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Abstract

In this paper we develop different mathematical models in the framework of the multi-stream

paradigm for noise robust ASR, and discuss their close relationship with human speech

perception. Largely inspired by Fletcher’s “product-of-errors” rule in psychoacoustics, multi-

band ASR aims for robustness to data mismatch through the exploitation of spectral redundancy,

while making minimum assumptions about noise type. Previous ASR tests have shown that

independent sub-band processing can lead to decreased recognition performance with clean

speech. We have overcome this problem by considering every combination of data sub-bands as

an independent data stream. After introducing the background to multi-band ASR, we show how

this “full combination” approach can be formalised, in the context of HMM/ANN based ASR, by

introducing a latent variable to specify which data sub-bands in each data frame are free from

data mismatch. This enables us to decompose the posterior probability for each phoneme into a

reliability weighted integral over all possible positions of clean data. This approach offers great

potential for adaptation to rapidly changing and unpredictable noise.

Acknowledgements: This work was supported by the Swiss Federal Office for Education and

Science (OFES) in the framework of both the EC/OFES SPHEAR (SPeech, HEAring and

Recognition) project and the EC/OFES RESPITE project (REcognition of Speech by Partial
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1. Introduction1

Even low levels of mismatch between field data and data used in system training, due to noise or channel distortion,

can still cause a sharp loss in ASR (Automatic Speech Recognition) performance. As a result, present ASR

technology is still inadequate for the majority of applications in which human-like performance is required in an

ambient noisy environment2. Conventional processing can deal with some kinds of data mismatch quite successfully.

Slowly varying noise or channel mismatch effects can be removed by conventional robust preprocessing techniques,

such as spectral subtraction for additive noise, or cepstral mean subtraction for convolutive noise. Stationary noise

can also be reduced by noise modelling techniques, such as PMC [12, 44], and speaker variation can be effectively

accommodated through a combination of training with large vocabulary multi-speaker databases, and speaker

adaptation. However, the mismatch which remains after these techniques have been applied often causes an

unacceptable loss in recognition performance.

One effect of the frequency analysis which is applied in the first stages of both natural and artificial speech

processing, is that the level of redundancy in the resulting two dimensional spectro-temporal representation is greatly

increased. Another effect is that the data from different sources in the resulting “auditory scene” is largely separated.

Conventional robust preprocessing can further increase this separation. Recognition experiments with band limited

noise in both psychoacoustics [1, 11] and ASR [32, 25] have shown that narrow sub-bands of clean data can often be

sufficient for speech recognition. There is therefore great potential for improved noise robustness with any system

which is able to detect local data mismatch and focus recognition on the clean speech data which remains.

In Section 2 we introduce the advantages of multi-stream processing in general. In Section 3 we discuss evidence

from auditory physiology and psychoacoustics for multi-channel processing in ASR. In Section 4 we briefly discuss

the main historical approaches to multi-band ASR, and their associated limitations. One of these limitations is that

independent sub-band processing reduces recognition performance in clean speech. In Section 5 we introduce the

“full combination” approach to multi-band ASR, in which the assumption of sub-band independence is overcome by

introducing a latent variable which permits us to integrate over all possible positions of missing (i.e. strongly

mismatching) data. In this way the full-band discriminant is decomposed into a mismatch weighted sum of clean-data

discriminants over all sub-band combinations. The effectiveness of this approach is however dependent on the

weights given to each sub-band combination discriminant, and in Section 6 we present a number of different

techniques for estimating these weights. In Section 7 we test some variations of this model on a free-format numbers

recognition task, under different noise conditions. These results, and the problems which they raise, are discussed in

Section .

2. Multi-stream processing

Multi-expert systems arise in many different fields of data classification and function approximation in general. These

systems have a number of proven theoretical and practical advantages, of which the following are of particular

relevance to ASR:

1. This paper is a combined and extended version of two papers [4, 16] which were presented in the Tampere
workshop “Robust Methods for Speech Recognition in Adverse Conditions”.

2. This is contrary to the surprisingly prevalent idea that “robust speech recognition is now a solved problem”,
which the speech technology industry would of course like its clients to believe.
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• Hierarchical systems of experts reduce problem perplexity: Unsupervised-training can be used to train a

hierarchical system of experts together with a gating network for expert selection. The gating network may be

trained to use large scale features for expert selection, so that each expert is trained on a subregion of the input

data space, with correspondingly reduced perplexity [23].

• Linear combination of multiple experts can improve generalisation: Linear combinations of estimators

have been studied and used by the statistics community for a long time. When expert outputs are linearly

combined (even as a simple average), the expected committee error will decrease, both in theory [3], and in

practice [38]. This error will also decrease further if the spread of the experts’ predictions can be increased

without increasing the expected errors of the individual members1. Different experts can be obtained by

varying the parametric function used to model each expert, and/or by varying the data which is used to train

each expert, either by using different features from the same data, or different noise added to the same data.

3. Multi-stream processing in human speech recognition

In any recognition process it is advantageous to constructively combine as many sources of information2 as are

available [30]. An example from human perception is that the auditory system is “wired” to combine visual with

acoustic information even at the subconscious level, so that perceived phoneme category is directly influenced by lip

movements [26, 29]. Experiments in ASR have demonstrated that combining mouth shape with acoustic data can

strongly improve recognition performance with noisy speech [10, 13, 41, 46].

Further evidence for the use of multiple experts in the mammalian auditory system is seen at the first stage of central

auditory processing. In the cochlear nucleus each fibre in the auditory nerve splits and carries the same data through

about seven different types of specialised nerve cell, each having a very different characteristic response. The outputs

from these cells are recombined at higher levels of processing [36].

While investigating the effects of band limited noise on human hearing, Fletcher [11] found that the error rate for

human phoneme perception using the full frequency range was approximately equal to the product of the error rate

using high-pass filtered speech, with the error rate using low-pass filtered speech at the same cutoff frequency.

Furthermore, this error rate was independent of the cutoff frequency used. A generalisation of this rule to more than

two sub-bands was more recently popularised by Allen in [1], and is now commonly known as the Fletcher-Allen

principle, or “product-of-errors” rule (PoE rule):

In human perception, the error rate for full-band perception is equal to the product of the sub-band

error rates obtained through perception of each sub-band on its own.

(1)

Under the assumption of sub-band error independence, it follows from this rule that:

Full-band classification is incorrect if and only if classification is incorrect in every sub-band

1. The optimal linear expert combination can be obtained as a function of the error covariance matrix.

2. Sometimes also known as “multiple cues” [29].

P error( ) P errori( )
i

∏=
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or equivalently:

Full-band classification is correct if and only if classification is correct in any sub-band

Figure 1 shows how the probability of correct classification, under the product-of-error rule, is distributed as a

function of the probability of correct classification in each of two sub-bands. The product-of-errors rule serves as

proof of existence for a system which combines multiple guesses at the speech information with an infallible

mechanism for selecting the correct guess when it is present. Although the accuracy of the product-of-errors rule has

more recently been questioned [40], this powerful recognition paradigm has strongly motivated the development of

multi-band ASR. Of course, as the number of sub-bands is increased each sub-band gets narrower and the error rate

for recognition within each isolated sub-band will increase. However, in Table 4 it is shown that, if a correct answer

can always be spotted when present, then the increased number of guesses can easily offset the penalty of increased

sub-band error rate, and the optimal number of sub-bands may be considerably greater than the four which we use

throughout this article. It is interesting to note here that this trend has recently been followed in [20].

4. Multi-band processing in artificial speech recognition

While there are many possibilities in ASR for combining evidence from different data streams, such as vision with

acoustics, or acoustic features from different time scales [15, 24, 47], in the present work we are primarily concerned

with the combination of experts operating on different subdivisions of the acoustic frequency spectrum.

While the main motivation behind the multi-band approach is to exploit spectral data redundancy in a way which

reflects the PoE rule for human speech perception, other potential advantages of the multi-band approach include:

p2

p1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1. Probability of correct classification when classification error follows the product-of-errors
rule, for two (independent) observation channels (white corresponding to maximum probability).

Classifiers yield probabilities  and .  =  =
. Contours show lines of equal correct recognition probability (contour height is value

on contour-axis intercept).  is maximum when the expected values of  and  are
maximum, and their covariance is zero.

p1 P̂ qk x1( )= p2 P̂ qk x2( )= P correct( ) 1 1 p1–( ) 1 p2–( )–
p1 p2 p1. p2–+

E P correct( )[ ] p1 p2

p2
 -

>

p1 ->
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• Channel specific processing: Different recognition strategies might ultimately be applied in each sub-band.

For example, higher frequencies could use greater time resolution, and lower frequencies greater frequency

resolution. It would also be possible to use sub-band specific speech subunits.

• Subunit specific expert combination: It is sometimes possible to weight each expert according to the speech

subunit which is being distinguished. Consonants, for example, might give more weight to high frequency sub-

bands.

• Channel asynchrony: Models discussed here use the same phoneme set for each expert, and force synchrony

between experts, but it would be possible to permit some level of sub-band asynchrony1 [5, 21, 28, 42],

(Figure 2), and to use speech subunits specific to each frequency subrange [28].

The first multi-band ASR systems were based on the HMM/ANN (Hidden Markov Model/Artificial Neural Network)

model [6, 7]. In standard full-band ASR an MLP (Multi-layer Perceptron) is first used to transform the acoustic data

into posterior phoneme probabilities2,3, , for each word subunit, , and data frame, . The posterior

1. When streams are not frame synchronous the complexity of the decoding algorithm required may be
considerably greater than for a standard recogniser. Results to date have indicated that allowing asynchrony
between streams does not give any significant performance improvement [28].

WER band 1

clean 7.1

SNR 12 15.6

SNR 0 50.0

band 1 band 2

16.1 32.3

22.6 46.7

54.4 81.6

band 1 band 2 band 3 band 4

33.1 29.7 38.9 55.1

39.6 41.1 50.7 70.8

70.7 75.4 80.2 88.9

Table 1: Sub-band word error rates for the Numbers95 database of connected digits are shown above,
from left to right, for when the full frequency range is divided into 1, 2 and 4 sub-bands, respectively.
Thick outlined boxes show the WER that would theoretically result if sub-band error rates combined

according to the product-of-errors rule. In this case, although WER increases in each sub-band as the
number of sub-bands is increased, the larger number of sub-bands would show considerable advantage.

(See Section 7 for more details on sub-band frequency ranges and databases).

PoE WER

7.1

15.6

50.0

PoE WER

5.20

10.55

44.39

PoE WER

2.11

9.58

38.01

M j
1

M j
k

M j
K

M j 1+
1

M j 1+
k

M j 1+
K

= recombination at the subunit level

Figure 2. General form of a K-streams recogniser with anchor points between
speech units (to force synchrony between different streams). Note that the model

topology is not necessarily the same for the different subsystems.

P qk x
n Θ;( ) qk x

n
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probabilities from the MLP are then passed as scaled likelihoods [17] into an HMM for decoding. In early multi-band

processing [5, 28, 35] the aim was to divide the frequency range into a number of sub-bands, , and to process each

of these independently, so one MLP was trained for each frequency sub-band, . The posterior probabilities,

, were then combined, usually at the frame level, before decoding as for the full-band HMM/ANN. A

number of different combination strategies have been proposed:

1. the linear weighted average:

(2)

2. the geometric weighted average:

(3)

3. MLP combination.

2. Any sufficiently flexible parametric function which is trained to minimise the sum of square errors against a
target classification function (with one output per class) will generate output class posteriors which are
optimal against the distribution of the training data [39]. As the number of hidden units increases from zero,
MLP performance increases rapidly to the Bayesian optimum, when the posterior probability for data
belonging to each class is equivalent to the probability that classification is correct if this class is selected [9].
Figure 3 shows that this equivalence is very close for a typical MLP used for phoneme classification in
continuous speech.

3. See Nomenclature section for full definition of all mathematical symbols used.

xi

xi

P qk xi
n Θi;( )

P qk x( ) wiP qk xi Θi;( )
i 1=

d

∑≅

P qk x( ) P qk xi Θi;( )
wi

i 1=

d

∏≅
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Figure 3. It is possible to generate “good” posterior probabilities from a neural network, and these
are indeed good measures of the probability being correct. This plot was generated from real speech
data by collecting statistics over the acoustic parameters from 1750 Resource Management speaker-

independent training sentences and 500 cross-validation sentences (not used for training, but for
which correct classification was known) [from 6].
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In this context is a fixed weight for each sub-band expert which should reflect the extent to which it

contains features which are useful for phoneme discrimination. Best results were obtained using the more flexible of

these functions, MLP combination [28].

This approach has a number of limitations. If it was required to adapt weights to changing noise conditions then

supervised weight training could not be used. This problem could be overcome using methods similar to those

described in Section 6. A more important limitation of this sub-band approach is that independent sub-band

processing looses all joint spectral information, such as the shape of the spectral envelope. The PoE rule tells us that

intelligent combination of a number of narrow band recognisers should be able to equal or outperform the full-band

expert, but experimental results have repeatedly shown that independent sub-band processing leads to a significant

decrease in performance with clean speech.

5. Multi-band ASR with latent variables
The first (rule of the method which leads to the truth) is to accept nothing as true which you do not

clearly recognise to be so. (Descartes, 1619)

It is now known that the PoE rule is only approximately true [40]. Even in human perception, where the error rate in

each sub-band is far lower than with sub-band ASR (especially in noise), some use is made of joint sub-band

information. One of the first methods which was attempted to overcome this problem was to combine the four sub-

band experts with a full-band expert. This led to performance improvement towards, but not significantly surpassing,

that of the full-band expert on its own [28]. In [21] tests were made with a seven sub-band system in which

an expert was used for each possible sub-band combination.

Several combination strategies were tested. Simple linear combination showed satisfactory performance in clean

speech, while hand selection of the correct expert (when present) showed the potential of this system for very strong

robustness to band limited noise. This confirmed the following result, which had previously been demonstrated in the

context of missing feature theory (MFT) [25, 32]: an effective strategy for reducing the effects of data mismatch is to

detect and simply ignore strongly mismatching data.

At any point in time there are a number of sub-bands whose mismatch level is such that recognition will

improve if data in these sub-bands is ignored.

An obvious problem with the strategy of ignoring unreliable data is that estimating the local data mismatch level in

each sub-band is not easy. At best we can assign a probability to each sub-band being “clean” (i.e. having mismatch

below some threshold level) at time step . In the case of sub-bands there are possible sub-band combinations

(if we include both the full and empty sets). Let denote the ith combination of sub-bands from . In estimating the

full-band posterior we would like to select the expert which gives the “best” estimate for this phoneme. In

the presence of band limited noise we can reasonably assume that the best combination will be the largest set of clean

sub-bands. Define an indicator latent variable to represent the event that is the largest set of clean sub-bands.

Providing events  includes the empty set, the set of events  are mutually exclusive and exhaustive. Therefore:

, because the set of events  are exhaustive (4)

, because  are mutually exclusive (5)

wi 0 1,[ ]∈

n d 2
d

si x

P qk x( ) i

ci si

si ci

P qk x( ) P qk ci
i

∪∩ x( )= ci

P qk ci∩ x( )
i

∑= ci
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(6)

The condition “ true” tells us that can be partitioned into certain and uncertain parts . If nothing is known

about the uncertain data, then this data is simply “missing”, or “not given”, so that:

(7)

Providing the number of combinations is not too large ( not greater than about 7), we can train an MLP expert on

clean data from each combination1 to output phoneme posterior estimates 2. It is given that in Eq. 7 is

clean, so . Therefore:

(8)

Eq. 8 gives us a factorisation of the full-band posterior into a composition of combination weights and clean

combination posteriors3. We call this the “full combination” (FC) multi-band approach. The utility of this method

depends directly on the accuracy with which combination weights can be estimated and adapted to changing

noise conditions. Various methods for combination weight estimation are described in Section 6. The full-

combination ASR system used in the experiments reported here were implemented in an HMM/ANN based system

with four sub-bands. A two sub-band FCM system is illustrated in Figure 4.

Full-combination approximation. For much greater than about it becomes impractical to train a separate

MLP for all sub-band combinations. One way to alleviate this problem may be to prune out combinations which

have a-priori negligible weight for a particular application. Alternatively, although we must avoid the assumption

of full sub-band independence, it is easy to show [33] that under the weaker assumption of

conditional sub-band independence, , all combination posteriors can be expressed in terms

of the single sub-band posteriors. If is the number of sub-bands in combination , then the clean combination

posteriors  in Eq. 8 can be approximated as follows:

, where (9)

It is shown in Section 7 that the full-combination approximation based on Eq. 9 consistently outperforms the

assumption of full independence that is implicit in the simple sub-band combination of Eq. 2.

1. It is important to note that data should be orthogonalised within each sub-band [5, 35]. Orthogonalisation
across the full data vector would usually spread noise between sub-bands, after which the noise would not be
band limited and the advantage of sub-band processing would be lost. Alternative means of spectral data
orthogonalisation have been proposed [34] which mix features across time rather than frequency, but this
would also have a tendency to mix clean with noisy data.

2. We distinguish here between the true probabilities and their estimates , which are
parametric functions (MLPs) trained on clean speech, and therefore can only be assumed to be accurate when
it is known that the speech data in sub-band subset  is clean.

3. Likelihood based models (such as HMMs) can be decomposed in a similar way, but some complications can
arise. More details on both posteriors and likelihood based decomposition is discussed in [31].

P ci x( )P qk ci x∩( )
i

∑=

ci x si si',( )

P qk ci x∩( ) P qk si( )=

d

P qk si Θi;( ) si

P qk si( ) P qk si Θi;( )

si

P qk si( ) P qk si Θi;( )≅

P qk x( ) P ci x( )P qk si Θi;( )
i

∑≅

P ci x( )

d 7

2
d

p xi x j( ) p xi( )≅
p xi x j qk∩( ) p xi qk( )≅ 2

d

d si si

P qk si( )

P qk si( ) Pki Pmi
m
∑⁄≅ Pki P

1 si–
qk( ) P qk x j( )

x j si∈
∏=
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6. Full-combination expert weighting

We describe here a number of approaches to both fixed and adaptive weighting.

If the latent variable in Eq. 8 is not an indicator for each sub-band combination being the largest clean combination,

then we are no longer justified in assuming that . On the other hand, if we can assume that the

data is clean, and we are interested in exploiting the possibility that data in some sub-bands should carry more weight

than data in others, then we can replace by the latent variable , which indicates whether each sub-band

combination is “the best” or most useful. As are also mutually exclusive and exhaustive, the same working used to

derive Eq. 8 also gives us1:

(10)

Although the weights in Eq. 10 depend on , if we are interested in using fixed weights, then we must ignore

 and assume that .

6.1 Fixed weight estimation using linear & non-linear LMSE

Fixed weights , , can be estimated using the (supervised) LMSE (least mean square error)

criterion:

1. It is also possible to combine the latent variables  and  by using a double summation [31].

te
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Figure 4. Full Combination multi-band ASR HMM/ANN system with 2 sub-bands. Each possible combination
of frequency sub-bands is first orthogonalised and then input to an MLP which has been trained for this sub-
band combination, and to a weighting function. Posterior phoneme probabilities from each MLP expert are

then combined in a linear weighted sum to give a single posterior for each phoneme. These posteriors are then
converted to scaled likelihoods before input to a fixed parameter HMM for Viterbi decoding.

s4

s3

s2

s1

orthog-
onalisationBand 2

Band 1

orthog-
onalisation

orthog-
onalisation

weighting

weighting

weighting

MLP1

MLP2

MLP3

c

P qk si( ) P qk si Θi;( )≅

c b

bi

bi c j

P qk x( ) P bi x( )P qk si Θi;( )
i

∑≅

P bi x( ) x

x P bi x( ) P bi( )≅

wi P bi( )= i 1…2
d

=



IDIAP-RR 99-26 15

(11)

where is the combined posterior for at frame , given fixed weights , and is the target

posterior,  if target class for frame  is class , else . For linear LMSE:

(12)

In this case the resulting LMSE “normal equations” are linear and can be solved directly, but in this case the weights

cannot be constrained to be positive or sum to 1 across all experts. For non linear LMSE, when an MLP is trained

using “back error propagation” (a particular case of gradient descent), weights can be constrained to sum to 1, if

required, by using the softmax activation function in the output layer.

6.2 Fixed weight estimation using maximum likelihood

The fixed weights, , can be estimated using relative-frequencies1 as follows:

(13)

where is the number of frames of training data for which expert has the largest posterior, across all experts, for

the target phoneme (and therefore has the smallest Kullback-Leibler distance from the target probability distribution),

and  is the number of frames of training data.

6.3 Adaptive weighting using estimated local data mismatch

It is usually reasonable to assume that sub-band combination reliability can be estimated from the reliability of each

of its component sub-bands, and that sub-band reliabilities are independent. The local data mismatch level in each

sub-band can be estimated from measures of likeness to speech data, such as local SNR2 [22, 33], harmonicity

index [2] or, in the case of stereo data, interaural time delay [14]. By definition of the adaptive weights can

then be obtained from these sub-band reliabilities as follows:

=> (14)

If the measure is increasing with level of mismatch, then we can model as , where

the threshold for each sub-band is estimated as the average level of , over the training set, above which

recognition improves when band is ignored. If we assume that the estimated mismatch value is its true value

plus a zero mean Gaussian error, with variance , then we obtain:

1. Relative-frequency is the ML (Maximum Likelihood) estimate for a Bernoulli probability.

2. SNR is not directly related to mismatch level and should be used with care. Low noise energy implies low data
mismatch, but low noise energy combined with zero speech energy gives infinitely low SNR.
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(15)

where are parameters which reflect our confidence in the estimation precision for each sub-band, which could be

tuned, for example, to maximise performance in clean speech.

7. Experimentation

Databases. Speech was taken from the Numbers95 database of multi-speaker US English free-format numbers1

telephone speech, with 30 words and 33 phonemes [8]. Factory noise from the Noisex92 database [43], and car noise

from an in-house database, were added at varying SNR levels relative to the average signal energy in each utterance

(excluding non-speech periods). Multi-band ASR is best suited to band limited noise, but the noises used in these

initial tests were not band limited.

Acoustic features. Tests were made using PLP coefficients [18, 30, 37], with an analysis window size of 25 ms,

and 12.5 ms shift. Tests were also made using J-Rasta-PLP features [19, 30], which result from PLP features after an

adaptive cancellation of slowly changing additive and convolutive noises. In order to compete with the state-of-the-art

baseline system used here, data features had to be near orthogonal. Orthogonalisation was applied within each data

stream, so as not to spread noise between streams.

Recognition systems. Baseline tests were made with a full-band HMM/ANN hybrid [7] in which the ANN was

an MLP with one hidden layer of 1000 units, trained to input 9 consecutive data frames and output the posterior

probabilities for each of 33 phonemes and each data frame, . Training used the full Numbers95 training

set [8]. In recognition, posterior probabilities from the MLP, divided by their priors2, were passed as scaled

1. e.g. “two hundred eleven”.

P reliable x j( )( ) P γ x j( ) ε j<( )≅ Φ
ε j γ̂ x j( )–

σ j
----------------------- 

 =

σ j
2

Figure 6. Signal “seven” from Numbers95 (top) mixed with Daimler-
Chrysler car noise at SNR = 12 (middle) & 0 dB (bottom).

P qk x( ) qk x
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likelihoods to a fixed parameter HMM for decoding. The HMM for each phoneme used a 1 to 3 repeated-state model.

No language model was used.

For the full-combination multi-band system a separate MLP (of identical design to the full-band MLP) was trained on

clean data for each sub-band combination. Multiple MLP outputs were then merged at the frame level (which here

was also the state level), using Eq. 8, to give a single posterior probability for each class, before these were passed as

scaled likelihoods to the same HMM as used by the full-band system

Sub-band definition. The number of sub-bands used in sub-band ASR, and their frequency ranges, are somewhat

arbitrary. For these experiments we have chosen to work with four sub-bands. The original reason for this choice was

based on having one sub-band for each formant. Frequency ranges were chosen accordingly and are displayed in

Table 2. Although it would be instructive to test with different sub-band configurations, we kept the sub-band

specification constant so that test results could be compared over a  number of different experimental configurations.

Recognition tests. Recognition tests were made with the two different noise types as described, at SNR levels

clean (45 dB SNR), 12 dB and 0 dB SNR. Tests used the full Numbers95 development test set. Results are

summarised in Figure 7 for PLP features, and Figure 8 for J-Rasta-PLP features.

Top figures show results using different weighting measures, car noise (left) and factory noise (right), for:

1. full-band baseline HMM/ANN hybrid ASR system

2. full combination multi-band hybrid, with 4 sub-bands, using equal weights, “FCM, equal wts”

3. FCM using relative-frequency, “FCM, RF wts”

4. FCM with cheating, “FCM, cheating”, i.e. correct phoneme selected whenever selected by any expert.

Bottom figures show results using different multi-band models, all using equal weights, for the following:

1. full-band baseline HMM/ANN hybrid ASR system

2. full combination multi-band hybrid, using equal weights, “FCM, equal wts”

3. full combination approximation, using Eq. 9, using equal weights, “AFC, equal wts”

4. early multi-band approach (one expert per sub-band), with equal weights, “early mband, eq wts”

2. Although we should theoretically divide posteriors by priors to get the (scaled) likelihoods which are required
by the HMM for decoding, in practice the division by estimated priors is only helpful if these estimates
accurately represent the priors in the test data. Inaccurate priors can result if some of the phonemes in the
training set were undersampled, or if the true priors in the training set do not match the priors in the test set.
Better results were obtained in the experiments reported here when the posteriors were not divided by the
priors. This is equivalent to assuming that all priors are equal.

Table 2: Sub-bands definition

Sub-bands Def. band 1 band 2 band 3 band 4

frequency range /Hz 216-778 707-1632 1506-2709 2122-3769

# coeffs, lpc order 5, 3 5, 3 3, 2 3, 2
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Results. As usual, J-Rasta-PLP features show a strong improvement over PLP features (which give similar

performance to MFCCs). Note that the benefits of robust preprocessing are largely complementary to those offered by

multiband processing. Of the two noise types tested, the more impulsive factory noise has a worse effect on

performance than car noise, which is near stationary. The “cheating” performance, which would obtain if the PoE rule

was in effect (i.e. if there was correct phoneme recognition whenever any sub-band combination expert had correct

recognition), is very robust down to about 12 dB SNR. None of the methods tested has performance anywhere near as

good as cheating, and only one (FCM with fixed RF weights and Rasta features) has performance which improves

over the baseline in noise. Equal weights perform almost as well as FC weights, especially with Rasta features. The

failure of any of the multi-band methods tested to significantly improve over the full-band baseline may be because

both noise types also affected every sub-band, while the advantage of multiband processing is strongest when one or
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Figure 7. WER (vertical axis) against SNR with PLP features

DC car noise, different multi-band ASR models Factory noise, different multi-band ASR models

DC car noise, different weight estimation methods Factory noise, different weight estimation methods

0 12 45
0

20

40

60

80 fullband baseline
FCM, equal wts   
FCM, RF wts      
FCM, cheating    

0 12 45
0

20

40

60

80 fullband baseline  
FCM, equal wts     
AFC, equal wts     
early mband, eq wts



IDIAP-RR 99-26 19

more sub-bands are often clean. However, the full-combination method consistently outperforms the full-

combination approximation method (using just one expert per sub-band), which in turn significantly outperforms the

“early sub-band” approach (which also used one expert per sub-band, but combines them in a less principled way).

8. Summary and conclusion

After an introduction to the general advantages of multi-stream processing, and to the evidence for its use in human

perception, we recounted how Fletcher’s product-of-errors rule for independent sub-band processing in speech

perception, as well as a number of other factors, motivated the development of multi-band processing for the purpose

of robustness to band-limited noise in ASR. We then argued that the original formulation of multi-band ASR was

disadvantaged by independent sub-band processing, and described how this problem could be theoretically overcome

DC car noise, different weight estimation methods Factory noise, different weight estimation methods

DC car noise, different multi-band ASR models Factory noise, different multi-band ASR models
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Figure 8. WER (vertical axis) against SNR with J-Rasta-PLP features
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by performing separate recognition on every possible combination of sub-bands, which enables us to integrate over

all possible positions of noisy or mismatching data. A derivation of this “full combination” multi-bands approach was

presented in the context of HMM/ANN based ASR in which an MLP outputs phoneme posterior probabilities for

each time frame and for each sub-band combination. An indicator latent variable was used to specify whether each

sub-band combination is the largest set of clean sub-bands. In this way the full-band phoneme posterior for each

phoneme was decomposed into a reliability weighted sum of corresponding clean sub-band-combination posteriors.

While theoretically attractive, especially in the context of time varying and band limited noise, the effectiveness of

this approach depends strongly on the method used for reliability weighting. A number of weighting methods were

presented. Some of these methods are only suitable for estimating static weights, while others can be used in the more

general context where mismatch level varies over time and frequency.

The full-combination technique was tested on a speaker independent continuous speech free-format numbers

recognition task, for clean speech and for speech plus car or factory noise. Tests compared the full-combination

technique with the early sub-band approach, and also with the full-combination approximation. Results showed that,

in the case of four sub-bands:

• both the full-combination method and its approximation outperform the early sub-band approach, even when

equal weights are used for each combination expert.

• relative frequency based FCM weighting marginally outperforms the full-band baseline in noise when using J-

Rasta-PLP features.

These results, for static weighting, have not shown a clear advantage for multi-band ASR over the full-band baseline.

However, the main advantage of adaptive weighting in multi-band ASR is with mismatch which is band limited and/

or changing, while the initial experiments which we report here use only noises which are not band limited and are

near constant. Tests using a simple form of SNR based adaptive weighting [22] were made, but the results were not

shown, because they were not significantly better than for equal weights.

The full advantage of the full-combination approach will not come into play unless mismatch is unequally distributed

over time and/or frequency, with some proportion of data remaining clean. It is therefore imperative that effective

noise robust preprocessing is used to remove as much constant or slowly changing noise as possible prior to multi-

band processing. The FCM results reported here do not much improve over the baseline system, but they do show

some increased advantage when noise robust J-Rasta-PLP features are used in place of simple PLP features, even

when the noise is not band limited. It is also clear that expert weighting (mismatch estimation) should be as accurate

and rapidly adapting as possible

Future directions. The static weighting in Section 6 is clearly of little use in the presence of noise. The

techniques for adaptive mismatch estimation outlined in Section 6.3 assume that training data is “speech like”, and

mismatching data is non speech like. However, mismatch concerns only how field data differs from the data

population used in training, and not how it differs from “clean speech”. As the training population is defined by its

pdf or “likelihood function”, it can be argued that mismatch estimation should be based, directly or indirectly, on use

of the training data pdf. One such approach would be to use mismatch detection based on the assumption that clean

and mismatching data have different (distributions of) likelihood values. Another would be to use weights which

maximise the local clean-data likelihood (although this method could be applied only in the context of likelihood

based FCM decomposition). We have developed both of these approaches in more detail in [31], although they have

not yet been fully tested. Other approaches making more or less direct use of the training data pdf to downweight

mismatching sub-bands are described in [27, 45].
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Finally, it should be noted that although the “early” multiband approach tested here shows significantly reduced

performance in relation to the full-combination approach, a lot of variants of independent sub-band processing have

reported positive performance results [5, 24, 28]. With the present full-combination approach we are theoretically

limited to linear expert combination. However, some of the best results for independent sub-band processing used

MLP combination, which is highly non-linear. There are also a number of other combination strategies which worked

well for independent sub-band processing which we have not yet tested with FCM, such as weighting by some

function of the entropy in the posteriors output from each expert [2, 21, 28].
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Nomenclature and commonly used abbreviations

ASR Automatic Speech Recognition

ANN Artificial Neural Network

MLP Multi-layer perceptron

HMM Hidden Markov Model

ML Maximum Likelihood

SNR Signal to Noise Ratio

WER Word Error Rate

FCM Full-Combination Multiband model

AFC Approximate Full Combination multiband model

probability of “event x” occurring

probability density at  of a continuous value

function with parameters  used to estimate

function (parameters unspecified) used to estimate

probability of events ‘a’ and ‘b’ occurring (same as )

probability of events ‘a’ or ‘b’ occurring

not , the negation of condition

speech unit whose presence is being estimated, or event that data  is from this class

, data window vector at time step

number of spectral sub-bands

ith sub-band of , for

ith sub-band combination of , and its complement, for

 clean  is from data population used in model training (i.e.  has no data mismatch)

 is best subset of  for estimating speech unit posteriors

 is largest clean subset of

 is best subset of  for estimating speech unit posteriors when true unit is

vector of sub-band expert weights

cumulative density function for the standard Gaussian pdf
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