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Abstract. I present an introduction to some of the concepts within Bayesian networks to help
a beginner become familiar with this field’s theory. Bayesian networks are a combination of
two different mathematical areas: graph theory and probability theory. So, I first give the basic
definition of Bayesian networks. This is followed by an elaboration of the underlying graph theory
that involves the arrangements of nodes and edges in a graph. Since Bayesian networks encode
one’s beliefs for a system of variables, I then proceed to discuss, in general, how to update these
beliefs when one or more of the variables’ values are no longer unknown (i.e., you have observed
their values). Learning algorithms involve a combination of learning the probability distributions
along with learning the network topology. I then conclude Part I by showing how Bayesian
networks can be used in various domains, such as in the time-series problem of automatic speech
recognition. In Part IT I then give in more detail some of the algorithms needed for working with
Bayesian networks.
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Part I
Theory

1 Graphical Models

1.1 Graphical Models in General

A graphical model (Whittaker, 1990) is a tool that is used to visually illustrate and work with con-
ditional independencies among variables in a given problem. Two variables that are conditionally
independent have no direct impact on each other’s value. For example, A is conditionally independent
of C given B if P(A|B,C) = P(A|B) (Cowell et al., 1999, Section 5.1). Furthermore, the graphical
model will show any intermediary variables that separate two conditionally independent variables. It
is through these intermediary variables that two conditionally independent variables affect each other.

A graph is composed of a set of nodes (which in graphical models represent variables) and a set of
edges. Each edge connects two nodes, and an edge can have an optional direction assigned to it. For
directed edges, the edge is said to be from parent X, to child X.. For any given edge between variables
X1 and Xo, if there is a causal relationship between the variables, the edge will be directional, leading
from the cause variable to the effect variable; if there is just a correlation between the two variables,
the edge will be undirected (Cowell et al., 1999, Section 3.1.1). So, say that you have two conditionally
independent variables A and C. Now these two variables both are directly related to another variable,
B. So you draw an edge between the nodes of the variables that are directly related, that is, between
A and B and between B and C. Furthermore, say that the relations between A and B and between
B and C each work equally in two directions; so, make both edges undirected. Figure 1 illustrates
how both of A and C are dependent upon the variable B. However, there is no edge between A and
C. So, A and C are conditionally independent, given variable B. Note that this is not the same as
saying A and C are totally independent; it merely means that variable B encodes any information
from A that impacts C, and vice-versa.

For each variable there is a probability distribution function (it can be continuous or discrete;
though this paper deals only with discrete functions) whose definition depends on the edges leading
into the variable. For example, the probability distribution for variable A depends only on the value
of variable B while the probability distribution for the variable B in Figure 1 depends both on the
value of variable A and on the value of variable C.

So, a graphical model is defined as follows. It consists of variables (nodes) K = {1,2,...,k} with a
set E of dependencies (edges) between the variables and a set P of probability distribution functions

for each variable.

Figure 1: A graphical model illustrating conditional independence (Cowell et al.,
1999, Definition 5.1). Variables A and C are conditionally independent, given the
variable B. (Probabilities are omitted).
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Figure 2: A Bayesian network. (Probabilities are omitted,).

1.2 Bayesian Networks

Bayesian networks are a specific type of graphical model'. A Bayesian network is the specific type
of graphical model which is a directed acyclic graph (DAG, see page 5) (Neapolitan, 1989). That is,
all of the edges in the graph are directed (i-e., they point in a particular direction) and there are no
cycles (i.e., there is no way to start from any node and travel along a set of directed edges in the
correct direction and arrive back at the starting node).

Figure 2 illustrates a Bayesian network. Its set of edges is E = {(B, A), (B, C)}. This constitutes
a DAG because (1) there are no undirected edges (i.e., there are no edges going in both directions
between any vertices) and (2) there are no cycles (i.e., once you leave any given vertex and are following
the direction of the edges, there is no way to cycle back to the original vertex). Furthermore, since A
and C are conditionally independent of each other, you can say the following: P(A|B,C) = P(A|B),
which means that, for the factorization represented by this Bayesian network, the probability of A is
conditioned only on B and that the value of C is irrelevant for this local probability. Likewise, you can
say that P(C|A, B) = P(C|B). The edges in the Bayesian network encode a particular factorization
of the joint distribution. In this example, the joint distribution of all the variables, as factorized by
this Bayesian network, is

P(A,B,C) = P(A|B) - P(B) - P(C|B) (1)
In general, given nodes X = X1, ..., X,, the joint probability function for any Bayesian network is
n
P(X) = [[ P(Xilparents(X;)) (2)
i=1

That is, the joint probability of all of the variables is the product of the probabilities of each variable
given its parents’ values. This shows the meaning of the directed edges: they indicate which other
variables a given variable is conditioned upon.

The edges in Bayesian networks are sometimes looked at as causal connections where each parent
node causes an effect on its children. While this notion of causality is useful in constructing Bayesian
networks, note that the joint probability represented by one set of edges can equally be represented
by another set. For example, using Bayes’ rule the joint probability from (1) becomes:

P(B|A) - P(A)
P(B)
This is represented graphically by Figure 3.

P(A|B) - P(B) - P(C|B) = -P(B) - P(C|B) = P(4) - P(B|A) - P(C|B)  (3)

2 Graph Theory Terminology

Having defined Bayesian networks, I will now provide some of the theory that is needed for the later
discussions of Bayesian networks. Although Bayesian networks combine probability theory and graph

LOther types of graphical models, some of which are similar to or synonyms for Bayesian networks, are (Bayesian)
belief networks, causal networks, (probabilistic) independence networks, probabilistic networks, Markov fields.
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Figure 3: A Bayesian network that represents the same joint probability as the one
in Figure 2. The edge (B, A) has been reversed to become (A, B). (Probabilities
are omitted).

Graph A Graph B

Figure 4: Directionality. While graphs A and B have connections between the same
nodes, they are not the same graph. Graph A has undirected edges while graph B
has directed edges which point in certain directions.

theory, I will be providing some of the basics of only graph theory here. For more information, please
see Neapolitan (1989, chap. 3 & 7), which provides a good background into the graph theory from a
Bayesian networks’ perspective.

Brualdi (1992, Section 11.1) defines a graph as (1) a set of nodes (also called vertices) and (2) a set
of edges (also called arcs), each edge being a pair of nodes. This is also called an undirected graph. If
the two vertices within each edge (X;, X;) are ordered, then the edges have a direction assigned to them
(that is, they lead specifically from node X; to node X; and not in the other direction); this is called
a digraph (or, a directed graph). Brualdi (1992) also presents multigraphs and general digraphs,
which allow multiple connections between any two nodes in graphs and digraphs, respectively. The
following properties of a graph deal with what arrangement of edges appear among the nodes in a

graph or digraph.

Figure 5: Chains and paths. The vertex sequence A — B — C — D is a chain of
length 8 (but it is not a path). The vertex sequence A— B —C — A— B is a path of
length 4. The vertex sequence A — B — C' is a simple path of length 2. The vertex
sequence A— B—C — A— B —C — A is a cycle of length 6. The vertex sequence
A— B —C — A is a simple cycle of length 3.
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Figure 6: DAGs, parents/children, ancestors/descendants, family. The above
graph is a DAG. A is the parent of B while B is the child of A; B is the par-
ent of C and D while C' and D are the children of B; and so on. A is the ancestor
of B, C, D, E, and F while B, C, D, E, and F are the descendants of A; and
so on. A possible ancestral ordering for this graph is A,B,C,D,E,F; another
acceptable ancestral ordering is A, B, D, F,C,E. Some sample families from this
graph are A, B as the family of B; B,C as the family of C; and C,D,E as the
family of E.

A chain is a series of nodes where each successive node in the chain is connected to the previous
node by an edge (regardless of the direction, if any, of the edge). A path is a chain with the further
constraint for digraphs that each connecting edge in the chain has a directionality going in the same
direction as the chain. A cycle is a path that starts and ends at the same node. A simple path is
a path with unique nodes. A simple cycle is a cycle where, except for the start/end node, all nodes
are unique (See Figure 5). A directed acyclic graph, or DAG, is a directed graph that has no
cycles (See Figure 6).

A parent/child relationship in a directed graph occurs when there is an edge (X;,X5), from X;
to Xo; X7 is called the parent of Xo and X5 is called the child of X;. In other words, the edge points
from the parent to the child. An ancestor/descendant relationship, furthermore, is the extension
of the parent/child relationship. For example, if X; is the parent of X5 and if X is the parent of
X3, then X is an ancestor of X3 and X3 is a descendant of X;. Like in human genealogies, this
relationship extends further than just these two sets of parent/child relationships. An ancestral
ordering is an ordering of nodes where each ancestor comes before its respective descendants. This
is always and only possible in DAGs. (See Figure 6). A family is the set of vertices composed of X
and the parents of X. For example, in Figure 6, the vertices {C, D, E} are the family of the vertex
E. Whereas the terms parent and child define the relationship between two vertices connected by
a directed edge, the term adjacent (or neighbor) describes the relationship between two vertices
connected by an undirected edge; the two nodes are said to be adjacent.

A forest is a DAG where each node has either one parent or none at all. A tree is a forest where
only one node (called the root) has no parent; in other words, every node but the root has exactly one
parent. (See Figures 7 & 8). It should be noted that while books in graphical modeling define trees
as above (Cowell et al., 1999; Neapolitan, 1989), others define a tree as being a connected, undirected,
acyclic graph (Brualdi, 1992; Boffey, 1982). This brings about the term directed tree versus regular
trees. In this paper I am only concerned with directed trees, and I will, therefore, use the directed
definition from Cowell et al. (1999) and Neapolitan (1989).

A moral graph is made from a DAG. For a DAG, marry the parents of each node; this means
that you add an undirected edge between each parent. After doing this, you remove the directionality
from all of the original edges, resulting in a undirected graph. (See Figure 9).

For a given path (or cycle), a chord is an edge that does not appear in the path but which is
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Figure 7: Forest. The above graph, consisting of all nodes A, B, ..., H is a forest.
Every node has either one parent or none at all. B,C,D,FE,G have one parent
each while A, F, H have no parents. This graph is not a tree because it does not
meet the requirement of only one of its nodes having no parent.

Figure 8: Trees. The above graph is a tree. It is a DAG where every node has
exactly one parent, except for the root node A which has no parent.

between two nodes that occur in the path. The term chordless describes a simple path or (simple
cycle) for which no chords exist. For example, consider the cycle B— C — E — D — B from the graph
in Figure 9. A chord for this cycle is the edge (C, D). However, the cycle B— C — D — B is chordless
as there are no edges between non-adjacent nodes in this cycle.

The term triangulated describes an undirected graph where any simple cycle with at least four
nodes also has at least one chord. Note that it is not possible to have any chords in a cycle with three
nodes. (See Figure 9).

The term complete describes an undirected graph where every node is connected to all other
nodes.

A clique is a subset of nodes which is complete and can not be made any larger while still being
complete. For example, say that the subset of nodes X7, X5, X3 is complete; if they form a clique, this
means that there is no other node X; that can be added this subset with it still being complete. While
Whittaker (1990, Section 3.1) specifies that a clique is maximal, this is not always strictly enforced.
For example, Golumbic (1980, Section 1.1) makes a distinction between a clique and a maximal clique.
(See Figure 10).

A join tree is a DAG that has been moralized and triangulated and then had its cliques become
the nodes of a tree. See Figure 11 on page 8. It needs to have the characteristic known as the running
intersection property, which means that any vertex (or vertex set) that is found in any two cliques
C; and Cj in the tree will also be found in all of the cliques found on the chain between C; and C}.
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Figure 9: Moral and triangulated graphs. The above graph is the moralized form of
the graph in Figure 6 on page 5. The only node with “unwed” parents in that graph
is E. In moralizing the graph, C and D, the parents of E, are connected. Then, the
directions are removed from all the edges. This also happens to be a triangulated
graph because its only simple cycle with a length of at least /, B—C —E—D — B,
does have a chord (C — D).

oo Pe,

Figure 10: Cliques. These subgraphs are all of the (mazimal) cliques from the
graph in Figure 9. These cliques are complete subgraphs (that is, they are fully
connected).

3 Inference in Bayesian Networks

Inference is the task of computing the probability of each value of a node in a Bayesian network
when other variables’ values are known. While there are different algorithms for doing inference in
a Bayesian network, I will be looking at one called the junction tree algorithm, which works for any
arbitrary Bayesian network. However, before describing this generic algorithm for arbitrary BNs, I
will give a simple introduction to what inference involves using a simple Bayesian network. This
will be then followed by an introduction to belief propagation, which serves as the foundation to the
junction tree algorithm.

3.1 An Introduction to Inference

Heckerman (1999) gives an example of a Bayesian network that models credit card fraud, as illustrated
in Figure 12. From this BN you can see, for example, that if there is a case of credit card fraud, then
the chances of gas or jewelry being bought is affected; also, the chance of jewelry being bought is
further affected by the age and sex of the purchaser. Table 1 indicates the probabilities associated
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Figure 11: A Join Tree. This is a join tree for the cliques in Figure 10. There are
four nodes in this tree: (A,B), (B,C,D), (C,D,E), and (D,F).

with each of the variables in this Bayesian network. For example, you can see that if Fraud is Yes,
then there is a probability of 0.2 that Gas will be Yes but if Fraud is No, then there is a much
smaller probability of 0.01 that Gas will be Yes. (That is, a person who is fraudulently using a credit
card is twenty times more likely to buy gas than someone who is legitimately using a credit card).
These different probabilities are commonly referred to as beliefs (Heckerman, 1999, Section 2).

Based on the discussion given in Heckerman (1999), inference in this Bayesian network proceeds as
follows. Suppose that you notice a certain value for one or more of the variables in the network. If one
variable has a definite (i.e., observed) value, your beliefs (i.e., probabilities) for the other variables need
to be revised. This is what inference is: determining the updated (posterior) probability distribution
for a variable based on the known values of the other variables. By itself, the prior probability for
fraud is given as P(fraud=yes) = 0.00001. However, you notice that a young man is using a credit
card to buy jewelry (but not any gas). That is, Sex = Male, Age =< 30, Jewelry = Yes, Gas = No
(Table 2). You then want to infer whether he is using the card fraudulently. In other words, you
need to calculate P(f|j,g,s,a) (each letter is the first letter of its respective variable). You proceed
as follows:

By Bayes’ rule,

P(j7g7s7a7f) (4)

Because the states of f are mutually exclusive and exhaustive, you can transform the denominator
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Fraud Age

Gas Jewelry

Figure 12: A Bayesian network from Heckerman (1999) illustrating credit card
fraud. There are five variables in this network. The probability of the Jewelry vari-
able is dependent upon the values of the Fraud, Age, and Sex variables. Likewise,
the value of the Gas variable is dependent upon the value of the Fraud variable.
The Fraud, Age, and Sex variables themselves are not conditioned on any variable.
See Table 1 for the local probability distributions for each variable.

Probability Conditions

Fraud [ Age | Sex

Fraud = Yes Fraud = No

0.00001 0.99999 - - -

Age < 30 Age = 30-50 | Age > 50

0.25 0.40 0.35 - — -

Sex = Male Sex = Female

0.5 0.5 - - -

Gas = Yes Gas = No

0.2 0.8 Yes - -

0.01 0.99 No — -

Jewelry = Yes | Jewelry = No

0.05 0.95 yes * *

0.0001 0.9999 no <30 male

0.0004 0.9996 no | 30-50 male

0.0002 0.9998 no >50 male

0.0005 0.9995 no <30 | female

0.002 0.998 no | 30-50 | female

0.001 0.999 no >50 | female

Table 1: Probabilities for the variables in Figure 12

Variable

Fraud

Jewelry

Gas

Sex

Age

Value ? Yes No | Male | < 30

Table 2: An example set of one unknown and four observations from the credit
card fraud network in Figure 12. Values are observed for every variable except
Fraud. These observed values can then be used to give an updated probability for
the belief of Fraud being Yes.
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of (4) to get:
P(j7g7 57 a) f)

P(flj,9,s,a) = > p P, 9,80, ) ?

Now, using the product rule of probability, both the numerator and denominator of equation 5
can be factored as follows:

Pl s,af) s Plgls,a, f) x P(sla, £) + Plalf) = P()
PUN050) = S B i1y 5,0, 1) = Plgls,an 1) % P(sla, 17) % Pa]) * P(FY) ®)

Due to the conditional independencies, you can remove certain variables from the conditional lists
in (6) (see Section 1.2). That is, if the variable z¢ is not a child of z,, in the graph, then

P(xzolz1,. .- Tn,...,xk) = P(xo|T1,- . s Tne1,Tpt1,- .-, Tk)-

Using this simplification provides the following:

o Pls,af) < Pl * Pls) £ Pla) £ PP)
PUL9:9:9) = 5= "Bl a, 1) PlglF) = Pls) * P(a) = P(F) "

At this point, you can then simplify equation 7 by cancelling common factors in the numerator
and denominator. (Doing so indicates that the prior probabilities for both age and sex have no direct
impact on the probability for fraud being computed).

e PUlsad) s PGl P
U050 = 5 B s, 1)+ PIT) » PT) ®

(8) can then be computed by inserting the values for the variables and reading the probabilities
from Table 1.

P(f =Yes|j=Yes,g= No,s = Male,a =< 30)
P(j =Yes|s = Male,a =< 30, f =Yes)x P(g = No|f =Yes) « P(f =Yes)

T X fretpesno PO = Yes|s = Male,a =< 30, f')  P(g = No|f') * P(f") )

By substituting of the actual probabilities, you get:
P(f =Yes|j=Yes,g= No,s = Male,a =< 30)

0.05 0.8 % 0.00001
(0.05 % 0.8  0.00001) + (0.0001  0.99 * 0.99999)

= 0.00402

Thus, while the prior probability of fraud is 0.00001, the inferred probability of fraud, given the
other variables, is 0.00402 (over 400 times as probable).

3.2 Belief Propagation

Belief propagation (Pearl, 1988) is the action of updating the beliefs in each variable when observations
are given to some of the variables. While this can be done in any arbitrary Bayesian network, I will
illustrate it here for the simpler case of the Bayesian network being structured as a tree. In Section 9
on page 24 I give the more detailed algorithm of belief propagation for any general Bayesian network.
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3.2.1 Pearl’s Method

According to Pearl (1988, Section 4.2), belief propagation proceeds as follows. Let e be the set of
values for all the observed variables. For any variable X, e can be split into two subsets: ey, which
represents all of the observed variables that are descendants of X (including X itself if it is observed),
and e;g, which represents all of the other observed variables. The impact of the observed variables on
the beliefs of X can then be represented using the following two values:

A(X) = Plex|X) (10)
7(X) = P(Xe) (11)

Since z has multiple discrete values, A(X) and w(X) are actually vectors, whose elements are associated
with each of the discrete values for X:

AX) = [MX = 21), \(X = 22),...,\(X = xy)] (12)
(X)) =[r(X =21),7(X = 23),...,7(X = x)] (13)
Using (10) and (11), you get the following posterior probability:
P(X|e)=a-A(X) m(X) (14)
with @ = 5, and with pairwise multiplication of the items in A\(X) and 7(X). (14) is the equation

Ple)
that you want to compute to find the new beliefs. The A(X) and 7(X) values are then passed between
variables in an orderly fashion.

Computing A A(X) is computed using A(Y1), A(Y2), ..., A(Y.), where Y7,Y5,...,Y,, are all of the
children of X. First, when X is observed as x°, the elements of the vector A\(X) are assigned as
follows:

e \z;))=0 if z;#£2°
e ANz;) =1 if x; =20

For the case where X is not observed, you have ex = |J;Z; ey.. Using (10), A(X) is expanded as:

AX) = Plex|X) (15)
= Pley, ey, - ey, |X) (16)
= Pley,[r) - Pley,[X) - Pley, |X) (17)
= >‘Y1 (X) : >\Y2 (X) """ >\Ym (X)7 (18)

using the fact that ey ey ,... ey

- are conditionally independent of each other, and defining the
following:

Ay (X) = Pleg,|X).

For each Ay, (X), its computation proceeds as:

Av;(X) = P(ey,|X) (19)
= > Pleg,lyi, X) - P(y;|X) (21)
= Y Pley,lyi) - P(yilX) (22)

> Ayi) - Plyil X) (23)
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So, this shows that to compute the value A(X), you only need the X’s from all of X’s children
as well as the conditional probabilities from all of X’s children. Also, this means that to compute a
variable’s \’s, you need to first compute its children’s \’s. Therefore, in a compact form, the vector
A(X) is computed by:

MX) = 11 > A@) - P(v]X) (24)

cechildren(x) vee

Computing 7 Furthermore, 7(X) is computed using X’s parent Y. Using (11):

m(X) = P(Xlex) (25)
= Y P(X,yile}) (26)
= §P<X|yi,e§)-P(yile§) (27)
= iP(lei)-P(yilefg) (28)
= éP(lei)-ﬂ(yi) (29)

So, this shows that to compute the value 7(x), you only need the 7 from X’s parent as well as the
conditional probabilities from X. Also, this means that to compute a variable’s 7, you need to first
compute its parent’s 7.

3.2.2 Peot and Shachter’s Method

Peot and Shachter (1991) provides a similiar propagation algorithm to Pearl’s. A notable difference
from Pearl’s is the definition of the A’s and 7’s. Peot and Shachter (1991) defines them as follows:

AX) = P(ex|X) (30)

m(X) = P(X, ex) (31)

While (30) is the same as (10), (31) differs from (11) in that a joint probability, P(X,e%), is used
instead of a conditional probability, P(X|e%). In contrast to (14) in Pearl’s algorithm, this provides
the following;:

P(X,e) = \(X) - 7(X) (32)

For more details on this method, see Peot and Shachter (1991).

3.3 Junction Tree

Cowell (1999) gives an introduction to a more general method of inference in Bayesian networks: the
junction tree algorithm. Because of potential problems with doing inference in a DAG (because of the
cycles when the directionalities are removed—see Pearl (1988, Section 4.4)), this algorithm is useful.
To use it, a DAG is transformed into a tree whose nodes are cliques (cf. page 6). Any given node
from the graph may occur in multiple cliques in this tree. This leads to the key property that this
tree has: any node (or any subset of nodes) from the graph that appears in two different cliques, X;
and X5, must also appear in all of the cliques along the path that connects X; and X5,. This gives the
tree the name of “junction tree” (Cowell et al., 1999) The junction tree algorithm proceeds as follows
(Cowell, 1999):
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Structure Observability Method

Known full Sample statistics

Known partial EM or gradient ascent
Unknown  full Search through model space
Unknown partial Structural EM

Table 3: Learning methods depending on what is already known about the problem.
Taken from Murphy and Mian (1999).

1. Moralize the Bayesian network.
2. Triangulate the moralized graph.

3. Let the cliques of the triangulated graph be the nodes of a tree, which is the desired junction
tree.

4. Propagate the A and 7 values throughout the junction tree to do inference. This will provide
the posterior probabilities for the unobserved variables.?

See Section 8 for the details on constructing the junction tree and Section 9 for details on performing
propagation in the junction tree.

4 Learning in Bayesian Networks

Up to this point in the paper, I have assumed that everything in the Bayesian network was already
learned. That is, in explaining how to do inference in Section 3, I showed how to do inference in
a Bayesian network in which both the topology and the prior probability distributions were already
known. In this section I will go into learning the topology and the probability distributions within
a Bayesian network. Depending on the problem that is defined, either (or both) of these may be
pre-defined by hand or may be learned. Table 3 breaks down the different possibilities of what has to
be learned and what methods are to be utilized. Heckerman (1999) provides an introduction to some
of the issues involved in learning within a Bayesian network.

4.1 Known structure and full observability
4.1.1 Likelihood method

As can be seen from Table 3, if you already know the structure of the Bayesian network and have a
full sampling of the data, you determine the probability distributions by computing statistics from the
data samples. What this means is that if you want to compute the probability of, say, P(X1|X2, X3),
you collect the data for all the various possible values of X7, X5, and X3 and use the data to estimate
the actual probability. That is,

P(Xi =21,Xo = 22, X3 = x3)

PXi=x1|Xy =22, X5 =2 = 33

(X1 1| Xo 2, X3 3) P(Xs = 9, X3 = 73) (33)
_ Number of samples with Xi=z1,Xo =29, X3 =123 (34)
= Number of samples with Xo =29, X3 =23

2Note that each X\ and 7 in a junction tree can actually have multiple dimensions, each dimension representing a
different variable in the clique that the A and = are associated with. This multi-dimensional array has an element for
each possible instantiation of the component variables for the respective clique.
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4.1.2 Bayesian method

If the data is sparse, then Dirichlet priors can be used (Murphy and Mian, 1999). Heckerman (1999)
goes into the complete Bayesian solution. In the Bayesian method, the local probability distribution
for each variable is calculated by:

p(Xi|parents(Xi)70i75h)ﬂ (35)

where 6; are the parameters for the probability distribution of X; and S” is the topology of the
Bayesian network. The 6; for a variable can be viewed as a two-dimensional matrix: one dimension
for each possible instantiation of X; and one dimension for each possible instantiation of parents(Xj;).
So, each probability parameter for the whole Bayesian network is identified by 6;;,, where ¢ ranges
over all the variables, j ranges over all the possible parent instantiations for variable z;, and k ranges
over all the instantiations for Xj; itself. In other words,

p(z¥|parents? (X;),0,5") = 6, (36)
The goal of the training is to maximize the posterior distribution
(61D, S"). (37)
(37) can then be factored as follows, assuming parameter independence:
|X| [parents’ (X;)|
pOD,s") =T I  »6yD,s" (38)
i=1 j=1
The factors in (38) can be represented by Dirichlet distributions:
p(035|D, Sh) = Dir(6sj]aiji + Niji, ija + Nijay -+, Qjla;| + Nijlay|) (39)

In (39), N;j, represents the number of times that the case (X; = k, parents(X;) = j) appears in D
while a;;, represents your prior beliefs about how often the case (X; = k, parents(X;) = j) would
occur, not having seen D.

Heckerman (1999) then goes on to show how, using (39), you obtain:

1X| Qik +N"k
X|D,Sh) =] =—2&, 40
p(xID, 5" = [ "5 (40)
which results in the following update formula for the probability distribution parameters:
Qi + Nzyk
Oiir, = 41
ijk alj +NZJ ( )

4.2 Known structure and partial observability

As shown in Table 3 on page 13, if you know the structure but have not observed all of the data, you
can use expectation-maximization(EM) or gradient ascent to learn the parameters. Exact Bayesian
methods are intractable in this scenario; so, approximations to the Bayesian methods are used.

4.2.1 Likelihood method

The likelihood method for learning probabilities in Bayesian networks with partial observability is the
expectation-maximization (EM) algorithm (Lauritzen, 1995), which is a generalization of the Baum-
Welch algorithm (Baum, 1972). Zweig (1998) discusses how to use EM in discrete Bayesian networks,
upon which the following is based.
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Expectation Extending (14) on page 11 to cliques, the probability of clique Clique; having instan-
tiation ¢; given the observations e is

P(Cliquei = Cm|e) =g+ Tia, (42)

where a ranges over the possible instantiations of Clique;. So, this means, that by converting the
Bayesian network to a junction tree and running the inference algorithm on it, you can use (42) to
compute the probabilities for each clique, given the observations.

Now, you want to have a list of counts IV;;;, for each variable X; with an instantiation of k£ and with
its parents having an instantiation of j. So, to determine the value for an V;j, first identify a clique
where X; occurs with its parents. (Its parents need to be in the clique also so that P(X;|parents(X;))
can be computed from the clique probabilities.) If V}k is the set of clique instantiations that have
X; =k and parents(X;) = j, then N;j;, is:

Nijk = Z P(Clique; = wle) (43)

wEVJ!k

(43) marginalizes out any variables in Cligue; which are not part of X;’s family. The values of N;jj
can be accumulated with each training sample given to the Bayesian network.

Maximization Once all of the IV;j;, values have been computed, they are then used to re-estimate
the local, conditional probability distributions for each variable. That is,
) Nijr Nijk

P(X; = klparents(X;) = j) = —=—2— = 2 44

(X: = Kparents(X,) = j) = <=4t = (44

4.2.2 Bayesian methods

Exact methods for computing the probability distribution using Bayesian methods are intractable
because the number of parameters increases exponentially with the amount of missing data (Cowell
et al., 1999). One alternative is to use maximum likelihood with prior counts. Like in Section 4.1.2,
Heckerman (1999, Section 6.3) shows how prior counts a;;; can be incorporated into learning with
partial observability, giving a revised expectation-maximization algorithm. The revised EM algorithm
is as given in Section 4.2.1, but with the following maximization step, revised from (44):

aijr + Nijk

P(X; = k|parents(X;) = j) = i + N
(5] v]

(45)

4.3 Unknown structure and full observability

Heckerman (1999) continues discussing learning in Bayesian networks with methods of learning struc-
ture with complete training data. Two things are needed for this task:

e a metric for comparing potential structures against each other
e a search algorithm for finding potential structures
While the list of potential structures could be determined by using all of the edges possible in the set

of nodes, the size of this list grows exponentially with the number of nodes. Therefore, the search
algorithm will only find likely candidates.
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4.3.1 Structure comparison metric

One method for evaluating a potential structure is to compute the joint probability p(D, S"), for the
data D and structure S*. After factoring this and taking its log, you have the following to compute:

logp(D, S") = log p(D|S") + log p(S™), (46)

which breaks the task down into computing the posterior probability (the likelihood) and the prior
probability of the structure of the data.

One method for computing log p(D|S™) is to use the Bayesian information criterion (BIC) (Schwarz,
1978):

R d
log p(D|S") ~ logp(D|fs, S") — 5 log N, (47)

where s are the network parameters, d is the dimensions of g(fs) = log(p(D|fs, S") - p(6s|S")), and
N is taken from the size of D. Heckerman (1999) relates BIC as being the negative of Minimum
Description Length (MDL) (Rissanen, 1987).

Regarding how to determine the prior probability p(S") from (46), there are different methods
(Heckerman, 1999). One is to have an expert (e.g., a person) provide a set of possible structures
and then to assign all of these an equal prior while assigning all structures not in this set a prior
of 0. Another possibility is to set a prior network. The prior probability of any network is decreased
depending on the deviation between a potential network and the defined prior network (the deviation
being calculated according to a pre-determined metric).

4.3.2 Structure search methods

Since you are assuming that all of the data has been observed, you know what the nodes in the graph
are. So, you just have to find the appropriate connections between the variables. Doing this over all
the possibilities is NP-hard (Heckerman, 1999). So, there are different options available for doing a
selective search among the possibilities in order to find a good model. One possibility is to do a greedy
search.

In a greedy search, you have at each step a list of all the possible changes that can be made to
the graph. These changes are of the following type: adding an edge, in any direction, to the graph;
reversing the direction of any edge in the graph; and removing an edge from the graph. The list of
possible changes is restricted to those that keep the graph as a DAG (see page 5 for a definition of
DAG). So, at each step you chose the change which increases log p(S*), the second element of (46),
the most. You continue iterating until there is no change that will increase the probability. Each
iteration will always provide a potential structure that has not been previously chosen (because all
previously examined structures have a lower value for logp(S*) than the current). See Heckerman
(1999) for more details about this and other search algorithms.

4.4 Unknown structure and partial observability

The final learning scenario from Table 3 is when neither the structure nor the data are fully known.
Friedman (1997) explains one method for learning both the network structure and the data, the
model-selection expectation-maximization (MS-EM) algorithm. (In Friedman (1998), the algorithm
is called the structural EM algorithm (SEM)).

Murphy and Mian (1999) give a summary of the structural EM algorithm as follows. You can
describe learning both the structure and the variables as a combination of the methods from section 4.3
and of adding new variables/nodes. You iterate as follows: (1) add a new node to the network,
representing a hidden variable; (2) for this given set of nodes, find the “best” (as good as you can get)
network connections; (3) continue as long as the network keeps improving.
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Figure 13: A possible prior network for a dynamic Bayesian network with three
static variables A, B, C. (Probabilities are omitted).

Figure 14: A possible transition network for a dynamic Bayesian network with
three static variables A, B,C. (Probabilities are omitted).

5 Dynamic Bayesian Networks

In my previous discussions about Bayesian networks, none of them had any relation to time. That is,
all the variables in the network were from a single point in time. Another domain of interest deals with
how the variables in a Bayesian network change with time, which is what a dynamic Bayesian network
(DBN) addresses. Figure 2 on page 3 illustrates what a static Bayesian network looks like. (None of
the variables in it have reference to time; so it can be referred to as a static Bayesian network).

For a dynamic Bayesian network, the following needs to be defined: (1) a prior network and (2) a
transition network (Friedman et al., 1998). Figure 13 indicates a prior network. It represents the prior
probabilities for all of the variables in the network at ¢ = 0, the initial time slice. Figure 14 illustrates a
transition network for the same dynamic Bayesian network. The transition network illustrates, for all
time slices t = 1,2,...,n, what the probabilities are for each variable, conditioned on other variables
(possibly from the previous time slice); that is, it gives the edges that lead into each variable.

For a dynamic Bayesian network, the set of variables and probability definitions are the same for
each time slice (Zweig, 1998, Section 2.5.2), with the exception of the prior network in the initial
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Figure 15: A dynamic Bayesian network for five time slices. The connections

for time 0 are from the prior network in Figure 13 while the connections for times
1,2,3, &4 are from the transition network in Figure 14. (Probabilities are omitted).

time slice having its own probability distributions. So, given the prior and transition networks, you
can construct a dynamic Bayesian network of any length as follows. You first supply the same set of
(unconnected) variables for each time slice. Within time 0, the connections among the nodes and the
local probability functions are the same as in the prior network. Then, for every time ¢t = 1,2,...,n,
the connections from ¢ — 1 to ¢, the connections within ¢, and the local probability functions within
t are specified by the transition network. This configuration is assuming that this is a first-order
Markov network (Zweig, 1998). Figure 15 on page 18 illustrates a dynamic Bayesian network for five
time slices, built from the prior and transition networks in Figures 13 & 14.

6 Bayesian Networks for Automatic Speech Recognition

The area of application that most concerns my work is speech recognition. The application of dynamic
Bayesian networks to automatic speech recognition (ASR) has been investigated in Zweig (1998).

6.1 Advantage of using DBNs in ASR

Three advantages pointed out by Zweig and Russell (1997) for using DBNs are (1) by exploiting the
conditional independencies allowed by Bayesian networks, you can streamline the factorization of the
joint probability and thus reduce the number of parameters, (2) the generality of the inference and
learning algorithms allows a researcher to easily explore different topologies with the same, unmodified
Bayesian network program, and (3) the tying of a variable across all time slices leads to better
transitional modeling of things such as coarticulation in speech.

6.2 Topology of the Dynamic Bayesian Network in ASR

Based on Zweig (1998, Chapter 6) and Zweig and Russell (1997), the basic topology of a DBN that
is analogous to the topology of a standard hidden Markov model (HMM) speech recognizer (Rabiner
and Juang, 1993) has four variables (see Figure 16):

e position variable - this variable holds which part of the model (e.g., the 1st phoneme, 2nd
phoneme, etc.) is associated with this time slice.

e phone variable - this variable gives the phone associated with the current position.
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e Phone
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Figure 16: The basic variables in a dynamic Bayesian network for speech recog-
nition, based on Zweig (1998, Section 6.1) and Zweig and Russell (1997), that
illustrate a word model for ‘digit’ with an utterance that covers seven time frames.
For each time slice, the position variable indicates which part of the word the
time slice is modeling, and this then determines what the value of phone will be.
The transition variable indicates whether or not this was the last time slice for
this position in the word. The acoustics variables are observed and are shaded to
indicate such. The final position and transition variables are treated as observed
(as & and true, respectively), under the assumption that when you reach the final
time frame, you are in the final position in the word and are about to transition
out of it (the final phone, in this example, is implicitly observed since it depends
on the value of position).

0
_
.
_

e transition variable - this variable indicates whether this is the last time frame for this phone.
Based on the current phone variable, it gives the HMM equivalent of transition probabilities.

e acoustic variable - this variable holds the acoustic feature, which is typically observed in speech
recognition applications. Based on the current phone model, it gives the HMM equivalent of
emission probabilities.

7 Other Examples of Bayesian Networks

There are other areas of applications for Bayesian networks besides speech recognition. These include
computer troubleshooting and medical diagnosis, among others.

7.1 Computer Troubleshooting

Perhaps the best known application of Bayesian networks in actual production is the printer problem
troubleshooter for Microsoft Windows 95 (Heckerman et al., 1995). Figure 17 on page 20 gives this
Bayesian network, as taken from the Microsoft Belief Networks (MSBN) program®. The network is
used to help an amateur computer user to determine the source of the problem when he has trouble

Shttp://www.research.microsoft.com/msbn/default.htm
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Figure 17: The printer problem troubleshooter for Microsoft Windows 95, as taken
from the Microsoft Belief Networks (MSBN) program. (Probabilities are omitted).
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printing. An interface to the Bayesian network enables the user to indicate what he observes about
the problem. With certain variables observed, the tool then points the user to the most probable
cause. Microsoft is continuing to deploy applications using Bayesian networks for troubleshooting?.

7.2 Medical Diagnosis

By inputing observed symptoms, a Bayesian network for medical diagnosis can give the probability of
different, diseases that could be causing those symptoms In the network, the diseases are the causes,
and the symptoms are the effects. So, if certain symptoms are observed, you can infer the probabilities
for the different causes. This is an example of a network whose structure and probabilities do not
necessarily have to be built by training methods; rather, an expert (such as a medical doctor) gives
his own belief regarding the different probabilities and relationships relevant to the network. See
Ogﬁnyemf (1999) for recent work that gives a detailed explanation of a sample medical system that
is based on Bayesian networks.

4See the following for an example: http://support.microsoft.com/support/tshoot/default.asp
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Part 11
Algorithms

8 Constructing the junction tree

8.1 Moralizing the Bayesian network

Moralizing (as defined on page 5) a Bayesian network is concerned with “marrying” the parents of
each child. The procedure is as follows. For every child in the initial graph (such as the graph in
Figure 18), add undirected edges between all of its parents from the initial graph. Each parent of a
given node should then be directly connected to each other parent of that given node (Jensen, 1996).
Then, make all of the original edges in the entire graph undirected. So, you now end up with an
undirected graph (such as in Figure 19).

8.2 Triangulating the graph

Triangulation is the process of making a graph triangulated (as defined on page 6). To do so, you
first need to number the vertices of the graph. Any arbitrary numbering of the nodes will work.
The resultant ordering, 1,...,n, can then be used to make the triangulated graph. The following
algorithm, taken from Pearl (1988) but originally from Tarjan and Yannakakis (1984), is how to
use this numbering to construct the triangulated graph (See Figure 20). Proceeding from node n,
decreasing to node 1:

1. Determine the lower-numbered nodes which are adjacent to the current node, including those
which may have been made adjacent to this node earlier in this algorithm.

2. Connect these nodes to each other.

Instead of choosing an arbitrary numbering of the nodes in order to do the triangulation, you can
also use a maximum cardinality search (Neapolitan, 1989) (see Figure 20):

1. Give any node a value of 1

2. For each subsequent number, pick an unnumbered node that neighbors the most already num-
bered nodes (if there is a tie, you can pick any of the nodes in the tie).

Figure 18: A DAG



IDIAP-RR 00-03 23

Figure 19: The moralized version of the DAG in Figure 18 (with the vertices num-
bered according to a mazimum cardinality search after the graph was moralized)

Figure 20: The triangulated graph from Figure 19

One advantage of using the maximum cardinality search is that it can also be used as a test to
determine if a graph is already triangulated. That is, if you use a numbering from a maximum
cardinality search to do the triangulation, you will only have to add an edge if the graph is not
already triangulated.

8.3 Constructing the junction tree

Having a triangulated graph, you can now move into constructing the junction tree. As a preliminary
step, you need an algorithm for producing a perfect vertex elimination scheme from a triangulated
graph. A perfect vertex elimination scheme is where each vertex subset X; = {v; € Adj(v;)|j < i} is
complete (as defined on page 6 (Golumbic, 1980, Section 4.2)). This means that the lower numbered
neighbors of any given vertex form a complete subgraph (the numbering used in the triangulation
step meets this criterion). This definition from Golumbic (1980) is modified so as to conform with the
conventions that Neapolitan (1989) uses, who numbers the nodes from 1,2, ..., n as opposed to from
Ny...,2,1.

The following algorithm for producing the junction tree is based on Golumbic (1980, Section 4.7).
It produces a list of maximal cliques.
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DO

Figure 21: The cliques from Figure 20. Note that it is common for variables to
occur in multiple cliques.

Given: Graph G = (V, E)
Given: ordering of vertices vy, ...,v,: o (a perfect elimination order)
Initialize: x = 1;S[1,...,n] =[0,...,0], Cliques = []
for each decreasing vertex v in o
if v has neighbors
if any of v’s neighbors occur earlier than v in o
X = v’s earlier occurring neighbors in ¢
u = the last occurring element of X
Slu] = the greater of either Su] or | X| —1
if S[v] < | X]|
Cliques = Cliques + X, v
X = the greater of either y or 1 + |X|
else
break out of for loop
else
Cliques = Cliques + v
return Cliques, x

Having a list of the cliques in the graph, construct the junction tree (Pearl, 1988, Section 3.2.4):

1. Sort the clique list according to the highest numbered node (using the mazimum cardinality
ordering) in the clique.

2. Connect each clique to a previous clique in the sorted list with which it shares the most number
of nodes.

9 Inferring in the junction tree

In sections 3.2.1 & 3.2.2 T mentioned two different approaches to belief propagation. In the following
pages I will give more details about how to perform belief propagation according to the approach used
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Figure 22: The cliques from Figure 21 formed into a clique tree. Note that for any
given variable x in the tree, that all of the cliques that it occurs in are connected
together (a.k.a., running intersection property). While this clique tree is a chain,
nodes in a tree in general are allowed to have more than one child.

25
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in Pearl (1988). For details about the other method, you can find details both in Peot and Shachter
(1991) and in Zweig (1998), who applies this method to automatic speech recognition.

9.1 The clique potential

Having set out the structure of the junction tree, you now determine the potential of each of its
cliques (Neapolitan, 1989). Each clique has a set of potentials, ¢, which represents the cross product
of all the possible values of its nodes. Specifically, Clique; is composed of r; nodes: X1, Xs,..., X,,.
Furthermore, each of these nodes takes on s.. values. Then there are [],_, s’ different combinations of
variable instantiations across all the r; variables in Clique;. Let 1; represent the i values for Clique;,

and let 1);; represent the j** of all the possible variable instantiation combinations for Clique;.

for each vertex;
Assign a vertex; to any single clique where it occurs with its parents
fori=1,..., N (N =the number of cliques):

for j =1,...,J (J =the number of possible variable instantiation combinations in Clique;)
Initialize 1);5, the clique’s potential for this combination, to 1.
forj=1,...,J

For each vertex; assigned to Clique;
Yij = 1ij = P(vertex;j|parents(vertex;);)

So, while a variable may occur in multiple cliques, its probability distribution is initially included in
the calculation of only one clique’s potential.

9.2 Inferring in the junction tree

Inferring is now done on a copy of the junction tree by the passing of 7 and A values between cliques
in the tree. The 7’s and \’s are similar to the ’s in that they hold values for each of the possible
joint variable instantiation combinations of its member variables. Each clique generates one A, which
it sends to its parent clique (the root sends it nowhere). Furthermore, each clique generates a different
7 for each of its children cliques (if it has no children, it does not generate any n’s). The member
variables for the A\’s and n’s is the intersection of the variables in the sending clique and the variables
in the receiving clique. If this intersection is {#}, then the A or = will be a scalar instead of a vector.
(Note that the A generated by the root clique will be a scalar as it has no clique to pass its A up to,
thus giving a {0} intersection of variables).

This is a modified version of what is found in Neapolitan (1989, section 7.3). For further clarifica-
tions on the meanings of the different steps of this algorithm and for a partially worked out example,
please look there.

Definitions

S; = Clique;N parent(Clique;)

Ri = C’liquei — Sl

main

for every Clique;

Let O; be the observed variable subset for Clique;

CliqueH; = Clique; — O;
VH; = 1i(X = 0y)
Clique; = CliqueH;
i = H;
S;=8; —0O;
R;=R; — O;
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for every leaf Clique,
do A_prop(c)
whenever vertex Clique, receives a A, from a child Clique,
for each instantiation j of ¢,’s variables
Ypi = Vpj * e, (Where k C j, k being an instantiation of A.’s variables)
if Clique,, is the root
Py =1y
if P; = 0 for all instantiations of Clique,’s variables
exit ( the joint probability is 0)
m_prop(p)
whenever vertex Clique, receives a m, from its parent Clique,
for each instantiation j of P.’s variables
P.j = ;- mp, (where k C j, k being an instantiation of 7,’s variables)
if Clique, is not a leaf
m_prop(c)
when all P; are calculated
for any variable v in Clique;, to determine P(v = v')
P(v=1") =3, cw P(Clique; = w),
(W being instantiations of Clique;’s variables where v = v')

A_prop(c)
ifR.=0
>‘C = 1/}0
else if S, = 0
Ae =Yg, e (X is a single value)
else
for each instantiation k of S.’s variables
Ack = ZRcz Ve
if \ep #0

for each instantiation [ of 1.’s variables, where k C [
1/101 - 1/JCI/A(SC’C)
if Clique, is not the root
pass A. to Clique.’s parent clique

m_prop(p)
for each child Clique. of Clique,
if S, =0

7. = 1 (7. is a single value)
else if Clique, — S. =0
. = P(Cliquep)
else
for each instantiation k of 7.’s variables, where k C [
Tek = E(Cliquepfsc)l P(Cllquep)
pass m. to Clique,
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10 Conclusions

In this paper I have given an introduction to some of the concepts surrounding discrete Bayesian net-
works. I identified some of the concepts from graph theory that serve as the basis for the algorithms
used in Bayesian networks. These algorithms allow you to calculate updated (i.e. posterior) proba-
bilities given your observed data. Learning algorithms for Bayesian networks were also introduced;
these involve learning the local probability distributions and possibly also the topology of the network.
Furthermore, these concepts from Bayesian networks can be extended to handle time series problems,
including those relating to speech recognition. Finally, I also gave in detail some of the important
algorithms for working with Bayesian networks.
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