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Abstract� Support vector machines �SVMs� are primarily designed for ��class classi�cation
problems� Although in several papers it is mentioned that the combination of K SVMs can be
used to solve a K�class classi�cation problem� such a procedure requires some care� In this paper�
the scaling problem of di�erent SVMs is highlighted� Various normalization methods are proposed
to cope with this problem and their e�ciencies are measured empirically� This simple way of using
SVMs to learn a K�class classi�cation problem consists in choosing the maximum applied to the
outputs of K SVMs solving a one�per�class decomposition of the general problem� In the second
part of this paper� more sophisticated techniques are suggested� On the one hand� a stacking of
the K SVMs with other classi�cation techniques is proposed� On the other end� the one�per�class

decomposition scheme is replaced by more elaborated schemes based on error�correcting codes�
An incremental algorithm for the elaboration of pertinent decomposition schemes is mentioned�
which exploits the properties of SVMs for an e�cient computation�
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� Introduction

Automated classi�cation addresses the general problem of �nding an approximation �F of an unknown
function F de�ned from an input space � onto an unordered set of classes f��� � � � � �Kg� given a
training set � T � f�xp�yp � F �xp�gPp�� � �� f��� � � � � �Kg	

Among the wide variety of methods available in the literature to learn classi�cation problems�
some are able to handle many classes �e�g� decision trees 
�� ���� feedforward neural networks�� while
others are speci�c to �
class problems� also called dichotomies	 This is the case of perceptrons or of
support vector machines �SVMs� 
�� �� ���	 When the former are used to solve K
class classi�cation
problems� K classi�ers are typically placed in parallel and each one of them is trained to separate one
class from the K � � others	 The same idea can be applied with SVMs 
���	 This way of decomposing
a general classi�cation problem into dichotomies is known as a one�per�class decomposition� and is
independent of the learning method used to train the classi�ers	

In a one
per
class decomposition scheme� each classi�er k trained on the dichotomy f�xp� yp �

fk�xp��gPp�� � �� f�����g produces an approximation �fk of fk of the form �fk � sgn�gk�� where

gk � �� R	 The class �k picked by the global system for an input x will then be the one maximizing
gk�x�	 This supposes� however� that the outputs of all gk are in the same range	

As long as each of the learning algorithms used to solve the dichotomies outputs probabilities�
their answers are comparable	 When a dichotomy is learned by a criterion such as the minimization
of the mean square error between gk�xp� and yp � f�����g� it is reasonable to expect �if the model
learning the dichotomy is su�ciently rich� that for any data drawn with the same distribution than
the training data� the output of the classi�er will have its module around ��	 Thus� in this case again�
one can more or less assume that the answers of the �k classi�ers are comparable	

The output scale of a SVM is determined so that outputs for the support vectors are ��	 This scale
is not robust� since it depends on just a few points� often including outliers	 Therefore� it is generally
not safe to decompose a classi�cation problem in dichotomies learned by SVMs whose outputs are
compared as such� to provide the �nal output	 In this paper� di�erent alternatives will be proposed
to circumvent this problem	 The simplest ones are based on renormalization of the SVMs outputs	
Another approach consists in stacking a �rst level of one
per
class dichotomies solved by SVMs� with
other classi�cation methods	 More elaborated solutions are based on other types of decomposition
schemes� in which SVMs can be involved either as basic classi�ers� i�e� to solve the dichotomies� or in
recombining answers of the basic classi�ers� or both	

� Illustrative example

To illustrate the normalization problem of the SVMs outputs and to get some insight on possible
solutions� let consider the arti�cial example of Figure �	 The data� partitioned into three classes� are
drawn according to three Gaussian distributions with exactly the same covariance matrix and di�erent
mean vectors indicated by stars in Figure �	

Since the three covariance matrices are identical and the a priori probabilities are equal� the
boundaries of the decision regions based on an exact Bayesian classi�er are three lines intersecting
in one point 
��� which are represented by continuous lines on Figure �	 The �� data of each class is
linearly separable from the data of the other two classes	 However� the maximal margin of a linear
separator isolating Class � from Class � and � is much larger than the margin of the other two linear
separators	 Thus� when using � linear SVMs to solve the three dichotomies� the norm of the optimal
hyperplane found by SVM algorithm is much smaller in one case than in the other two	 Whenever
the output class is selected as the one corresponding to the SVM with largest output� the decision
region obtained is shown in Figure � by dashed lines� which is quite di�erent from the optimal Bayes
decision	

For comparison� the dash
dotted lines �with cross
point marked by a square� correspond to the
boundaries of the decision regions obtained by three linear Perceptrons trained by the Pseudo
inverse
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Figure �� A �
class example	

method� i�e� the linear separators minimize mean square errors 
��	 This matches closely the optimal
one	

Two di�erent ways of normalizing the outputs of the SVMs are also illustrated in Figure � and
the boundaries of the corresponding decision regions are shown with dotted lines	 In one case� the
parameters �wk� bk� of each of the K separating hyperplanes fx j x�wk � bk � �g are divided by the
Euclidean norm of wk �the cross
point of the boundaries is a circle�	 In the other case� �wk� bk� are
divided by the estimate of the standard deviation of the output of the SVM �the cross
point of the
boundaries is a triangle that superposes the circle�	

� SVM output normalization

The �rst normalization technique considered has a geometrical interpretation	 When a linear classi�er
fk � Rd� f�����g of the form

�fk�x� � sgn�gk�x�� � sgn�x�wk � bk� ���

is normalized such that the Euclidean norm kwkk� is �� gk�x� gives the Euclidean distance from x to
the boundary of fk	

Non
linear SVMs are de�ned as linear separators in a high dimensional space H in which the input
space Rd is mapped through a non
linear mapping � �for more details on SVMs� see for example
the very good tutorial 
�� from which our notations are borrowed�	 Thus� the same geometrical
interpretation holds in H	 The parameter wk of the linear separator fk in H of the form ��� is never
computed explicitly �its dimension may be huge or in�nite�	 But is known as a linear combination of
images through � of the support vectors �input data with indices in Nk
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where K is the kernel function allowing an easy computation of dot
products in H	
One way to normalize is scaling the output of each support vector machine such that

Ep
y g
k�x�� � �

The scaling factor �k� is de�ned as the mean over the samples� of ypgk�xp�� again estimated on the
training set or on new data	

Each normalization factor can also be chosen as the optimal solution of an optimization problem	
The factor �k

�
minimizes the mean square error over the samples� between the normalized output

�k
�
gk�xp� and the target output yp � f�����g	

E��k� �
X

p

�
�kgk�xp� � yp

��
���

whose optimal solution is

�k� �

P
p y

pgk�xp�
P

p
g
k�xp���

���

� Stacking SVMs and single layer perceptrons

So far� the output class is determined by choosing the maximumof the outputs of all SVMs	 However�
the responses of other SVMs than the winner carry also some information	 Moreover� when a SVM
is trained to separate one class �k from the K � � others� it may happen that the mean of gk varies
signi�cantly from one class to another	 For example� if class �� lies somewhere �in
between� class ��
and class ��� the function g� separating class �� from �� and �� is likely to have a stronger negative
answer on �� than on ��	 This knowledge can be used to improve the overall recognition	

A simple way to aggregate the answers of all the K SVMs into a score for each of the classes is
by a linear combination	 If g � �g�� � � � � gK�� denotes the output of the system of K SVMs� the idea
suggested here is to replace the former function

�F � argmax
k

�g�

by
�F � argmax

k
�Mg��

whereM is a K �K mixture matrix	 The classical way of solving a K
class classi�cation problem by
one
per
class decomposition corresponds to using the identity mixture matrix	 The technique given
in Section � with �k corresponds to a diagonal M with �k as the diagonal elements	 If su�ciently
many data are available to estimate more parameters� a full mixture matrix can provide a �ner way
of recombining the outputs of the di�erent SVMs	

This way of stacking a set of K classi�ers with a single layer neural network provides a solution to
the normalization problem as long as the network �i�e� the mixture matrixM � is designed to minimize
the mean square error between g�xp� and yp � f��� � � � ���� � � � ���g	 Generalizing Equation ���� we
get

E�M � �
X

p


Mg�xp�� yp�
�

���

� Numerical experiments

All the experiments reported in this section are baed on datasets of the Machine Learning repository
at Irvine 
���	 The values listed are pecentages of classi�cation errors� averaged over �� experiments	
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For glass and dermatology� one time ��
fold cross validation was done� while for vowel and soybean�
the ten runs correspond to � times �
folding	 We used SVMs with polynomial kernel of degrees � and
�	

database deg no normal	 �kw �k
�

M

glass � ��	� � ��	� ��	� � ��	� ��	� � ��	� ��	� � ��	�
glass � ��	� � ��	� ��	� � ��	� ��	� � ��	� ��	� � ��	�
dermatology � �	� � �	� �	� � �	� �	� � �	� �	� � �	�
dermatology � �	� � �	� �	� � �	� �	� � �	� �	� � �	�
vowel � ��	� � ��	� ��	� � ��	� ��	� � ��	� ��	� � �	�
vowel � ��	� � ��	� ��	� � ��	� ��	� � ��	� ��	� � �	�
soybean � ��	� � ��	� ��	� � ��	� ��	� � ��	� ��	� � ��	�
soybean � ��	� � ��	� ��	� � ��	� ��	� � ��	� ��	� � ��	�

We notice that on the four datasets� the two normalization techniques of dividing by �kw or using
�k
�
do not improve accuracy except in glass where a small improvement is seen	 Using stacking with

a linear model on vowel and soybean signi�cantly improves accuracy which demonstrates the useful
e�ect of postprocessing SVM outputs	 One can use more sophisticated learners instead of a linear
model whereby accuracy can be further improved	 One interesting possibility is to use another SVM
to combine the outputs of the �rst layer SVMs	

We are currently experimenting with larger databases� other types of kernels and other combining
strategies and are expecting to have more extensive support of this approach in the near future	

� Robust decomposition�reconstruction schemes

Lately� some work has been devoted to the issue of decomposing a K
class classi�cation problem into
a set of dichotomies	 Note that all the research we are referring to was carried out independently of
the method used to learn the dichotomies� and consequently all the techniques can be applied right
away with SVMs	

The one�per�class decomposition scheme can be advantageously replaced by other schemes	 If
there are not too many classes� the so called pairwise�coupling decomposition scheme is a classical
alternative in which one classi�er is trained to discriminate between each pair of classes� ignoring
the other classes	 This method is certainly more e�cient than one
per
class� but it has two major
drawbacks	 First� the number of dichotomies is quadratic in the number of classes	 Second� each
classi�er is trained with data coming from two classes only� but in the using phase� the outputs for
data from any classes are involved in the �nal decision 
���	

A more sophisticated decomposition scheme� proposed in 
�� ��� is based on error
correcting code
theory and will be referred to as ECOC	 The underlying idea of the ECOC method is to design a
set of dichotomies so that any two classes are discriminated by as many dichotomies as possible	
This provides robustness to the global classi�er� as long as the errors of the simple classi�ers are not
correlated	 For this purpose� every two dichotomies must also be as distinct as possible	

In this pioneering work� the set of dichotomies was designed a priori� i�e� without looking at the
data	 The drawback of this approach is that each dichotomy may gathers classes very far apart and
thus is likely hard to learn	 Our contribution to this �eld 
�� was to elaborate algorithms constructing
the decomposition matrix a posteriori� i�e� by taking into account the organization of the classes in
the input space as well as the classi�cation method used to learn the dichotomies	 Thus� once again�
the approach is immediately applicable with SVMs	

The algorithm constructs the decomposition matrix iteratively� adding one column �dichotomy� at
a time	 At each iteration� it chooses a pair of classes ��k� �k�� at random among the pairs of classes
that are so far the less discriminated by the system	 A classi�er �e�g� a SVM� is trained to separate
�k from �k� 	 Then� the performance of this classi�er is tested on the other classes and a class �l is
added to the dichotomy under construction as a positive �resp	 negative� class� if a large part of it is
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classi�ed as positive �resp	 negative�	 The classi�er is �nally retrained of the augmented dichotomy	
The iterative construction is complete� either if all the pairs of classes are su�ciently discriminated
or when a given number of dichotomies is reached	

Although each of these general an robust decomposition techniques are applicable to SVMs and
must be in any case preferred to the one
per
class decomposition� they do not solve the normalization
problem	 When choosing a general decomposition scheme composed of L dichotomies providing a
mapping from the input space � into f�����gL orRL� one also has to select a mappingm � RL� R

K�
called the reconstruction strategy� on which the argmaxk operator will �nally be applied	

Among the large set of possible reconstruction strategies that have been explored in 
��� one
distinguishes the a priori reconstructions from the a posteriori reconstructions	 In the latter� the
mapping m can be basically any classi�cation technique �neural networks� decision trees� nearest
neighbor� etc	�	 It is learned from new data and thus� it solves the normalization problem	

Reconstruction mappings m composed of L SVMs have also been investigated in 
�� and provided
excellent results� especially for degree � and � polynomial kernels	 Note that in this case� the normal

ization problem occurs again at the output of the mapping m and in our experiments we cope with it
using the normalization factors �lw� l � �� � � � � L	

When the decomposition scheme is constructed iteratively by the algorithm described above and
the reconstruction mapping is based on SVMs� a considerable amount of computation time can be
saved as follows	 At the end of each iteration constructing a new dichotomy� the mapping m must
be elaborated based on the current number of dichotomies� say L� in order to determine �in the next
iteration� the pair of classes ��k� �k�� for which the global classi�er is doing the worse confusion	 But
the optimal mapping m � RL � R

K have some similarities with m� � RL�� � R
K constructed at

the previous iteration	 It has been observed that the quadratic program determining the lth SVM of
the mapping m is solved much faster when initialized with the optimal solution �the �

p

l s indicating
the support vectors and their weights� of the quadratic program corresponding to the lth SVM of the
mapping m�	

� Conclusions

In this paper� the problem of normalizing the outputs of several SVMs� for the sake of comparison�
is highlighted	 Di�erent normalization techniques are proposed and experimented	 More elaborated
methods allowing the usage of binary classi�ers for the resolution of multi
class classi�cation problems
are brie�y presented	 The experimentation of these approaches with SVMs as well as with other
learning techniques is a large scale ongoing work and will be presented in the �nal version of this
paper	
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