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Abstract. Support vector machines (SVMs) are primarily designed for 2-class classification
problems. Although in several papers it is mentioned that the combination of K SVMs can be
used to solve a K-class classification problem, such a procedure requires some care. In this paper,
the scaling problem of different SV Ms is highlighted. Various normalization methods are proposed
to cope with this problem and their efficiencies are measured empirically. This simple way of using
SVMs to learn a K-class classification problem consists in choosing the maximum applied to the
outputs of K SVMs solving a one-per-class decomposition of the general problem. In the second
part of this paper, more sophisticated techniques are suggested. On the one hand, a stacking of
the K SVMs with other classification techniques is proposed. On the other end, the one-per-class
decomposition scheme is replaced by more elaborated schemes based on error-correcting codes.
An incremental algorithm for the elaboration of pertinent decomposition schemes is mentioned,
which exploits the properties of SVMs for an efficient computation.
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1 Introduction

Automated classification addresses the general problem of finding an approximation F of an unknown
function F' defined from an input space Q onto an unordered set of classes {wy,...,wk}, given a
training set: T = {(aP,yP = F(:zzp)}f:1 C Qx{wy,...,wk}.

Among the wide variety of methods available in the literature to learn classification problems,
some are able to handle many classes (e.g. decision trees [2, 12], feedforward neural networks), while
others are specific to 2-class problems, also called dichotomies. This is the case of perceptrons or of
support vector machines (SVMs) [1, 4, 14]. When the former are used to solve K-class classification
problems, K classifiers are typically placed in parallel and each one of them is trained to separate one
class from the K — 1 others. The same idea can be applied with SVMs [13]. This way of decomposing
a general classification problem into dichotomies is known as a one-per-class decomposition, and is
independent of the learning method used to train the classifiers.

In a one-per-class decomposition scheme, each classifier £ trained on the dichotomy {(a?,y? =
fk(azp))}f:1 C Qx {—1,+1} produces an approximation f* of f¥ of the form f* = sgn(g®), where
g* : Q — R. The class wy, picked by the global system for an input 2 will then be the one maximizing
g*(x). This supposes, however, that the outputs of all g* are in the same range.

As long as each of the learning algorithms used to solve the dichotomies outputs probabilities,
their answers are comparable. When a dichotomy is learned by a criterion such as the minimization
of the mean square error between g*(x?) and y? € {—1,41}, it is reasonable to expect (if the model
learning the dichotomy is sufficiently rich) that for any data drawn with the same distribution than
the training data, the output of the classifier will have its module around +1. Thus, in this case again,
one can more or less assume that the answers of the wy classifiers are comparable.

The output scale of a SVM is determined so that outputs for the support vectors are &1. This scale
is not robust, since it depends on just a few points, often including outliers. Therefore, it is generally
not safe to decompose a classification problem in dichotomies learned by SVMs whose outputs are
compared as such, to provide the final output. In this paper, different alternatives will be proposed
to circumvent this problem. The simplest ones are based on renormalization of the SVMs outputs.
Another approach consists in stacking a first level of one-per-class dichotomies solved by SVMs, with
other classification methods. More elaborated solutions are based on other types of decomposition
schemes, in which SVMs can be involved either as basic classifiers, i.e. to solve the dichotomies, or in
recombining answers of the basic classifiers, or both.

2 TIllustrative example

To illustrate the normalization problem of the SVMs outputs and to get some insight on possible
solutions, let consider the artificial example of Figure 1. The data, partitioned into three classes, are
drawn according to three Gaussian distributions with exactly the same covariance matrix and different
mean vectors indicated by stars in Figure 1.

Since the three covariance matrices are identical and the a prior: probabilities are equal, the
boundaries of the decision regions based on an exact Bayesian classifier are three lines intersecting
in one point [7], which are represented by continuous lines on Figure 1. The 50 data of each class is
linearly separable from the data of the other two classes. However, the maximal margin of a linear
separator isolating Class 3 from Class 1 and 2 is much larger than the margin of the other two linear
separators. Thus, when using 3 linear SVMs to solve the three dichotomies, the norm of the optimal
hyperplane found by SVM algorithm is much smaller in one case than in the other two. Whenever
the output class is selected as the one corresponding to the SVM with largest output, the decision
region obtained is shown in Figure 1 by dashed lines, which i1s quite different from the optimal Bayes
decision.

For comparison, the dash-dotted lines (with cross-point marked by a square) correspond to the
boundaries of the decision regions obtained by three linear Perceptrons trained by the Pseudo-inverse
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Figure 1: A 3-class example.

method, i.e. the linear separators minimize mean square errors [7]. This matches closely the optimal
one.

Two different ways of normalizing the outputs of the SVMs are also illustrated in Figure 1 and
the boundaries of the corresponding decision regions are shown with dotted lines. In one case, the
parameters (w”, b%) of each of the K separating hyperplanes {# | Tw* 4+ b* = 0} are divided by the
Euclidean norm of w* (the cross-point of the boundaries is a circle). In the other case, (w*,b%) are
divided by the estimate of the standard deviation of the output of the SVM (the cross-point of the
boundaries is a triangle that superposes the circle).

3 SVM output normalization

The first normalization technique considered has a geometrical interpretation. When a linear classifier

fF R — {—1,41} of the form
(@) = sen(g*(w)) = sgn(aTw" + ") (1)

is normalized such that the Euclidean norm ||w*||; is 1, ¢*(x) gives the Euclidean distance from @ to
the boundary of f*.

Non-linear SVMs are defined as linear separators in a high dimensional space H in which the input
space R? is mapped through a non-linear mapping ® (for more details on SVMs, see for example
the very good tutorial [3] from which our notations are borrowed). Thus, the same geometrical
interpretation holds in 7. The parameter w* of the linear separator f* in  of the form (1) is never
computed explicitly (its dimension may be huge or infinite). But is known as a linear combination of
images through ® of the support vectors (input data with indices in N¥)

wh = 3 ahyra(ar). (2)

pENE
The normalization factor 7% used in this work will thus be defined by
1 ! ! ’
C Y ajal vy o) o(al) (3)
v p.p €Nk
= Y afal vy K(e @), (4)

p,p'€ENF
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where K is the kernel function allowing an easy computation of dot-products in H.
One way to normalize is scaling the output of each support vector machine such that

Ep[y gk(w)] =1

The scaling factor TZ is defined as the mean over the samples, of y?¢*(x?), again estimated on the

training set or on new data.

Each normalization factor can also be chosen as the optimal solution of an optimization problem.
The factor ¥ minimizes the mean square error over the samples, between the normalized output
7 gk (2P) and the target output y? € {—1,+1}.

2
E(x*) =) [r"g* (") — ] (5)
P

whose optimal solution is

b U ()
-

22, lo" (@P))?

T

4 Stacking SVMs and single layer perceptrons

So far, the output class is determined by choosing the maximum of the outputs of all SVMs. However,
the responses of other SVMs than the winner carry also some information. Moreover, when a SVM
is trained to separate one class wy from the K — 1 others, it may happen that the mean of ¢* varies
significantly from one class to another. For example, if class wy lies somewhere ”in-between” class wy
and class w3, the function g' separating class w; from ws and ws is likely to have a stronger negative
answer on ws than on wy. This knowledge can be used to improve the overall recognition.

A simple way to aggregate the answers of all the X' SVMs into a score for each of the classes is
by a linear combination. If g = (g%, ..., ¢%)T denotes the output of the system of K SVMs, the idea
suggested here is to replace the former function

F =arg mkax(g)

by

F = arg mkaX(Mg),

where M is a K x K mixture matrix. The classical way of solving a K-class classification problem by
one-per-class decomposition corresponds to using the identity mixture matrix. The technique given
in Section 3 with 7* corresponds to a diagonal M with 7% as the diagonal elements. If sufficiently
many data are available to estimate more parameters, a full mixture matrix can provide a finer way
of recombining the outputs of the different SVMs.

This way of stacking a set of K classifiers with a single layer neural network provides a solution to
the normalization problem as long as the network (7.e. the mixture matrix M) is designed to minimize
the mean square error between g(@?) and y* = {—1,...,+1,..., —1}. Generalizing Equation (5), we
get

E(M) =Y [Mg(a") - y']’ (7)

5 Numerical experiments

All the experiments reported in this section are baed on datasets of the Machine Learning repository
at Trvine [10]. The values listed are pecentages of classification errors, averaged over 10 experiments.
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For glass and dermatology, one time 10-fold cross validation was done, while for vowel and soybean,
the ten runs correspond to 5 times 2-folding. We used SVMs with polynomial kernel of degrees 2 and

3.
database deg | no normal. T * M
glass 2 |357+£135 | 31.6£ 103|319+ 123 | 39.0+£ 125
glass 3 |376+£12.8 | 333£114 | 357+ 10.6 | 45.2 £ 10.8
dermatology | 2 39+ 1.9 41+20 39+£1.9 42+20
dermatology | 3 3.9+ 27 44427 3.9+ 27 44427
vowel 2 | 703+£39.7 | 69.8£40.7|699+405| 242+£1.6
vowel 3 |621+445 | 61.4+454|61.8+449| 105+ 3.2
soybean 2 | 716+£347 | 71.6£348 | 71.6+349|292+£11.2
soybean 3 | 716+£348 | 71.4+£351 | 716+ 348|288 £11.1

We notice that on the four datasets, the two normalization techniques of dividing by 7% or using
7% do not improve accuracy except in glass where a small improvement is seen. Using stacking with
a linear model on vowel and soybean significantly improves accuracy which demonstrates the useful
effect of postprocessing SVM outputs. One can use more sophisticated learners instead of a linear
model whereby accuracy can be further improved. One interesting possibility is to use another SVM
to combine the outputs of the first layer SVMs.

We are currently experimenting with larger databases, other types of kernels and other combining
strategies and are expecting to have more extensive support of this approach in the near future.

6 Robust decomposition/reconstruction schemes

Lately, some work has been devoted to the issue of decomposing a K-class classification problem into
a set of dichotomies. Note that all the research we are referring to was carried out independently of
the method used to learn the dichotomies, and consequently all the techniques can be applied right
away with SVMs.

The one-per-class decomposition scheme can be advantageously replaced by other schemes. If
there are not too many classes, the so called pairwise-coupling decomposition scheme is a classical
alternative in which one classifier is trained to discriminate between each pair of classes; ignoring
the other classes. This method is certainly more efficient than one-per-class, but it has two major
drawbacks. First, the number of dichotomies is quadratic in the number of classes. Second, each
classifier is trained with data coming from two classes only, but in the using phase, the outputs for
data from any classes are involved in the final decision [11].

A more sophisticated decomposition scheme, proposed in [6, 5], is based on error-correcting code
theory and will be referred to as ECOC. The underlying idea of the ECOC method is to design a
set of dichotomies so that any two classes are discriminated by as many dichotomies as possible.
This provides robustness to the global classifier, as long as the errors of the simple classifiers are not
correlated. For this purpose, every two dichotomies must also be as distinct as possible.

In this pioneering work, the set of dichotomies was designed « priori, i.e. without looking at the
data. The drawback of this approach is that each dichotomy may gathers classes very far apart and
thus is likely hard to learn. Our contribution to this field [8] was to elaborate algorithms constructing
the decomposition matrix a posterior:, i.e. by taking into account the organization of the classes in
the input space as well as the classification method used to learn the dichotomies. Thus, once again,
the approach is immediately applicable with SVMs.

The algorithm constructs the decomposition matrix iteratively, adding one column (dichotomy) at
a time. At each iteration, it chooses a pair of classes (wg,wps) at random among the pairs of classes
that are so far the less discriminated by the system. A classifier (e.g. a SVM) is trained to separate
wy from wy:. Then, the performance of this classifier is tested on the other classes and a class w; is
added to the dichotomy under construction as a positive (resp. negative) class, if a large part of it is
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classified as positive (resp. negative). The classifier is finally retrained of the augmented dichotomy.
The iterative construction is complete, either if all the pairs of classes are sufficiently discriminated
or when a given number of dichotomies is reached.

Although each of these general an robust decomposition techniques are applicable to SVMs and
must be in any case preferred to the one-per-class decomposition, they do not solve the normalization
problem. When choosing a general decomposition scheme composed of L dichotomies providing a
mapping from the input space Q into {—1,4+1}* or R*, one also has to select a mapping m : RY — RK
called the reconstruction strategy, on which the arg max; operator will finally be applied.

Among the large set of possible reconstruction strategies that have been explored in [9], one
distinguishes the a prior: reconstructions from the a posterior: reconstructions. In the latter; the
mapping m can be basically any classification technique (neural networks, decision trees, nearest
neighbor, etc.). Tt is learned from new data and thus, it solves the normalization problem.

Reconstruction mappings m composed of L SVMs have also been investigated in [9] and provided
excellent results, especially for degree 2 and 3 polynomial kernels. Note that in this case, the normal-
ization problem occurs again at the output of the mapping m and in our experiments we cope with it
using the normalization factors 7!, [ =1,..., L.

When the decomposition scheme is constructed iteratively by the algorithm described above and
the reconstruction mapping is based on SVMs, a considerable amount of computation time can be
saved as follows. At the end of each iteration constructing a new dichotomy, the mapping m must
be elaborated based on the current number of dichotomies, say L, in order to determine (in the next
iteration) the pair of classes (wg,wps) for which the global classifier is doing the worse confusion. But
the optimal mapping m : RY — RE have some similarities with m/ : RE=1 — RE constructed at
the previous iteration. It has been observed that the quadratic program determining the I** SVM of
the mapping m is solved much faster when initialized with the optimal solution (the of's indicating
the support vectors and their weights) of the quadratic program corresponding to the [** SVM of the
mapping m’.

7 Conclusions

In this paper, the problem of normalizing the outputs of several SVMs, for the sake of comparison,
is highlighted. Different normalization techniques are proposed and experimented. More elaborated
methods allowing the usage of binary classifiers for the resolution of multi-class classification problems
are briefly presented. The experimentation of these approaches with SVMs as well as with other
learning techniques is a large scale ongoing work and will be presented in the final version of this

paper.
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