

Dalle Molle Institute
for Perceptual Artificial
Intelligence • P.O.Box 592 •
Martigny • Valais • Switzerland

phone +41 – 27 – 721 77 11
fax +41 – 27 – 721 77 12
e-mail secretariat@idiap.ch
internet http://www.idiap.ch

August, 2000

Personal Voice Dialing over PC

Frédéric Bressoud
Haiyan Wang

IDIAP-Com-00-05

1. Project Introduction..4

1.1 Developing Environment..4

1.2 Technology Requirements..4

2. Compatibility between Hardware and APIs...5

2.1 Tests ..5

2.2 Result ..6

3. Application’s description ..7

3.1 Dialog box ...7
3.1.1 View a position ..8
3.1.2 Help..8
3.1.3 Refresh the PIN list..8
3.1.4 Delete button..9
3.1.5 Modify button ..9
3.1.6 Test call button...9

3.2 General use ...10

3.3 Add to the database ..10

3.4 Delete from the database ..11

3.5 List the database...12

3.6 Call someone...12

3.7 List key words...13

4. Modelisation..14

4.1 What is UML ..14
4.1.1 Importance of modeling...14
4.1.2 Goals of UML..14

4.2 Classes and objects ...15
4.2.1 Use case diagram ...15
4.2.2 Class diagram...15
4.2.3 Sequence diagram ..16
4.2.4 Activity diagram ..16

4.3 Voice Dialing ’s modelisation ...18
4.3.1 Class diagram...18
4.3.2 Sequence diagrams ..19

5. Coding ...24

5.1 Class CCommunication..24

5.2 Class CAudio ..26
5.2.1 Uses modification ..26
5.2.2 What is WAV...27
5.2.3 Message from the application to the user (TellMessage & CloseWaveOut)28
5.2.4 Data from the user to the application (SetUserData & SaveUserData)........................29
5.2.5 Window message principle ..30

5.3 Class Cannuaire..31

5.4 Class CRecognition...32
5.4.1 Create keywords Model ...33
5.4.2 Recognition..34

5.5 Classes CapplicationDlg, CDeleteDlg and CModifyDlg ..34

6. Tests and validation ..35

7. Project’s status ..37

8. Project future steps ...37

9. Conclusion ..38

9.1 Project progress..38

1. Project Introduction
As an important representation form of human beings, speech recognition is widely used
in our daily life. During the last ten years, automatic speech recognition has been applied
in real applications like vocal notebooks, vocal message control and so on.

Now many software companies can design, develop and distribute speech recognition
software products, which enable users to interact with and instruct a wide variety of
electronic devices through speech.

With a program using Speech Recognition, you can ask, “What time is it?” and hear if
you’re late for dinner. You can open your spreadsheet by saying, “Open the February
forecast.” Or use voice command to control your starship in a game. The possibilities are
as limitless as the human imagination.

A voice dialling system over PC is a typical application of speech recognition. It is
implemented using speaker dependent speech recognition based on phone-like units as
models.

1.1 Developing Environment

Software - “Windows NT”, the “Microsoft” APIs (TAPI1) and C/C++ language under
“Microsoft Visual Studio” are chosen to develop this project.

Hardware – PC; D/41ESC Global SCSA 4-Port Voice Processing Board; telephone
machine.

1.2 Technology Requirements

Automatic Speech Recognition - This project applies speaker dependent recognition over
the telephone. It conceives a system of personal voice dialing via phone interface. During
speech recognition, it use Dynamic Time Warping (DTW); Pattern assignment module
which done the generation of templates from quantified vectors; Acoustic analyses is to
extract features parameters from input speech.

Microsoft” APIs(TAPI)- The Microsoft Telephony API, provides telephony-related
services for Win32 applications.

1 TAPI : Telephony API

2. Compatibility between Hardware and APIs
The first task is the verification of the compatibility between the “Dialogic” phone card
and the “Microsoft” APIs. If they are compatible, there is no problem, but if they are not,
the card, or the interfaces, must be changed. This is the most important part, because all
the study depends on this compatibility. The more compatible, the easier coded.

2.1 Tests

To realize these tests, a simple code, using TAPI, is made. This code, which is in annex
A, must test the most usual functions of the phone card to verify compatibility of the card
with the library. All existing codes, over Internet or on the MSDN2 library, are too
complex and too dense. For this reason a code that uses simple and basic functions of
TAPI is created. It takes longer to build but the advantage is that it can serve as a basis
during the coding part.

First, the capabilities to match a call are tested. This code contains a class that supports
the basic functionality needed to use TAPI. This class is the “CTapiSimple”, which
contains basic functions of TAPI based on the MSDN library. The code can make an
outgoing call; it goes through.

Secondly, the capabilities to receive a call are also tested. This code is the same as the
first one but functions to make an incoming call are added. The function
“lineCallbackFunc” receives all events sent by TAPI. This function, in my code, does not
work, because it needs an application that uses a message loop mechanism, and tests
cannot be made. If necessary, this function will be examined later during the realisation.
Other ways exist to test an incoming call.

“Dialogic” adds with its card some examples. The “talker32” uses TAPI functions (Start,
Programs, Dialogic System Software, Dialogic Sample Programs, and TAPI). With this
example, the user can make outgoing and incoming calls. This example proves that the
hardware is compatible with the software, but these results cannot be shown.

2 MSDN : Microsoft Software Developer Network

The last part of the test must show that the hardware is really compatible with the
software. For this, the “Microsoft® Windows(TM) TAPI Browser” can prove with
printable results that the card fits. These results are call-back messages that are received
from the line. (See annex B).

2.2 Result

The TAPI browser results demonstrate that the “Dialogic” phone card is compatible and
can work with the “Microsoft” API libraries. For the remaining part of this project these
components will be used.

Nevertheless, a note could be added: the PBX3 type must be known by the application.
The PBX sends signalling tones to the application. These tones are analysed and the
application executes the appropriate treatment. If tones are unknown, or different than the
awaited one, the application cannot run correctly, e.g. the application receives a
connected tones, which is normally sends when the caller picks-up the phone, whereas
the caller does not have picks-up.

3 PBX : Private Branch Exchange

3. Application’s description
Before modelling and coding, the application must be carefully defined. The more
defined it is, the easier the modelisation and later the coding. With this definition, objects
to use and to create can be correctly conceived.

Furthermore, this description could be used as specifications so that, during the coding,
functions can’t be added to the mandate.

3.1 Dialog box

The user can view the application on his PC4 (central). With this dialog box, the user can
call a part of functions that are normally called with the phone. This dialog box is
necessary to initialize and shutdown TAPI, when the user opens or closes the box. Open
this window is the first action to do if the user wants to use the application.

In this window, the user can see all PIN5 codes that are already used. Each PIN code
corresponds to a specified user. These PIN codes are not changed in the future because
they are just a solution to differentiate all sound files and to assign a user table (database)
to each user.

4 PC : Personal Computer
5 PIN : Personal Identification Number

3.1.1 View a position
The user chooses in the “Existing PIN” box his PIN code and double click over it. This
action will be showing him his complete caller list from the database. Double click over a
name to view the both corresponding models in the “Model list” box. These models are
used for the recognition.

3.1.2 Help
If the user clicks over the “Help” button, the “User’s Guide”, which is also in annex E,
will be opened. He normally can, with this document, use correctly the application.

3.1.3 Refresh the PIN list
When a new user record his PIN code (with the phone), the application doesn’t refresh
the “Existing PIN” list automatically. To view the new PIN code and its corresponding
“Caller list” click on the “Refresh PIN” button.

3.1.4 Delete button
Click on the “Delete” button to delete the selected or underlined position from the
database and thus a new window comes. This window asks the user if he really want
delete the selected name. If he clicks on the “Yes” button, the application deletes this
position from the current database and also all sound files and models that are associated
with the deleted name. The “Caller list” box is updated and shows the modified database,
without the name that you have just deleted.

3.1.5 Modify button
To modify the caller name, the caller phone or the remark click on the desired name, in
the “Caller list” box and thus a new window comes. The user can change each parameter
that appears in the different fields and save them in the database with the “OK” button,
then the “Caller list” box is updated. If he clicks on “Cancel”, no change is saved.

3.1.6 Test call button
This button is to test if the application can generate a call. Since the dialog box cannot
establish a call, because nobody is on the phone, there is a “Test call” button, which only
call the number that corresponds to the selected or underlined name and hangs up after
one ringing.

3.2 General use

The voice dialling wants to be a demonstrator that facilitates the phone numbering. The
application plays first a welcome message. Then the user must enter his PIN code to open
the great database and use the correct models to do the recognition. If the user is a new
one, he must enter the “000” PIN code. After that, the application asks him to choose a
valid PIN code, unused and different than “000”. The application creates a new user table
in the database with the given PIN code. Then it asks him to enter each key word and the
two responses, yes and no, to create the models.

After this, the new user is like all other users. The application can ask him about his use
wishes. Give one of the menu key words or direct a name that the user already has
recorded to call it. The application recognise the given word and then, depends to the key
word, the application do the appropriate actions. If this is not a call, the application comes
back to the awaiting key state and that until the phone is hung-up.

If the user pronounces the key “call”, then the application makes the desired call, the user
speaks with his caller and the process stops with the “hang-up” user’s action.

See the flowchart in annex C.1 and C.2.

3.3 Add to the database

The user pronounces the key “add”. He gives twice the new name that the application
records and saves in the database. He also gives the number with the digital phone’s
keyboard. This number comes in a buffer and the application stops itself when this buffer
is full. Then it saves the number in the database. Finally the application goes back to the
awaiting key state.

See the flowchart in annex C.3.

3.4 Delete from the database

 The user pronounces the key “delete”. He gives the name that he wants be deleted. The
application repeats the name, which is recognised, to be sure that it is the right one and, if
the user confirms with a “yes”, deletes it. This action also deletes all associated sound
files and models. If he answers “no”, the application doesn’t made something and return
in the awaiting key word state.

See the flowchart in annex C.4.

3.5 List the database

The user pronounces the key “list”. The application enounces all names that are contained
in the user table and goes back in the awaiting key word state.

See the flowchart in annex C.5.

3.6 Call someone

The user gives direct the name to call instead of a key word. This name is recognised by
the application. The application asks the user if he really wants call this caller. If the user
answers “yes”, the application calls it and establishes the communication.

See the flowchart in annex C.6.

3.7 List key words

The user pronounces the key “menu”. The application gives the key words that the user
can say and goes back in the awaiting key word state.

See the flowchart in annex C.7.

4. Modelisation

4.1 What is UML

The Unified Modelling Language (UML) is a language for specifying, visualising,
constructing, and documenting the artefacts of software systems, as well as for business
modelling and other non-software systems. The UML represents a collection of the best
engineering practices that have proven successful in the modelling of large and complex
systems.

4.1.1 Importance of modeling
Developing a model for an industrial-strength software system prior to its construction or
renovation is as essential as having a blueprint for a building. Good models are essential
for communication among project teams and to assure architectural soundness. As the
complexity of systems increases, so does the importance of good modelling techniques.
There are many additional factors of a project’s success, but having a rigorous modelling
language standard is essential.

4.1.2 Goals of UML
The primary goals in the design of the UML were as follows:

1) Provide users with a ready-to-use, expressive visual modelling language so they can
develop and exchange meaningful models.

2) Provide extensibility and specialisation mechanisms to extend the core concepts.

3) Be independent of particular programming languages and development processes.

4) Provide a formal basis for understanding the modelling language.

5) Encourage the growth of the OO6 tools market.

6) Support higher-level development concepts such as collaborations, frameworks,
patterns and components.

7) Integrate best practices.

6 OO : Oriented Object

4.2 Classes and objects

All diagrams made for this application can be found in annex D. To interpret these
diagrams, they are given a brief description hereafter.

4.2.1 Use case diagram
The first stage is to define which user interacts with the application and what is he
capable of doing. All actions, which the user can make, are indexed in a use case

diagram.

4.2.2 Class diagram
In a class diagram, there are many classes that the application uses. A class contains
properties/attributes and methods/operations. For example, a class “car” has properties
like wheel, bodywork or motor. It has also methods like start, turn, accelerate or brake.
An object belongs to a class. For example, my car, which is an Audi A3, is a car.

In UML, the application can be modelled with a class diagram. It contains all
relationships that exist between classes. In this application the classes could be an
association, i.e. a first class uses or knows a second class, or an aggregation, i.e. the first
class has a second class’s object. For example, my Audi A3 has a TDI motor, from the
motor class. The black lozenge would show this relation. Another example is that a
person could have no, one or many car(s), the white lozenge would show this relation.

4.2.3 Sequence diagram
The sequence diagram describes for each use case which objects are used and how they
interact, and which methods they call. The arrow points over the object in which the used
method is defined.

4.2.4 Activity diagram
The activity diagram shows the activities of a given context and indicates which class is
designated to do each activity.

4.3 Voice Dialing ’s modelisation

4.3.1 Class diagram
Six classes are created and linked in this project but without the MFC 7 .
“CCommunication” is a TAPI wrap class. “CAudio” is the SAPI wrap class. “CAnnuaire”
is the phone book or the database. “CRecognition” is the recognition wrap class that wrap
the IDIAP code. “CApplication” represents the screen interface and will be used by
“CApplicationApp”, “CApplicationDlg”, “CDeleteDlg” and “CModifyDlg” that are
created with “Visual C++”. And finally, “CPhone” is unused but represents all possible
changes between the user voice and the transmitted data.

7 MFC : Microsoft Foundation Classes

CPhone

CRecognition

DoModel()
DoReco()
Convert()
Extract()
CreateModel()
Recognize()

1 1

CAudio

InitAudio()
SetUserData()
RecordName()
GetAllKey()
TellMessage()
SaveUserData()
CloseWaveOut()

1 1

CCommunication

DetectCall()
DetectDigits()
MakeCall()
InitComm()
ShutDownComm()
DropCall()
GoInitAudio()
RecordNumber()
RecordPinCode()
lineCallbackFunc()

1 1

1

1

1

1

CAnnuaire

OpenAnnuaire()
SetName()
NewPosition()
SetNumber()
CloseAnnuaire()
GetNumber()
Delete()

CApplication

InitApplication()
QuitApplication()

4.3.2 Sequence diagrams

4.3.2.1 General use
When the user composes the card number, the card detects that a call is coming. The
application asks the user to enter his PIN code. It checks if he is a new user.

4.3.2.2 Awaiting key
The application tells the user that it waits about a key word. This key word is recorded
and recognised. Then the application does the appropriate treatment.

UserAtPhone :
CPhone

Card :
CCommunication

Audio : CAudio

DetectCall()
InitAudio(tState)

DetectDigits()

TellMessage(char*)

PIN code
RecordPinCode()

Check if the user is a new one.

Check_user

UserAtPhone :
CPhone

Audio : CAudio Reco :
CRecognition

TellMessage(char*)

SetUserData(char*, int)

SaveUserData()

DoReco(char*)

Convert(char*)

Extract(char*)

Recognize(char*, CList)

Switch_key

4.3.2.3 Create user table and models
If the PIN code indicates that the user is a new one the application creates his user table
and records twice each key word and response.

UserAtPhone :
CPhone

Audio : CAudio Reco :
CRecognition

Card :
CCommunication

TellMessage(char*)

DetectDigits() RecordPinCode()

TellMessage(char*)
SetUserData(char*, int)

SaveUserData()

TellMessage(char*)
SetUserData(char*, int)

SaveUserData()

DoModel(char*)

Convert(char*)

Extract(char*)

CreateModel(char*)

DoModel(char*)

Convert(char*)

Extract(char*)

CreateModel(char*)

4.3.2.4 Add to the database
After the message, the user must pronounce the new name. This operation is twice made
for a best recognition. He also adds the phone number that the application saves in the

database.

UserAtPhone :
CPhone

Card :
CCommunication

Audio : CAudio Annuaire :
CAnnuaire

TellMessage(char*)SetUserData(char*, int)

SaveUserData()

NewPosition()

RecordName(char*, char*)

SetName(char*, char*)

TellMessage(char*)

TellMessage(char*)

SetUserData(char*, int)

SaveUserData()

RecordName(char*, char*)

SetName(char*, char*)

TellMessage(char*)

DetectDigits()

RecordNumber()

SetNumber(char*)

4.3.2.5 Delete from the database
The user gives the name to delete after the application message. The application repeats it
to be sure that it is the right one and, if the user answers yes, deletes it.

4.3.2.6 List the database
The application lists all names that are in the database.

UserAtPhone :
CPhone

Audio : CAudio Reco :
CRecognition

TellMessage(char*)
SetUserData(char*, int)

SaveUserData()

DoReco(char*)

Convert(char*)

Extract(char*)

Recognize(char*, CList)

Verify_name

Audio : CAudio Annuaire :
CAnnuaire

Delete(char*)

TellMessage(char*)

Audio : CAudio

TellMessage(char*)

Check_database

TellMessage(char*)

TellMessage(char*)

While the database
isn’t at the end

4.3.2.7 Call someone
The user gives the name to call instead of a key word. The application repeats it to be
sure that it is the right one and, if the user answers yes, calls it.

4.3.2.8 List key words
The application enounces all possible key words and a message to inform him that he can
also pronounce direct a caller name.

UserAtPhone :
CPhone

Audio : CAudio Reco :
CRecognition

TellMessage(char*)SetUserData(char*, int)

SaveUserData()

DoReco(char*)

Convert(char*)

Extract(char*)

Recognize(char*, CList)

Verify_name

Audio : CAudio Card :
CCommunication

Annuaire :
CAnnuaire

GetNumber(char*)

MakeCall()

Audio : CAudio

GetAllKey()

Speak all keys

End message

TellMessage(char*)

TellMessage(char*)

TellMessage(char*)

5. Coding
To realize this application, a new workspace must be first created with “Visual C++” and
at the same time a new project. This project must be a MFC one because all graphical
objects like windows are managed by the MFC. The second stage is to create all the
windows the application needs. The last stage before the code is to update the MFC
project with the class model from UML. Finally the application coding could be start and
if necessary the round engineering is applied.

Following paragraphs explain special functions or uses of application classes. In annex F,
there is a code exemplary where all classes are detailed with comments.

5.1 Class CCommunication

The most important part of this class is the call-back function. This function establishes a
way to communicate with TAPI. It is used to notify application of changes in calls or
lines device statuses. TAPI uses the call-back function to send messages to the
application, via the TAPI DLL 8 . The following graph shows how the call-back
mechanism works.

8 DLL : Data Link Library

Almost all other functions are calls to the TAPI functions. One or two of these used a
buffer that must be prepared before the function call. Information about these TAPI
functions can be found in the MSDN library.

The last function, “GoInitAudio”, is the audio class call. When the program comes back
in this function, it is to detect digits, to make a call or to go in the waiting state. If a call
wants be made, this function updates the phone number to call.

GoInitAudio() is to call the audio initialisation
InitComm() is to initialize TAPI, negotiate API, get capabilities and open a line
ShutDownComm() is to close the line and shutdown TAPI when the application is exited
MakeCall() is to establish the call with the given number
DropCall() is to close the line when the user hangs up the call
DetectCall() is to answers the specified offering call
DetectDigits() is to detect and buffer the incoming digits
RecordNumber() is to call the annul part to record the phone number
RecordPinCode() is to save the pin code for the audio part
LineCallbackFunc() is to send messages to the application

CCommunication

DetectCall()
DetectDigits()
MakeCall()
InitComm()
ShutDownComm()
DropCall()
GoInitAudio()
RecordNumber()
RecordPinCode()
lineCallbackFunc()

5.2 Class CAudio

InitAudio() is to synchronise all message from and to the card
SetUserData() is to record the user data in the given file
RecordName() is to record the new name in the directory
GetAllKey() is to give to the user all key that he can use
TellMessage() is to play the given file to the user
SaveUserData() is to save the given data into a file
CloseWaveOut() is to close all created objects and wave out device

5.2.1 Uses modification
SAPI is a complex and big API, which contains a lot of interfaces like “ITTSAttributes9”
or “ISREnum10”. There are also a lot of object interfaces like “IAudio” or “IDirectAudio”,
a total of 43 interfaces. Only after a through good study of each interface the best one can
be taken.

When the great interfaces are chosen, they must be understand and correctly used. The
functions of all interfaces are well defined, but how to link different objects (interfaces)
together is vague. Moreover, classes or interfaces, “CSTTTSQueue” or “ITelInfo” for
example, used for telephony application are wrap classes and, therefore, functions are not

9 TTS : Text To Speech
10 SR : Speech Recognition

CAudio

InitAudio()
SetUserData()
RecordName()
GetAllKey()
TellMessage()
SaveUserData()
CloseWaveOut()

so well defined. In this project, time doesn’t permit allow thorough investigation, perhaps
in a next project where COM11 objects will be study.

Another important point is that the IDIAP develops recognition algorithms, which are of
the latest technology. It is absurd to use algorithms worse than theirs. The project goal is
to test an algorithm with any phone card, card independent.

As TAPI is tidy, all functions do what they must do. The first solution is to use
“Dialogic” functions to record and play wave files. However, the two drivers are not
compatible and the program will don’t be independent of phone cards.

The second solution is to use only TAPI functions, include functions that permit to record
and play wave files like “waveIn” and “waveOut” functions. Here is the program
independent of phone cards.

This last solution will be hold to develop the application.

5.2.2 What is WAV12
Almost every browser has built-in WAV playback support. The RIFF13 WAVE format
was developed jointly by “Microsoft” and “IBM” as a method of saving high-quality
sound. The default Windows WAV format is PCM 14 , which is basically just
uncompressed sound data, and these files tend to be rather large. However, many
variations of compressed WAV files are possible (µ-Law and A-Law).

A WAV file contains digitized, sampled, sound data. A WAV file also contains
information about the sound data format, such as the number of bits per sample and the
number of audio data channels, mono vs. stereo. The various kinds of data in a WAV file
are isolated from one another using an architecture based on chunks. A chunk is simply a
block of data together with a chunk header, which specifies both the type of the chunk
and the size of the chunk’s data. A WAV file always contains at least two chunks, a data
chunk that contains the sampled sound data, and a format chunk that contains information
about the format of the sound data. These two chunks are packaged together inside
another chunk, called a container chunk or a RIFF chunk. Like any chunk, the RIFF
chunk has a header, whose chunk type is ’RIFF’, and some chunk data. For RIFF chunks,
the chunk data begins with a data format specifier followed by all the other chunks in the
file. The format specifier for a WAV file is ’WAVE’.

11 COM : Component Object Model
12 WAV : WAVe
13 RIFF : Resource Interchange File Format
14 PCM : Pulse Code Modulation

The general structure of any WAV file is as follows :

5.2.3 Message from the application to the user (TellMessage & CloseWaveOut)
The “TellMessage” function plays the given file through an opened WAV device. The
WAV format must be prepared. It is a PCM one, with an 8 kHz frequency, 8 bits per
sample and mono peculiar to telephony. The WAV buffer that receives sound data must
be also prepared. In this function, the CFile class can be used to read the sound file, to
define the buffer length and to put data into. When the WAV device is opened, a message
window procedure must be created. This procedure calls the “CloseWaveOut ” function,
which just closes the WAV device and deletes the created objects used in this part, when
the data are played. Then a synchronisation flag is set and the application can continue in

the audio sequence part.

5.2.4 Data from the user to the application (SetUserData & SaveUserData)
The “SetUserData” function records data into a WAV buffer. The WAV format, which is
the same as previously, must be also prepared. When the WAV device is opened, a
message window procedure must be created, this is the same as the WAV out. This
procedure receives an end message when the buffer is full and calls the “SaveUserData”
function.

The “SaveUserData” function save buffered data into a file, which is given to the
function. To realize this work, mmio15 functions must be used. These functions permit to
create and to write a WAV chunk. Then WAV device can be closed and objects deleted.

The data file must have a unique file name to differentiate each recorded name. To realize
this unique name, a counter is used. The name will be as follows: nameX.wav, where X is
the counter value. This value must be saved in a file (mark.brf) to retrieve all files in a
next use and updated it with the application opening. If this counter is always initialised
to zero, data are written over existent ones that are loosen.

Finally, a synchronisation flag is set and the application can continue in the audio
sequence part.

15 MMIO: MultiMedia Input Output

5.2.5 Window message principle
The message window is fast the same as the call-back function. This window receives
message from other classes, WAV in and WAV out, and calls the appropriate function.
This principle is being chosen because the call-back does not work correctly, after a
buffer full message it cannot close the WAV in device. This method permits to quit the
audio class to close WAV in, or WAV out device.

5.3 Class Cannuaire

In this class, a database is created to index all callers. The most appropriate database file
to use will be an “Access” one, SQL16 requests must be known.

A database is a file where you can index information. This information could be
composed of many fields. For example, in this application the fields are the followings:
identifier, phone number, caller name, model1, model2 and remark.

A database could be like the following one:

In this case, the application must recognize what the user said. For example, when he
says “add”, the application must recognize this key word and execute the appropriate
function. Each person has neither the same voice nor the same pronunciation. Then the
application must used models, which correspond to the user, to do the recognition. For
this reason the PIN code is used to build all file names. When the user 123 tell something,
only the 123 model names are used to do the recognition.

All model are created as follows:

16 SQL : Structured Query Language

CAnnuaire

OpenAnnuaire()
SetName()
NewPosition()
SetNumber()
CloseAnnuaire()
GetNumber()
Delete()

To each user it corresponds a table. To create all table names, the application also uses
the PIN code.

SetName() is to put the given file in the directory
NewPosition() is to create a nem Pin-code table in the database
GetNumber()is to get the phone number of the associated file
SetNumber() is to record the number into the two last recorded name
Delete() is to delete the specified file

5.4 Class CRecognition

This class is to do speech recognition. It receives a wave file which recorded by
“SetUserData” and “SaveUserData” functions of CAudio class. Then the mainly work is
divided into two parts: create a model file and do recognition.

CRecognize

DoModel()
DoReco()
Convert()
 ()Extract()
CreatModel()
Recognize()

5.4.1 Create keywords Model
The speaker dependent speech recognition, which we employ in this application, requires
that the keywords models are created for each user. Activated by input the command code
"000" through the telephone keyboard, the modelling process, first, asks the user to input
his pin code, then records his voices of the indicated keywords. A small specially
developed programme called "Convert" is used to decode and encode the recorded
Microsoft WAV data into the well used speech processing data format - NIST sphere.
After extracting the 13-dimensional vectors, the keywords are spotted into the proper
models with k-means clustering. At last, the created model names are recorded in the
database while are returned to the application. The processing flow chart is as follows:

Function "Convert()" transforms a wave file to a NIST sphere file, because the
“SaveUserData” function records user’s voice as a Microsoft WAV file but not a NIST
sphere file, which can be well processed by our feature extraction and keywords spotting
software.

Function "Extract()" creates an acoustic vectors file. The acoustic vectors are generated
by Acoustic Front End (a part of ANALYSE). 13-dimensional vectors are generated
every 10 ms 13, which consist of 12 static cepstral components and one log-energy
component.

Function "CreateModel()" generates a template for each keyword with a vector
quantization algorithm, which will be used as the model to do future recognition. This

function will return the created model’s name to let the application store it in the
database.

5.4.2 Recognition
 After a user has created his keywords models, the names of these models will be returned
as the recognition results when the user repeats these keyword again later. If the system
refuses to recognise some keywords, it returns the string “Nothing recognised”. The
processing flow chart as follows:

Recognize() applies Dynamic Time Warping technology. DTW compare the utterance
with all the models for the closest one (or recognising as garbage). The Recognize()
function returns the matching mode name or “Nothing recognised”.

5.5 Classes CapplicationDlg, CDeleteDlg and CModifyDlg

Both dialog boxes are designed and functions are implemented. These dialog boxes are
implemented to give to the user a best comfort. If the user want just delete a caller name
he can without all phone steps.

*.lin *.wav *.cep
Recog_result Convert Extract Recognize

r

In these three classes, there is no relevant speciality to explain.

6. Tests and validation
During the realisation, each part is developed and tested separately before its integration
in the application code. All major problems are resolved before the part integration. Thus
primary tests are regularly made.

✔ TAPI realises outgoing calls and answers to the incoming ones (not tested in
the same time).

✔ WAV files can be played and recorded.
✗ Recording without silence detection.

✔ A database can index all caller names.

✔ Dialog boxes show desired information.

The important part, now, is to test if the application is correctly sequenced and if all
defined functions are implemented. Firstly, we can test if the description flowcharts are
respected.

✔ Add to the database.

✔ Delete from the database.

✔ List the database.

✔ Call someone.
✗ Test call is OK but when another call is already answering the application

cannot call another phone.
✔ List key words.

Secondly, when the recognition files and the PBX will be correct, some special uses that
a user can do can be tested.

✔ Not enough digits or no digits when the application wait on, these errors are
detected.

✔ Unknown keys, responses or names are treat.

✔ Hang-up the phone when the application is doing something is detected.

In annex E is the “User’s Guide” applied to the version using the recognition. To use this
demonstration version, the user can follow this guide.

In this version the user can add twice the new caller name, add the corresponding phone
number and reheard all names that are in the directory. All screen interface functions
describe in the user’s guide are implemented and usable.

7. Project’s status
The project is not at its end, because it cannot execute all functions that are describe in
paragraph 5. The reason is that the recognition files are coded on a “Unix” environment
and in this project a “Windows” one is used. A goal summary can be as follows:

��Application: run correctly until the calling
��UML: model is created but no round engineering is made
��Visual C++: code is generated
��Dialogic: the D/ 21H card is functional and used
��TAPI: this part is the most successful one
��Screen interface: made all desired functions except the add one because we

can’t record the both model
��Database: an Access one is used and a table for each user is created
��SAPI: it is replace by WAV functions to record or play files and IDIAP

algorithm to recognize user data
��Recognition files, which are given by the IDIAP, run on “Windows”

8. Project future steps
Since this project is not ended, not perfect, here are the future improvements to bring.

��Firstly, the application must generate call, also if a call is answering, and may
be the conference functions will be used to establish the link between the two
phones.

��Secondly, the data record will be made with a silence detection and not with a
defined buffer length.

��Thirdly, the application will be tested with other cards from other
manufacturers to know if TAPI can control all cards, card independence.

��Fourthly, SAPI could be another project that requires COM objects and
recognition principle study.

9. Conclusion

9.1 Project progress

A bibliographical study of different APIs and technologies was made during the semester
project. This knowledge will be used while integrating voice recognition in a voice
dialling application via phone interface. “Microsoft’s” APIs, which are TAPI, with a
“Dialogic” phone card, will be used. After that, the compatibility between Hardware and
APIs will be demonstrated. Then before the code realisation, the application will be
modelled with UML17. Finally the documentation and the report will be written.

Knowledge has been applied in this “Voice Dialling” application and has been broaden.
Sound files, sound headers, recognition principles and databases have been used
thoroughly.

The report writing has been also an interesting and useful work that will be bring me
practice in future job. With this report, English bases are revised and improve so much in
the writing than in the reading.

Thanks to all people that have collaborate to this project and particularly to the IDIAP
and to the EIV teachers for theirs knowledge.

17 UML : Unified Modelling Language

Voice Dialling 1.2
User’s guide

10. Introduction
This application is based on a database. A database is a file where you can index
information. This information could be composed of many fields. For example, in this
application the fields are the followings: identifier, phone number, caller name, model1,
model2 and remark. A database could be like the following one:

This database is like a phone diary but over a computer. The user also can add a phone
code of his friend, delete it or modify something but without pencil.
To execute these actions, the user can use a screen or a phone interface. How do run
these? It is explained later.

11. Private Branch Exchange
All actions that the user does with his phone are transmitted with DTMF18 signals. For
example, when the user picks up the phone, a 420 Hz signal is send to the central to
inform it that the user wants call someone. And when the communication is connected,
the central returns another signal to inform the phone card or the phone that the
communication could be establishes.

For this reason, control that the PBX19 (central) type is the same as the installed one. Start,
Settings, Control Panel, Telephony, Telephony Drivers, Configure, Advanced and PBX strings. The card
must receive known signals to run correctly, e.g.: it must answer when the user calls the
card and not when he hangs up the phone...

11.1 Dialogic card

If this type is not the correct one, use the “PBXpert” program to detect signalling tones.
Start, Programs and Dialogic System Software. This software asks you the PBX manufacturer
and model. After this, you just must make the correct connections, like shown on your
screen, and the program tests all used tones, which are written in an appropriate file.

18 DTMF : Dual Tone Multi Frequency
19 PBX : Private Branch Exchange

Caution, to detect these signals, the application uses two phone lines.

Then change the PBX type and put the created one. Start, Settings, Control Panel, Telephony,

Telephony Drivers, Configure, Advanced and PBX strings.

11.2 Other cards

Look in your card menu if there is a program that can detect PBX signalling tones. If
there is not, control if your card can detect itself different PBX signal.

12. Canal
This application plays sound files, to the user, to inform him what he must do, and
records, from the user, others ones that are choices or names. For these reasons, the card
canals must appear in the audio devices.

The card canal to use is, in principle, the 1 one. You must connect the phone line with
this one. This canal must appear in second position in the playback and recording
preferred device. Start, Settings, Control Panel, Multimedia, and Telephony Audio.

If you have no sound card and the both canals appear in the two first places, then use the
canal 2.

13. Run the program
Double click over the “Application.exe” icon will run the “Voice Dialling” application.
This action will be initialize TAPI20 and put the application on waiting for an incoming

call.

With this double-click, the following dialog box will appear. This is the application

window.

20 TAPI : Telephony Application Programming Interface

Application.exe

14. Use this application
At the moment, the user can use either the screen or the phone interface to do some
operations with his database.
If the user uses the screen interface, he can execute some functions with all buttons that
are on the window. The screen interface is not necessary to use a phone.
If he uses the phone, he can also execute some functions but in the form of a dialog with
the application. He must firstly call the telephone number of card, like he calls telephone
number a friend.

15. Screen interface (user on the PC)
In this window, the user can see all PIN21 codes that are already used. Each PIN code
corresponds to a specified user. These PIN codes are not changed in the future because
they are just a solution to distinguish from all sound files and to assign a user table
(database) to each user.

15.1.1 View a list
The user chooses in the “Existing PIN” box his PIN code and double click over it. This
action will show his complete caller list from the database. Double click over a name to
view the both corresponding models in the “Model list” box. These models are used for
the recognition, it will be explained later. If you click one PIN code in the Existing PIN

21 PIN : Personal Identification Number

list, the all corresponding caller will appear in Caller list; Then if you click one caller
name in Caller list, the corresponding models will appear in Model list. Moreover, if
you double click one caller name in Caller list, a pop-up window will appear, you can
edit it and save what you changed after you click “OK” button(this function is the same
as clicking “Modify” botton).

15.1.2 Delete button
Click on the “Delete” button to delete the selected or underlined record from the database
and thus a pop-up window comes. This window asks the user if he really wants to delete
the selected record. If he clicks on the “Yes” button, the application deletes this record
from the current database and also all files that are associated with the deleted name.
The list box is updated and shows the modified list, afterwards it will show the all exist
records without the just deleted one. If he clicks on the “No” button, the application does
nothing. Here you can delete record in Existing PIN list or Caller list.

15.1.3 Modify button
To modify the caller name, the caller phone or the remark click on the desired name, in
the “Caller list” box and thus a new window comes. The user can change each parameter
that appears in the different fields and save them in the database with the “OK” button,
then the “Caller list” box is updated. If he clicks on “Cancel”, any change not saved.

15.1.4 Test call button
This button is to test if the application can generate a call. Since the dialog box cann’t
establish a call, because nobody is on the phone, there is a “Test call” button, which only
call the number that corresponds to the selected or underlined name and hangs up after
one ringing.

Caution, if the user clicks over this button, he can’t speak with the caller.

15.1.5 Refresh the PIN list
When a new user record his PIN code (with the phone), To view the new PIN code and
its corresponding “Caller list” click on the “Refresh PIN” button.

15.1.6 Help
When a new user click “Help” button, “Users guide” document comes out.

16. Phone interface
In this case, the application must recognise what the user said. For example, when he says
“add”, the application must recognise this key word and execute the appropriate function.
Each person has neither the same voice nor the same pronunciation. Then the application
must use models which correspond with the user, to do speech recognition. For this
reason the PIN code is used to create all file names. When the user 123 speak something,
only the 123 model names are used to do the recognition.
All models are created as follows:

The application always plays a message that prompt the user what he must do. After
prompt and a beep, the user should speak his response directly. During answering a key
word, a response (yes or no) or a name of caller, the user has three seconds.
All keywords and caller name, the application must record twice. With this method, the
application has two models to do speech recognition and have more chances to recognise
the latter pronunciation of user.

16.1 Call the card

Compose the card number, with any phone, to create or modify the database and use it.
This number depends of the phone plug, which is on the wall. For example, the number
(027) 721 77 97.

16.2 Dialog with the application (user at phone)

The application plays a welcome message at first. Then the user must enter his PIN code
to create his table in the database and use the correct models to do the recognition. If the
user is a new one, he must enter the “000” PIN code. Afterwards, the application asks
him to input a valid PIN code, unused and different than “000”. The application creates a
new user table in the database with the given PIN code. Then the user must pronounce
each key word and the two responses, “yes” and “no”, to create the models. If the user
input a invalid PIN code, the application will prompt for message to let user input PIN
code again.

Afterwards, the new user has his own models like all other users. The application can ask
him about his demand to use. Give one of the following key words: “add”, “delete”, “list”
and “menu” or direct a name that he already has recorded to call it. Then, according to the
key word, the application do the appropriate actions.

16.2.1 Unknown data
If the user pronounces an unknown word, including a silence, the application requests the
user to repeat this current operation until it can recognize an awaited key, response or
name.

16.2.2 Add to the directory
The user pronounces the key “add”. He pronounces twice the new caller name that the
application records and saves in the database. He also input the phone number with the
digital phone keyboard. This number comes in a buffer and the application stops itself
when this buffer is full. Then it saves the number in the database.

In the IDIAP22, the buffer is composed of three numbers; this is given by the internal
phone number format.

16.2.3 Delete from the directory
The user pronounces the key “delete”. He gives the name that he wants delete. The
application repeats the name, which is recognised, then ask the user if he is sure to delete
this record, if the user confirms with “yes”, deletes it. This action also deletes all
associated sound files and models; If he answers “no”, the application do nothing.
Afterwards the application return in the awaiting key word state.

16.2.4 List the caller names directory
The user pronounces the key “list”. The application plays all names that are contained in
the user table and then goes back in the awaiting key word state.

16.2.5 Call someone
The user gives direct the name to call instead of a key word. This name is recognised by
the application, which calls it and establishes the communication.

16.2.6 List key words
The user pronounces the key “menu”. The application gives the key words that the user
can say and goes back in the awaiting key word state.

16.2.7 Change unexpected models
If the user is not satisfied with his models (for example: the rate of recognition is low.),
He can firstly delete his PIN code and record again. Anyway, If the user only wants to
change “add” modes, he can enter the “001” PIN code from the beginning of
Application, Afterwards, the application asks him to input a valid PIN code, Then the
user must pronounce “add” twice to create the models.

22 IDIAP: Institut Dalle molle d’Intelligence Artificielle Perceptive

In the same way, to change the following key words: “delete”, “list”, “menu” , ”yes”
and ”no”, the user input “002”,”003”,”004”,”005” and ”006” at the beginning of the
Application, Then, with the new models, the application do appropriate actions as usual.

Attention: If the user input a invalid PIN code, the application will prompt user to input
PIN code again.

16.3 Hang up the phone

When the user will end his call, he can simply hang up the phone. The application exits
the running state. Anyway, He can call the card more time , which is ready for another
incoming call.

17. Exit the application
Just click on the “Cancel” button or on the window cross, up right. This action shuts
down TAPI and the application. If the Application continue not recognising user’s
pronunciation for 3 times, the Application will quit automatically.

It is preferable to close the application when no call is running because the wave device
can stay opening. If the wave has already been open, when the user still play or record a
sound, the device return an allocated error message and then he must restarts his
computer to resolve this problem.

