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Abstract� The mixtures of experts �ME� model o�ers a modular structure suitable for a divide�
and�conquer approach to pattern recognition� It has a probabilistic interpretation in terms of a
mixture model� which forms the basis for the error function associated with MEs� In this paper�
it is shown that for classi�cation problems the minimization of this ME error function leads to
ME outputs estimating the a posteriori probabilities of class membership of the input vector�
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� Introduction

It is well�known that for arti�cial neural networks trained by minimizing sum�of�squares or cross�
entropy error functions for a classi�cation problem� the optimal network outputs approximate the a
posteriori probabilities of class membership 
�� 
���� This property is a very useful one� especially when
the network outputs are to be used in a further decision�making stage �e�g� rejection thresholds� or
integrated in other statistical pattern recognition methods �as in hybrid NN�HMMs��

Recently� a modular architecture of neural networks known as a mixture of experts �ME� 
��
�� has
attracted quite some attention� MEs are mixture models which attempt to solve problems using a
divide�and�conquer strategy� that is� they learn to decompose complex problems in simpler subprob�
lems� In particular� the gating network of a ME learns to partition the input space �in a soft way� so
overlaps are possible� and attributes expert networks to these di�erent regions� The divide�and�conquer
approach has shown particularly useful in attributing experts to di�erent regimes in piece�wise station�
ary time series 
���� modeling discontinuities in the input�output mapping� and classi�cation problems

��
����

The ME error function is based on the interpretation of MEs as a mixture model 
�� with conditional
densities as mixture components �for the experts� and gating network outputs as mixing coe�cients�
This error function is in fact a generalization of the sum�of�squares and cross�entropy error functions
which arise in the special case of a ME with only one expert network� The purpose of this paper is to
show that at the global minimumof this general ME error function� the optimal ME outputs estimate
a posteriori probabilities of class membership�

The paper is organized as follows� First the ME architecture is brie�y described� This is followed by
the description of the general framework of maximum likelihood for the derivation of error functions�
In the case of a mixture of conditional densities this approach leads to the ME error function� The rest
of the paper deals with the interpretation of the optimal ME outputs at the minimum of this error
function for the case that the conditional density of each of the experts is either a multidimensional
Gaussian or multinomial� In both cases it is shown that the optimal ME outputs estimate a posteriori
Bayesian probabilities�

� Mixtures of Experts

In this section the basic de�nitions of the mixture of experts model are given which will be used in
the rest of the paper�

Figure � shows the architecture of a ME network� consisting of three expert networks and one gating
network both having access to the input vector x� the gating network has one output gi per expert�
The standard choices for gating and expert networks are generalized linear models 
�� and multilayer
perceptrons 
���� The output vector of a ME is the weighted �by the gating network outputs� mean
of the expert outputs�

y�x� �
mX
j��

gj�x�yj�x�� ���

The gating network outputs gj�x� can be regarded as the probability that input x is attributed to
expert j� In order to ensure this probabilistic interpretation� the activation function for the outputs
of the gating network is chosen to be the soft�max function 
���

gj �
exp�zj�Pm
i�� exp�zi�

� ���

where the zi are the gating network outputs before thresholding� This soft�max function makes that the
gating network outputs sum to unity and are non�negative� thus implementing the �soft� competition
between the experts�



IDIAP�RR ����� �

x

x

x x

Σ

Gating network

x

y y y1  2  3

g g
g

1
2

3

y

Expert 1 Expert 3Expert 2

Figure �� Architecture of a mixture of experts network�

A probabilistic interpretation of a ME can be given in the context of mixture models for conditional
probability distributions �see section ��� in 
����

p�tjx� �
mX
j��

gj�x��j�tjx�� ���

where the �j represent the conditional densities of target vector t for expert j� The use of a soft�max
function in the gating network and the fact that the �j are densities guarantee that the distribution
is normalized�

R
p�tjx� dt � ��

As outlined in the next section this distribution forms the basis for the ME error function which
can be optimized using gradient descent or the Expectation�Maximization �EM� algorithm 
���

� Estimating Posterior Probabilities

A standard way to motivate error functions is from the principle of maximum likelihood of the �inde�
pendently distributed� training data with input vectors xn and target vectors tn� fxn� tng �see section
��� in 
����

L �
Y
n

p�xn� tn� �
Y
n

p�tnjxn�p�xn��

where dependence of p�xn� tn� and p�tnjxn� on the network parameters has been left implicit� A cost
function is then obtained by taking the negative logarithm of the likelihood �and dropping the term
p�xn� which does not depend on the network parameters��

E � �
X
n

ln p�tnjxn�� ���

The most suitable choice for the conditional probability density depends on the problem� For regres�
sion problems a Gaussian noise model is often used �leading to the sum�of�squares error function�� for
classi�cation problems with a ��of�c coding scheme� a multinomial density is most suitable �leading to
the cross�entropy error function�� It is well�known that at the global minimum of these error functions
when trained for classi�cation problems� the optimal network outputs approximate a posteriori prob�
abilities �independent of the network topology� 
�� 
��� In this paper� it is shown that the minimization
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of the ME error function based on a mixture of conditional densities ��� also leads to network outputs
that estimate a posteriori probabilities�

In its most general form this ME error function to be minimized is �substituting ��� in �����

E � �
X
n

ln
mX
j��

gj�x
n��j�t

njxn��

the exact formulation of which depends on the choice for the conditional densities �j�t
njxn� of the

experts�
In the limit of an in�nite data set �to avoid bias and variance� the �nite sum over patterns �divided

by the size of the training data set� can be replaced with an integral�

E � �

Z Z
ln

�
� mX

j��

gj�x��j�tjx�

�
A p�t�x� dtdx�

factoring the joint distribution�

E � �

Z Z
ln

�
� mX

j��

gj�x��j�tjx�

�
A p�tjx�p�x� dtdx�

The interpretation of the ME outputs when this error function is minimized� can be obtained by
setting to zero the functional derivatives 

� of E with respect to the gating network outputs zj�x�
and the expert network outputs yjc�x�� The solution of these equations will then result in expressions
for gj�x� and yj�x� at the minimum of E �along the lines of section ����� of 
�� for the sum�of�squares
error function��

De�ning�

E� � �ln
mX
j��

gj�x��j�tjx�� �
�

we are then interested in the following two functional derivatives set to zero� For the gating network�

�E

�zj
�

Z �
�E�

�zj

�
p�tjx�p�x� dt � �� ���

and for the expert network�
�E

�yjc
�

Z �
�E�

�yjc

�
p�tjx�p�x�dt � �� ���

In section ��� of 
��� the partial derivative for the gating network occurring in ��� have been calculated
in the context of a gradient descent algorithm for the mixture model ���� Bishop�s outcomes are
restated here �using the chain rule��

�E�

�zj
�
X
k

�E�

�gk

�gk
�zj

�
X
k

�
�k
gk

��jkgk � gjgk� � gj � �j� ���

where the posterior probability �j is de�ned as�

�j�x� t� �
gj�jP
i gi�i

� ���

and �jk is the Kronecker delta� The functional derivative set zero with respect to the gating network
outputs is �substituting ��� in �����

�E

�zj
�

Z
�gj � �j� p�tjx�p�x� dt � �� ����

Next� the expert network equation ��� will be treated for both multinomial and Gaussian conditional
densities �j as expert mixing components�
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��� Multinomial Conditional Density

A suitable choice for the expert conditional density function in classi�cation problems with ��of�c
coding is a multinomial density�

�j�t
njxn� �

CY
c��

�ynjc�
tn
c � ����

With multinomial conditional densities� a suitable choice for the activation function for the expert
output units of is the soft�max function ����

yjc �
exp�ajc�P
k exp�ajk�

� ����

where the ajc are the expert network outputs before thresholding� In this case� the yjc are dependent�
therefore we investigate the functional derivative with respect to ajc instead of ����

�E

�ajc
�

Z �
�E�

�ajc

�
p�tjx�p�x�dt �

Z X
k

�E�

�yjk

�yjk
�ajc

p�tjx�p�x�dt � �� ����

Because of the soft�max function� the second partial derivative in ���� is similar to its counterpart
in the gating network equation �gk��zj �see the second term in �����

�yjk
�ajc

� �ckyjk � yjcyjk� ����

Using the de�nition ofE� �
� and of the multinomial density �j ���� gives for the �rst partial derivative
in �����

�E�

�yjk
�

�

�
�ln

mP
i��

gi�i

�

�yjk
�

�

�
�ln

mP
i��

gi
CQ
c��

�yic�tc
�

�yjk
�

that is� taking the partial derivative and using ����

�E�

�yjk
� �

gjy
�tk���
jk tk
mP
i��

gi�i

CY
c���c��k

�yjc�
tc � �

gj�j
mP
i��

gi�i

tk
yjk

� ��j
tk
yjk

� ��
�

Preparing for the solution of ���� one needs �using ���� and ��
���

X
k

�E�

�yjk

�yjk
�ajc

� �
X
k

�j�x� t�
tk
yjk

��ckyjk � yjcyjk� � �j�x� t�yjc � �j�x� t�tc� ����

where in the last step it has been used that for ��of�c classi�cation problems�
P

k tk � �� The functional
derivative set to zero with respect to the expert network outputs is �substituting ���� in ������

�E

�ajc
�

Z
��j�x� t�yjc � �j�x� t�tc� p�tjx�p�x� dt � �� ����

��� Gaussian Conditional Density

In section ��� of 
�� mixture models are considered with multi�dimensional Gaussian conditional dens�
ities �where the covariance matrix is the identity matrix� as mixture components�

�j�t
njxn� �

�

�����d���
exp

�
�
jjt� yj�x�jj

�

�

�
� ����
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where d is the dimensionality of t� The activation function for the expert output units is chosen to
be the linear� so yjc � ajc� Using the de�nition of E� �
� with Gaussian densities gives for the partial
derivative in ����

�E�

�yjc
�

�

�
�ln

mP
i��

gi�i

�

�yjc
� �

�
mP
i��

gi�i

��gj�j�

�yjc
� �j�yjc � tc� � �j�x� t�yjc � �j�x� t�tc�

which is the same as for the multinomial case ���� and therefore also leads to �����

��� Interpretation of Network Outputs

What is left is to determine the gj�x� and yj�x� that solve ���� and ���� �and therefore minimize the
ME error function�� For the gating network outputs �����

�E

�zj
� gjp�x�

Z
p�tjx� dt � p�x�

Z
�j�x� t� p�tjx� dt � ��

using that the conditional probability p�tjx� is normalized�

�E

�zj
� gjp�x� � p�x�

Z
�j�x� t� p�tjx� dt � ��

Therefore� at the minimum of the ME error function the gating network outputs satisfy�

gj �

Z
�j�x� t� p�tjx� dt� ����

For the expert network outputs �����

�E

�ajc
� yjcp�x�

Z
�j�x� t�� p�x�

Z
�j�x� t�tc p�tjx� dt p�tjx� dt � ��

Therefore� at the minimum of the ME error function the expert network outputs satisfy�

yjc �

R
�j�x� t�tc p�tjx� dtR
�j�x� t� p�tjx� dt

� ����

Finally� using ���� and ����� the output vector of a mixture of experts that minimizes the ME
error function is ����

yc�x� �
X
j

gj�x�yjc�x� �
X
j

Z
�j�x� t�tc p�tjx� dt�

exchanging integration and summation�Z X
j

�j�x� t�tc p�tjx� dt �

Z
tc p�tjx� dt �� htcjxi� ����

where we have used that the posterior probabilities �j�x� t� ��� sum to unity� The interpretation
of ���� is that the output yc�x� of a ME at the minimum of the ME error function is equal to the
conditional average of the target data� This is exactly the same as for the outputs of a network trained
by minimizing the sum�of�squares or cross�entropy error functions 
��
���� It is a well�known result that
for a classi�cation problem with ��of�c coding the conditional average of the target data is �see� for
example� section ��� in 
��� �

yc�x� � htcjxi � P �Ccjx��

so that the outputs of a ME do indeed estimate the a posteriori probability that x belongs to class Cc�
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� Discussion

In this paper� it has been shown that the minimization of the ME error function for classi�cation
problems leads to optimalME outputs that estimate the a posteriori probabilities of class membership�
This property is a very useful one� for example� for the integration of MEs in hybrid HMM�ANN
systems� Future work should indicate how accurate these probability estimates are on real�world
problems with a limited amount of data and local minima during training�
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