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RÉSUMÉ

Nous proposons un modèle fondé sur le couplage d’un
système de reconnaissance de la parole et de l’analyse
de scène auditive (modèle CASA). Pour la reconnais-
sance de la parole, nous faisons appel à un système hy-
bride HMM/ANN (Modèles de Markov cachés / réseaux
de neurones artificiels), modifié de façon à classifier des
signaux dont la représentation temps-fréquence est parti-
elle. Le but est d’obtenir une robustesse de l’identifica-
tion d’un signal de parole malgré l’addition d’un bruit de
bande intense. Le modèle CASA identifie à chaque instant
la sous-bande dans laquelle le bruit est présent de façon `a
l’exclure. Nous examinons différents modes de sélection
fondés sur un indice de confiance calculé AVANT ou
APRES l’entrée dans l’étape de reconnaissance. L’indice
AVANT basé sur l’entropie de Shannon, est évalué au
niveau primitif. Il tient compte de la structure harmonique
du signal. L’indice APRES, également entropique, est cal-
culé sur les sorties des MLP. L’indice AVANT est le plus
efficace au vu des performances de reconnaissance de pa-
role continue établies sur NUMBERS93.

M OTS CLEFS

Reconnaissance robuste de la parole continue, analyse
de scène auditive, système multi-bandes, système hybride
HMM/ANN, entropie.

1. INTRODUCTION

Tous les algorithmes de reconnaissance de la parole (ASR
en anglais, pourAutomatic Speech Recognition) ont
une grande sensibilité au bruit. Or, l’oreille humaine est
très robuste à ces perturbations. Les signaux de parole
occupent une bande de fréquence utile qui s’étale de
100 Hz à 4 kHz et présentent une certaine redondance
dans le domaine fréquentiel. Allen [All94] suggère
que le processus de reconnaissance humain est basé
sur l’exploitation de cette redondance : entre 3 et 4
sous-bandes peuvent être traitées indépendamment avec
une reconnaissance de leur contenu propre.A priori,
ceci permet de mieux résister à la présence d’un bruit
masquant complètement le contenu de l’une de ces
bandes (i.e., c’est une amputation de la représentation
spectrale du signal) à condition de pouvoir sélectionner
les sous-bandes dans lesquelles le signal est dominant.
Les modèles classiques ne comportent pas une telle étape,

dite de segmentation primitive, au cours de laquelle on
sépare les signaux à reconnaı̂tre des bruits parasites. Pour
cela, nous utilisons un système de sélection, dit AVANT,
fondé sur une étape de traitement intermédiaire tenant
compte du degré d’harmonicité du signal. Nous couplons
ce processus avec un modèle de reconnaissance approprié,
de type HMM/ANN [MB95]. Pour comparaison, nous
étudions aussi un mode de sélection dit APRES, fondé
sur la sélection de la sous-bande bruitée à partir des
distributions de sortie des ANN.

2. LE MOD ÈLE DE RECONNAISSANCE DE

LA PAROLE

2.1. Le système hybride HMM/ANN

Nous utilisons un système hybride HMM/ANN. Pour un
vecteur acoustique donné, l’estimateur de sa probabilit´e
d’appartenance à l’une des classes de sortie (i.e., les états
du modèle HMM) est un réseau de neurones de type
perceptron multicouche (MLP). Les MLP sont entraı̂nés
et testés à partir de spectres Log-Rasta-LPC (LPC pour
”Linear Prediction Coding”) calculés indépendamment
sur chaque sous-bande ou groupe de sous-bandes
[HTP96]. Le découpage fréquentiel en 4 sous-bandes est :
[0, 901] Hz, [797, 1661] Hz, [1493, 2547] Hz et [2298,
4000] Hz. Pour la reconnaissance, les fenêtres d’analyse
du signal sont de 25 ms et se recouvrent sur 12,5 ms. Les
MLP génèrent pour chaque fenêtre les probabilités des
états HMM (états ”phonétiques”, au nombre de 58). Celles
ci sont données au décodeur acoustico-phonétique de
type Viterbi qui réalise leur mise en séquence. Les MLP
possèdent tous une seule couche cachée de 400 unités.
Pour rendre compte du contexte, 9 fenêtres consécutives
sont présentées simultanément à l’entrée du MLP. Nous
notons MLP(x) les 4 MLP ”partiels” entraı̂nés sur une
seule sous-bande. Le vecteur caractérisant chaque fenêtre
comporte les dérivées première et seconde de l’énergie
du signal (30 entrées), plus le nombre de coefficients
cepstraux choisis, qui varie pour chaque sous-bande
(respectivement 8, 5, 3 et 3). Le nombre d’entrées est
respectivement pourx = f1; 2; 3; 4g : 162,135,117,117.
Nous notons MLP(xyz) les 4 MLP partiels, chacun
entraı̂né et testé sur les combinaisons (xyz) de trois sous-
bandes. Ils sont classés suivant le numéro de la bande
manquante et ils ont respectivement 369, 396, 414, 414
entrées. Le reconnaisseur ”classique” en pleine bande est
noté MLP(1234). Il est entraı̂né et testé avec des entrées
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Figure 1: Découpage temps fréquence, et analyse d’une
fenêtre de temps par le MLP(234).

Log-Rasta-PLP à 12 coefficients. Avec les 14 coeffi-
cients d’énergie, ce MLP(1234) possède 234 entrées. La
Figure 1 montre l’analyse d’une fenêtre par le MLP(234).

2.2. Estimation des fonctions de vraisemblances

Soit X une séquence deN vecteurs acoustiquesX = fxngn2[1;N ]. Chaque modèle HMM de mot,Mi, est construit à partir d’un ensemble deC classes
 = f!cgc2[1;C], une classe par phonème. Chaque
topologie HMMMi est définie comme un graphe orienté
contenantK états qk;k2[1;K] chacun associé à une
classe!qk de
. Les MLP sont de bons estimateurs de
probabilités a posteriori d’appartenance à une classe
[MB95]. Chaque MLP possèdeC = 58 unités de sortie
(une par classe!c) et il est entraı̂né, puis testé sur les
vecteurs acoustiques de 25 ms pour générer les probab-
ilités a posterioriP (!cjxn;�)8c2[1;C], où � représente
l’ensemble des paramètres du MLP. Or, les probabilités
a priori P (!c) sont connues et, d’après le théorème de
Bayes nous avons :P (!cjxn;�)P (!c) = P(xnj!c;�)P(xn)
avec P des densités de probabilité. LesP(xn) étant
constants et indépendants de la classe, le terme de gauche
est une grandeur proportionnelle à la vraisemblanceP (xnj!c;�) [Bou96]. Cette valeur sera utilisée comme
probabilité d’appartenance à une classe dans l’algorithme
de décodage.

2.3. Environnement

Nous utilisons l’environnement STRUT intégrant les
étapes de traitement du signal, de décodage acoustico-
phonétique et de statistique après correction orthograph-
ique. La phase d’apprentissage et les tests sont réalisés
en parole continue sur NUMBERS93 [OGI Numbers’93
DB]. Celle-ci est constituée de 2167 phrases téléphonées
de nombres produits par 1132 locuteurs. Nous avons
utilisé 1534 phrases pour l’entraı̂nement et 384 phrases
pour le test. Nous ne réalisons pas d’entraı̂nement à
partir de signaux bruités. Le bruit additif utilisé pour
les tests est synthétisé à partir d’un bruit blanc gaussien
de bande [0,430] Hz, donc seule la première bande est
significativement bruitée. Le rapport signal sur bruit est
de 0 dB RMS en moyenne phrase par phrase (silences
inclus et en peline bande).

2.4. Les MLP Associatifs et Combinatoires

Nous proposons deux modèles :

1. l’un ”associatif” est fondé sur la sélection et l’associ-
ation des MLP(x) par produit,

2. l’autre ”combinatoire” est basé sur la sélection des
MLP(xyz).

Dans le cas d’un bruit de bande étroit stationnaire dans
chaque fenêtre à court terme (i.e., ne contaminant qu’une
seule sous-bande à la fois), un sélecteur guidant le
choix du meilleur MLP permet de conserver un taux de
reconnaissance optimum. Tout d’abord, nous évaluons
systématiquement les performances de tous les MLP(xyz)
et MLP(x) avec et sans bruit dans la sous-bande 1
(voir Table 1). Le modèle associatif résulte du produit
des réponses des MLP(x), fenêtre par fenêtre. Il est
intéressant de noter que l’association des MLP(xyz)
conduit à 11,5 % d’erreur en signal propre, ce qui est
équivalent au MLP(1234). Cela suggère qu’un modèle,
également de type ”associatif”, mais avec des groupes de
sous-bandes (i.e., à partir des MLP(xyz), plus robustes)
est à envisager.

type % err. % err. MLP % err.
du signal signal associés signal

MLP propre bruité propre
(1) 38.9 84.8
(2) 39.3 40.5
(3) 55.3 56.8 �4 MLP(xyz) 11.5
(4) 65.2 65.7

(1234) 11.3 55.6 (1)*(2)*(3)*(4) 27.6
(234) 19.0 19.2 (2)*(3)*(4) 38.6
(134) 14.9 55.9 (1)*(3)*(4) 32.7
(124) 12.2 48.6 (1)*(2)*(4) 27.8
(123) 12.3 50.5 (1)*(2)*(3) 24.9

Table 1: Taux d’erreur en pourcentage de mots continus
reconnus: signal propre, signal bruité en sous-bande 1,
pour les MLP(x), MLP(xyz), MLP(1234) et les produits
de trois ou quatre MLP(x) (par ex. (1)*(2)*(3)). Le produit
des 4 MLP(xyz) est noté�4 MLP(xyz). Les taux d’erreur
des modèles de droite en signal bruité n’ont pas été cal-
culés.

Nous voyons immédiatement table 1 que le modèle ”as-
sociatif” conduit à de mauvais résultats par rapport au
modèle ”combinatoire”. Cela traduit la perte des informa-
tions de covariance entre sous-bandes. Nous développons
un sélecteur adapté à ces deux types de modèles.

3. LE PRINCIPE DE SÉLECTION

Il est fondé sur l’utilisation d’une mesure d’entropie, soit
appliquée sur une représentation intermédiaire du signal
AVANT reconnaissance, soit évaluée sur les fonctions
de vraisemblance associées à chaque MLP (sélecteur
dit APRES). Il permet dans les deux cas la sélection du
ou des meilleurs MLP pour chaque fenêtre de temps de
25 ms. La figure 2 en donne le schéma général.
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Figure 2: Principe de sélection des MLP combinatoires
dans le processus de reconnaissance. Ici sélection du
MLP(234) pour une fenêtre donnée.

3.1. Le sélecteur AVANT

L’entropie d’un système est une mesure quantitative de
son degré de désordre. Appliquée sur une représentation
du signal, elle est potentiellement capable de nous
indiquer l’existence de structures, par opposition au
bruit, dont l’entropie est maximale. En effet l’auto-
corrélation d’un bruit est une distribution quasi-uniforme,
donc son entropie est élevée, alors que l’entropie de
l’auto-corrélation d’un signal non bruité périodique ou
harmonique sera plus faible.

Nous voulons obtenir des sélecteurs aptes à travailler en
bruit non-stationnaire, de plus l’analyse de périodicit´e
d’un signal de parole réclame des fenêtres temporelles
à moyen terme. Nous calculons donc pour chaque
fenêtre de 50 ms, glissantes de 12,5 ms, l’entropie de
l’auto-corrélation en sous-bandes ou en groupes de
sous-bandes.

Après démodulation du signal (rectification + passe-
bande, selon [BL96]), puis normalisation, nous calculons
l’entropieH(AC) de l’auto-corrélogramme :H(AC) = � NXt=1( e(t)PNt=1 e(t) )log2( e(t)PNt=1 e(t) ) (1)

avec :e(� ) = ac(� )�min(ac(� ))+1 et� l’axe des délais,N étant le nombre d’échantillons de l’auto-corrélation pris
en compte et ac(� ) l’auto-corrélogramme.

Deux entrées sont utilisées pour ce calcul de l’entropie
d’autocorrélation : les groupes de sous-bandes (xyz),
ou les sous-bandes (x) prises indépendamment. Dans le
premier cas, l’identification de la Bande Bruitée (IBB)
est effectuée fenêtre par fenêtre en sélectionnant le
groupe de sous-bandes dont l’entropie est minimale :
sélecteur H(AC(xyz)). Dans le second cas, la sous-bande
identifiée comme étant bruitée est celle qui possède
l’entropie maximale. Ce second mode de sélection est
noté H(AC(x)).

3.2. Le sélecteur APRES

Pour définir ce sélecteur, nous appliquons une mesure
d’entropie sur la distribution des sorties des MLP as-
sociée à chaque fenêtre. En effet en s’appuyant sur les
représentations utilisées au cours de l’étape de recon-
naissance, cette mesure signale si l’information d’entrée
s’apparie correctement avec l’information mémorisée, qui
décrit l’ensemble des structures devant être reconnues.Le
bruit, l’absence de structure, ou bien des distorsions im-

portantes seront aussi diagnostiqués à ce niveau. Ainsi,
nous pourrons optimiser la reconnaissance en choisissant
le MLP le plus discriminant.

Notre fonction de transfert des MLP étant la sigmoı̈de,
nous pouvons faire les calculs de l’entropie sur les sorties
normalisées ou non. Au vu des résultats la normalisation
est nécessaire car la bonne Identification de la Bande
Bruitée (IBB, voir définition plus bas) est augmentée
de 14 points : 44.6 % contre 30.7 %. De plus afin de
rester homogène avec le sélecteur AVANT nous avons
élargi la fenêtre d’intégration à 50 ms en moyennant
pour une frame donnée son entropie avec celle de sa
voisine précédente et suivante. Compte tenu de leur
recouvrement, l’intégration est faite sur 50 ms. Le gain
de bonne IBB ainsi obtenu est assez faible : 1.4 points
(46.0 % contre 44.6 %). Nous avons mesuré que pour du
bruit stationnaire plus la fenêtre est large plus le taux de
bonne IBB augmente, mais notre but est de rester dans la
perspective d’une application en bruit non stationnaire,
ce qui requiert des fenêtres d’intégration temporelle de
l’ordre de 50 ms.

L’entropie d’une fenêtreF est donc calculée sur une moy-
enne de 3 entropies calculées chacune après normalisa-
tion des sorties associées des MLP. Finalement le mode
de sélection APRES est défini par le choix pour la fenêtreF du MLP(xyz) dont l’entropie est la plus faible. Ou in-
versement par le choix du MLP(x) qui conduit à l’entropie
maximale.

4. RÉSULTATS

4.1. Les taux d’IBB

Nous évaluons l’IBB avec du bruit de bande stationnaire
additif en bande 1. Nous montrons (Table 2) les taux
d’identification corrects de la bande 1, et ce pour les
sélecteurs AVANT et APRES.

bande AVANT APRES
d’entrée H(AC) H(MLP)

(1) 60.1 34.4
(234) 81.5 46.0

Table 2: Scores d’identification de la bande bruitée (tou-
jours la bande 1) sur l’ensemble des fenêtres de la base de
test. Conditions : signal bruité (0 dB), modes de sélection
AVANT et APRES, à partir des bandes d’entrées (1) ou
(234) pour AC(1) ou AC(234), et MLP(1) ou MLP(234).

Nous avons illustré avec la figure 3 la sortie de ce pro-
cessus de sélection. La bande sélectionnée dans chaque
fenêtre de temps est indiquée, pour les différents modes
de sélection décrits dans l’article.

4.2. Les scores de reconnaissance

Les scores sont exprimés en terme de taux d’erreur. Le
taux d’erreur est la proportion de mots incorrects en fais-
ant la somme (délétions + insertions + substitutions). En
pleine bande et sans bruit, il est de 11,3 %. Les résultats
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Figure 3: Analyse d’un échantillon bruité de la base
NUMBERS93 (”eighteen three”, de durée 2.5s). De haut
en bas : spectre du signal bruité à 0 dB par du bruit
Gaussien de bande [0, 430] Hz. Pour chaque fenêtre de
25 ms, la sélection est indiquée en noir. De haut en
bas, elle est établie: par entropie d’auto-corrélation mono-
bande (x) ou sous-bandes groupées (xyz), et par entropie
des sorties normalisées des MLP(x) ou les MLP(xyz).

de tous les MLP, avec et sans bruit, sont dans la Table
1. Nous vérifions que le MLP(234) présente les meilleurs
scores, avec environ 19 % d’erreur, que le signal soit bruit´e
ou non. Ce score est une borne inférieure qui correspond
à une identification toujours correcte de la bande bruitée
(taux d’IBB=100%).

Table 3, nous indiquons les taux d’erreur de reconnais-
sance après sélection automatique (i.e., sensible à l’IBB).
Les scores sont établis uniquement pour les MLP combin-
atoires MLP(xyz), pour les deux modes de sélection AV-
ANT et APRES. La sélection elle-même est réalisée par
groupe (xyz), ou bien par sous-bandes indépendantes (x).
Le mode AVANT avec H(AC(xyz)) est le plus performant,
avec 22.0 % d’erreur. L’écart observé, de 2.8 points par
rapport à la borne idéale, est imputable aux erreurs d’IBB
(voir Table 2), peu fréquentes avec ce mode de sélection
(81.5 % de bonne IBB). Celui-ci parvient à différencier
correctement le bruit et le signal de parole. Nous n’avons
pas calculé les scores de reconnaissance du modèle associ-
atif après sélection automatique, car il est d’emblée moins
performant (la borne de sélection idéale en signal propre
est de 38.6 %, voir Table 1).

5. CONCLUSION ET PERSPECTIVES

Nous montrons un premier exemple performant de
couplage entre un niveau d’analyse primitif et un système
de reconnaissance de la parole HMM/ANN, testé sur une
base de données de référence. Les résultats obtenus avec
le sélecteur AVANT sont très prometteurs (22.0 % contre
55.6 %) et ils confirment la possibilité de séparer un

AVANT : H(AC) APRES : H(MLP)
sur (x) 27.5 42.5
sur (xyz) 22.0 37.6

Table 3: Taux d’erreur en pourcentage de mots continus
reconnus sur le signal bruité avec sélection automatique
des MLP(xyz) ”combinatoires”, suivant les 2 modes AV-
ANT et APRES, avec les deux modes de calcul sur les
mono-bandes (x) ou groupes de bandes (xyz). La référence
du reconnaisseur classique MLP(1234) est 55.6 % d’er-
reur.

signal de parole et une source interférente au cours d’une
étape primitive, et selon un mode AVANT ascendant
(”bottum-up”). L’application de notre modèle à du bruit
non stationnaire est assez immédiate grâce à la nature
dynamique de nos sélecteurs. L’usage d’autres indices
primitifs (ITD : Différence de Temps Interaurale, ou AM
: Modulation d’Amplitude) de façon à mieux couvrir les
zones non voisées, et à améliorer le modèle de sélection
AVANT sont en cours.

De même, pour améliorer l’adaptativité du modèle de re-
connaissance tout en gardant la possibilité de pré-calculer
les représentations, nous pourrons tester des combinais-
ons de sous-bandes plus étroites (mais plus nombreuses)
ou qui se superposent fréquentiellement. Dans cette per-
spective, ce sont les MLP de type associatifs MLP(x) qui
seraient le mieux placés. Nous testerons également la pos-
sibilité de pondérer les reconnaisseurs sous-bandes plutôt
que de les sélectionner.
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