(P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

IDIAP

MARTIGNY - VALAIS- SUISSE

Réalisation d'un Majordome vocal

Par Samuel Vannay
7°™ semestre SSC
janvier 1998

Supervision EPFL
Prof. Giovanni Coray

Supervision IDIAP
M. Olivier Bornet

Majordome Vocal Page 1

1.
1.
2.
3.
4.
5.

0

Table des matieres

=1 o] (SN0 Y 10T V(= (=1 1
[0 0o LU To3 1 o] o TR 2

VOICE DIAIING .. ieeieeeii ettt ettt e e e e e e e e e e o e s e s bt aee e e et e et aaeaaaaeeaeeaeaasaannnnbbbbbbbaeneaaaaaaaaaas 3
LT B LTS Yol o] 1o] o [T T T TP TP 3
I @ o F= Tl 1o | =T a0] 0 4= T TSRO PPPPP 3
L R = 11 5 o [R URPR USRI 3
LA = o 11 | S TP U PP UUP P PRPPP 4
IR B] (0] 111 F= 11 (0] £ £ TP PP T PP TPPRPPP 4
5.2.4 NOUVEAU MOUEI ...ccoiiiiiiiiiieiiiie s ettt e e e et e e s et e e s e e b e e e e e e e nnnrneas 5.
5.2.5 VOICE DHAIING -ttt oe ettt et et e e e e e e e e e e e e e et e e ettt e et e e aaaaeeaassesaaaannnnnbbbnbeeseaeas 6
5.3 Intégration de STRUT danS XTL.....cccuuiiiiieiiiiiiiiee ettt e siiie e e e e s stae e e e et e e e e e e stbae e e e e e s snsbaeeeeeennneees 6
5.4 ReCONNAISSANCE T 18 PAIOIE........ ettt eeeeeeas 6..
L Y g = To 1S3 (=T 01T o | TP T TP
5.4.2 Reconnaissance
DD RESUIALSeee ettt ettt et e ekt e e et e e e aab et e e Rt b e e e sabb e e e ekt ee e e eabe e e e aabe e e e nbneeeenbeaean

I (Y =T (o o] 0 TP PP PPUPTPTT

(ORI B LTS Yol o] i o] o [T T T T TP TP PROPTRPPP
oI @ o F= Tl T | =T a 0] 0 4= OO PPPPP
6.3 Implémentation.........ccccccveveeeeeiiiicccecieens
6.3.1 Technique de reconnaissance
6.3.2 DELAIIS ..ottt e
6.4 COMMUNICALION NI PrOCESSUS ...ttt aaeiiai e eee e e e e e et et e eabbe bbb bbe e e eeeeeaaaaaasasaaa s nnbbbbbebbsbeeeeaeaeaaaaaaaaeans
6.5 RESUIALS ...ttt eei ettt e e e sttt e e s e aa bt eeeeeassta et e e e s e st baeeaeeeans b beeeeeeeanntbeeaeennrrees

000 o 13 1113 o] o VT

(2] 1 o] [TeTo | =T o] 1= TP PPPPTPTTTPN

B] TS0 G2 PR

0.1 SOUICES ottt e ettt et e et e e e e e e s e e s bbb e b b e e b et et e e et e et e e e e e e e e e e sanae
LS I8 0 411/ 1Y/ = 1T o o TP PUUPTPPUTRPN
9.1.2 MAJOPTOV.N . ettt e e e ettt e e e e e e e aaaaaaaeaaan
S TR RS 01 F= 1o o (0 YA o o PP PPUPTPP PR RPN 14
(S IR 4= 1o (O 1| Y o PO 15
(S TR 01T 1o (O 1| I o oS PPPPRTRRT 17
9.2 Sources SCriptS dU MajOrTOMIE oottt e et e e e e e e e e e e e s e e e e nbabb bbb eeseeees 25
9.2. L TECOECSI e e e a e
S I 1] 1 U1 =3 1 o PP PPPPPPPRRR
S B B =L £ =11 T T TP OUPPPPPPPUPPRTPRIN
I - T = ol 1 o R TP PP PPP PP
0.2.5 CrEalE-ArCNIVE . SED. .. oot i bbbttt ettt e et e e e e e e e e e e e o e s b bbbt te e et eeetaeaaaaaaeaaaeeaaeaaannnnraee
9.2.6 isolated.Stp......cccvvvvriiiiiiiieeenn,
9.2.7 gn-forward.stpcoeeeeeiiinnnnns
9.3 Sources de searchSilence
9.4 EXemple de diCHONNGAIIEooi ettt e e e e e e e e e s et b b e e e e et e e e e e aaaaaaaaaaaaan
9.5 Cahier 0BS ChAIGES. ... ettt ettt et e e e e e e e e e e e e e s e e anbbab bbb be e e e e eeeaaeaaaaeens

Majordome Vocal Page 2

2. Introduction

Des les années 50, des recherches ont été menées éa |'utilisation de la parole comme moyen de
communication entre un homme et un ordinateur. Bep@86, avec la généralisation de I'utilisatios d®deles
de Markov cachés, 10 ans de recherches ont alddatitommercialisation de logiciels de reconnaissate la
parole de plus en plus performants. IBM et sonWé&e ou Dragon System et son NaturallySpeaking s
exemples les plus frappants. Pour environ 200 §ares logiciels offrent des outils de reconnaissale la
parole en continue, tournant sur des PC standards.

L'offre créant la demande, il n'est pas surpredantoir plus en plus d'outils faisant appel a oreaissance
vocale. Les serveurs vocaux interactifs notammeni des applications permettant la consultatiodateées ou
l'obtention d'information par téléphone. Le butceeprojet est de créer une telle application, @it d
principalement reconnaitre le nom d'une persona@mber son numéro de téléphone. L'implémentatiomed
telle application repose, bien sir, sur deux teqnes : celles de gestion de la ligne téléphoniquelk de
reconnaissance de la parole.

3. XTL

XTL est une API (application programming interface) permet la gestion d'une ligne téléphoniquie grmet
d'implémenter des applications téléphoniques quti doi recoivent des appels, les mettent en paesedvient
ou les enregistrent. Elle permet aussi de généide détecter des impulsions DTMF. XTL est implétatans
une librairie C++ et est indépendant du hardwarep@ut par exemple utiliser XTL sur une ligne ISBNsur
une ligne ATM.

e Programmation objet

Des objets représentent de maniére abstraite feisa® ou connections téléphoniques. La statidroffice
d'appareil téléphonique, le prestataire de semyigdournit une connexion entre le réseau et (paegil est
représenté par un objet "Provider " et I'appelypaobjet "Call ".

* Programmation événementielle

Les applications réalisées avec XTL sont des mashinétat finies. L'état initial correspond a béssement de
I'appel et I'état final correspond a la coupurdadeonnexion. Le passage d'un état a un autréakssé
lorsqu'une modification sur la ligne ou sur I'appktéléphonique a lieu. Un objet appelé dispatéaieie lien
entre une ligne téléphonique et une applicatiodistiribue les événements se produisant sur une bg
I'application concernée.

» Dispatcher, provider et call

Le dispatcher détecte tout changement sur la ligngans I'appareil téléphonique. Lorsqu'il détecte
événement, il transmet le signal adéquat au prageaconcerné. Il aiguille en quelque sorte les signa
Lorsqu'un appel est détecté, il appelle directerteeobnstructeur du call et le lie a un providez.dall fournit
des méthodes permettant de travailler directemariedlot de données circulant sur la ligne tél@mque. I
contient aussi l'implémentation de tous les étatsydtéme. Le provider s'occupe de la signalisationa ligne
téléphonique. Ainsi, le dispatcher appelle des paik du call ou du provider, selon que les événtsmkitectés
concernent les données sur la ligne ou la signalisde cette ligne.

Tout programme XTL repose sur un dispatcher, uwigses et un call.

4. STRUT

STRUT, acronyme de " Speech Training and Recognltinified Tool ", a été développé pour faire de la
recherche en reconnaissance de la parole et pdévioppement d'applications liées a ce domaiaeo@il est
composé de multiples modules indépendants permeftére autres I'échantillonnage, I'extraction de
caractéristiques, la segmentation, I'estimatioprdbabilité, I'entrainement de modeles et le dégeda|DIAP
disposant du code source de ce logiciel écrit en, Cdtilisation de ce logiciel peut se faire daiugenaniéres
différentes.

* Ligne de commande

La maniére la plus immédiate d'utiliser STRUT adidne de commande. Toutes les différentes conmpesae
STRUT sont exécutables indépendamment. Cependi@stpeuvent communiquer entre elles par le biais d
pipes, de socket ou de fichiers. Un programmesatili STRUT se fait donc en écrivant un script spgllance
séquentiellement les différents exécutables. Legggesdes arguments et des options a chaque eXéceitaintre
exécutables est décrit dans des fichiers setupoumand.

* Code C++

Majordome Vocal Page 3

Les différentes composantes de STRUT sont dispesigdus forme de librairies ou classes C++. On ¢ghaut
écrire un programme C++ qui inclue et utilise lbsdiries STRUT.

5. Voice Dialing

Bien que le Voice Dialing ait été implémenté lotsndstage d'été, il est utile de mentionner icilques unes des
ses caractéristiques. En effet, ce démonstratéumnesapplication intégrant STRUT a XTL De plus, ce
programme n'étant pas totalement semblable au Wtajoe, certaines options pourront étre comparées.

5.1 Description

Le Voice Dialing est un démonstrateur facilitanblanérotation téléphonique en donnant le numérléphone
d'une personne dont le nom est prononcé. Dansamig@rtemps I'utilisateur est prié d'enregistréxdieis le
nom d'une personne puis de composer le numérdéashtine de cette personne. En répétant cette apérat
chaque utilisateur se crée un répertoire de nume&msuite, il suffit de prononcer un nom et le désimateur
donne le numéro associé.

5.2 Organigramme

5.2.1 Légende

Les conventions suivantes ont été utilisées porggeésentation des différents organigrammes.

— » Sens du déroulement

Etat
bouclé —»» Signal du systéme

Entrée/
sortie
Différentes sorties

- » possibles

Etat

Majordome Vocal

5.2.2 Début

Bienvenue

Votre ID

. L'ID
Ou&Non

Votre choix ?

Votre choix?

. Nouveau
Informations
model

Voice dialing

5.2.3 Informations

Informations

Informations

Majordome Vocal Page 5

5.2.4 Nouveau model

Nouveau
model
Oui '

No
Oui
on

n

e

N

Oui

Majordome Vocal Page 6

5.2.5 Voice Dialing

Voice
Dialing

Reconnaissance

Pas de model —

Poubelle

Nom reconnu

Prononcer
le numero

Le programme se termine lorsqudilisateur appuie sur la touche "#".

5.3 Intégration de STRUT dans XTL

Deux choix se présentent pour I'implémentation dic¥ Dialing : soit intégrer STRUT a XTL, soit XTa
STRUT. La seule possibilitéudiliser ces deux logiciels simultanément estaitire les méthodes de STRUT
dans un programme XTL. Il n'est pas possible diiecties méthodes XTL dans un programme STRUT. féh ef
comme décrit plus haut, XTL est & programmatioméwdentielle. Un programme utilisant XTL doit
nécessairement avoir une boucle infinie sur sopadéher dans sa méthoehain() pour tester en continu les
changements d’état de la ligne téléphonique. Ltossalu programme est donc obligatoirement cellX e

avec une boucle sur le dispatcher dans le main(provider et un call dans lequel seront implémetaé
différents états dans lequel le systeme peut sedroLes méthodes de STRUT étant disponibles dess
classes indépendantes, elles pourront étre appadpess n'importe quel état du systéme.

Par ailleurs, STRUT nécessite que différentes btad environnement soient définies et que difiese
parameétres soient passés lors du lancement ddi¢atpn. Lafonction ParseCommandLine(int argc, char
*argv[]) prend toutes les chaines de caractéres qui su&vanim du programme tapé a la ligne de commande et
les répartit dans les variables STRUT corresporedain script shell est utilisé pour faciliter émtement du
programme.

5.4 Reconnaissance de la parole

La reconnaissance se fait sur les fichiers contdearenregistrement du locuteur. Deux étapesstmgduent
donc : I'enregistrement puis la reconnaissance.

Majordome Vocal Page 7

5.4.1 Enregistrement

Des fonctions de XTL sont utilisée pour commangaréegistrement de la voix du locuteur sur un ichia
méthodedoRecord (char * toRecord, int nLength, tState 8at¢)implémentée dans le call, prend comme
parametre

» le nom du fichier dans lequel sera enregistré éapp

» la durée maximale d'enregistrement en secondes,

+ |'état qui suit celui d'ou est effectué I'appebfte méthode.

L'enregistrement se termine soit quand la duréanmag est atteinte, soit lorsque l'utilisateur apgur la
touche '# ou la touche *'. L'enregistrement eshjgosé des valeurs de la modulation par impulsiaodage
(PCM) des échantillons de I'appel. L'appel estffat échantillonné a 8 kHz, puis quantifié et coegse sur 8
bits selon la loi A. Les classes demoCall et deroRtilisées dans ce démonstrateur dérivent desela
XTLCall et XTLProv qui prennent déja en compte p@sametres de la ligne téléphonique et fournissest
méthodes de bas niveau pour I'enregistrementdifflasion de sons.

5.4.2 Reconnaissance

La technique de reconnaissance utilisée ici e/ (dynamic time warping). Le call inclus les fiels de
STRUT dont il a besoin, notamment le fichier Molejui définit la classe Model. Cette classe argis t
méthodes voidddModel(char *) void recognizeModel(char *, char *\oid deleteModel() Comme leur nom
l'indique clairement, ces méthodes servent a ajautenodéle a la liste existante, a en recherchgraumi la
liste et a en supprimer un. L'implémentation de méshodes fait appel a la classe VoiceDialing. Glette
classe qui contient toutes les classes et méthurirEssaires a la reconnaissance de la parole, metam
RastaPLP pour I'extraction des caractéristiquesignal et DTW pour la création des modéles. Lasgladodel
permet de travailler a un niveau d’abstractiontiedement élevé et facilite la programmation del&sse call.

5.5 Résultats

La rapidité dexécution et de reconnaissance du Voice Dialimg somarquables. Le déroulement du dialogue est
trés fluide. La communication sans fichiers defdiints modules de STRUT marche ici pleinementehaps

de réponse pourrait méme étre amélioré en trdigardonnées dés leur arrivée, sans attendre laferendu

fichier d'enregistrement. Cette rapidité se payeupa qualité de reconnaissance limitée, notamenie

niveau du bruit de fond, et par une mise en sefaigerieuse. Il faut en effet passablement de tgmops se
constituer un répertoire, sans compter les faussedgpulations possibles.

6. Le Majordome

6.1 Description

Le Majordome est une application qui permet desimaattre des appels téléphoniques en l'absencedasee.
Il demande a I'appelant le nom de son corresporetatinne le numéro interne correspondant. Ensuite
propose de laisser un message, qui sera déliveéfeoue d'un enregistrement sur le mail de la perso
concernée.

6.2 Organigramme

Majordome Vocal Page 8

Bienvenue

Reconaissance Lire le mot
Message
Nom
Mot ambigus
Silence
telephone
2 . nouveau hom
3 : quitter
i Envoi mail
e l
g
1 : nouveau nom
—Autres— 2 : quitter
ny
now
Autres

-—— Non 3eme fois ? Oui Heurfes .
secrétariat

FIN

Majordome Vocal Page 9

6.3 Implémentation

Comme pour ce qui a été réalisé pour le Voice Biglia reconnaissance se fait sur des fichierseoamt les
enregistrement de la parole (en PCM quantifié256rniveaux et comprimés selon la loi A). L'enréigiment
proprement dit est réalisé de maniére totalemesnttigue a celle décrite pour le Voice Dialing. Qegemnt, la
partie reconnaissance utilise une autre technijgstemplémentée de maniére totalement différente.

6.3.1 Technique de reconnaissance

Il est évident que le Majordome doit étre indépend locuteur, vu qu'a priori n'importe qui peétéphoner.
Cette contrainte implique I'abandon du DTW. Paleails, le personnel de I'IDIAP ayant un roulemesgex
important, de part ses stagiaires, chercheurséisnati doctorants, le Majordome doit pouvoir étre anjour
simplement et rapidement. En particulier, il favitér d’avoir a entrainer un modéle de nom a chaque
modification du personnel. La solution proposéeeatid’utiliser des HMMs modélisant les phonémekade
langue frangaise. Le nom d’une personnes et laess@mn de phonémes correspondants sont écritaidans
dictionnaire. Ainsi, une mise a jour se résume @mise a jour du dictionnaire. Par ailleurs, lesigdes de
phonémes sont entrainés une seule fois.

Un inconvénient de ce systéme est que les phongonéseulement ceux du frangais et ne décriventrpabien
la prononciation en d’autres langues. Par ailldertemps de calcul est sensiblement plus longdanes le cas du
DTW.

6.3.2 Détails

Contrairement au Voice Dialing, la partie traitdetla reconnaissance de la parole ne fait paiepatégrante
du programme, mais est traité a I'extérieur deieg|la I'aide de scripts shell. Ce choix a été&pour les
raisons suivantes :

» différents logiciels sont capables de gérer desatesdde phonémes. Le logiciel utilisé est STRUTisnha
pourrait étre intéressant de tester le Majordonez &¥TK ou d’autres logiciels. Une trop grande in&dign
ne permettrait plus de tels changements.

» le temps imparti pour ce projet (soit 13 jours)tesp court pour éplucher tous les modules de STRET
de choisir quels fichiers doivent étre inclus etltps méthodes utilisées. Il est plus rapide dagil STRUT
directement par ses commandes en ligne.

Le programme complet se présente donc en dewepaltine consacrée a XTL et a l'interface avetlidateur,

['autre consacrée a la reconnaissance de la p@®lehoix entraine malheureusement |'utilisation de

passablement de fichiers dont I'écriture et laulectalentissent le programme.

6.3.2.1 Code C++

Les cing fichiers principaux sont myMajor.cc, m&oov.h, majorProv.cc, majorCall.h, majorCall.cc.

Le fichier myMajor comprend, dans le main(), I'alpe constructeur du provider majorProv et une b®uc

infinie sur le dispatcher. Ce fichier comprend agselques méthodes concernant les signaux quigmeéire

envoyés au programme (cf. communications entregssacs).

Les fichiers majorProv.h et majorProv.cc sont guasit vide. En effet, ils implémentent la classg¢omi@rov qui

dérive de la classe XTLProv. Celle-ci implémenteuovider complet.

Le corps du programme se trouve dans majorCallchagorCall.cc qui implémentent le call. majorCall.h

comprend notamment I'énumération de tous les nanfiglder utilisés pour les dialogues et la recaessence

ainsi que I'énumération de tous les états. majanCatontient I'implémentation de I'ensemble dessédu
systeme et des méthodes nécessaire au passage aédutre :

+ méthodes d'enregistrement et de diffusioRecord etdoPlay,

+ méthodes de traitement des signaux DTMF. Les sigbdiMF (chiffres de 0 a 9, * et #) sont détectés pa
keyPressed(char& c) 'étoile est traitée de maniére a forcer le pgessamédiat a I'état suivant lors d'un
enregistrement ou d'une diffusion. Le diése esrmété comme l'ordre de quitter I'application. tksfres
sont stockés dans un tableau de caracteres (dtmfCoadt la longueur est enregistrée dans la variabl
dtmflndex par la méthodgpdatePin(char& c)

+ méthodes de changement d'état. Lorsque les totiche sont pressées, il faut pouvoir terminer un
enregistrement ou une diffusion en cours et fa@rgspr le systéme a un nouvel état. Ces cas si@stra
directement dankeyPressed(char& cjiéja décrit ci-dessus ,afin de garantir une réactpide du systéme.
Dans ces cas le tableau dtmfCode n'est pas mig.a jo

» méthodes d'interruption. Pour les raisons décateparagraphe communication entre processus, le
programme doit pouvoir traiter des signaux quigiaie d'autre processus. La méthode interrupt deglel

Majordome Vocal Page 10

programme vers le bon traitemerinterruption selon I'état dans lequel il se tratl@sque l'interruption est
détectée.

« méthode décrivant les états. Le passage d'un atahatre ne se fait qu'aprés un enregistremeast, un
diffusion ou une interruption (cas exceptionnehaGue état comprend donc un appel sdibRlay() soit a
doRecord() en précisant quel fichier lire ou écetd'état dans lequel le programme doit passessdioun
appel est détecté, le constructeur du majorCakygselé suivit de la méthodiestAction() firstAction() appel
doPlay()et le programme passe ensuite a la méthodetion() Cette méthode contient I'implémentation de
tous les états. Une structuresmitch()permet d'aiguiller le programme au le bon étam&guons que dans
certains états, il n'y a rien a enregistrer ouffusier. Dans ce cas, pour pouvoir quand méme chat'é@t,
doPlayest appelé avec le fichier SPEAK_NOTHING (fichiete) comme paramétre.

Le déroulement du programme est donc le suivantliggatcher passe un appel au provider, crée letcappel

firstAction() LorsquedoPlayest effectué, la diffusion du fichier correspondest lancée, I'état du programme

est mis a jour et le call sort de la méthdidgtAction Le call se retrouve donc momentanément oisifstjoe la
fin de la diffusion est détectée, le dispatcheredippa méthodafterPlay()qui appelle & son towloActionavec
le nouvel état du programme. Les opérations dat ls&int effectuées, terminées padoflayoudoRecord

L'état est remis a jour et le call est oisif jusqee que le dispatcher rappelle la méthdal&ction etc.

6.3.2.2 Scripts

Les scripts sont appelés pour utiliser STRUT ddale la ligne de commande. La structure généhahed
instruction est fonction database_id/database arestup= <fichier de setup> <options>. La basdaimée
utilisée doit étre impérativement enregistrée dangépertoire contenant son nom et un sous-répertontenant
son numéro de version. Le fichier de setup perragedrouper toutes les options dans un fichietpplyue de
devoir les aligner sur la ligne de commande. Lkificde setup permet de préciser aussi le nomfidhier de
commande contenant les noms de fichiers nécesseliae®nction. Exemple :

rasta majordome/1.0 setup= ${base_dir}/reco/rata.s

ou rasta.stp contient :

command= ${STRUT_DI R}/ dat abase/ ${ DATABASE}/ r eco/ r ast a. cnd

frame-1 engt h= 30

frame-shift= 10

sanpl e-rat e= 8000

coefficient-count= 12

| og-rasta= yes

m x-coeff= 1.0

energy= yes

et command.stp

/ homre/ speeh08/ vannay/ St r ut / dat abase/ maj or dome/ 1. 0/ al aw nane. t mp

/ home/ speeh08/ vannay/ St r ut / dat abase/ naj or done/ 1. 0/ nane. r ast a

Cette commande procéde a I'extraction des coeffeigasta des échantillons contenus dans le fidkiere.tmp
et les stocke dans le fichier name.rasta.

Le script fait appel séquentiellement a plusieéussructions, qui peuvent étre liées par des piPesévite ainsi
de trop avoir recours a des fichiers pour transmeles résultats d'une fonction a l'autre.

Le script reco.tcsh contient la suite des appel®detions nécessaires a la reconnaissance d'ur_emt
coefficients rasta sont extraits pasta puis sont mis sous la forme d'un fichier d’arelsiypar create-archive.
Les probabilités sont calculées par gn-forwarce€kultat et choisi dans la liste des mots duadintire par
isolated (cf. annexes).

6.3.2.3 Programme utilitaire

Les enregistrement sont utilisés a deux occaslanpremiére est évidemment pour enregistrer datale. La
deuxiéme est pour la détection des sighaux DTMFeftat, le programme doit étre soit en état deudifin, soit
en état d'enregistrement pour pouvoir détectesitpgaux DTMF (i.e. soit pendant doPlay, soit pendant un
doRecordl. Lorsque l'utilisateur est prié de presser sur tmuche, par exemple, le programme passe direnteme
de son état de diffusion de la demande a celurebgstrement. Un enregistrement doit donc étre atldans
trois cas :

¢ dans tous les cas : si le temps d'enregistremeireex

¢ si une touche est attendue : dés qu'un signal DéstiEétecté,

¢ side la parole est enregistrée : dés que le lacatdini de parler.

Le premier cas est résolu a l'aide d'un simplertishest géré par le provider. Le deuxiéme caawsdi simple :
le tableau de caractére dtmfCode doit étre ingiaéi I'aide de la méthodkearDtmf(int)qui permet de définir la
taille maximale de dtmfCode. Lorsque celle si ¢itimte, I'enregistrement est interrompu. Le témse cas est

Majordome Vocal Page 11

moins trivial. Il faut en effet écouter en tempslré@ ligne pour détecter les silences et internamp
I'enregistrement lorsqu'on en a détecté un. Le progre searchSilence avait été développé pour déteste
silence a I'aide du niveau d'énergie du signal gms de la variation de se niveau. Ce programichié @tre
adapté pour les échantillons compressé selon K. Ibiest lancé parallélement a un enregistrens¢imterrompt
celui-ci dés qu'il détecte un silence.(cf. annexes)

6.3.2.4 Fichiersdivers

Les noms et coordonnées des personnes atteigrsalniestockées dans plusieurs fichiers. Le dictiorna
“dictionary” (cf. annexes) contient les noms efrldifférentes transcriptions phonétiques. Le fcifambigus”
contient les noms ou prénoms des personnes homaenjpaes le cas actuel, Hervé Bourlard et Hervétialot
ayant méme prénom, celui-ci est stocke dans “ambigipermet au programme de demander des présision
seul “Hervé” est détecté. Le fichier “Phonenumbeitient la liste de personnes avec le numéreléptione
et 'adresse e-mail associes. Par ailleurs plusichiers sont utilises pour passer un résultah girogramme a
un autre.

6.4 Communication entre processus

searchSilence et reco.tcsh doivent pouvoir étrel@splepuis le programme principal et transmettrel@-ci
gu'ils ont terminé leur exécution. Pour ce faine utilise le signal systeme USR1. Le pid du progremprincipal
est passé dans l'appel de searchSilence et décetciinsi, ils savent ou envoyer le signal USR&due
I'exécution est terminée. La méthode interrupt dgonCall décrite ci-dessus permet d'interceptesignal et de
le traiter correctement.

Ainsi lorsque le programme demande a I'utilisateurom de son correspondant, searchSilence est krle
programme passe dans un état d'enregistrement.dlaisd searchSilence détecte un silence, il ereaignal
USR1 au programme principal qui arréte I'enregiséet et passe dans I'état de reconnaissance deole.f a,
reco.tcsh est appelé et le programme se placeue@tat bouclé sur lui méme qui diffuse une musiqeda
permet de faire patienter I'utilisateur de man@tes agréable durant un temps indéterminé (temgsldel de la
reconnaissance qui peut prendre 2 ou 3 secondéss station eiger lorsqu'elle n'est pas trop chexgéorsque la
reconnaissance a eu lieu, reco.tcsh envoie leldigfsR1 au programme principal qui quitte I'état @léwsur lui-
méme et peut donc continuer son exécution.

Par ailleurs les signaux TERM, INT, TSTP, sont aimsrceptés afin de terminer le programme de grani
propre par I'appel des méthodes adéquates.

6.5 Résultats

Comme prévu, le temps pris par la reconnaissartagetement plus long que dans le cas du VoicaraCela
vient dune part de la technique de reconnaissance etilisdilisation des HMMs étant plus lente queeell
DTW. D'autre part, I'utilisation de fichiers pousigser les résultats d'un processus a l'autre tiligs entrées
sorties qui sont assez gourmande en temps. reealdis par exemple, écrire le nom reconnu dansciwer
déterminé, puis le programme principal doit aller te fichier. Enfin la structure méme de I'apgtion en un
programme principal, des scripts et un programmeersgaires implique des pertes de temps liées aux
communications entre processus. Dans Voice Dialinggégration de STRUT au programme principale
permettait d'utiliser au maximum les capacitésatarounication des processus STRUT et de passefdaktats
par variables.

Une premiere version du majordome était commandégiament par la voix et ne nécessité pas I'utitinadu
clavier du téléphone. Cette version était certestfionnelle, mais était d'une ergonomie désastréwssqu'on
voulait quitter le programme sans laisser de messhfallait attendre 2 ou 3 secondes que le Ewgne
reconnaisse qu'on avait répondu "non" a sa queddians la version finale, certains choix se folwide des
touches du téléphone. Le confort d'utilisation gagompense largement le fait que ce mode de conoation
soit nettement moins naturel que la parole. Cammaént au Voice Dialing, I'équilibre entre les coamues
vocales et celles par touches est assez bonidatilir ne passe donc pas son temps a pianoter.

7. Conclusion

L'étape préalable de ce projet, réalisée lors de stege en aolt et septembre m'ont permis de mikafiasar
avec |'écriture de scripts shell sous Unix, avecelavironnements de XTL et STRUT, les probléemesdiéa
reconnaissance de la parole et les techniquesaatdi L'implémentation du Voice Dialing est uneliapfion
concreéte illustrant cette phase de mon travaibastitue un point de comparaison pour le Majorddnes.
problémes liés a l'intégration de STRUT a XTL ootamment étés traités. L'implémentation du Majordan'a
confronté aux problémes liés au temps de calcaked’aconnaissance, aux HMMs, a la communicatiom ent

Majordome Vocal Page 12

processus, dimtégration du mail dans une application, au tiemsle fichier audio par ce biais et a I'ergonomie
d'une application.

Le Majordome, sous sa forme actuelle est certedtifiimel et ergonomique, mais différentes améliorest
pourraient étre encore faites. Premiérement, lancatation effective de I'appelant devrait étre ré@di. Il n'est
pas difficile de I'implémenter a I'aide de XTL, nsadans ce cas, la commutation se fait au niveda ciarte
ISDN et occupe les deux lignes a disposition. Lgoxteome pourrait traiter au plus une communicatione
autre solution serait de programmer directemenetdral Ascom, mais ceci nécessite la connaissaétad|ée
des protocoles et ne peut étre porte sur un aatrgat. Deuxiemement, une interface graphique tserai
souhaitable pour la mise a jour des personnega#bles. En effet, la modification d’'une personéeeassite
actuellement la mise jour du dictionnaire, du featde nom ou prénom ambigus et du fichier de nuséro
téléphoniques et d’'adresses e-mail. Il serait jadicde regrouper les entrées sur une seule iotegeaphique.
Troisiemement, les models de phonémes utilisesagwrpermettre de prendre en compte des pronoousat
étrangéres. Derniérement, il serait souhaitablpaleroir accéder a un mode dans lequel on peutEpatem
du correspondant recherche de maniére a pouveindte une personne, méme si son nom n'est pasnmaate
maniére standard.

Lausanne, le 16 janvier 1998 Samuel Vannay

Majordome Vocal Page 13

8. Bibliographie

XTL Application Programmer’sGuid&unSoftMontain View, CA, 1994

STRUT User’s guide, http://tcts.fpms.ac.be/speéwli/asers-guide/users-guide.html

Traitement de la parole, Complément au Trait d'Eieité¢, René Boite et Murat KunPPUR, 1987

RASTA Processing of speedH, Heransky, N. MorganEEE transactions on speech and audio processihg,
2, no 4, october 1994

Systémes de télécommunication, Traite d’électricitd XVIII, Pierre-Gerard FontollietPPUR, Lausanne,
avril 1996

Speaker Dependent connected Speech Recognitid@ywmiamic Programming and Statistical Methode,
Bourlard, Kamp, Ney, Welleckeris Speech an Speaker Recognition, Kreger, B4985

Théorie des communication, course notes for they8eadt students in Communication system EngineeRng,
Thiran, EPFL, 1993

9. Annexes
9.1 Sources C++

9.1.1 myMajor.cc

/1
char* ProgranTitl e
char* Aut hor

char * Aut hor Emai |
char* Ver si on

/1

“Maj or dome vocal ";
"Samuel Vannay";

"Samuel . Vannay@di ap. ch";
"0.00";

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude <signal . h>

#i ncl ude "naj or Prov. h"

bool ean_t End;

/1 pour termner "proprenent” |e programe
void SigTern(int Code)

{

End = B TRUE;

/1 protection, un signal USRlL ne va ainsi pas tuer |le process
void SigUsrl(int Code)

signal (SIGUSRL, SigUsrl);

mai n(i nt argc, char **argv)
char pvnane[] ="";
maj or Provi der *provi der;
Att acksProvi der: : Exception err;
dpD spat cher: :instance(new dpSLD spat cher);
dpD spatcher & = dpDi spat cher::instance();

/!l Presentation et initialisation

Majordome Vocal Page 14

cout << argv[0] << " : Started" << endl;
End = B_FALSE;

/] installation de |a procedure de fin
signal (SIGTERM SigTerm);

signal (SIANT, SigTerm);

signal (SIGISTP, SigTerm);

signal (SIGUSRL, SigUsrl);

/1 Connect au provider specifie par pvnane. Si pvhane est NULL XTL
/lessaie de demarrer |e provider par defaut
provi der = new najorProvider(err, pvnane, "Sanuel");
if (err !'= AttacksProvider:: EXCEPTI ON_SUCCESS)
{
cerr << argv[0] <<
return 1,
}

mai n: coul d not connect to provider" << endl;

/I boucl e sur |e dispatcher
while('End)
d. di spatch();

del ete provi der;
cout << argv[0] << " : Ended" << endl;

return O;

}

9.1.2 majoProv.h

#i f ndef MAJORPROV_H
#defi ne MAJORROV_H

#i ncl ude "AttacksProv. h"
class nmajorProvider : public AttacksProvider

{

public:

maj or Provi der(Xtl::Exception& err, XtlString pname , char *szld);
virtual void createCall(XtlCall State& call);

}s
#endi f

9.1.3 majorProv.cc

#i ncl ude <i ostream h>
#i nclude <stdlib. h>

#i ncl ude "nmaj or Prov. h"
#include "majorCall.h"

maj or Provi der: : maj or Provi der (Xt :: Exception& err, XtlString pnane,
char *szld) : AttacksProvider(err, pnanme, szld)

{}

/1 A call has been offered for ownership and the AttacksProvi der object will
[/l attenpt to claimit by creating a new call object using the call state
/1 of the offered call.

void maj orProvider::createCall(XtlCall State& call)
Xtl::Exception e = EXCEPTI ON_UNKNOMN;

Majordome Vocal Page 15

inCall = newngjorCall(e, call, this, inCalllndex, nCalledNunber);

9.1.4 majorCall.h

#i f ndef MAJORCALL_H
#defi ne MAJORCALL H

#i ncl ude <xtl/xtl.h>

#i ncl ude <Di spat ch/ sl di spat cher. h>
#i ncl ude <t ask. h>

#i ncl ude "AttacksCall.h"

// M scel | aneous constants
#defi ne | NDEX MAX PROC 5
#define NB_FILES SI ZE 10

#defi ne DTM-_DEFAULT LENGTH 20
#defi ne DTM-_CHO CE LENGTH 1
#defi ne DTM~_PHONE LENGTH 15

//1mportant files and pat hes
#def i ne PROVPT_PATH

#def i ne RECORD PATH

"/ hone/ speech08/ vannay/ St r ut / dat abase/ maj or done/ 1. 0/ al aw "

#defi ne RECO FI LE

"/ hone/ speech08/ vannay/ St r ut / dat abase/ maj or done/ 1. O/ r eco/ r eco. nane"
#def i ne AVBI GUCUS_FI LE

"/ hone/ speech08/ vannay/ St r ut / dat a/ maj or dorre/ 1. 0/ anbi gus"

#def i ne ADDR FI LE

"/ hone/ speech08/ vannay/ St r ut / dat a/ maj or dorre/ 1. 0/ PhoneNunber s*

"/ hone/ speech08/ vannay/ maj or done/ pr onpt s/ "

#defi ne NAVE FI LE "nane. au"
#defi ne MBG FI LE "msg. raw'
#defi ne CONVERTED FI LE "nmsg. au”
#define M ME_FI LE "msg. m me"
#define CHO CE FI LE "choi ce. au"
#defi ne DTMF_FI LE "dtnf.tnp"
#define AUDI O FI LE "audi 0. au"
#defi ne KEYWORD FI LE "t np. au”

//1ntroduction and end nessages
#def i ne WELCOME

#def i ne SPEAK_SECR_HOURS

#defi ne SPEAK BYE

// Reco nodel nessages

" bi envenue. au”
"horaire. au"
“merci.au"

#defi ne ASK_NAME " prononcer . au"
#define WAI T_MUSI K "nusi que. au”
#def i ne SPEAK _NOTH NG "not hi ng. au”
#def i ne SPEAK NAMEL "no_de_tel.au"
#def i ne SPEAK NAME2 "est |e.au"
#def i ne SPEAK REPEAT “repeter.au”
#defi ne SPEAK ASK KEY1 "choi cesl. au"
#defi ne SPEAK ASK KEY2 "choi ces2. au"
#defi ne SPEAK d VE MBG "msg. au"

#defi ne SPEAK ASK NM5G "demande_nsg. au"
#def i ne SPEAK _AMBI GUOUS "preciser.au"
#defi ne SPEAK YES NO "oui _non. au"

//Default address to nail to
#defi ne DEFAULT_RECI Pl ENT "sanuel . vannay"
/]St ates

enum _State {

MAJOR _START = 0,

MAJOR_ASK_NAME,

MAJOR_RECORD_NAME,

MAJOR_NAME_RECO,

MAJOR WAl T_NAME,

MAJOR_NAME_SW TCH,

MAJOR_SPEAK NAMEL,

Majordome Vocal Page 16

MAJOR_SPEAK_NAME2,
MAJOR_SPEAK_NAME3,
MAJOR_SPEAK_NANE4,
MAJOR_REPEAT NAME,
MAJOR_ANMBI GUOUS,
MAJOR_ASK_MBG,
MAJOR_ASK_KEY1,
MAJOR_GET_KEY1,
MAJOR_CHO CE_SW TCHL,
MAJOR_RECORD_MSG,
MAJOR_SEND MAI L,
MAJOR_ASK_KEY2,
MAJOR_GET_KEY2,
MAJOR_CHO CE_SW TCH2,
MAJOR BYE,

MAJOR_END

|
typedef enum State tState;

class majorCall : public AttacksCall, public Interrupt_handl er
{

public:
majorCal | (Xtl::Exception& e,
XtlCall State& cs,
Att acksProvi der* p,
short id,
int theCalledNunber);

virtual void interrupt();

virtual void firstAction();
virtual void start();

pr ot ect ed:

char dt nf Code[255] ;
| ong dt nf AdLong;
int dtnflndex;

int dtnflLength;

| ong dt nf AsLong;

| ong nMessageNunber;

char szBaseFi | eNameRecord[200];
char szTnmpRecord[200];

tState nySt at e;

pid_ t proc[| NDEX MAX PRCC |;

int nCal | edNurber ; /1 which nunber is called nowin integer ???
char szCal | edNunber|[2]; /1 which nunber is called now or in string ???
bool ean_t bCanl nterrupt; /1 for not interrupting nessages during

di al ogue
bool ean_t bMuisi c; [/l for interrupting the nusic

/1 for sinplify the sequencenent actions
virtual void doPlay(char *toPlay, tState nextState);
virtual void doRecord(char *toRecord, int nLength, tState nextState);

virtual void doAction();
virtual void afterPlay();
virtual void afterRecord();

virtual void recordDone() ;
virtual void keyPressed(char& c);

virtual void clearDtnf(int);
virtual void updatePin(char&);

private:

Majordome Vocal Page 17

bool ean_t | nDTMF;

int tryNb;

char recoNange[256] ;

char recoNunber|[64];

char recipi ent[256];

bool ean_t secrHours;

voi d endAction();

voi d creat eAudi oFil e(char *);

}s
#endi f

9.1.5 majorCall.cc

#i ncl ude <signal . h>
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <strings. h>
#i ncl ude <mat h. h>

#i ncl ude <uni std. h>
#i ncl ude <t ask. h>

#i ncl ude <sys/wait.h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <errno. h>

#i nclude "majorCall.h"
#i ncl ude "Fil ePl ayer. h"

majorCall::majorCall (Xtl::Exception& e,
XtlCall State& Cs,
Att acksProvi der* p,
short id,
int theCall edNunber)
AttacksCall(e, cs, p, id),Interrupt_handl er(SIGJSRL)

nMessageNunmber = 0;
tryNo = O;

nCal | edNunber = t heCal | edNunber ;

sprintf(szCalledNunber, "%l", nCalledNunber);
bCanl nterrupt = B TRUE;

bMusi ¢ = B _FALSE;

secrHours = B _FALSE;

cl ear Dt nf (DTMF_DEFAULT_LENGTH) ;

/1 les shells |ances par ce progranmme qui sont term nes peuvent
[l avertir celui-ci quils ont finis via ce signal
void majorCall::interrupt()

if (bMisic) {
switch(nyState) {
case MAJOR WAI T_NAME:
bMusi ¢ = B_FALSE;
nyState = MAJOR_NAME SW TCH,
endAction();
br eak;

}

}

if(bCaninterrupt) {
switch(nyState) {
case MAJOR NAME RECO
case MAJOR _RECORD NAME:
case MAJOR NAME SW TCH:

Majordome Vocal Page 18

case MAJOR CHO CE_SW TCH1L:
case MAJOR CHO CE_SW TCH2:
case MAJOR _SEND MAI L:

endAction();
br eak;
defaul t:
endAction();
cerr << endl << "Interrupt default case" << endl;
br eak;

}
}
}

//term ne proprenent un record ou un play
voi d maj orCal | :: endActi on()

i f(recorder)
recor dDone() ;
el se {
dpD spat cher & d = dpDi spat cher: :instance();
d. st opTi mer ((dpl OHandl er *) pl ayer) ;
pl ayer->ti merExpired(0, 0);

}

void majorCall::doPlay(char *toPlay, tState nextState)
[l - diffuse toPl ay

/[l - initie |le pas suivant

{

char szFileNane[255]; /1 the real file name to play

/1 conpute the file name to play
strcpy(szFil eName, PROWT_PATH);
strcat(szFileNarme, toPlay);

cerr << "Playing : << szFil eNane << endl;

pl ayAnnc(szFil eName);

/1 go to the next step
nyState = next State;

voi d maj orCal | : : doRecord(char *toRecord, int nLength, tState nextState)
/1 - enregistre toRecord
/1

- initie |le pas suivant
char szFileNane[255]; /1 the real file name to play
/1 conpute the file name to record
sprintf(szFil eName, "%/ %", RECORD PATH, toRecord);
/1l record
recordLenght = nLengt h;
recordMsg(szFil eNare);

/1 go to the next step
nyState = next State;

/1
/1 First action executed by the server

Majordome Vocal

Page 19

/1
/1
void majorCall::firstAction()

/]l access to the |IVS
doPl ay(VELCOMVE, MAJOR START);

void majorCall::start()

char szStartRecordTine[50];
time_t currentTinme;

doPl ay(SPEAK NOTH NG MAJCR ASK_NAVE) ;
}

[/ compose le fichier audio a partir des chiffres
//du nunero de tel ephone

voi d maj or Cal | :: creat eAudi oFi | e(char *nunber)
{
int i=0;
char tnp[2];
char command[200] = "cat";
tnp[1] = "\0';
while (nunber[i] !'="\0") {
tnp[0] = nunber[i];
strcat (command, " ");

strcat (command, PROWPT_PATH);
strcat (command, tnp);

strcat (command, ". au”
i ++;
strcat (command, " > ");

strcat (command, PROWPT_PATH);
strcat (command, AUDI O FI LE);
syst en{ command) ;

voi d maj orCal | : : doActi on()
{

i fstreamrecoFi | e(RECO FI LE);

if ('recoFile) {
cerr << "File recoFile cannot be opened" << endl;
exit(1);

i fstream anbi guousFi | e(AMBI QUOUS FI LE) ;
i f (!anbi guousFile)

cerr << "File anbi guousFil e cannot be opened" << endl;

exit(1);

i fstream addressFi | e(ADDR _FI LE) ;

if (laddressFile) {
cerr << "File addressFil e cannot be opened" << endl;
exit(1);

tState nextState;

char tenp[2048];

char recordedFil e[512];

pid_t currentProc;

i nt status;

bool ean_t anbi guous = B_FALSE;

Majordome Vocal Page 20

/1 To send the message

char header[1024] ;

char subj ect[256];

Xtl::Exception e;

XtlCall State & call State = call_state(e);
sprintf(tenp, "%/ %", RECORD PATH, M ME FILE);
FILE *minmeFile = fopen(tenmp, "w');

/[/test si le fichier audio contenant | e nomd une personne
/lexiste afin d eviter une erreur fatale
if (nyState == MAJOR SPEAK NAMEL)
sprintf(tenp, "%/ %.au", PROVPT_PATH, recoNane);
ifstreamtestFile(tenp);
if (ItestFile) {
nyState = MAJOR _ASK NAME;

}
}
//1nmplementation des etats
cerr << "=Z======m====" << rrySt ate << " \n":

switch (nyState)
{

case MAJOR START:
bCanl nterrupt = B TRUE;
start();
br eak;

case MAJOR _ASK NAME:
bCanl nterrupt = B _TRUE;
doPl ay(ASK_NAME, MAJOR_RECORD NAME);
br eak;

case MAJOR RECORD NAME:
bCanl nterrupt = B TRUE;
current Proc = getpid();
sprintf(tenp, "%1", currentProc);
sprintf(recordedFile, "%/ %", RECORD PATH, NAME FILE);
proc[0] =fork();
if(proc[0] ==

execl p("/ hone/ speech08/ vannay/ maj or done/ uti | s/ searchSi | ence",
"searchSi | ence", "204", "80", recordedFile, tenp, "80", 0);
exit(1);

doRecor d(NAME_FI LE, 20, MAJOR NAMVE RECO);
br eak;

case MAJOR_NAME RECO

bCanl nterrupt = B_FALSE;

wai t pi d(proc[0], &status, WNCOHANG ;

current Proc = getpid();

proc[1] = fork();

if (proc[l] == 0) {

sprintf(tenp, "% %i",
"/ hone/ speech08/ vannay/ St r ut / dat abase/ nmaj or done/ 1. 0/ reco/ r eco. t csh",
current Proc);

systen(tenp);

exit(1l);

}
doPl ay (SPEAK NOTH NG MAJOR WAI T_NAME) ;
br eak;

case MAJOR WAI T_NAME:
bCanl nterrupt = B _FALSE;
bMusi ¢ = B TRUE;
doPl ay (WAI T_MJSI K, MAJOR_WAI T_NAME) ;
br eak;

Majordome Vocal Page 21

case MAJOR NAME SW TCH:
bCanl nterrupt = B _FALSE;
wai t pi d(proc[1], &status, WNOHANG ;
recoFil e >> recoNare;
whi | e (!anbi guousFil e. eof () && !anbi guous) {
anbi guousFi |l e >> tenp;
if (strcnp(tenp, recoNane)) {

conti nue;
el se {
anbi guous = B _TRUE;
next State = MAJOR_AMBI GUCUS;
br eak;

}
}

i f (!anbiguous) {
/! Command and control words only
if ((strcnp(recoNanme, "LS') == 0) || (strcnp(recoNane, "TS') == 0)
[| (strcnp(recoNane, "") == 0)) {
tryNo++;
if (tryNo < 3) {
next St at e = MAJOR_REPEAT_NAME;

el se {
sprintf(recipient, "%", DEFAULT_RECI Pl ENT);
secrHours = B TRUE;
next State = MAJOR_ASK M5G

}

else if (strcnp(recoName, "MESSSAGE') == 0)
sprintf(recipient, "%", DEFAULT_REC Pl ENT);
next State = MAJOR _ASK M5G

el se {
next State = MAJOR_SPEAK NAMEL;

}
doPl ay(SPEAK_NOTH NG next State);
br eak;

case MAJOR _SPEAK NAMEL:
bCanl nterrupt = B TRUE;
while (!addressFile.eof ()) {
addressFile >> tenp >> recoNunber >> recipient;
if (strcnp(tenp, recoNane)) {

conti nue;
el se {
cout << endl << endl << "Le num de " << recoNane << " est le " <<
recoNunber << endl << endl << endl;
br eak;
)
doPl ay(SPEAK_NAMVEL, MAJOR _SPEAK NAMVE2) ;
br eak;

case MAJOR _SPEAK NAMEZ2:
bCanl nterrupt = B _TRUE;
sprintf(tenp, "%.au", recoNane);
doPl ay(tenp, MAJOR SPEAK NAME3);
br eak;

case MAJOR _SPEAK NAMES:
bCanl nterrupt = B _TRUE;
doPl ay(SPEAK_NAME2, MAJOR_SPEAK NAVE4) ;
br eak;

case MAJOR SPEAK NAME4:

Majordome Vocal Page 22

bCanl nterrupt = B TRUE;
creat eAudi oFi | e(recoNunber) ;

tryNo = O;
doPl ay(AUDI O FI LE, MAJOR ASK KEY1);
br eak;

case MAJOR _REPEAT_NAME:
bCanl nterrupt = B _TRUE;
doPl ay(SPEAK_REPEAT, MAJOR_RECORD NAME);
br eak;

case MAJOR AMBI GUAUS:
bCanl nterrupt = B TRUE;
doPl ay(SPEAK_AMBI GUOUS, MAJOR_RECORD NAME) ;
br eak;

case MAJOR ASK MsSG
bCanl nterrupt = B _TRUE;
doPl ay(SPEAK d VE_MSG MAJOR RECORD MBG ;
br eak;

case MAJOR ASK KEY1:
bCanl nterrupt = B TRUE;
cl ear Dt nf (DTMF_CHO CE_LENGTH) ;
doPl ay(SPEAK_ASK KEY1, MAJOR GET_KEY1);
br eak;

case MAJOR CGET_KEY1:
bCanl nterrupt = B TRUE;
tryNo++;
doRecor d(DTM~_FI LE, 10, MAJOR CHO CE_SW TCH1);
br eak;

case MAJOR CHO CE_SW TCHL:

bCanl nterrupt = B _FALSE;

if (tryNo < 3) {

switch (dtnfCode[0]) {

case '1':
next State = MAJOR_ASK M5G
br eak;

case '2':
next St at e
br eak;

case '3’ :
next St at e
br eak;

defaul t:
next St at e
br eak;

}

el se {
next State = MAJOR _BYE;

MAJOR _ASK_NAMNE;

MAJOR BYE;

MAJOR ASK_KEY1;

}
doPl ay(SPEAK_NOTH NG next State);
br eak;

case MAJOR RECORD MG
bCanl nterrupt = B TRUE;
currentProc = getpid();
sprintf(tenp, "%1", currentProc);
sprintf(recordedFile, "%/%", RECORD PATH, MSG FILE);
proc[0] =fork();
if(proc[0] == 0)
execl p("/ hone/ speech08/ vannay/ maj or done/ uti | s/ searchSi | ence",
"searchSi | ence", "204", "80", recordedFile, tenp, "80", 0);
exit(1);

doRecor d(MSG_FI LE, 20, MAJCR SEND MAIL):

Majordome Vocal Page 23

br eak;

case MAJOR _SEND MAI L:
bCanl nterrupt = B_FALSE;
wai t pi d(proc[0], &status, ;
sprintf(subject, "Call from%", call State.renote_address()());
sprintf(header, "From Majordone\n\
To: 9%\ n\
Subj ect: %\ n\
M me- Ver si on: 1. 0\ n\
Cont ent - Type: audi o/ basi c\ n\
Cont ent - Descri ption: nsg. au\ n\
Cont ent - Tr ansf er - Encodi ng: base64\ n\
\'n", recipient, subject);
fprintf(mneFile, "9%", header);
fclose(mneFile);
sprintf (tenp, "% %/% % %/%", "audi oconvert -f
r at e=8000, channel s=1, encodi ng=al aw, f or mat =sun, of f set =0 -i
r at e=8000, channel s=1, encodi ng=al aw, f or mat =r aw, of f set =0", RECORD PATH,
MSG FILE, " > ", RECORD PATH, CONVERTED FILE);
systen(tenp);
sprintf(tenp, "mnmencode %/ % >> %/ %", RECORD PATH, CONVERTED FI LE,
RECORD_PATH, M ME_FILE);
systen(tenp);
sprintf(tenp, "mail % < %/ %", recipient, RECORD PATH M ME FILE);
systen(tenp);
if (tryNo < 3)
next State = MAJOR _ASK KEYZ2;
tryNo = O;

el se {
next St ate = MAJOR BYE;

}
doPl ay (SPEAK NOTH NG next State);
br eak;

case MAJOR ASK KEY2:
bCanl nterrupt = B _TRUE;
cl ear Dt nf (DTMF_CHO CE_LENGTH) ;
doPl ay(SPEAK_ASK KEY2, MAJOR GET_KEY2);
br eak;

case MAJOR GET_KEY2:
bCanl nterrupt = B _TRUE;
tryNo++;
doRecor d(DTM-_FI LE, 10, MAJOR CHO CE SWTCHR);
br eak;

case MAJOR CHO CE_SW TCH2:

bCanl nterrupt = B_FALSE;

if (tryNo < 3)

switch (dtnfCode[0]) {

case '1':
next St at e
br eak;

case '2':
next State = MAJOR _BYE;
br eak;

defaul t:
next St at e
br eak;

}

el se {
next State = MAJOR _BYE;

MAJOR_ASK_NAME;

MAJOR ASK_KEY2;:

}
doPl ay(SPEAK_NOTH NG next State);
br eak;

case MAJOR BYE:

Majordome Vocal Page 24

bCanl nterrupt = B _FALSE;
if (secrHours == B TRUE) {
doPl ay(SPEAK_SECR HOURS, MAJOR_END);

el se {
doPl ay(SPEAK_BYE, MAJCR END);

br eak;

case MAJOR END:

sprintf(tenp, "rm%/% %/ % %/ % %/ % %/ %",
PROWPT_PATH, AUDI O FI LE,
RECORD _PATH, M ME_FI LE,
RECORD PATH, MSG FI LE,
RECORD_PATH, CONVERTED FI LE,
RECORD PATH, DTMF_FILE);

systen(tenp);

di sconnect _req();

br eak;

defaul t:
[IbCanlnterrupt = B _TRUE;
cerr << "default " << endl;
doPl ay(SPEAK_NOTH NG MAJOR_ASK _NAME) ;
br eak;

} //l:nd doActi on()

void majorCall::afterPl ay()
doAction();

void nmajorCall::afterRecord()
doAction();

voi d maj orCal | : : recor dDone()

/1 derived to do anot her conversion type
if (recorder)

cl ose(nsgFd) ;
nsgFd = -1;

cl eanRecor dMachi nery();
af t er Record();

}

}

/linitialise | e veteur contenant |es nuneros
//detectes et sa | ongueur

void majorCall::clearDinf(int length)

{

nfl ndex = O;
nfLength = | ength;
nf Code[0] =0;

d
d
d
I nDTMF = B_FALSE;

t
t
t
n
}

//nmet a jour |e vecteur de nureros detectes
/let sa | ongueur
voi d naj or Cal | : : updat ePi n(char & c)

i f(dtnflndex < dtnflLength)
{

Majordome Vocal

Page 25

dt nf Code[dt nf | ndex++] = c;
dt nf Code[dt nf I ndex] = "\0’;
b

i f(dtnflndex == dtnfLength)
{

switch (nyState) {
case MAJOR CGET_KEY1:
nyState = MAJOR CHO CE_SW TCH1,;
br eak;
case MAJOR GET_KEY2:
nyState = MAJOR CHO CE_SW TCH;
br eak;

l:ndAct ion();

//detecte | a pression sur une touche du tel ephone
voi d maj orCal | :: keyPressed(char & c)

recor dEndedBy = KEY_PRESSED;

if ((c!="#) & (c!="%)) {
updat ePi n(c) ;

if (bCanlnterrupt) {
if (recorder) {
if((c=="#)] (c="*))
truncat eMsgENnd() ;
if (c =="#)
nyState = MAJOR BYE;
recor dDone() ;

el se {
dpD spat cher & d = dpDi spat cher: :instance();
d. st opTi mer ((dpl OHandl er *) pl ayer) ;
if (c =="#)
nyState = MAJOR BYE;
pl ayer->ti merExpired(0, 0);

}

}
}

9.2 Sources scripts du Majordome

9.2.1 reco.tcsh

#! Jusr/local/bin/tcsh -f
source ~/.initStrut.tcsh
set base_dir = "/home/speech08/vannay/Strut/databagrdome/1.0"

cp ${base_dir}/reco/header ${base_dir}/alaw/nam@.tm
cat ${base_dir}/alaw/name.au >> ${base_dir}/alawheatmp

rasta majordome/1.0 setup= ${base_dir}/reco/raigta.s

create-archive setup= ${base_dir}/reco/create-arekip >& ${base_dir}/errfile
[syml/strut/src/strut-1.04g/qn-forward $DATABASE get ${base_dir}/reco/qn-forward.stp \
| isolated $DATABASE setup= ${base_dir}/reco/iseldistp \

| line | sed -e "s/[a-z]//g" -e "s/[0-9]//g" > &{be_dir}/reco/reco.name

kill -USR1 ${1}

Majordome Vocal Page 26

rm ${base_dir}/alaw/name.au ${base_dir}/alaw/nammg
${base_dir}/rasta/name.rasta ${base_dir}/errfile

9.2.2 intiStrut.stp

#! lusr/local/bin/tcsh -f

setenv STRUT_DIR /home/speech08/vannay/Strut

setenv STRUT_DATA_DIR $STRUT_DIR/data

setenv DATABASE_ID majordome

setenv DATABASE_VERSION 1.0

setenv DATABASE $DATABASE_ID/$DATABASE_VERSION

9.2.3 rasta.stp

command= $(STRUT_DIR)/database/$(DATABASE)/recaaasnd
frame-length= 30

frame-shift= 10

sample-rate= 8000

coefficients-count= 12

log-rasta= yes

mix-coeff= 1.0

energy= yes

9.2.4 rasta.cmd

/home/speech08/vannay/Strut/database/majordomaldwdhame.tmp
/home/speech08/vannay/Strut/database/majordomeldt@hame.rasta

9.2.5 create-archive.stp

archive= $(STRUT_DIR)/database/$(DATABASE)/archiest.rasta
phonemes=$(STRUT_DATA_DIR)/phonemes/phonemes.3state
dir= $(STRUT_DIR)/database/$(DATABASE)/rasta
extension=.rasta

recursive=no

lost-begin=1

lost-end=1

9.2.6 isolated.stp

phonemes=$(STRUT_DATA_DIR)/phonemes/phonemes.3state
dictionary=$(STRUT_DATA_DIR)/$(DATABASE)/dictionary

Is= LS

ts=TS

probs= -

output= -

mask=11111111

9.2.7 gn-forward.stp
input=$(STRUT_DIR)/database/$(DATABASE)/archiveftessta

output= -
weights=$(STRUT_DATA_DIR)/$(DATABASE)/models/sentes.234_600_36.weight
divide-by-priors=yes

9.3 Sources de searchSilence

/Aanananauanananan/

/* ATTENTION, DEFINE EITHER ALAW OR LINEAR */

/Aanananauanananan/

#define ALAW

Majordome Vocal

Page 27

#include <iostream.h>
#include <stdlib.h>
#include <fstream.h>
#include <math.h>
#include <signal.h>
#include <unistd.h>

#define SIL_DETECT "Ihome/speech08/vanmaybrdome/utils/searchSilence Alaw"
#ifdef ALAW

int alaw2linear(unsigned char a_val);

#endif

#define SEUIL_DEBUT 100
#define MAX_LEN 1000

#ifndef Boolean
#define Boolean short
#endif

#ifndef FALSE
#define FALSE 0
#endif

#ifndef TRUE

#define TRUE 1
#endif

Boolean bEnd;
Boolean bRestart;
char *szFileName;

#ifdef LINEAR

typedef short int SampleType;
#endif

#ifdef ALAW

typedef unsigned char SampleType;
#endif

class silenceFrame {
private:
float value;
silenceFrame* before;
virtual void addAtEnd(float valeur);
virtual void clean(float valeur);

public:
silenceFrame(float my_value);
virtual ~silenceFrame();
virtual int add(float valeur, float seuil, int migize);
virtual int count();
virtual int insilence(float valeur, float seuil);

silenceFrame::silenceFrame(float my_value)

{

value = my_value;
before = NULL;

k

Majordome Vocal

Page 28

silenceFrame::~silenceFrame()

{

if (before !I= NULL)
delete before;

}

void silenceFrame::addAtEnd(float valeur)
{
silenceFrame* place;
silenceFrame* ptr;
place = this;
while (place->before '= NULL)
place = place->before;
ptr = new silenceFrame(valeur);
place->before = ptr;

}

int silenceFrame::count()
{
int n;
silenceFrame* place;
place = this;
n=0;
while (place != NULL)
{
place = place->before;
n++;
}

return n;

}

void silenceFrame::clean(float LogEnergy)
{
silenceFrame* place;
silenceFrame* new_place;
place = this;
new_place = this;
while (place != NULL)
{

if (!((place->value > 0.8*LogEnergy) && (place->us < 1.2*LogEnergy)))

new_place=place->before;

place = place->before;

}
if (new_place '= NULL)

{

if (new_place != this)
{
this->value = new_place->value;
place = this->before;
this->before = new_place->before;
new_place->before = NULL;
delete place;
}

addAtEnd(LogEnergy);

}

Majordome Vocal

Page 29

else
{
this->value = LogEnergy;
this->before = NULL;
}
}
int silenceFrame::insilence(float LogEnergy, flsatil)
{
if (LogEnergy < seuil)
return 1,
else
return O;
}

int silenceFrame::add(float valeur, float seuit rimin_size)
if (insilence(valeur, seuil))
clean(valeur);

}
else
{
this->value = valeur;
this->before = NULL,;
}
return (count() > min_size);

}

void SigTerm(int)
[* pour terminer "proprement” le programme */

{
bEnd = TRUE;

}

void SigHup(int)
[* pour redemarrer "proprement” le programme */

{

bRestart = TRUE;
signal(SIGHUP, SigHup);
fflush(stdout);

}

int main(int argc, char **argv)

{

ifstream fileln;
SampleType *buffer;
SampleType *buffPtr;
int SampleTypeSize;
int filePos;

unsigned int nRead;
unsigned int nReadTot;

Majordome Vocal Page 30

unsigned int numSamples;
unsigned int numOverlap;
double energy;

double logEnergy;

double logEnergyMax;

int readOK;

int firstTime;

int frameEnergyMax;

int lastFrame;
silenceFrame* Silence;

int resultat_silence;

int resultat_silence_precedent;
int longueur_actuelle;

int taille_silence;

int pid_number;

float seuil_silence;
Boolean bParoleOK;

long nbRead;

frameEnergyMax = 0;

lastFrame = 0;

SampleTypeSize = sizeof(SampleType);
Silence = NULL;

/IKill the process after 2 minutes
int rc;
pid_t pidParent;
pidParent = getpid();
rc = fork();
if (rc == 0) {
sleep(15);
char temp[256];
sprintf (temp, "kill -9 %i", pidParent);
system(temp);
exit(1);
}

[* installation de la procedure de fin et dstagt */
signal(SIGTERM, SigTerm);
signal(SIGHUP, SigHup);

switch(argc)

case 6:
break;

default:
cerr << "Usage: " << argv[0] << " numSamples numaefile PID lengthSil" << endl;
return 1,

}

numSamples = atoi(argv[1]);

buffer = new SampleType[humSamples |;
numOverlap = atoi(argv[2]);

pid_number = atoi(argv[4]);

[* definition dimension silence */
taille_silence = atoi(argv[5]);
seuil_silence = 15;

Majordome Vocal Page 31

while('bEnd)
{
logEnergyMax = 0;
buffPtr = buffer;
firstTime = 1;
resultat_silence_precedent = -1;

bParoleOK = FALSE;
nbRead = 0;

for(unsigned int i = 0; i < numSamples; i++)
buffer[i] = 0;

bRestart = FALSE;
fileln.open(argv[3]);
filePos = 0;

while ('bEnd && bRestart)

if(firstTime)
{
I/ first time => read a full window, not onlie difference
fileln.read((char *)buffPtr, numSamples * SdeypeSize);
readOK = lfileln.bad() && 'fileln.eof();
nRead = fileln.gcount();
if (readOK)
firstTime = 0;
buffPtr += nRead / SampleTypeSize;
nReadTot = nRead,;

else if(buffPtr - buffer + numOverlap <= humSang)e
{
fileln.read((char *)buffPtr, numOverlap * SalapypeSize);
readOK = fileln.fail();
nRead = fileln.gcount();
buffPtr += nRead / SampleTypeSize;
nReadTot = nRead,;
}

else

{
fileln.read((char *)buffPtr, (buffer - buffPt numSamples) * SampleTypeSize);
readOK = fileln.fail();
nRead = fileln.gcount();
nReadTot = nRead,;
buffPtr = buffer;
if(numOverlap * SampleTypeSize > nR¢ad

fileln.read((char *)buffPtr, numOverlap * Samplgigsize - nRead);
if(Mileln.fail())

nRead = fileln.gcount();
buffPtr += nRead / SampleTypeSize;
nReadTot += nRead,;
}
}

if(buffPtr == buffer + numSamples)

{
buffPtr = buffer;

Majordome Vocal Page 32

}
energy =
if(readOK)

{

nbRead++;

if(nbRead > SEUIL_DEBUT)

bParoleOK = TRUE;

filePos = fileln.tellg();
lastFrame++;

for(unsigned inti = 0; i < numSamples; i++)

{

energy += alaw2linear(buffer[i]) * alaw2linear(fber(i]);

#ifdef ALAW

#endif
#ifdef LINEAR
energy += buffer[i] * bufferfi];

}

logEnergy = log(energy);
if(logEnergy > logEnergyMax)
{

#endif

logEnergyMax = logEnergy;
frameEnergyMax = lastFrame;

}

if (Silence == NULL)
Silence = new silenceFrame(logEnergy);

{

resultat_silence = Silence->add(logEnergy,seuiénsi,taille_silence);
longueur_actuelle = Silence->count();

else

if (resultat_silence != resultat_silence_precedent)

{ if (resultat_silence == 1)
if(bParoleOK) {
printf("===>");
kill(pid_number,SIGUSR1);
return O;
}
cerr << longueur_actuelle <<": silence\n";
}
else
{
cerr << longueur_actuelle <<": parole\n";
}
}
resultat_silence_precedent = resultat_silence;
}

Majordome Vocal

Page 33

else

{

sleep(1);
fileln.close();
fileln.open(argv[3]);
fileln.seekg(filePos);

}
[* printf("variables: %i %i %i %i %i\n " fileln.baf),fileIn.eof(),readOK,nRead,filePos);
fflush(stdout);*/
}
cout << "Log Energy max : " << logEnergyMax erdlI;
cout << "on frame : " << frameEnergyMax endl;
cout << "total frames : " << lastFrame <<knd
fileln.close();
}
return O;
}
9.4 Exemple de dictionnaire
TS sil
LS sil sil sil
TS sil sil sil

HERVE ai rr v ei

MESSAGE mm ai ss aa jj

CEDRIC_JABOULET ss aidd rriikk jjaa bb ou ll ei
CEDRIC_JABOULET ss ai dd rrii kk
CEDRIC_JABOULET jjaabb ou ll ei
CEDRIC_JABOULET jjaa bb ou ll ei ss ai dd rr ii kk
DOMINIQUE_GENOUD dd au mm ii nn ii kk jj ee nn ou
DOMINIQUE_GENOUD dd au mm ii nn ii kk
DOMINIQUE_GENOUD jj ee nn ou
DOMINIQUE_GENOUD jj ee nn ou dd au mm ii nn ii kk
EDDY_MAYORAZ ai dd ii mm aa mm aa yy au rr aa
EDDY_MAYORAZ ai dd ii

EDDY_MAYORAZ mm aa yy au rr aa
EDDY_MAYORAZ mm aa yy au rr aa ai dd i
GEORG_THIMM gg ei 0o rr gg tt ii mm
GEORG_THIMM gg ei oo rr gg

GEORG_THIMM tt ii mm

GEORG_THIMM tt ii mm gg ei oo rr gg
GILBERT_MAITRE jjii ll bb ai rr mm ai tt rr
GILBERT_MAITRE jjii Il bb ai rr
GILBERT_MAITRE mm ai tt rr

GILBERT_MAITRE mm ai tt rr jjii [l bb ai rr

GILLES CALOZ jjiill kk aall au

GILLES_CALOZ jjiill

GILLES CALOZ kk aa ll au

GILLES CALOZ kk aa Il au jjii ll
HERVE_BOURLARD airrvveibbourrllaarr
HERVE_BOURLARD bbourrllaarr
HERVE_BOURLARD bb ou rrll aa rr ai rr v ei
HERVE_GLOTIN ai rrvv eigg Il oo ttin
HERVE_GLOTIN gg ll oo ttin

HERVE_GLOTIN gg ll oo ttin ai rr vv ei
JEAN-LUC_COCHARD jj an Il uu kk kk au ch aa rr
JEAN-LUC_COCHARD jj an Il uu kk
JEAN-LUC_COCHARD kk au ch aa rr

Majordome Vocal Page 34

JEAN-LUC_COCHARD kk au ch aa rr jj an Il uu kk

9.5 Cahier des charges

