REPORT

IDIAP RESEARCH

Dalle Molle Institute
for Perceptual Artificial
Intelligence @ P.O.Box 592 e
Martigny e Valais e Switzerland

phone +41 — 27 —721 77 11
fax +41 — 27 —-721 77 12
e-mail secretariat@idiap.ch

internet http://www.idiap.ch

IDIAP

Martigny - Valais - Suisse

COMBINING LINEAR
DICHOMOTIZERS TO CONSTRUCT
NONLINEAR POLYCHOTOMIZERS

Ethem Alpaydin ® Eddy Mayoraz ®

IDIAP-RR 98-05

May 1998

2 Visiting scholar at IDIAP while this work was done. On sabbatical leave from
the Department of Computer Engineering, Bogazi¢i University, TR-80815 Istanbul
Turkey. alpaydin@boun.edu.tr

b IDIAP, CP 592, CH-1920 Martigny Switzerland. mayoraz@idiap.ch

IDIAP Research Report 98-05

COMBINING LINEAR DICHOMOTIZERS TO CONSTRUCT
NONLINEAR POLYCHOTOMIZERS

Ethem Alpaydin Eddy Mayoraz

May 1998

Abstract. A polychotomizer which assigns the input to one of K'; K > 3, is constructed using a set
of dichotomizers which assign the input to one of two classes. We propose techniques to construct a
set of linear dichotomizers whose combined decision forms a nonlinear polychotomizer, to extract
structure from data. One way is using error-correcting output codes (ECOC). We propose to
incorporate soft weight sharing in training a multilayer perceptron (MLP) to force the second
layer weights to a bimodal distribution to be able to interpret them as the decomposition matrix of
classes in terms of dichotomizers. This technique can also be used to finetune a set of dichotomizers
already generated, for example using ECOC; in such a case, ECOC defines the target values for
hidden units in an MLP, facilitating training. Simulation results on eight datasets indicate that
compared with a linear one-per-class polychotomizer, pairwise linear dichotomizers and ECOC-
based linear dichotomizers, this method generates more accurate classifiers. We also propose
and test a method of incremental construction whereby the required number of dichotomizers is
determined automatically as opposed to assumed a priori.

2 IDIAP-RR 98-05

1 Introduction

Classification is the assignment of a multidimensional input @ to one of K classes, C;,i = 1,..., K.
For K = 2, the system is a dichotomazer. For K > 3, it is called a polychotomizer. It is generally the
case that separating a class from all other classes may be difficult and requires a complex discriminant
function which for good generalization needs a large training sample. The alternative is to define a set
of simpler classifiers, each specializing on one aspect thereby solving a simpler problem. Combining
these simpler classifiers we get the final classifier.

For each dichotomizer a;,1 = 1,..., L, we define a sample of positive examples Xl‘" and a sample
of negative examples X7 . a7 is trained to give 41 for & € Xl‘" and —1 for ® € A . The decomposition
matriz D = [dg] of size K X L associates classes Cx, k= 1,..., K, to the samples Xl‘" and A;":

+1 means C;, C Xl‘"
dp; = —1 means C; C A (1)
0 means C;, N (Xl‘" ux,)==0

Rows of D correspond to the definition of a class as a vector of responses of the L dichotomizers. For
example with four dichotomizers, if row k is [—1,+1,0,+1], for us to say the input belongs to Cg, we
should have a; = —1,a5 = +1,a4 = +1 and we do not care for the value of a3. Whereas if column [
is [+1,—1,4+1]" then we see that a; should separate Cs from C; and Cs.

Once all dichotomizers are trained, given a pattern to classify, all ¢; compute their outputs and
we assign the pattern to the class having the closest representation (row of D). When the vectors are
—1/ 4+ 1, this can be done by taking a dot product

c= argmkale: ardy; (2)

The usual one-per-class classification scheme corresponds to using a square (L = K) matrix D where

dpr, = +1 and dj; = —1,k # [otherwise. That is, X;" = {z|x € C;} and X, = {=|z € C;, 1 £ k}.

2 Pairwise Classifiers

To get tolerance to faults (failure of a;), we add redundance by defining additional dichotomizers.
One immediate possibility is to build K (K — 1)/2 pairwise classifiers, each being trained to separate
examples of one class from examples of one other class, not using the examples of other classes [3].
Matrix D is of size K x K(K —1)/2. For example for K = 4, we have

+1 +1 +1 0 0 0
-1 0 0 +1 +1 0
0 -1 0 -1 0 +1
0 0 -1 0 -1 -1

D=

One problem with pairwise classification is that the number of dichotomizers is O(K?) which may be
expensive when K is large. Another is that each dichotomizer is trained with data from a smaller
training set of only two classes and thus has higher variance. Related to this fact is that the response
of dichotomizer separating C; from C; gives no information at all when the example does not belong
to C; or C; [6]. To alleviate these deficiencies, a smaller number of dichotomizers which are all trained
with the whole dataset is desirable.

3 Error Correcting Output Code Dichotomizers

To get robustness in case the dichotomizers fail, we should have rows of D as different as possible in
terms of Hamming distance by adding redundancy; this is the idea of error correcting output codes

IDIAP-RR 98-05 3

(ECOC) [1] and is used to decompose polychotomies into dichotomies [4, 6]. With K classes, we have
up to 25-1 — 1 dichotomizers. For example, with four classes the D matrix is

+1 +1 +1 +1 +1 +1 +1
-1 -1 -1 -1 41 41 +1
-1 -1 +1 +1 -1 -1 +1
-1 +1 -1 +1 -1 +1 -1

Dietterich and Bakiri [1] report that with C4.5 trees, the dichotomizers trained to learn the ECOC
dichotomizers are larger than the one-per-class tree and when multilayer perceptrons are used instead
of trees, there may be a problem of convergence. These imply that the tasks defined by the columns
of D may be more difficult than the original problem of separating one class from all others.

D=

4 Learning the Decomposition Matrix

Let us take a multilayer perceptron with L sigmoidal hidden units and softmax outputs for classific-

ation .
exp[d 1o driai]

IS T (3)
Zi:l exp [Zl:o dyaq]
with bias units added, i.e., zg = ap = 1, trained to minimize the cross-entropy on a dataset X' =

{2, y0},

a; = tanh(w! @) | puj, =

E(X|wy, de) ==Y y log ! (4)
Tk

In this structure, each sigmoidal hidden unit can be seen as a dichotomizer (in the range [—1,+1]) and
the second layer weights dg; constitute the decomposition matrix D. The advantage of this structure
is that, when compared with pairwise classification, it may be trained with less than K x (K —1)/2
dichotomizers and all dichotomizers are trained with the whole sample. Compared with ECOC, the
partitioning of classes is not done a priori but is coupled with the training of the dichotomizers such
that any deficiency can be corrected by other dichotomizers.

As it is, there is no restriction on dg; values. If we want to get a D with binary entries as in
Eq. 1, we can force this through soft weight sharing [7] by assuming that dj; (nonbias weights only)
are sampled from a bimodal density, e.g., mixture of two Gaussians

p(d) = P(1)p(d|1) + P(2)p(d[2) = arpi(d) + asps(d) ()

Qm,m = 1,2, are priors and p,, are Gaussian components p(d|m) = pm(d) ~ N(epm, s2,) with ¢; = —1
and ¢s = +1. Maximizing the likelihood of dy; is equivalent to adding the following regularization
term to the cross-entropy

Q=-v Zzlog [1p1(dpi) + azp2(dr)] (6)

k l

Note that this is a Maximum A Posteriori (MAP) approach where cross-entropy is the — log of the
likelihood (Eq. 4) and € is the — log of the prior (Eq. 6 with v as a common factor in the component
variances); thus their sum is the —log of the posterior. Using gradient-descent, we can get update
equations for dj; as well as a,;, and sfn (after adding auxiliary variables to guarantee that variances
are nonnegative and priors sum up to one).

A way that 1s simpler to implement than defining a prior is to have a set of auxiliary variables zy;

and define
dkl = tanh(ﬁzkl) (7)

where 3 defines the sharpness. We can learn zj; by backpropagating to minimize Eq. (4). tanh forces
dg; to be in the interval [—1,+1] saturating in the two extremes where the derivative is zero. This
is similar to having two Gaussians where the posterior, ampm(d)/[a1p1(d) + aapa(d)], is a sigmoid,
which has the same shape as tanh. Smaller s2, correspond to sharper sigmoids, i.e., larger 3.

4 IDIAP-RR 98-05

5 Incremental Construction of Dichotomizers

We can also add dichotomizers incrementally as opposed to assuming a fixed number a priori. At each
iteration, if we do not have yet enough accuracy on the training set, we add a dichotomizer such that
it separates classes which we currently have the largest difficulty discriminating. The algorithm is as
follows:

1. L — 1. Choose two classes at random, ¢ and j.

2. Diyp, — 41, D1 — =1, Dy — O, Vk, k£ i k#j

3. Train ar according to the definition in column L of D.
4

. Vk such that Dyr = 0, count pz', examples belonging to class k& such that ay > 0. Similarly
count p, , examples belonging to class k& such that ar < 0. Normalize by dividing with priors,

P(k).

5. Choose class g that is best separated by a;, measured as minimum entropy
g — argmin [—p{ logpil — p; log py]

Note that entropy is close to 0 if p; or p; 1s close to 1, that is if all examples of C;, are on the
positive or negative side of the hyperplane.

6. If p;}" > py, Dgr + +1, otherwise Dyp « —1. If 3k s.t. Dy = 0, goto (3). If the new row, or
its complement, already exists, do not add, goto (9).

7. Using dichotomizers a;,{ =1, ..., L trained up to this point and matrix D that is K x L, classify
points in the training set.

8. If sufficient accuracy, as given by a preset threshold, is attained or if L = L4, stop.

9. Compute confusion matrix ' where Cj; is the number of examples belonging to C; but are
assigned to C;. The two classes which we have most difficulty separating are the coordinates of
the max entry in '

i,j < arg HglE}CX[Cgk + Chy]

L — L+1. Goto (2)

This structure has the advantage that we can determine automatically the number of dichotomizers
necessary as a function of the required accuracy. Note that with linear dichotomizers, we cannot get
arbitrarily high accuracy, as the columns of 1) may correspond to tasks that are not linearly separable.
This is a variant of the Pertinent-ECOC algorithm [4] where in Step (9), we choose the two classes
whose definition in matrix D (rows of D) has the least Hamming distance.

6 Simulation Results

We compare the techniques we discussed on several datasets. digsma is by I. Guyon and contains
16 x 16 bitmaps of ten handwritten digits. digit and pen are respectively for optical and pen-based
handwritten digit recognition and are available through the authors. The other datasets are from UCI
repository [5].

We first compare the linear one-per-class polychotomizer and pairwise linear dichotomizers (Table 1).
We use the bx2cv ¢ test [2] as the test of statistically significant difference, except on letter where
only one run is done and the McNemar test [2] is used. In five of the eight datasets, the accuracy of
pairwise dichotomizers 1s significantly superior to that of the one-per-class polychotomizer; these are
the datasets where there is a difference between having K(K — 1)/2 and K linear models.

The pairwise classifier in turn is compared with the MLP-Soft started from random initial weights.
In Figure 1, we see that with the constraints added, the second layer weights of an MLP do converge

IDIAP-RR 98-05 5

Table 1: Comparison of linear one-per-class polychotomizer, pairwise linear dichotomizers, MLP-Soft
and normal MLP. Values are L: average, stdev accuracies of ten independent runs on the test set,
except on letter where only one run is made. “*’ indicates statistically significantly (0.95) better
than the previous column. ‘<’ means worse.

One-per-Class Pairwise MLP-Soft vanilla MLP
glass 7: 61.87,3.94 | 21: 61.87, 3.55 21: 66.82,4.18 66.45, 4.64
vowel 11: 44.18, 0.99 | 55: 66.38,2.48 * | 55: 83.90,1.81 * | 76.89,2.00 <
thyroid 3: 95.45,0.33 | 3: 95.11,0.35 3: 94.27,0.47 97.75,0.89 *
satimage | 7: 85.37,0.26 | 21: 86.36,0.33 * | 21: 88.40,0.35 * | 88.80, 0.50
letter 26: 76.39 325: 77.93 * 100: 87.98 * 88.38
digsma 10: 95.27,0.75 | 45: 97.48, 0.82 45: 97.83, 0.51 98.22, 0.53
digit 10: 96.16, 0.50 | 45: 97.62, 0.21 * | 45: 97.32, 0.32 97.13, 0.40
pen 10: 90.95, 1.44 | 45: 94.62, 0.41 * | 45: 96.562,0.85 * | 98.63, 0.12

to a bimodal distribution without losing accuracy. We notice that the approach given in Eq. (7)
where auxiliary parameters are filtered through tanh converge better than soft weight sharing with
two Gaussians. We name this MLP-Soft which in four datasets is significantly more accurate than
pairwise classification. When K is large, a pairwise scheme may be too costly (e.g., on letter).
MLP-Soft is able to learn with arbitrary L and its accuracy is never less than normal MLP without
constraints (Table 1) —MAP vs ML estimation.

MLP-Soft can also be used to improve the accuracy of a given set of dichotomizers as opposed to
training from scratch. Though the pure ECOC assumes strong learners that can learn the defined
dichotomizers and thus fails with linear dichotomizers because the tasks are generally not linearly
separable, by transforming the structure into an MLP and then finetuneing the dichotomizers and the
decomposition matrix, the accuracy of ECOC is improved. That is the dichotomizers generated by
ECOC define the first layer weights and we take an approximate inverse of tanh to initialize zy;

- +1.5 ifdy; =+1 (8)
FE=Y =15 ifdy = -1

We take values off the saturation regions for the derivative to be nonzero. Having constructed a bona
fide MLP, we can finetune the dichotomizers and the decomposition matrix by training them in a
coupled manner as the first and second layer weights. During finetuning, we use a small learning
factor to keep the structure generated by ECOC. As shown in Table 2, in four of the eight datasets,
this significantly improves accuracy. The same can also be applied to incremental method given in
Section 5 leading to more accurate classifiers after finetuning.

This approach is interesting in that ECOC (or the incremental method) defines a target value for
the hidden units of an MLP in a classification problem. This allows dividing the task of training a two-
layer perceptron into the parallel training of several one-layer perceptrons for which faster convergence
can be attained without sacrificing from accuracy (Table 2).

7 Conclusions

We propose techniques to construct a set of linear dichotomizers whose combined decision forms a
nonlinear polychotomizer. This allows breaking a complex problem into a set of simpler problems
permitting extraction of structured knowledge from data. We show how, by adding constraints, the
backprop algorithm realizes this during gradient-descent, without losing from accuracy when compared
with backprop proper. Our second contribution is to use ECOC or an incremental method to define
the target values for the hidden units of an MLP. This leads to faster convergence as training a two-
layer perceptron is converted to the parallel training of several one-layer perceptrons, without any
sacrifice from accuracy.

VOWEL: Vanilla MLP

IDIAP-RR 98-05

60 T T T

40 al

20 - al
0

-10 -8 -6 -4 -2 0 2 4 6 8 10

MLP with weights drawn from a mixture of two Gaussians

60 T T T T T T T

40 al

20 al
0 1 1 1 1 1 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

MLP with weights filtered through tanh

60 T T T T T

40 =

20 =
0 1 1 1 1 1 1 1 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1: For one run on vowel with 10 hidden units/dichotomizers, the histograms of weights are
given. (a) Second layer weights of a normal MLP, (b) Second layer weights of an MLP where weights
are drawn from a bimodal Gaussian with centers at —1 and 1, (¢) Like (b) except that the weights

are filtered through tanh with extremes at —1 and +1.

Table 2: Accuracy with ECOC-linear and the incremental method; raw and after finetuning. *’

indicates statistically significant improvement during finetuning. Accuracy of MLP-Soft with

same L starting from random weights is also given.

the

ECOC-linear Incremental construction

L: Raw Finetuned 7 L: Raw Finetuned 7 | MLP-Soft
glass 7. 58.88,3.29 67.00, 3.74 6: 65.00,2.00 67.50,2.12 64.00, 0.67
vowel 11: 24.76, 4.66 47.71, 4.22 10: 40.84,3.79 45.50,3.99 * | 53.16, 1.82
thyroid 3. 94.69,0.38 94.78, 0.06 2: 93.29,0.28 93.83, 0.08 93.09, 0.37
satimage 7. 81.00,2.82 88.16, 0.49 8: 81.28,0.87 87.89,0.49 * | 85.87,0.51
letter 26: 39.84 89.43 30: 54.68 80.64 * 81.06
digsma 20: 90.82,0.72 90.57, 1.40 20: 85.17,2.87 95.50,0.52 * | 97.35,0.36
digit 20: 91.19,0.90 93.21,0.46 * | 20: 85.42,1.34 93.88,0.37 * | 95.11, 0.27
pen 20: 84.25,1.23 94.91,0.60 * | 20: 76.76, 1.78 95.40,0.38 * | 95.35, 0.15

IDIAP-RR 98-05 7

References

(1]

T. G. Dietterich, G. Bakiri (1995). “Solving Multiclass Learning Programs via Error-Correcting
Output Codes,” Journal of Artificial Intelligence Research, 2, 263-286.

T. G. Dietterich (1998). “Approximate Statistical Tests for Comparing Supervised Classification
Learning Algorithms,” Neural Computation, to appear.

R. O. Duda, P. E. Hart (1973). Pattern Classification Scene Analysis, Wiley.

E. Mayoraz, M. Moreira (1997). “On the Decomposition of Polychotomies into Dichotomies”,
14th Int’l Conf on Machine Learning, Nashville, TN, 219-226.

C. J. Merz, P. M. Murphy (1998). UCI Repository of Machine Learning Databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html.

M. Moreira, E. Mayoraz (1998). “Improved Pairwise Coupling Classification with Correcting
Classifiers”, Proc 10th Furopean Conf on Machine Learning, Chemnitz, Germany, April, 160—
171.

S. Nowlan, G. Hinton (1992). “Simplifying Neural Networks by Soft Weight Sharing,” Neural
Computation, 4, 473-493.

