (translation, rotation, and scale).

More formally, we write the view-based model as {m’}, where r identifies the view. A
match under the view-based approximation then consists of a view r, a set of correspon-
dences j; between features in the view and image features, and a 2D transformation T,
(translation, rotation, and scale) satisfying: ||Tom! — b, || < 6.

The motivation behind this approach is the following. Consider a set of points in IR?
that can undergo rigid body transformations and scaling. Such a transformation is given
by 7 parameters: 3 parameters to specify a translation, 3 parameters to specify a rotation,
and one parameter to specify scale.



Let us assume an orthographic projection model. Then it is easy to see that translation
along the projection axis does not affect the projected image of the points. Furthermore,
by symmetry, translations, rotations, and scale in the image plane can compensate for 4
of the remaining 6 parameters describing the 3D pose of the set of points.

This leaves us with two parameters (e.g., identifiable with slant and tilt or the points
on the surface of a sphere, the viewing sphere) determining the actual location of points in
the projection of the set of 3D points, up to 2D translation, rotation, and scale.

The changes induced in the image of a 3D object by varying these remaining two pa-
rameters appear like non-rigid deformations of a 2D model. Therefore, instead of modeling
them exactly, we can simply attempt to model them as “2D error” or “noise” on the
location of features.

Probability of Error

View-based recognition is only an approximation to 3D bounded error recognition, in
the sense that the possibility of false positive or false negative matches exists (i.e., that a
VBR system incorrectly declares an object as present or absent in a scene). Intuitively, the
probability of such errors depends on the number of views used by the VBR system and
on the parameter 6. In this paper, we will assume that 6 has been chosen and sufficient
number of views has been stored such that the probability of false negative matches is zero
(it can be shown that this is always possible). It remains then to estimate the probability
of false positive matches.

The basic idea is the following. We can represent the complete set of views of an object
consisting of k features as a subset of IR?* by concatenating the 2k coordinates of the
feature locations into a single 2k-dimensional vector. The shape of this set (the view set)
will be determined by two components: the shape of the object and the error model we
use. Different error models give rise to different kinds of view sets. Let us denote the view
set for some given object under a bounded error model as Sgp and the view set for the
same object using some alternative error model as S,. Then Spz — S, represents the set
of views that are recognized by the bounded error model but not by the alternative model
(false negative matches), and S, — Sgp represents the set of views that are recognized by
the alternative model but not by the bounded error model (false positive matches). The
volume of the set S, — Sgg is related (via a probability distribution on all possible inputs
to the recognition system) to the probability of a false positive matches.

Space does not permit us to present a complete analysis here, but it can be shown?
that for a number of commonly used recognition methods, including least-square error
recognition and alignment, the volumes of S, — Sgp are within a fixed constant factor of
each other.

For example, for comparing recognition under bounded error with recognition under
least square error, we can observe that the corresponding view sets Spp and Spgq are
dilations of a single manifold under different but similar metrics in the space of all views.
This lets us relate the volume of the difference S sq — Sgg to the constant in the definition
of similarity between the two metrics in view space. Analogous analyses can be made for



methods like alignment.

But the same can be found to be true for the view-based approximation, if we choose
6 = ce for some constant ¢. However, unlike the effect of choices like bounded error
recognition vs. least-square error recognition, which is of fixed magnitude, the view-based
approximation to bounded error recognition actually lets us approximate bounded error
recognition arbitrarily well by choosing a smaller constant ¢. That is, by decreasing ¢, we
can make the volume of Sypr — Spr (and hence the probability of false positive matches
under most probability distributions) arbitrarily small. Of course, as we will see below,
we have to pay in terms of storage and computation: we need to store and match ©(67?)
views.

Number of Views

We noted above that the appearance of a 3D object in a 2D image is determined by
two parameters (e.g., identified with points on the viewing sphere) after accounting for 2D
equiform transformations.

Now, if we assume that the relationship between these two parameters of the viewing
transformation and the location of features in the image is piecewise smooth (an assumption
that is certainly satisfied for features that are “attached” to the object), then it will be true
that small changes in slant and/or tilt will give rise to only small changes in the location
of features in the image.

Generalization from a Single View We can formalize the notion of smoothness of the
viewing transformation as requiring piecewise uniform continuity over the viewing sphere.
To do this, we make use of the modulus of continuity:

wy(d) = sup [f(wr — w2)] (1)

|l’1—l’2 |S5

It is not difficult to see that if the maximum modulus of continuity of the viewing trans-
formation is bounded as p > waw)
solid angle of approximately ¢ on the viewing sphere.

Since the viewing sphere 1s a 2D surface, and since we are covering it with patches of

, then each individual view of an object will match a

linear dimension %, we expect that we need O( (%) _2) different patches (and hence, views)
of an object.

We can derive more concrete bounds by actually bounding the modulus of continuity.
Let us assume that translations have already been accounted for.

Then, a viewing transformation consists of a rotation R, a change of scale S, and a
projection P: b, = P .S R(m;).

We know that for small rotations (say, of size €) around an axis given by a unit vector
r, the displacement of a vector v is given by:

Av=¢€r xv (2)

Since for a unit vector r, it is true that ||r x v|| < ||v]] we know that ||Av| < ||v]-
Furthermore, since P = diag(1,1,0), || Po|| < vl
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Therefore, we see that for any axis of rotation, scale factor s, and small angles of
rotation €, the projection of an attached feature v does not move by more than €||v|| (this
bound actually also works for large €).

Hence, the modulus of continuity of the viewing transformation with respect to any
rotation is bounded as p = s||v||. Now, because images are formed on a sensor of finite
diameter (retina, CCD array) s||v|| is bounded by a constant determined by the sensor
hardware. So, if we assume that the sensor is bounded by a circle of radius D, then p is
simply D.

Covering the Viewing Sphere Above, we have seen that for an individual view, for
smooth viewing transformations, changes in slant /tilt of order ¢ will move the location of
features in the image by less than ey. Since we require that 6 > ep, this means that for a
given ¢, ¢ is at least as large as 2.

Now, allowing changes in slant/tilt by an amount of ¢ corresponds to an area of a on
the viewing sphere:

23,

a =21l —cose) > —me
24

(3)

(the last inequality comes from the Taylor series expansion of cos).

The viewing sphere has total area 47. The total number V of circular patches required
to cover the viewing sphere, if we could choose their placement, is then bounded (including
a factor of 2 to account for the fact that we cannot cover the viewing sphere without overlap

using circular tiles):
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This is the bound on the number of views of a 3D object under a bounded error recognition
model and allowing the view based recognition algorithm to choose the individual views.

The ratio % is the error that is tolerated by the recognition system relative to the size
to the image of the object. In practice, this ratio will be somewhere around 5%. If we
choose ¢ in the view-based approximation such that % = 0.05 this results in an wupper
bound on the number of views of 3600.

Note that the resulting bounds on the number of views of an object are independent
of the complexity (number of features) of the object. Object complexity does have an
influence on the number of different views in the presence of occlusions: objects with more
features tend to have a larger number of aspects (a bound on the number of aspects in
terms of the complexity of an object is given in®).

We will see below that the number of views required in an actual view-based system
can be much smaller. One reason for this is the frequent occurrence of approximate invari-
ants and the presence of characteristic non-metric information (topology, non-geometric
information) in images.



Efficiency

View-based recognition lets us replace matching of a single 3D model with matching of
a larger number, say R, of 2D models. This may not appear to be a good tradeoff from
an efficiency point of view. However, upon closer examination, it appears that view-based
recognition may actually be faster than direct 3D recognition. The reason is the following.

The complexity of bounded error recognition algorithms is dominated by the minimum
number of correspondences between image and model features that determine an alignment
(among other things, because of the potential size of the output of the algorithm). Let
us consider the case in which no additional “grouping” or “segmentation” information is
available, and in which there are N image features and M model features. Then, a 3D
recognition algorithm will have complexity of approximately Q(V(N, M) N>M?), where
V(N, M) is the time required for “verifying” a match, while a 2D recognition algorithm
will have complexity of approximately Q(V (N, M) N?M?).

It anything the constants in these asymptotic complexities will be better for the 2D al-
gorithm due to the simpler geometric computations involved, and, hence, 2D recognition
can be carried out faster than 3D recognition by a factor of NM. Now, as long as NM > R
(recall that R is the number of 2D models in the view-based approximation), the view-
based approach to recognition will be faster than the direct 3D approach; this inequality
is satisfied for commonly used error bounds and all but very simple scenes and objects.

Simulations

Above, we have seen theoretical analyses that support the idea that view-based recog-
nition does not differ significantly from 3D methods in terms of the probability of false
positive errors, and that view-based recognition does not require “too many” views in order
to work.

Since large data bases of images and object models for testing 3D recognition systems
are not available, we had to rely on simulations in order to compare the performance of
different 3D recognition methods (3D alignment, least-square matching, linear combination
of views) with view-based recognition on large model bases. The simulations used data
bases consisting of 1000 differently bent “paper clips” (these object were chosen because
they have also been used in a variety of other simulations and psychophysical experiments.
In some representative experiments, each paper clip consisted of 20 line segments, and
the location of features (bends) in the image was uncertain by approx. 5% of the total
projected size of the clip. The simulations were more difficult for the view-based recognition
algorithm than the case analyzed above, since it was given a collection of random views of
the object as input, from which a model had to be built. In contrast, the 3D recognition
algorithms received as input the (perfect) 3D model used to generate the images in the
simulation.

Under these conditions, we found that 300 views needed to be stored for each view-
based model in order to achieve an error rate smaller than that of optimal 3D matching
algorithms.

The predictions about robustness of view-based recognition were confirmed. For exam-



Figure 1: Example of an airplane recognized by the view-based recognition system.

ple, in a different set of experiments, intersections between projections of segments of the
paperclips were used as features, rather than the locations of bends. 3D based methods
designed for attached features (not surprisingly) failed completely on this problem, while
view-based methods only required 2-3 times as many training examples to achieve the
same error rates as in the case of attached features.

Real Images

We have implemented a prototype view-based recognition system for 3D objects that
builds object models automatically from examples. The system can reliably recognize and
distinguish model airplanes in scenes of 3D objects in the presence of significant clutter
and occlusion.

An example of the optimal match and initial pose estimate returned by the system
is shown in Figure 1. Input to the recognition module consisted of the raw output of
a Canny edge detector. The 2D matching algorithm did not require (or take advantage
of) any grouping or segmentation information, nor did it require the extraction of “point



features”. Furthermore, there was no attempt to tune any of the system’s parameters: the
Canny edge detector was used with its standard settings, 2D error bounds of 10 pixels were
used.

The internal view-based model was built from 32 different views of the airplane at
different elevations and orientations. Models were acquired automatically by the system.
These views were matched against an input image using a modified version of the RAST
algorithm.!

The system was tested on 22 scenes containing the model and other objects (toy air-
planes, cars, blocks, etc.). Only in one of the 22 scenes was the first choice of the system
incorrect (in that case, the second choice gave the right match).

An example of a match is shown in Figure 1. Note that the model view includes a
shadow of the airplane, a useful and salient feature for recognizing this kind of object.

Discussion

As we noted in the introduction, the idea of view-based recognition itself is not new.
However, up to now, it has been used apologetically and as a heuristic. In the analysis
and empirical results presented above, we have established clearly the relationship between
view-based recognition and one of the most commonly used approaches to 3D recognition—
3D bounded error recognition. Based on such results, the author hopes that view-based
recognition will be viewed as a well-founded, simple, and robust approach to 3D object
recognition, rather than as a heuristic.

From the theoretical considerations, we can infer that view-based recognition is par-
ticularly well-suited to recognition tasks in which scenes are cluttered, but in which very
precise pose estimates are not needed. But even in cases where precise pose estimates are
needed, view-based recognition is still a useful pre-processing step—the initial match and
approximate pose estimate returned by a view-based system can be refined using other
techniques.

From a practical point of view, we believe that view-based methods are currently the
only feasible methods for general-purpose, robust, integrated 3D recognition systems, i.e.,
systems that address both the model acquisition and the recognition problem for complex
scenes.
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