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Abstract. [t is argued that global illumination should be modeled separately from other incidents
that change the appearance of objects. The effects of intensity variations of the global illumination
are discussed and constraints deduced that restrict the shape of a function that maps the histogram
of a template to the histogram of an image location. This approach is illustrated for simple pattern
matching and for a combination with a PCA (FEigenface) model of the grey-level appearance.
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1 Introduction

The appearance of objects (i.e. its image) depends on several variables, as for example the scene illu-
mination. As changing one or more of these variables changes the appearance of an object, a recognition
system has to be robust against them. In this context, the most important difficulties are caused by:

o the scene illumination (the position of light sources and their occlusion (shadows); specular reflec-
tions),

e occlusions by other objects,

o the reflectance properties of the object, respectively its transparence (X-ray images),
e the viewing angle, and

e the shape of the object if it is flexible.

Although all these points are worth to be investigated, we restrict us for obvious reasons to illumination
related problems (see [3][8][10] for other topics). Highly sophisticated approaches use for example an ap-
proximate 3-dimensional representation of the scene and try to estimate shape, reflection coefficient, and
illumination [7][10], a combined PCA model of shape and intensity on landmark points [5], respectively
active shapes [6][9], a model for the object under multiple illumination situations [15](Figenfaces) [2],
a model of the illumination variation and specular reflections [3], or 3-dimensional models and neural
networks to estimate the position of the light sources [4].

Global illumination changes and total shadowing, however, are not well modeled by these approaches.
To the knowledge of the authors, global illumination changes were only considered in combination with
other image analysis methods, for example in the context of change detection (see [14] for more references),
or optical flow [12]. We assume that it is inefficient to model the illumination of an object as a whole
and to neglect its different causes. A better approach will model the illumination that is global to the
object separate from other appearance changes.
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Figure 1: Illumination changes distort the grey-level histogram.

Figure 1 illustrates a possible situation considered in this publication. Suppose that faces have to be
recognized in an outdoor scene (neglecting appearance changes other than global illumination changes).
Depending on the daytime, the illumination of the scene changes and at the same time the relative
brightness of objects. Consequently, a normalized grey-level histogram! of the scene is also subject
to alternations. Along with these alternations, the average brightness of objects (such as the face in
figure 1) will change. In other words, a certain object will contribute to other parts of the histogram.
Approximately, the grey-level histogram of a single object is projected onto another, or distorted.

LA normalized grey-level histogram is scaled and translated to fit the whole range of grey-levels, in this publication the
integer values form 0 to 255.



2 The approach

In order to compensate for the distortion of the grey-level histograms, the histogram of the template has to
be modified prior to a comparison with some image location. The function projecting the histogram of the
template to the histogram of the image can be regarded as a model of the illumination variation. Therefore
the shape of this function is constrained according to three assumptions (which are not necessarily always
true for real scenes):

1. As the image 1s normalized, the lowest and highest intensities in the grey-level histogram will be
mapped onto themselves.

2. Contrasts diminish or augment smoothly when the global illumination changes. Therefore, modi-
fications of grey-levels must vary smoothly within neighboring intensity values.

3. The relative brightness of arbitrary objects must remain unchanged: if a certain spot in the image
is brighter than another spot, it will remain brighter or, in the limit, assume the same intensity.

A simple pattern algorithm using such a histogram mapping function matching can be formulated in
the following way: let p=(p1,p2,...,pn) be a feature vector of grey values, representing the template
and p(z,y) a vector extracted from some image to be compared with p. Then the most likely position
(z*,y*) for the object represented by the template can be defined as

(2%, y") = argmin > [[pi(e, 5) — Falpi)ll
T,y i

In this formula, the function f, models the distortion of the grey-level histogram. f, is parameterized by
a vector a corresponding to the deviation of the illumination of the image as compared to the illumination
of the template. Since a is usually unknown, it must be included into the error minimization:

(¢%,y") = argmin min Y _ ||pi(z,y) — fa(pi)ll-
z,y @ N

K3

As discussed earlier, f, has to fulfill some conditions in order to avoid a too flexible mapping which
would result in low scores for illicit image locations.

1. The invariability of the lowest and highest light intensity can be directly formulated as a condition
on fo. Supposed that p and p(z,y) are extracted from normalized images and black is coded as
cmin and white as epax (usually 0 and 255). Then fq has to fulfill:

fa(cmin) = Cmin, and fa (Cmax) = Cmax

2. The similarity constrain on the variation of close grey-levels can be fulfilled by demanding that f,,
possesses a smooth first derivative.

3. That grey-levels are not interchangeable implies; that the mapping function is non-decreasing for
the range of valid grey-levels. As f, possesses a first derivative:

fL(@)>0  for emin <o < cpmax.
Considering these constraints, f, was chosen to be a second order polynomial, although other functions

which fulfill these conditions exist. It follows from the constraints above that f, has the form

fa(p) =p+ a(p = cmin) (P — Cmax),

with a free variable o restricted to the interval

1 1

J- (1)

a €]

)
Cmin — Cmax Cmax — Cmin

Figure 2 shows f, for cpin = 0, ¢max = 255, and o € {%, 0, %}
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Figure 2: Possible instances of the mapping function f,.
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Figure 3: The histogram of an image before and after applying fis55.

This function has the property, that, depending on the sign of «, either the contrasts in the brighter
parts, respectively the darker parts, of the image are augmented. At the same time, the contrasts in
the darker parts, respectively the brighter parts, are lowered. Figure 3 shows the effect of fis55 on the
histogram of an image shown in figure 4. It can be seen that gray-levels in the interval [50,120] are
“moved” into the previously empty space of [10,40]. At the same time, the steepness of the histogram,
respectively the contrast, in the lower part is increased, whereas the contrast in the higher part is reduced.

The form of f, has the advantage that an explicit solution (not respecting equation (1)) for a exists
if || - || is the mean square norm:

[0

_ 2_i Pi(Pi —Cmin ) (Pi — Cmax)
B Zi(pi_cmin)z(pi—cmax)z (2)

In the way the distorted pattern matching approach is described above, it can not sensibly be applied
when appearance changes are evoked by global illumination changes and other incidents. This deficiency
may in principle be overcome by combining it with other techniques, for example Eigenface models
[6]. Let be given an eigenvector matrix P, a mean appearance m, and an appearance vector b that
describe the appearance of an object under constant global illumination. Then, for this method of object
modelization, the most likely position (z*,y*) of some feature can be redefined as

(z*,y") = argmin Ig}glzi:llpi(x,y) — fa(Pib +my)|], (3)



The minimization in equation (3) for b can be done, for example, by using the simplex algorithm,
whereas « can still be determined by applying equation (2) to the vector (Pb + m) with b proposed by
the simplex algorithm.

3 Experimental Evaluation

The proposed method was tested on 4,000 X-ray images of the vocal tract of talking persons [11]. In these
tests, fillings in the upper and lower teeth, as well as the tips of the front teeth of the sequence Laval
43 were tracked. These tracking tasks are difficult as the illumination of the images is not stable, and
a lot of noise i1s present. Examples of this sequence are shown in figure 4. The results are compared in
experiments with a standard pattern matching algorithm (that is equivalent to o = 0) and the Eigenface
method using different numbers of eigenvectors.

Figure 4: Examples from the sequence Laval 43 of the X-ray database.

It is very laborious or even infeasible to evaluate quantitatively the performance of pattern matching
algorithms, as this would require a huge amount of data being labeled by hand. In order to circumvent this
difficulty, but still comparing objectively pattern matching algorithms, the following was done: first, using
all algorithms the same feature was located in a large number of images by searching the neighborhood of
the previously detected feature position. Then, the locations are inspected visually by cutting out a small
region around the found locations and visualizing them together. This permitted to correct situations
where the tracking failed grossly?. For the hundred locations, where the distances between the detected
locations are biggest, were then visually inspected and whenever one of the algorithms performed better,
its “did it better” score is increased by one.

Table 1 shows the results of these experiments. Each entry in this table is a comparison of the
distorted gray-level algorithm with the algorithm at the column top and the feature at the left of the
row. The numbers reflect the performance in the following way: the first number is the number of cases
where the proposed algorithm performs better, the second where the algorithm specified at the top of
the column performs better. The missing cases are those where both algorithm performed equally good.
It can be seen that the proposed algorithm outperforms the normal pattern matching algorithm, which
failed entirely to track the lower front teeth. As compared to Eigenfaces, the algorithm performed much
better for the upper and lower teeth fillings, and comparably well for the front teeth. The results for the
latter are affected by a considerable “measurement error” as the precise contour of the front are often
impossible to see and the distances for the detected feature location is with the exception of 3 to 16
images, depending on the experiment, smaller than 4 pixel.

Further experiments were performed with 239 randomly generated images of faces under various
illuminations [1] (implemented by H. Rowley [13]). Examples are shown in figure 1. However, the basic
approach using one pattern of an eye, respectively the mouth, that is matched with the images does not
perform well. The illumination variations include an important amount of shadowing as the virtual light
source can be located at many different places. This violates the assumption that the illumination change
is global for the object to be recognized.

?In a few cases the feature moved faster than 15 pixel per frame. The tracking was then restarted with approximately
correct coordinates.



pattern Eigenfaces: number
match- of used shape vectors

ing 15 5 2 1
Upper teeth filling 100:0 | 100:0 | 100:0 | 100:0 | 100:0
Lower teeth filling 100:0 | 93:6 | 96:3 | 95:2 | 94:4
Lower front teeth* — | 34:34 | 33:44 | 37:31 | 45:43

Table 1: The performance of illumination corrected pattern matching with normal pattern matching and
Eigenface models with four different numbers of used shape elements.

Figure 5: Example images from the artificial face database.

Therefore, the distorted gray-level approach was combined with the Eigenface model (compare equa-
tion (3)). In the experiments using these images, the combined method showed some improvement for the
tasks “locate the mouth” and “locate the left eye” over distorted grey-level histograms with Eigenfaces
and the original Eigenface models. Here, as the precise location of the mouth and the left eye is un-
changed for all training test images, absolute errors can be calculated. In a first experiment, the training
examples for the detection of an eye were selected to cover global and local illumination changes. This
leads to an Eigenface model that performs better than the combined approach (for 5 shape vectors both
performed best with 1.6, respectively 0.6, pixel mean error).

However, if the training samples are selected to have approximately the same average grey-level, it
turns out that the novel approach performs better than the basic Eigenface model trained from the same
data and from the training data covering global and local illumination changes (see figure 6A). Similarly
for the mouth, the illumination corrected Eigenface model performed better than the basic Eigenface
model, as shown in figure 6B.

Conclusion

We proposed a simple to use, but still efficient, method for the modelization of global illumination
using distorted grey-level histograms. A quantitative comparison in experiments with standard pattern
matching and Eigenface models shows that the proposed algorithm outperforms both.

In applications where only global illumination changes occur, pattern matching with distorted his-
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Figure 6: Mean error for the location of the left eye and the mouth committed by the basic Eigenface
model and the illumination corrected Eigenface models if the training samples cover only local illumination
changes.

tograms has a complexity close to standard pattern matching. This gives a further advantage over the
Eigenface algorithm, which has a higher computational complexity and is somewhat more difficult to use
and implement.

If local and global illumination changes are observable at the object, a combination of the illumination
correction and the Eigenface approach outperforms the basic Figenface modelization, even if they are
trained on data including global and local illumination variations. Note, that it seems to be important
that the training data model should not include global illumination changes, as this apparently degrades
the performance of the combined approach.
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